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Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)
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Have we Lost One of Jupiter’s Jets?
What is the probability of this event?

Jupiter’s white ovals (see
Youssef and Marcus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of one of the zonal jets?
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Abrupt Climate Changes
Long times matter

Temperature versus time: Dansgaard–Oeschger events (S. Rahmstorf)

What is the dynamics and probability of abrupt climate
changes?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment, reversal paths by François Petrelis)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Main Scientific Issues

How to characterize and predict the attractors of turbulent
geophysical flows?
In case of multiple attractors, can we compute their relative
probability?
Can we compute the reactive paths and the transition rates?
For most geophysical problems, an approach through direct
numerical simulation is impossible (trade off between realistic
turbulence representation and physical time - here we need
both).
Can we devise new theoretical and numerical tools to tackle
these issues?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)
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Transition rates for non-gradient dynamics
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Freidlin-Wentzell Theory

For dynamical systems with weak noises:

dx
dt

= b(x) +
√
2εη (t) ,

logP (x1,T ;x−1,0) ∼
ε↓0

inf{
x(t)

∣∣∣∣x(0)=x1 and x(T )=x−1
}

{
∫ T
0

[
ẋ+dV

dx
(x)

]2
dt
}

4ε
.

In the weak noise limit, most transitions (reactive paths)
follow the most probable path (instanton).

Figure by Eric
Vanden Eijnden

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Numerical Computation of Action Minima

dx
dt

= b(x) +
√
2εη (t) .

Action
A [x] =

∫ T

0
L [x, ẋ] dt and L [x, ẋ] =

1
2

[ẋ−b(x)]2.

Numerical computation of action minima.

E. Vanden-Eijnden, W. E and W. Ren, (2004). E Vanden-Eijnden
and M Heymann, (2008). J. Laurie and F. Bouchet, (2014).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Non-Equilibrium Phase Transition for the 2D Navier–Stokes
Eq.
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Most Probable Reactive Paths (Instantons) for the 2D
Navier-Stokes Eq.
With J. Laurie

Large deviation theory: instantons as minimum action paths.

2D Navier-Stokes equations
(time: 10 000) (PRL)
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Numerical instanton (time of
order 1) (J. Stat. Phys.)

J. Laurie and F. Bouchet, Computation of rare transitions in the
barotropic quasi-geostrophic equations, New J. Phys., 2014

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Transition Rates Beyond Large Deviations: the
Eyring-Kramers Formula

Large deviation theory gives the exponential factor for the
transition rate λ = 1/τ exp(−∆V /ε):

lim
ε→0

ε logλ =−∆V .

But the prefactor 1/τ is also essential in giving the time scale.
For gradient dynamics dx

dt =−∇V +
√

2ε
dW
dt , the Eyring-Kramers

formula (Landauer and Swanson, 1961, Langer, 1969?) gives

λ ∼
ε→0

|λ∗|
2π

√
detHessV (x1)

|detHessV (x∗)|
exp
(
−∆V

ε

)
,

where λ∗ the unstable direction eigenvalue, at the saddle point.
What is the prefactor for non gradient dynamics ? Maier and
Stein (1997) (for 2 degrees of freedom), Schuss (2009).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Transition Rates for Non-Gradient Dynamics

dx
dt

= b(x) +
√
2εη (t) .

We assume that there exists a transverse decomposition in the
instanton neighborhood

b(x) =−∇V (x) +G(x) with for all x, ∇V (x).G(x) = 0.

We have just derived (during the last few months)

λ ∼
ε→0

|λ∗|
2π

√
detHessV (x1)

|detHessV (x∗)|
exp
(
−∆V

ε

)
exp
{
−
∫ +∞

−∞

dt [∇.G(X (t))]

}
,

where λ∗ is the negative eigenvalue corresponding to the
unstable direction at the saddle point, for the dynamics (and
not for V ) and {X (t)} is the instanton.

