Rare event algorithms and large deviations of
turbulent atmosphere dynamics.

F. BOUCHET (CNRS) — ENS de Lyon and CNRS

February 2016 — COSMOS - Paris

ENS DE LYON

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Jupiter’'s Zonal Jets

We look for a theoretical description of zonal jets
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Jupiter's atmosphere Cassini, from Porco et al 2003)
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Have we Lost One of Jupiter's Jets?
What is the probability of this event?

Jupiter’'s white ovals (see
Youssef and Marcus 2005)
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The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of one of the zonal jets?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Abrupt Climate Changes

Long times matter
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Temperature versus time: Dansgaard—Oeschger events (S. Rahmstorf)

@ What is the dynamics and probability of abrupt climate
changes?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Random Transitions in Turbulence Problems

Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)
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Magnetic fleld timeseries ~ Zoom on reversal paths
(VKS experiment, reversal paths by Francois Petrelis)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The Main Scientific Issues

@ How to characterize and predict the attractors of turbulent
geophysical flows?

@ In case of multiple attractors, can we compute their relative
probability?

@ Can we compute the reactive paths and the transition rates?

@ For most geophysical problems, an approach through direct
numerical simulation is impossible (trade off between realistic
turbulence representation and physical time - here we need
both).

@ Can we devise new theoretical and numerical tools to tackle
these issues?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Large deviations (Freidlin-Wentzell theory) and transition rates

(Eyring—Kramers formula) for non-gradient dynamics

@ Freidlin-Wentzell theory

@ Transition rates: Eyring—Kramers generalized to non-gradient
dynamics (F.B., and JR.)

@ Sketch of the proof (F.B., and JR)

Rare transitions of atmosphere jets: rare event algorithms

@ The barotropic quasi-geostrophic model

@ The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

@ The AMS algorithm and jet transitions (F.B. and E.S.)

© Rare transitions of atmosphere jets: averaging and large

deviations

@ Averaging for slow jet dynamics (F.B.,, C.N., and T.T.)

@ Ergodicity and averaging (F.B., C.N., and T.T.)

@ Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Outline
B Large deviations (Freidlin-Wentzell theory) and transition rates
(Eyring—Kramers formula) for non-gradient dynamics
@ Freidlin-Wentzell theory

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Freidlin-Wentzell Theory

@ For dynamical systems with weak noises:

& — b +v2en (1),

inf . }{fJ [)'H»%(x)}z dt}

x(0)=x; and x(7)

{x(r)
log P(x1, T;x-1,0) ~
g P(x1, T;x_1 )eJ,O T

@ In the weak noise limit, most transitions (reactive paths)
follow the most probable path (instanton).

Figure by Eric
Vanden Eijnden

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Numerical Computation of Action Minima

& =b(x)+v2en(1).

@ Action ;
ﬂ[x]:/o ZIxA] dt and Z[x.%] = %[)kfb(x)]?

@ Numerical computation of action minima.

E. Vanden-Eijnden, W. E and W. Ren, (2004). E Vanden-Eijnden
and M Heymann, (2008). J. Laurie and F. Bouchet, (2014).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Non-Equilibrium Phase Transition for the 2D Navier—Stokes

Eq.

The time series and PDF of the Order Parameter

X | | | Vorticity

Voicity
Order parameter : z; = [ dxdy exp(iy)o(x,y).
For unidirectional flows |z;| ~ 0, for dipoles |z;| ~ 0.6 — 0.7

F. Bouchet and E. Simonnet, PRL, 2009.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law

Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Most Probable Reactive Paths (Instantons) for the 2D

Navier-Stokes Eq.
With J. Laurie

@ Large deviation theory: instantons as minimum action paths.
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2D Navier-Stokes equations Numerical instanton (time of
(time: 10 000) (PRL) order 1) (J. Stat. Phys.)

