Solid harmonic scattering for quantum energy regressions

 Louis THIRY, Data Team, ENS Paris (Advisor Stéphane Mallat)

Molecular property regression

Methane molecule

Numerical representation

Learn a regressor for the target property $\Phi(CH_4) \xrightarrow{\tilde{f}} E(CH_4)$

Database

Source:

- Experimental measures
- Numerical simulations

QM9 database

- 130.000 organic molecules
- up to 9 atoms of type C / O / N / Fl
- 13 properties : atomization energies, polarizability, dipole moment, thermal capacity ...
- computed using density functional theory (B3LYP)
- Error in energies ~5 kcal.mol⁻¹

Digits classification

Handwritten digits classification

Invariance to translation, stability to deformation

Instability to translation for the usual metric

Instability to translation for the usual metric

Averaging

→ Creates stability to translations and defomations

Create stability to translations and deformations

Convolution with Gaussian kernel ϕ_J :

- stable to geometric deformations
- Allows dimensionality reduction via subsampling
- lots of details are lost

Recover lost information

- Convolution + modulus with wavelets

- \rightarrow reveals details at different orientations and scales
- low-pass filtering (create stability)
- subsampling (to reduce dimension)

Scattering transform

Mallat (2011), Mallat, Bruna (2012)

State of the art of non Deep-Network methods for image classification :

- 99.5 % accuracy in MNIST digits classification
- 83 % accuracy in CIFAR 10 image classification

Molecular energy regressions

Methane molecule energy

Invariance to translation and rotation :

Quantum Energy Regression using Scattering Transforms M. Hirn, N. Poilvert, S. Mallat (2016)

- Only planar molecule to have 2D images

- Create a fictious image of the molecule using Isolated atomic densities

$$ilde{
ho}_x(u) = \sum_{k=1}^K
ho_{ ext{at}}^{a(k)}(u-p_k)$$

- Apply the technique used for images

Quantum Energy Regression using

Scattering Transforms

M. Hirn, N. Poilvert, S. Mallat (2016)

- Compute scattering coefficients of the image

Gabor filters

- QM2D DB: energies of 4357 planar molecules
- Perform linear regression on scattering coefficients
- MAE : 1.8 kcal/mol, RMSE : 2.7 kcal/mol

Solid harmonic wavelet scattering for predictions of molecule properties

G. Exarchakis, M. Eickenberg, M. Hirn, S. Mallat, L. Thiry (JCP, 2018)

From 2D to 3D

- implementation issues
- Gabor filters detect edges
 → do not seem to be relevant
- use knowledge from chemistry

Solid harmonic wavelet scattering for predictions of molecule properties

3D densities

 Isolated atomic densities replaced by Gaussians to avoid the CUSP in 0

$$\rho(u) = \sum_{n} w_n g(u - r_n)$$

Solid harmonic wavelet scattering for predictions of molecule properties

<u>3D Solid harmonic wavelets</u>

$$\psi_{l,m}(r,\theta,\phi) = K_l \underbrace{e^{-r^2/2}r^l}_{\text{polynomial}} \underbrace{Y_l^m(\theta,\phi)}_{\text{spherical}}$$

$$c_{l,q} = \int_{\mathbb{R}^3} |\rho * \psi_l|^q$$

Regression with scattering transform

Multi-linear regression

Linear regression

$$E = \sum_{k=1}^{K} \alpha_k c_k + b : K \text{ coefficients to learn}$$

Bilinear regression

$$E = \sum_{k,l=1}^{K} \alpha_{k,l} c_k c_l + b$$
 : K^2 coefficients to learn

Factorized bilinear regression

$$E = \left(\sum_{k} \alpha_{k} c_{k}\right) \cdot \left(\sum_{k} \beta_{k} c_{k}\right) + b : 2K \text{ coefficients to learn}$$

Linear / Kernel / Neural network

	Linear regression	Kernel regression	Neural network
Choice	$\phi(x)$	K(x, x')	$\{\phi_{\theta}(x)\}$
F(x)	$\langle a, \phi(x) \rangle_K$	$\langle \alpha, K(x, x_n) \rangle_N$	$f_{ heta'}\left(\phi_{ heta}(x) ight)$
Optimization	$(a_k)_{1\ldots K}$	$(\alpha_n)_{1N}$	(heta, heta')

Solid harmonic scattering on QM9

property	Linear regression	Tri-linear regression
Atomization Energy at 0 K (kcal.mol ⁻¹)	1.89	0.5
Thermal capacity (cal.mol ⁻¹ .K ⁻¹)	0.10	0.049

Regression with scattering transform

<u>Hyperparameters</u>:

- width of the Gaussian representing the atoms
- wavelets
 - maximal scale J
 - maximal harmonic L
- K densities
- Q values for the I-q pooling
- choice of the regression

Size of the descriptor

 $Q \times K \times J(J+1)/2 \times L$ (= 384 for QM9)

<u>Computational time</u>

- grows linearly with the volume of the molecule
- QM9 (130K molecules) : 1 week on a good GPU

Interpretation

$$g * \psi_{l,m}(u) = k \ \psi_{l,m}(\frac{u}{s})$$

$$\rho(u) = \sum_{n} g(u - r_n)$$

$$|\rho * \psi_l|(u) = \left(\sum_{m=-l}^l \left|\sum_n \psi_{l,m} \left(u - r_n\right)\right|^2\right)^{1/2}$$

Interference patterns of solid harmonic wavelets

Interference patterns

Interference patterns

+

Interference patterns

Scattering coefficients

$$c_{l,q} = \int_{\mathbb{R}^3} |\rho * \psi_l|^q$$

- account for different patterns at small to large scales
- computed like convolutional network features
- not a many body features like distances, angles, dihedral angles
- not based on local atomic neighborhood
- well suited for periodic systems since convolutions are periodic

convolution + modulus

Conclusion

- Global descriptors
- Not a many-body feature, not based on neighborhoods
- Inspired from image classification technique
- Can be seen as a (shallow) convolutional network
- PyTorch code : <u>www.github.com/louity/pyscatharm</u>
- Forces : differentiable w.r.t. atomic positions (WIP)
- Test the ability to describe long range interactions
 → physical system with long range interaction

Questions ?