F. Bouchet and J. Reygner, arxiv 1507.02104.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Gradient and Non-Gradient Dynamics

Phase diagram for a potential
dynamics

Phase diagram for a non potential
dynamics

dx
dt

= b(x) +
√
2εη (t) =−∇V (x) +G(x) +

√
2εη (t) .

F. Bouchet CNRS–ENSL Large deviation theory and GFD.



Freidlin–Wentzell theory and Eyring–Kramers law
Rare transitions of atmosphere jets: numerics

Rare transitions of atmosphere jets: theory

Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Four Main Steps for the Proof

Phase diagram for a potential
dynamics

14 Freddy Bouchet and Julien Reygner

x⋆

V−

v+

n⋆

θ

Basin of x̄1

Basin of x̄2

Sη

η

ȳ

Figure 3. The background gray lines are the equipotential lines in the neigh-
bourhood of the saddle-point. The stable hyperplane V− and the eigenvector v+

corresponding to the unstable direction for M⋆ are plotted with thick red lines.
The thin red lines are examples of trajectories of the relaxation dynamics. The
hyperplane Sη introduced in Subsection 5.2 is plotted with the thick blue line. It
is tangent to the equipotential line at the point ȳ, determined in §5.4.1. The thin
blue line is the instanton trajectory, the fact that it intersects Sη at ȳ is proved
in §5.4.1.

As far as the first point is concerned, it follows from the results of Section 4 that the probability
that the particle crosses the hyperplane at some point y ∈ Sη is given by

(5.13) ⟨jϵ
qst(y), n⋆⟩ =

Cst(y)

ϵd/2
exp

(
−U(y) − U(x̄1)

ϵ

)
⟨a(y)∇U(y) + ℓ(y), n⋆⟩.

The most significant contribution of the right-hand side when integrated over Sη comes from point
at which U(y) is minimum, which is at a distance of order η of x⋆. Taking η ≪ 1, we may replace
U(y) with its quadratic approximation U(x⋆) + 1

2 ⟨y − x⋆, H⋆(y − x⋆)⟩, and similarly approximate
Cst(y) by Cst(x⋆) and a(y)∇U(y) + ℓ(y) by N⋆(y − x⋆), in order to obtain

(5.14) ⟨jϵ
qst(y), n⋆⟩ =

Cst(x⋆)

ϵd/2
exp

(
−U(x⋆) − U(x̄1)

ϵ
− ⟨y − x⋆, H⋆(y − x⋆)⟩

2ϵ

)
⟨N⋆(y − x⋆), n⋆⟩.

The exponential term dominates the other terms if η2 ≫ ϵ. Therefore we shall assume that

(5.15)
√
ϵ ≪ η ≪ 1.

The second point is addressed by investigating the behaviour of the linearised dynamics far from
the saddle-point: for Z ≫ η, the particle following the linearised dynamics started at a distance
of order η of x⋆ is more likely to drift away in the direction of x̄1 if its coordinate ζ+(X̃ϵ

t ) hits −Z
before hitting Z. We therefore define the commitor function of the linearised dynamics by

(5.16) qϵ(y) := lim
Z→+∞

P[τ̃ ϵ
Z < τ̃ ϵ

−Z ],

Locally around the saddle point

1 Prefactor for the stationary measure in the interior of D.
2 Exit rates from D.
3 Commitor function in the neighborhood of the saddle point.
4 Matching on Sη and saddle point approximation.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Step 1: Prefactor for the Stationary Measure in the Interior
of D

dx
dt

= b(x) +
√
2εη (t) .

PS (x) = lim
T→∞

P (x ,0;x1,−T ) = lim
T→∞

∫ X (0)=x

X (−T )=x1
e−

AT [X ]
2ε D [X ]

with A [X ] =
∫ 0

−T
L
[
X , Ẋ

]
dt and L

[
X , Ẋ

]
=

1
2

[
Ẋ +

dV
dx

(X )

]2
.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Expansion Around the Action Minimizer

In the weak noise limit, most
paths concentrate close to the
action minimizer φ(x , t).