J. Laurie and F. Bouchet, Computation of rare transitions in the

barotropic quasi-geostrophic equations, New J. Phys., 2014

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Outline
B Large deviations (Freidlin-Wentzell theory) and transition rates
(Eyring—Kramers formula) for non-gradient dynamics

@ Transition rates: Eyring—Kramers generalized to non-gradient
dynamics (F.B., and JR.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Transition Rates Beyond Large Deviations: the
Eyring-Kramers Formula

@ Large deviation theory gives the exponential factor for the
transition rate A = 1/texp(—AV/e):

limelogh =—AV.
£—0

@ But the prefactor 1/7 is also essential in giving the time scale.
o For gradient dynamics $x =-vv +v2ed¥, the Eyring-Kramers
formula (Landauer and Swanson, 1961, Langer, 19697) gives

e—0 271 |/ |detHessV/(x;)

|[As| | detHessV/(x1) < AV>
~ | exp ,
where A, the unstable direction eigenvalue, at the saddle point.

@ What is the prefactor for non gradient dynamics ? Maier and
Stein (1997) (for 2 degrees of freedom), Schuss (2009).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Transition Rates for Non-Gradient Dynamics

dx
o = b(x) +v2en (1).

@ We assume that there exists a transverse decomposition in the
instanton neighborhood

b(x) = —VV/(x) 4+ G(x) with for all x, VV/(x).G(x) = 0.

@ We have just derived (during the last few months)

2] MGXP (f%)exp{f/_fdt[v.c(X(t))l},

e50 21 |det Hess V/(x)

where A, is the negative eigenvalue corresponding to the
unstable direction at the saddle point, for the dynamics (and
not for V') and {X(t)} is the instanton.

F. Bouchet and J. Reygner, arxiv 1507.02104.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Outline
B Large deviations (Freidlin-Wentzell theory) and transition rates
(Eyring—Kramers formula) for non-gradient dynamics

@ Sketch of the proof (F.B., and JR)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Gradient and Non-Gradient Dynamics

Phase diagram for a potential Phase diagram for a non potential
dynamics dynamics
dx

%= b(x) + v2en (t) = —VV(x) + G(x) + v2en (¢).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Four Main Steps for the Proof

Phase diagram for a potential Locally around the saddle point

dynamics
@ Prefactor for the stationary measure in the interior of D.
@ Exit rates from D.
© Commitor function in the neighborhood of the saddle point.
@ Matching on S, and saddle point approximation.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Step 1: Prefactor for the Stationary Measure in the Interior
of D

dx
P b(x)+ v2en (t).
. . ~X(0)=x 77X
Ps(x) = lim P(x,0;x1,—T) = lim e” "= P[X]
T—eo T—o )X (~T)=x1

with o [X] :/ﬁOT.z{x?X] dt and & [X,X} - % {X+ j—Z(X)r.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Expansion Around the Action Minimizer

In the weak noise limit, most
paths concentrate close to the
action minimizer ¢(x,t).

We expand X = ¢(x,t)+ €Y

Ps(x) i e”% C(x)exp <7@> with C(x) = ‘/y:ij:)o 9 [Y]e*% 1% dt[(Y+QY)2+2YRY]7
and Q(t) = —Db(¢(x,t)) and R(t) = fki dx, V(¢ (x,t))Hess(bi(¢(x,1))).
=1

@ How to compute the functional determinant C(x)?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Freidlin—-Wentzell theory and Eyring—Kramers law

Explicit Expression for the Functional Determinant

-Y(0)=0 1o )
U(&yﬁ)z/y(ﬁ)jy@[y]e*z I dt[(Y+QY) +2YRY].

We have proven that

u(x, 0, o) = C(x) =1 dettsi;)‘ﬁ(xl)exp {—/::th[V.G(X(t))]}.

L [detHessVix) {—L:mdt[V.G(X(t))]}exp (—M> ‘

Ps() o en2 (2n)" €

© Feynman—Kac formula for u plus a Gaussian ansatz for u.

@ This gives a matrix Riccati equation, and u is then simply
related to the determinant of this matrix.

© We can solve by quadrature the matrix equation and compute
this determinant.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Four Main Steps for the Proof

Phase diagram for a potential Locally around the saddle point

dynamics
@ Prefactor for the stationary measure in the interior of D.
@ Exit rates from D.
© Commitor function in the neighborhood of the saddle point.
@ Matching on S, and saddle point approximation.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Freidlin—-Wentzell theory and Eyring—Kramers law Freidlin-Wentzell theory
Transition rates for non-gradient dynamics

Sketch of the proof

Transition Rates for Non-Gradient Dynamics

dx
o = b(x) +v2en (1).

@ We assume that there exists a transverse decomposition in the
instanton neighborhood

b(x) = —VV/(x) 4+ G(x) with for all x, VV/(x).G(x) = 0.

@ The transition rate then reads

2| [ detHessV(x) (_%) exp{_'/i:wdt[v.G(X(t))]}

e50 21 |det Hess V(x|

where A, is the negative eigenvalue corresponding to the
unstable direction at the saddle point, for the dynamics (and
not for V') and {X(t)} is the instanton.

F. Bouchet and J. Reygner, arxiv 1507.02104.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Outline

@ Rare transitions of atmosphere jets: rare event algorithms
@ The barotropic quasi-geostrophic model

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model

Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Jupiter’'s Zonal Jets

We look for a theoretical description of zonal jets

Planetocentrc ltitude (de9)

Velochy (mis) Storms

Jupiter’s zonal winds (Voyager and

iter’ h .
Jupiter's atmosphere Cassini, from Porco et al 2003)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The Barotropic Quasi-Geostrophic Equations

@ The simplest model for geostrophic turbulence.

@ Quasi-Geostrophic equations with random forces

d

a—z +v.Vg=v4A0— Ao+ V2¢efs,
where @ = (V Av).e; is the vorticity, g = @+ By is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
(fs(x,t)fs(X',t")) = C(x —x')8(t —t'), € is the average energy input
rate, A is the Rayleigh friction coefficient.

@ 4 parameters: €, A, B and L

@ 2 independent non-dimensional parameters: we choose spatial
scale unit such that L =27, and temporal scale unit such that
the average total energy is one.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm

The AMS algorithm and jet transitions

Energy Balance

dE(E)

e —2AE(E)—Vv4E(Z)+¢€

@ Then, in the turbulent regime, where viscous energy
dissipation is negligible

€

o We will work with the time scale unit that % 1.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The Barotropic Quasi-Geostrophic Equations

@ The non-dimensional version of the barotropic QG equation

e Quasi-Geostrophic equations with random forces

99
ot

with g= w0+ f'y.
@ The relation with the dimensional parameters is:

3
a:L\/&.
€
/I _ 43 /%_ L ?
ﬁ_LB € B LRhines

@ Spin up or spin down time = 1/a < 1 = jet inertial time scale.

+v.Vg=vAw—-ow+ v2ofs,

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The Non Dimensional Barotropic Quasi-Geostrophic
Equations

@ The simplest model for geostrophic turbulence.

o Quasi-Geostrophic equations with random forces

d
a—ct’Jrv.Vq: VAW — oo+ V2ofs,

with g = o+ By.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The 2D Stochastic Navier-Stokes Equations (8 = 0)

0
&—(: +uVo =vAw+/Vvf;

@ Some recent mathematical results: Bricmont, Debussche,
Hairer, Kuksin, Kupiainen, Mattingly, Shirikyan, Sinai, ...
o Existence of a stationary measure u,. Existence of limy_o Uy,

o In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional

turbulence. Cambridge University Press.