We expand X = φ(x ,t) +
√

εY

PS (x) ∼
ε→0

1
εn/2

C(x)exp
(
−V (x)

ε

)
with C(x) =

∫ Y (0)=0

Y (−∞)=0
D [Y ]e−

1
4
∫ 0
−∞ dt[(Y+QY )2+2YRY ],

and Q(t) =−Db(φ(x ,t)) and R(t) =−
n

∑
k=1

∂xkV (φ(x ,t))Hess(bk (φ(x ,t))).

How to compute the functional determinant C (x)?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Explicit Expression for the Functional Determinant

u(x ,y ,t) =
∫ Y (0)=0

Y (−t)=y
D [Y ]e−

1
4
∫ 0
−∞
dt[(Y+QY )2+2YRY ].

We have proven that

u(x ,O,−∞) = C(x) =

√
detHessV (x1)

(2π)n
exp
{
−
∫ +∞

−∞

dt [∇.G(X (t))]

}
.

PS (x) ∼
ε→0

1
εn/2

√
detHessV (x1)

(2π)n
exp

{
−
∫ +∞

−∞

dt [∇.G(X (t))]

}
exp

(
−V (x)

ε

)
.

1 Feynman–Kac formula for u plus a Gaussian ansatz for u.
2 This gives a matrix Riccati equation, and u is then simply

related to the determinant of this matrix.
3 We can solve by quadrature the matrix equation and compute

this determinant.
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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that the particle crosses the hyperplane at some point y ∈ Sη is given by

(5.13) ⟨jϵ
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ϵ
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The most significant contribution of the right-hand side when integrated over Sη comes from point
at which U(y) is minimum, which is at a distance of order η of x⋆. Taking η ≪ 1, we may replace
U(y) with its quadratic approximation U(x⋆) + 1

2 ⟨y − x⋆, H⋆(y − x⋆)⟩, and similarly approximate
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qst(y), n⋆⟩ =

Cst(x⋆)

ϵd/2
exp

(
−U(x⋆) − U(x̄1)

ϵ
− ⟨y − x⋆, H⋆(y − x⋆)⟩

2ϵ

)
⟨N⋆(y − x⋆), n⋆⟩.

The exponential term dominates the other terms if η2 ≫ ϵ. Therefore we shall assume that

(5.15)
√
ϵ ≪ η ≪ 1.

The second point is addressed by investigating the behaviour of the linearised dynamics far from
the saddle-point: for Z ≫ η, the particle following the linearised dynamics started at a distance
of order η of x⋆ is more likely to drift away in the direction of x̄1 if its coordinate ζ+(X̃ϵ

t ) hits −Z
before hitting Z. We therefore define the commitor function of the linearised dynamics by

(5.16) qϵ(y) := lim
Z→+∞

P[τ̃ ϵ
Z < τ̃ ϵ

−Z ],

Locally around the saddle point

1 Prefactor for the stationary measure in the interior of D.
2 Exit rates from D.
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F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Transition Rates for Non-Gradient Dynamics

dx
dt

= b(x) +
√
2εη (t) .

We assume that there exists a transverse decomposition in the
instanton neighborhood

b(x) =−∇V (x) +G(x) with for all x, ∇V (x).G(x) = 0.

The transition rate then reads

λ ∼
ε→0

|λ∗|
2π

√
detHessV (x1)

|detHessV (x∗)|
exp
(
−∆V

ε

)
exp
{
−
∫ +∞

−∞

dt [∇.G(X (t))]

}
,

where λ∗ is the negative eigenvalue corresponding to the
unstable direction at the saddle point, for the dynamics (and
not for V ) and {X (t)} is the instanton.