@ We would like to describe the invariant measure:

o Is it concentrated close to steady solutions of the 2D Euler
(quasi-geostrophic) equations?
o Can we describe the dynamics among these states?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Multistability for Quasi-Geostrophic Jets

B=058ma a=10"

Jupiter's atmosphere ot
QG zonal turbulent jets

@ Multiple attractors had been observed previously by B. Farrell
and P. loannou.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Rare Transitions Between Quasigeostrophic Jets

wavenumbers 2 < 3

B=10.5550pq a=15-1073

. . " T
0 200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400 1600 1800
»

at
Rare transitions for quasigeostrophic jets (with E. Simonnet)

@ This is the first observation of spontaneous transitions.
@ How to predict those rare transitions? What is their
probability? Which theoretical approach?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Outline

@ Rare transitions of atmosphere jets: rare event algorithms

@ The adaptive multilevel splitting (AMS) alg. (F.B., J.R. and E.S.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Rare Events and Adaptive Multilevel Splitting (AMS)

AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Strategy: selection and cloning.

Obseruvable: & :R? — R

© 40 m<n<a, Probability estimate:
! N =3 clones
&= [TPUk, lk+1)
B
- 1: 1 branched on 2 with P(/k, lk+1) = (1 — 1/N)

AMS algorithm

F. Cérou, A. Guyader. (2007) F. Cérou, A. Guyader, T. Leliévre, and D.
Pommier (2011).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The Allen—Cahn (or Ginzburg-Landau) Egq.

_ 8V 2 !
IA=—5z+/FM 00
A(O) - A(L) - O _ o6
L A2 A4 1 5 > e
with V= [ dx (—7+T+§(8XA) ) , 02 m

o

2 15 -1 05 0 05 1 15 2

and (n(x,0)n(x',t')) =8(t—t')6(x—x). ;
@ Because of the gradient structure, V is the quasi-potential.

@ In the small noise limit (8 — o), rare transition are time
reversed of gradient trajectories (instantons) and the transition
rate is Texp(—AV/fB).

W.G. Faris, G. Jona-Lasinio. (1982)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

The Instanton: the Action Minimizer

@ The critical point with the lowest saddle is selected

1500 ' "
— smw
os os
1000 5500
- o il o
4500
0 4000
os 05
‘ 3500
S 0z 3 4 s 1
o 2z 4 5 8 1

Potential of zero Through zero Through the 1-front
and “one front” saddle
saddles

@ For L < L, the instanton goes through the zero state, for
L > L., the instanton goes through the 1-front saddle.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Transition Trajectories for the Allen—Cahn Eq.

Ginzburg Landau potential with a non conservative dynamics

A reactive path through zero, A 1-front reactive path, for

for L=15, and = 300. L =10, and B = 150.

@ Examples of reactive paths computed using the Adaptive
Multilevel Splitting algorithms.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm

The AMS algorithm and jet transitions

Check for Arrhenius’ Rates Prediction from
Freidlin—Wentzell Theory

——asymptotique, L=8

70r---AMS, L=8 " " I
(@) g0/ —— asymptotiaue, L=10
---AMS, L=10
50— asymptotique, L=13
---AMS, L=13
__ 40} —asymptotique, L=15 Z .
% |---AMS,L=15 3
< 30— asymptotique, L= So.
AMS, L=17 Z
20
10
0 0.9
0 10 20 3&) 40 50 60 5 10 15 L 20 25 30

log(ct) versus B AV versus the measured AV

o Kramers' rate: o= Lexp(—BAV), where V is the
quasi-potential.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Beyond Freidlin—Wentzell Regime

2000 ' 1
1500 °s 05
- 1000 ° el 0
-0.5
500| 3 05
-1
0 : e -1
X 0 20 40 60 80 100
A fluctuating front reactive A complex 2-front reactive

path, L =30, B =30.7 path, L =110, B =7

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Reactive Path Lengths and Gumbel Distribution

@ One can go beyond large deviation theory: computation of the
distribution of the length of reactive paths

®)os p——
—p=10
—p=20

=30
—p=40

=50
—p=100 I
—— normalised Gumbel

% 0 4 6

=

Distribution of reactive path length, L =10.

@ Why should one expect a Gumbel distribution? Relation with
extreme value theory? M.Y. Day (1995), Y. Bakhtin (2013), F.
Cérou, A. Guyader, T. Leliévre, and F. Malrieu (2013).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

AMS Computation of Reactive Paths for the Allen-Cahn
equation

@ We can compute mean exit times of order of 10%° times the
relaxation time, with a numerical cost which is of order 103
times the relaxation time, and have an excellent statistics of
the reactive trajectories.

@ The statistics conditioned on the occurrence of the rare event
is excellent. Dynamics study.

@ Applied to the Allen-Cahn equation, it shows that the
Freidlin—-Wentzell theory is valid on a very narrow regime, that
would have been very difficult to study using direct numerical
simulations.

@ This gives access easily to most quantity of interest beyond
Freidlin—-Wentzell regime.

F. Bouchet, J. Rolland and E. Simonnet, J. Stat. Phys., 2016

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Outline

@ Rare transitions of atmosphere jets: rare event algorithms

@ The AMS algorithm and jet transitions (F.B. and E.S.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Geostrophic Jet Transitions from the Adaptive Multilevel
Splitting Algorithm

Transitions from two to three jets

0z 03 04 05 06 07 08

758 transitions 2—3. B =0.55 and |k¢| € [10;12]

o Pr(tg < 1ta)=1510"°+5.1075.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Geostrophic Jet Transitions from the Adaptive Multilevel

Splitting Algorithm

Transitions from three to two jets

typeIl : 3 +4—-3—>2

N

typeI:3—2

£ lisaaini

758 transitions 3—52. 0[35 =0.55 and \kD;\ 608[10; 12]

o Pr(ts<t5)=1.910"%+5.10"5.
e Two types of transitions: 2—3 and 2 — 4 — 3.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Rare transitions of atmosphere jets: numerics

The barotropic quasi-geostrophic model
The AMS algorithm

The AMS algorithm and jet transitions

Atmosphere Jet “Instantons’ Computed using AMS

AMS: an algorithm to compute rare events, for instance rare reactive trajectories

lqal?

Transition trajectories between 2 and 3 jet states

@ Asymmetry between forward and backward transitions.
@ With the AMS algorithm, we study transitions that can not be
sampled using direct numerical simulations.
F. Bouchet

CNRS-ENSL Large deviation theory and GFD.



The barotropic quasi-geostrophic model
Rare transitions of atmosphere jets: numerics The AMS algorithm
The AMS algorithm and jet transitions

Distribution of Transition Path Durations

AMS: an algorithm to compute rare events, for instance rare reactive trajectories

N Duration
‘ < ar >=%.0

Gumbel

| |
ot ot

Distribution of transition durations

@ Transition path duration distribution is close to a Gumble one.
@ The AMS algorithm gives a good sampling of transition paths.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Averaging for slow jet dynamics
Ergodicity and averaging
Rare transitions of atmosphere jets: theory Atmosphere jet large deviations

Outline

© Rare transitions of atmosphere jets: averaging and large
deviations
@ Averaging for slow jet dynamics (F.B.,, C.N., and T.T.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Averaging for slow jet dynamics
Ergodicity and averaging
Rare transitions of atmosphere jets: theory Atmosphere jet large deviations

The Barotropic Quasi-Geostrophic Equations

@ The simplest model for geostrophic turbulence.

@ Quasi-Geostrophic equations with random forces

dq

ot

with g = o+ By.
o Inertial limit: spin up or spin down time =1/a > 1= jet
inertial time scale.

+v.Vg=—oaw+V2uafs,

@ A reasonable model for Jupiter's zonal jets.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Averaging for slow jet dynamics
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Which Mathematical Framework for the Inertial Limit?

@ Inertial limit: spin up or spin down time =1/ > 1= jet
inertial time scale.

@ Quasi-Geostrophic equations with random forces
@
at

with g = o+ By.

@ It is an averaging problem for an Hamiltonian system
perturbed by weak non Hamiltonian forces.

+v.Vg=—-0ow+Vv2afs,

@ The Hamiltonian system is an infinite dimensional one with an
infinite number of conserved quantities.