F. Bouchet and J. Reygner, arxiv 1507.02104.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = νd∆ω−λω +

√
2εfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′), ε is the average energy input
rate, λ is the Rayleigh friction coefficient.
4 parameters: ε , λ , β and L

2 independent non-dimensional parameters: we choose spatial
scale unit such that L = 2π, and temporal scale unit such that
the average total energy is one.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The barotropic quasi-geostrophic model
The AMS algorithm
The AMS algorithm and jet transitions

Energy Balance

dE(E )

dt
=−2λE(E )−νdE(Z ) + ε

Then, in the turbulent regime, where viscous energy
dissipation is negligible

ES(E )' ε

2λ

We will work with the time scale unit that ε

2λ
= 1.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Barotropic Quasi-Geostrophic Equations

The non-dimensional version of the barotropic QG equation
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + β ′y .
The relation with the dimensional parameters is:

α = L

√
2λ 3

ε
.

β
′ = L3

β

√
2λ

ε
=

(
L

LRhines

)2

Spin up or spin down time = 1/α� 1 = jet inertial time scale.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Non Dimensional Barotropic Quasi-Geostrophic
Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + βy .

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The 2D Stochastic Navier-Stokes Equations (β = 0)

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Bricmont, Debussche,
Hairer, Kuksin, Kupiainen, Mattingly, Shirikyan, Sinai, ...

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure:
Is it concentrated close to steady solutions of the 2D Euler
(quasi-geostrophic) equations?
Can we describe the dynamics among these states?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.



Freidlin–Wentzell theory and Eyring–Kramers law
Rare transitions of atmosphere jets: numerics

Rare transitions of atmosphere jets: theory

The barotropic quasi-geostrophic model
The AMS algorithm
The AMS algorithm and jet transitions

Multistability for Quasi-Geostrophic Jets

Jupiter’s atmosphere
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β = 0.5βmid α = 10−3

wave#2

β = 1.1βmid α = 10−3

wave#4

β = 0.7βmid α = 10−3

wave#3

∫ 2
π

0
q(

t,
x
,y

)
d
x

αt

QG zonal turbulent jets

Multiple attractors had been observed previously by B. Farrell
and P. Ioannou.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rare Transitions Between Quasigeostrophic Jets
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∫ 2
π

0
q(

t,
x
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)
d
x

αt
Rare transitions for quasigeostrophic jets (with E. Simonnet)

This is the first observation of spontaneous transitions.
How to predict those rare transitions? What is their
probability? Which theoretical approach?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Rare Events and Adaptive Multilevel Splitting (AMS)
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

AMS algorithm

Strategy: selection and cloning.
Probability estimate:

α̂ = ∏P(lk , lk+1)

with P(lk , lk+1) = (1−1/N)

F. Cérou, A. Guyader. (2007) F. Cérou, A. Guyader, T. Lelièvre, and D.
Pommier (2011).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Allen–Cahn (or Ginzburg–Landau) Eq.

{
∂tA =− δV

δA +
√

2
β

η ,

A(0) = A(L) = 0

with V =
∫ L

0
dx
(
−A2

2
+

A4

4
+

1
2

(∂xA)2
)
,

and 〈η(x ,t)η(x ′,t ′)〉= δ (t−t ′)δ (x−x ′).
 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

V
(x

)

x

∆V

Because of the gradient structure, V is the quasi-potential.
In the small noise limit (β → ∞), rare transition are time
reversed of gradient trajectories (instantons) and the transition
rate is τ exp(−∆V /β ).

W.G. Faris, G. Jona-Lasinio. (1982)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Instanton: the Action Minimizer

The critical point with the lowest saddle is selected

Potential of zero
and “one front”

saddles

Through zero Through the 1-front
saddle

For L< Lc , the instanton goes through the zero state, for
L> Lc , the instanton goes through the 1-front saddle.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Transition Trajectories for the Allen–Cahn Eq.
Ginzburg Landau potential with a non conservative dynamics

A reactive path through zero,
for L = 5, and β = 300.

A 1-front reactive path, for
L = 10, and β = 150.

Examples of reactive paths computed using the Adaptive
Multilevel Splitting algorithms.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Check for Arrhenius’ Rates Prediction from
Freidlin–Wentzell Theory

log(α) versus β ∆V versus the measured ∆V

Kramers’ rate: α = 1
τ
exp(−β ∆V ), where V is the

quasi-potential.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Beyond Freidlin–Wentzell Regime

A fluctuating front reactive
path, L = 30, β = 30.7

A complex 2-front reactive
path, L = 110, β = 7

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Reactive Path Lengths and Gumbel Distribution

One can go beyond large deviation theory: computation of the
distribution of the length of reactive paths

Distribution of reactive path length, L = 10.