@ We will need to consider large deviations for the slow process.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Decomposition Between Zonal Jets and Turbulence: A
Slow/Fast Dynamical System

0
872 +v.Vg=—0am+V20af with a < 1

@ Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

1
0:() = (a) = 5 [ dxq and 4=, + Vagm.
nJ9

@ Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.

@ We average out the turbulent degrees of freedom.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Averaging for the Stochastic Quasi-Geostrophic Eq.

1dq;,
— =F -
a ot [q-] z
e Flg;]= qu (Vm.,yqm). The average of the Reynolds stress
is over the statlstlcs of the quasilinear inertial dynamics:
dq 99z _
at“qm+U( )TJF m.,y ay =—Qqm+fs

and 1
<Vm,yCIm> = L—/dyqu [Vm,qu]~
y

@ We identify SSST by Farrell and loannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Kinetic Theory of Atmosphere Jets

Troposphere Dynamics: comparison of kinetic equations and a direct numerical simulation

Rare transitions of atmosphere jets: theory

sigma

sigma

Latitude

Full equations (DNS).

Kinetic approach.

Zonal wind and momentum convergence for the primitive equations.

Farid Ait Chaalal and Tapio Schneider (Caltech and ETH Zurich).

@ The qualitative structure of a fast rotating Earth troposphere
is well approximated by kinetic equations.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Outline

© Rare transitions of atmosphere jets: averaging and large
deviations

@ Ergodicity and averaging (F.B., C.N., and T.T.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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The Barotropic Quasi-Geostrophic Equations

@ At leading order, the inertial equations are an Hamiltonian

system.
e Quasi-Geostrophic equations with no forces and dissipation
dq
—+v.Vg=0
g Ve

with g = o+ By.
@ It conserves energy

E:;/@vzdx7

enstrophy, and an infinite number of Casimir invariants.

@ We want to use that zonal jets are attractors for the inertial
dynamics.

e Asymptotic stability? How is this possible for Hamiltonian
systems?

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Inviscid Damping of the Linearized Euler Eq.

@ Base state: a stable steady state vog = U(y) ey, with vorticity
Qy): vo.VQ=0

Ot O + U(y) =+ me(;Q =0 with o(t =0) = w,.

@ For the linearized 2D Euler equation and non-monotonous base
flow, the velocity field decreases algebraically at large times

V() ~ =0 o Cikt(y)e) and vy (.8) ~ ™20 e Cikuy)e).

t—oo t t—so0 t2

F. Bouchet and H. Morita, 2010, Physica D.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Validity of Averaging?

99: _

7ya awm+\ff

Orqm + U(y)— + Vim

@ We need to prove that the Gaussian process has an invariant
measure which has a limit when o — 0.
@ This is the limit of no dissipation.

@ It may work because of inviscid damping (Related to
Landau-Damping and the recent result of Bedrossian and Masmoudi).

@ The result is based on asymptotics of the inviscid linearized
equations (F. Bouchet and H. Morita, 2010):

ms(y.8) o 2D e ikt (y)e) and vy (v.0) P2 e (ikuyye).

t—roo t ’ t—roo t2

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Invariant Measure in the Inertial Limit

2qm 2q,
e+ U(Y) 2™ 4 vy o

ox T Vmy g, = T0Om V2,

@ The two point correlation function Eq (Vim(y1)vm(y2)) has a
limit when o | 0.

@ The two point correlation function Eq (gm(y1)gm(y2)) has a
limit when o | 0., as a distribution.

@ The two two point correlation function Eg (Vgm(y1)Vam(y2))
diverges when a | 0.

@ The Reynolds stress Eq (Vm,, (y)gm(y)) has a limit when o | 0.

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Reynolds Stress Ergodicity in the Inertial Limit

@ The Reynolds stress Eq (Vm,, (y)gm(y)) has a limit when o ] 0.
@ Pointwise divergence of the ergodic average:

| 2
- { H [ vy (9)an() ~Ea (my )anty ))] } o

TT:oci,O aT

e Convergence as a distribution: for any test function ¢
1T 2 A
Ba{ [r00) | 7 [ vy (0)a0) - Balvmy Dant)| } L~ %

TT: al0

F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013
T. Tangarife's PhD thesis, 2015.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Validity of Averaging at the Level of the Law of Large
Numbers

@ The fast variable dynamics has an invariant measure in the
inviscid limit thanks to inviscid damping.

@ Velocity like observables have a finite expectation in the
inviscid limit.

@ The Reynolds stress has a finite expectation in the inviscid
limit.

@ The ergodic average of the Reynolds stress converges as a
distribution.

@ We have partial answers only, for the validity of averaging!
F. Bouchet, C. Nardini and T. Tangarife, J. Stat. Phys., 2013

T. Tangarife's PhD thesis, 2015.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Outline

© Rare transitions of atmosphere jets: averaging and large
deviations

@ Large deviations for atmosphere jets (F.B., T.G., B.M., T.T., E.V-E.)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Fluctuations Around the Law of Large Numbers

gf = f(xy)
L = Lg(xy)+ Eh(xy)d

e Time scale separation: o < 1. y is the fast variable and x is
the slow one.

0 1 2 3

at at

A slow/fast dynamics. The averaged evolution.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Gaussian Fluctuations Do Not Describe Rare Transitions

= Minimizer
= = Minimizer (quad approx)
~—

U,

(Figure from F. Bouchet, T. Grafke, T. Tangarife, and E. Vanden-Eijnden
2015)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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The Large Deviations that Describe Rare Transitions
&= o)
X = Leloy)+ Ehxy)
@ The transition rate A from a state Xj to a state X verifies
lim ad =2 min X, 0]
a—0 {X,P|X(0)=Xo and X(T)=X, }

with the action
T .
w[x,e]:/() dt[XP—H(X.P)],
and

T
H(X,P)= }l;nm% logEx {exp {P/O f(X,y(t))] } (see Freidlin—Wentzell)

e For quadratic in y f, and linear g and h (for instance for the
quasigeostrophic model), H solves a nonlinear Lyapunov eq.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Reynolds Stress Statistics for the Slow Zonal Jet Dynamics

3,m=0)

m i \

Stress(t

o=
0,06 02
i o0~ - . . -
ast00 asas0 aso00 asts0 w600 aeds0
0 50 100 150x10°
Time

Timeseries of the momentum flux convergence (Reynolds stress)

@ The Reynolds stress PDF has very long exponential tails (for which
we have a theory)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Large Deviations of Quadratic Observables for an
Ornstein—Uhlenbeck Process

b — Ty —g(x)
1 1
dfbt/ = any+ ﬁrl

1 T
H(X,P) = lim —logEx {exp {P/O yTMy:|}:Tr(CNm),

where C is the noise correlation function and N.. is the asymptotic solution of

the matrix Ricatti equation equation

N
J +LEN+NLy =2NCN + PM

ot

We can solve this equation analytically sometimes, or numerically.

Large deviation theory and GFD.

F. Bouchet CNRS-ENSL
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Hamiltonian for the Large Deviations of Time Averaged
Reynolds Stresses

0.06

= L estimated
Ricatti solution

0.05 |- Gaussian
0.04 -

4

a 003

=3

E-]

" L

o 0.02
0.01

ol

-024  -0.22 -0.2 -0.18  -0.16  -0.14  -0.12

R
The Lagrangian that describes large deviations of zonal jets

@ Rare transitions involve non Gaussian fluctuations

F. Bouchet, T. Tangarife, and B. Marston (to be submitted to JAS)

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Heteroclinic Orbit for Zonal Jet Transitions
String method: computing heteroclinic orbits between saddles and attractors

0.0602

= - uddc

0.0451
0.0301
0.0150
0.0000
—0.0150
—0.0301

0.0451

—0.0602

0.0 0.2 0.4 0.6 0.8 1.0

The heteroclinic orbits between 4 and 5 jet attractors

@ The string method: W.E and E. Vanden-Eijnden, Phys. Rev. B 2002.
@ A preliminary step towards the computation of instantons.

with T. Grafke and E. Vanden-Eijnden.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.