Why should one expect a Gumbel distribution? Relation with
extreme value theory? M.Y. Day (1995), Y. Bakhtin (2013), F.
Cérou, A. Guyader, T. Lelièvre, and F. Malrieu (2013).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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AMS Computation of Reactive Paths for the Allen-Cahn
equation

We can compute mean exit times of order of 1016 times the
relaxation time, with a numerical cost which is of order 103

times the relaxation time, and have an excellent statistics of
the reactive trajectories.
The statistics conditioned on the occurrence of the rare event
is excellent. Dynamics study.
Applied to the Allen-Cahn equation, it shows that the
Freidlin–Wentzell theory is valid on a very narrow regime, that
would have been very difficult to study using direct numerical
simulations.
This gives access easily to most quantity of interest beyond
Freidlin–Wentzell regime.

F. Bouchet, J. Rolland and E. Simonnet, J. Stat. Phys., 2016

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Geostrophic Jet Transitions from the Adaptive Multilevel
Splitting Algorithm
Transitions from two to three jets

Transitions 2 → 3 N = 768, r = 64, β = 0.55, |kf | ∈ [10− 12].

Pr(τB < τA) ≈ 1.5 · 10−5 (±5 · 10−6)
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758 transitions 2→3. β = 0.55 and |kf | ∈ [10;12]

Pr(τB < τA) = 1.510−5±5.10−6.
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Geostrophic Jet Transitions from the Adaptive Multilevel
Splitting Algorithm
Transitions from three to two jets

Transitions 3 → 2 N = 768, r = 64, β = 0.55, |kf | ∈ [10− 12].

Pr(τA < τB) ≈ 1.9 · 10−4 (±5 · 10−5)
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758 transitions 3→2. β = 0.55 and |kf | ∈ [10;12]

Pr(τA < τB) = 1.910−4±5.10−5.

Two types of transitions: 2→3 and 2→ 4→ 3.
F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Atmosphere Jet “Instantons” Computed using AMS
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Transition trajectories between 2 and 3 jet states

Asymmetry between forward and backward transitions.
With the AMS algorithm, we study transitions that can not be
sampled using direct numerical simulations.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Distribution of Transition Path Durations
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Transitions 3 → 2 N = 768, r = 64, β = 0.55, |kf | ∈ [10− 12].

Pr(τA < τB) ≈ 1.9 · 10−4 (±5 · 10−5)
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Distribution of transition durations

Transition path duration distribution is close to a Gumble one.
The AMS algorithm gives a good sampling of transition paths.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q =−αω +

√
2αfs ,

with q = ω + βy .
Inertial limit: spin up or spin down time = 1/α � 1 = jet
inertial time scale.
A reasonable model for Jupiter’s zonal jets.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Which Mathematical Framework for the Inertial Limit?

Inertial limit: spin up or spin down time = 1/α � 1 = jet
inertial time scale.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q =−αω +

√
2αfs ,

with q = ω + βy .
It is an averaging problem for an Hamiltonian system
perturbed by weak non Hamiltonian forces.
The Hamiltonian system is an infinite dimensional one with an
infinite number of conserved quantities.
We will need to consider large deviations for the slow process.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Decomposition Between Zonal Jets and Turbulence: A
Slow/Fast Dynamical System

∂q

∂ t
+v.∇q =−αω +

√
2αfs with α � 1

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

qz(y) = 〈q〉 ≡ 1
2π

∫

D
dx q and q = qz +

√
αqm.

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Averaging for the Stochastic Quasi-Geostrophic Eq.

1
α

∂qz
∂ t

= F [qz ]−ωz .

F [qz ] =− ∂

∂yEqz 〈vm,yqm〉. The average of the Reynolds stress
is over the statistics of the quasilinear inertial dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αqm + fs

and
〈vm,yqm〉=

1
Ly

∫
dy Eqz [vm,yqm] .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Kinetic Theory of Atmosphere Jets
Troposphere Dynamics: comparison of kinetic equations and a direct numerical simulation
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Kinetic approach.

Zonal wind and momentum convergence for the primitive equations.

Farid Ait Chaalal and Tapio Schneider (Caltech and ETH Zurich).

The qualitative structure of a fast rotating Earth troposphere
is well approximated by kinetic equations.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)
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The Barotropic Quasi-Geostrophic Equations

At leading order, the inertial equations are an Hamiltonian
system.
Quasi-Geostrophic equations with no forces and dissipation

∂q

∂ t
+v.∇q = 0

with q = ω + βy .
It conserves energy

E =
1
2

∫

D
v2dx,

enstrophy, and an infinite number of Casimir invariants.
We want to use that zonal jets are attractors for the inertial
dynamics.
Asymptotic stability? How is this possible for Hamiltonian
systems?

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Inviscid Damping of the Linearized Euler Eq.

Base state: a stable steady state v0 = U (y)ex , with vorticity
Ω(y): v0.∇Q = 0

∂tωm +U(y)
∂ωm

∂x
+ vm,y

∂ Ω

∂y
= 0 with ω(t = 0) = ω0 .

For the linearized 2D Euler equation and non-monotonous base
flow, the velocity field decreases algebraically at large times

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Validity of Averaging?

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αωm +
√
2fs

We need to prove that the Gaussian process has an invariant
measure which has a limit when α → 0.
This is the limit of no dissipation.
It may work because of inviscid damping (Related to
Landau-Damping and the recent result of Bedrossian and Masmoudi).

The result is based on asymptotics of the inviscid linearized
equations (F. Bouchet and H. Morita, 2010):

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Invariant Measure in the Inertial Limit

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

=−αωm +
√
2fs

The two point correlation function Eα (vm(y1)vm(y2)) has a
limit when α ↓ 0.
The two point correlation function Eα (qm(y1)qm(y2)) has a
limit when α ↓ 0., as a distribution.
The two two point correlation function Eα (∇qm(y1)∇qm(y2))
diverges when α ↓ 0.
The Reynolds stress Eα (vm,y (y)qm(y)) has a limit when α ↓ 0.

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Reynolds Stress Ergodicity in the Inertial Limit

The Reynolds stress Eα (vm,y (y)qm(y)) has a limit when α ↓ 0.
Pointwise divergence of the ergodic average:

Eα

{[
1
T

∫ T

0
dtvm,y (y)qm(y)−Eα (vm,y (y)qm(y))

]2}
∼

T↑∞ α↓0
A(y)

αT

Convergence as a distribution: for any test function φ

Eα

{∫
dy φ(y)

[
1
T

∫ T

0
dtvm,y (y)qm(y)−Eα (vm,y (y)qm(y))

]}2
∼

T↑∞ α↓0
A

T

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

T. Tangarife’s PhD thesis, 2015.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Validity of Averaging at the Level of the Law of Large
Numbers

The fast variable dynamics has an invariant measure in the
inviscid limit thanks to inviscid damping.
Velocity like observables have a finite expectation in the
inviscid limit.
The Reynolds stress has a finite expectation in the inviscid
limit.
The ergodic average of the Reynolds stress converges as a
distribution.
We have partial answers only, for the validity of averaging!

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

T. Tangarife’s PhD thesis, 2015.
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Outline
1 Large deviations (Freidlin–Wentzell theory) and transition rates

(Eyring–Kramers formula) for non-gradient dynamics
Freidlin-Wentzell theory
Transition rates: Eyring–Kramers generalized to non-gradient
dynamics (F.B., and J.R.)

Sketch of the proof (F.B., and J.R.)