Averaging for slow jet dynamics
Ergodicity and averaging
Rare transitions of atmosphere jets: theory Atmosphere jet large deviations

Perspectives

wavenumbers 2 <+ 3

Y
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|2l
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1600
—

at
Rare transitions for quasigeostrophic jets

@ Study the fluid mechanics aspects of rare fluctuations.

e Compute rare transitions as minimizers of the large deviation
action.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Zonal Jet Conclusions

@ We have observed rare transitions between zonal jets in

barotropic turbulence, similar to the Jupiter loss of a zonal jet,
(with E. S.).

@ We use the adaptive multilevel splitting algorithm to sample
reactive trajectories and compute transition rates, (with E. S.).

@ We have partial results for the justification of averaging
(ergodicity, etc ...), (with C.N., and T.T.).

@ In the limit of time scale separation, a theory based on large
deviations can be derived for the computation of transition
rates and reactive paths between zonal jets.

@ The large deviation action can be computed solving a
non-linear Lyapunov equation, (with T.G., B.M., T.T., and E.
V-E).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Theoretical Statistical Physics and Climate Dynamics

@ Theoretical physics (statistical mechanics, large deviation theory,
turbulence, dynamical system theory) will play a crucial role in
future understanding of climate dynamics.

Physics

spotlighting exceptional research

Home About Browse APS Journals

Trend: Looking for new problems to solve? Consider the climate

Brad Marston, Department of Physics, Box 1843, Brown University, Providence, Rl 02912-1843, USA

Published March 7, 2011 | Physics 4, 20 (2011) | DOI: 10.1103/Physics.4.20

Even though global warming remains a heated political topic, physicists should not ignore the intellectual challenge of trying to model climate change.

“Climate is what we expect; weather is what we get.” [1]

Climate is a p! of out-of-equilibrium istical physics

APS trend

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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Mathematical Physics and Climate Dynamics

Mathematical physics (statistical mechanics, large deviation theory,
turbulence, dynamical system theory) will play a crucial role in future
understanding of climate dynamics.

” ‘ " Isaac Newton Institute
k for Mathematical Sciences

Home About Events Participate Support NI . Search

NON-equiiorium Statistical ivieChanics ¢

ind the Theory of Extreme

Newton Institute program and conference
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Collaborators

@ Eyring—Kramers formula for transition rates of non-gradient
dynamics (with J. Reygner, post-doc ERC Transition).

e Multistability (with E. Simonnet) and instantons for the
2D-Navier Stokes equations (with J. Laurie (post-doc ERC)).

@ Numerical simulation of abrupt transitions for Jupiter zonal
jets using Adaptive Multilevel Splitting algorithms (with J.
Rolland and E. Simonnet (Nice)).

@ Ergodicity and averaging for the quasi-geostrophic dynamics
(with C. Nardini (post-doc) and T. Tangarife (PHD)).

o Large deviations of Reynolds stresses for jet dynamics (with B.
Marston (Brown) and T. Tangarife (PHD)).

@ Averaging, large deviations, and transitions for Jupiter jets
(with T. Grafke and E. Vanden-Eijnden).

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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In Remembrance of Tomas Tangarife

F. Bouchet CNRS-EN

Large deviation theory and GFD
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Summary and Perspectives

@ Large deviation theory can be applied to geophysical
turbulence.

@ The dynamics leading to rare events is usually predictable,
even for turbulent flows.

@ With rare event algorithms, we can compute probability of rare
events that can not be sampled using direct numerical
simulations.

@ We have generalized the Eyring-Kramers law to non-gradient
dynamics.

@ Averaging and fast/slow large deviations for the
quasi-geostrophic model rises fascinating mathematical issues.

F. Bouchet CNRS-ENSL Large deviation theory and GFD.
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