2 Rare transitions of atmosphere jets: rare event algorithms
The barotropic quasi-geostrophic model
The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

The AMS algorithm and jet transitions (F.B. and E.S.)
3 Rare transitions of atmosphere jets: averaging and large

deviations
Averaging for slow jet dynamics (F.B., C.N., and T.T.)

Ergodicity and averaging (F.B., C.N., and T.T.)

Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.



Freidlin–Wentzell theory and Eyring–Kramers law
Rare transitions of atmosphere jets: numerics

Rare transitions of atmosphere jets: theory

Averaging for slow jet dynamics
Ergodicity and averaging
Atmosphere jet large deviations

Fluctuations Around the Law of Large Numbers





dx
dt = f (x ,y)

dy
dt = 1

α
g(x ,y) + 1√

α
h(x ,y)dWdt

Time scale separation: α � 1. y is the fast variable and x is
the slow one.

α t
0 1 2 3

-10

-5

0

5

10
 y(t)
 x(t)

A slow/fast dynamics.
α t

0 1 2 3
2

3

4

5

6

7

The averaged evolution.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Gaussian Fluctuations Do Not Describe Rare Transitions

0 1 2 3 4 5 6 7
Ux

0

1

2

3

4

5

6

7

U
y

Minimizer

Minimizer (quad approx)

Relaxation path

(Figure from F. Bouchet, T. Grafke, T. Tangarife, and E. Vanden-Eijnden
2015)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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The Large Deviations that Describe Rare Transitions





dx
dt = f (x ,y)
dy
dt = 1

α
g(x ,y) + 1√

α
h(x ,y)dWdt

The transition rate λ from a state X0 to a state XF verifies

lim
α→0

α λ = 2 min
{X ,P|X (0)=X0 and X (T )=XF ,}

A [X ,θ ]

with the action

A [X ,θ ] =
∫ T

0
dt
[
ẊP−H(X ,P)

]
,

and

H(X ,P) = lim
T→∞

1
T

logEX

{
exp
[
P
∫ T

O
f (X ,y(t))

]}
(see Freidlin–Wentzell)

For quadratic in y f , and linear g and h (for instance for the
quasigeostrophic model), H solves a nonlinear Lyapunov eq.

F. Bouchet, T. Grafke, T. Tangarife, and E. Vanden-Eijnden, submitted
to J. Fluid. Mech., 2015

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Reynolds Stress Statistics for the Slow Zonal Jet Dynamics
Large Deviation Theory
(with Tomás Tangerife and Freddy Bouchet)

Timeseries of the momentum flux convergence (Reynolds stress)

The Reynolds stress PDF has very long exponential tails (for which
we have a theory)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.



Freidlin–Wentzell theory and Eyring–Kramers law
Rare transitions of atmosphere jets: numerics

Rare transitions of atmosphere jets: theory

Averaging for slow jet dynamics
Ergodicity and averaging
Atmosphere jet large deviations

Large Deviations of Quadratic Observables for an
Ornstein–Uhlenbeck Process





dx
dt = yTMy −g(x)
dy
dt = 1

α
Lxy + 1√

α
η

H(X ,P) = lim
T→∞

1
T

logEX

{
exp
[
P
∫ T

O
yTMy

]}
= Tr(CN∞).

where C is the noise correlation function and N∞ is the asymptotic solution of
the matrix Ricatti equation equation

∂N

∂ t
+LTXN +NLX = 2NCN +PM

We can solve this equation analytically sometimes, or numerically.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Hamiltonian for the Large Deviations of Time Averaged
Reynolds Stresses

R
-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12

L
 =

 -
lo

g
 P

 /
 ∆

 t

0

0.01

0.02

0.03

0.04

0.05

0.06
 L estimated
 Ricatti solution
 Gaussian

The Lagrangian that describes large deviations of zonal jets

Rare transitions involve non Gaussian fluctuations

F. Bouchet, T. Tangarife, and B. Marston (to be submitted to JAS)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Heteroclinic Orbit for Zonal Jet Transitions
String method: computing heteroclinic orbits between saddles and attractors

TRANSITIONS BETWEEN META-STABLE JETS IN QG QL 7
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F����� �. Merger from 5 to 4 jets. The saddle-point configuration is denoted with
black dashed lines.
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F����� �. Merger from 5 to 6 jets. The saddle-point configuration is denoted with
black dashed lines, very close to the 6-jet configuration, which is likely to be only
very marginally stable.

The heteroclinic orbits between 4 and 5 jet attractors

The string method: W.E and E. Vanden-Eijnden, Phys. Rev. B 2002.
A preliminary step towards the computation of instantons.

with T. Grafke and E. Vanden-Eijnden.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Perspectives
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Rare transitions for quasigeostrophic jets

Study the fluid mechanics aspects of rare fluctuations.
Compute rare transitions as minimizers of the large deviation
action.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Zonal Jet Conclusions

We have observed rare transitions between zonal jets in
barotropic turbulence, similar to the Jupiter loss of a zonal jet,
(with E. S.).
We use the adaptive multilevel splitting algorithm to sample
reactive trajectories and compute transition rates, (with E. S.).
We have partial results for the justification of averaging
(ergodicity, etc ...), (with C.N., and T.T.).
In the limit of time scale separation, a theory based on large
deviations can be derived for the computation of transition
rates and reactive paths between zonal jets.
The large deviation action can be computed solving a
non-linear Lyapunov equation, (with T.G., B..M., T.T., and E.
V-E).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Theoretical Statistical Physics and Climate Dynamics

Theoretical physics (statistical mechanics, large deviation theory,
turbulence, dynamical system theory) will play a crucial role in
future understanding of climate dynamics.

APS trend

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Mathematical Physics and Climate Dynamics

Mathematical physics (statistical mechanics, large deviation theory,
turbulence, dynamical system theory) will play a crucial role in future
understanding of climate dynamics.

Newton Institute program and conference

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Collaborators

Eyring–Kramers formula for transition rates of non-gradient
dynamics (with J. Reygner, post-doc ERC Transition).
Multistability (with E. Simonnet) and instantons for the
2D-Navier Stokes equations (with J. Laurie (post-doc ERC)).
Numerical simulation of abrupt transitions for Jupiter zonal
jets using Adaptive Multilevel Splitting algorithms (with J.
Rolland and E. Simonnet (Nice)).
Ergodicity and averaging for the quasi-geostrophic dynamics
(with C. Nardini (post-doc) and T. Tangarife (PHD)).
Large deviations of Reynolds stresses for jet dynamics (with B.
Marston (Brown) and T. Tangarife (PHD)).
Averaging, large deviations, and transitions for Jupiter jets
(with T. Grafke and E. Vanden-Eijnden).

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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In Remembrance of Tomas Tangarife

F. Bouchet CNRS–ENSL Large deviation theory and GFD.
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Summary and Perspectives

Large deviation theory can be applied to geophysical
turbulence.
The dynamics leading to rare events is usually predictable,
even for turbulent flows.
With rare event algorithms, we can compute probability of rare
events that can not be sampled using direct numerical
simulations.
We have generalized the Eyring-Kramers law to non-gradient
dynamics.
Averaging and fast/slow large deviations for the
quasi-geostrophic model rises fascinating mathematical issues.

F. Bouchet CNRS–ENSL Large deviation theory and GFD.


	Large deviations (Freidlin–Wentzell theory) and transition rates (Eyring–Kramers formula) for non-gradient dynamics
	Freidlin-Wentzell theory
	Transition rates: Eyring–Kramers generalized to non-gradient dynamics (F.B., and J.R.) 
	Sketch of the proof (F.B., and J.R.) 

	Rare transitions of atmosphere jets: rare event algorithms
	The barotropic quasi-geostrophic model
	The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)
	The AMS algorithm and jet transitions (F.B. and E.S.)

	Rare transitions of atmosphere jets: averaging and large deviations
	Averaging for slow jet dynamics (F.B., C.N., and T.T.)
	Ergodicity and averaging (F.B., C.N., and T.T.)
	Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.) 


