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Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore Op(N~1/?).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N~17).
However, standard QMC is usually defined for IID problems.

The purpose of this work is to derive a QMC version of PF, which
we call SQMC (Sequential Quasi Monte Carlo).
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QMC basics

Consider the standard MC approximation

1 N
— u’) ~ u)du
P = [ e

n=1

where the N vectors u” are 11D variables simulated from ¢/ ([0,1]¢).
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QMC basics

Consider the standard MC approximation
LN
aoeu s [
n=1 [071]d
where the N vectors u” are 11D variables simulated from ¢/ ([0,1]¢).

QMC replaces u™” by a set of N points that are more evenly
distributed on the hyper-cube [0,1]9. This idea is formalised
through the notion of discrepancy.

3/34



QMC vs MC in one plot
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QMC versus MC: N = 256 points sampled independently and
uniformly in [0, 1]? (left); QMC sequence (Sobol) in [0, 1]? of the
same length (right)
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Discrepancy

Koksma—Hlawka inequality:

g o) - [ e

where V() depends only on ¢, and the star discrepancy is defined
as:

< V(p)D*(u"")

d

NZn u” € [0,b]) - [] bi|.

i=1

D*(utN) = sup
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Koksma—Hlawka inequality:

g o) - [ e

where V() depends only on ¢, and the star discrepancy is defined
as:

< V(p)D*(u"")

d

NZn u” € [0,b]) - [] bi|.

i=1

D*(utN) = sup
[0,5]

There are various ways to construct point sets Py = {u'*"} so
that D*(u'V) = O(N-1+¢),
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Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

or more generally,
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Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

or more generally,

In dimension d > 1, a Halton sequence consists of a Van der
Corput sequence for each component, with a different p for each
component (the first d prime numbers).
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RQMC (randomised QMC)

RQMC randomises QMC so that each u” ~ ¢/ ([0,1]¢) marginally
In this way

and one may evaluate the MSE through independent runs.
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RQMC (randomised QMC)

RQMC randomises QMC so that each u” ~ ¢/ ([0,1]¢) marginally
In this way

and one may evaluate the MSE through independent runs.
A simple way to generate a RQMC sequence is to take
u” = w + v" =1, where w ~ U([0,1]9) and v*" is a QMC point

set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions ¢):

el
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o ENSAE

Particle Filtering: Hidden Markov models ~ CREST

Consider an unobserved Markov chain (x;), xo ~ mg(dxo) and
Xe|X¢—1 = Xe—1 ~ mp(Xp—1,dx;)

taking values in X C R?, and an observed process (y;),

yt‘xt ~ g(Yt|Xt)-
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o ENSAE

Particle Filtering: Hidden Markov models ~ CREST

Consider an unobserved Markov chain (x;), xo ~ mg(dxo) and
Xe|X¢—1 = Xe—1 ~ mp(Xp—1,dx;)

taking values in X C R?, and an observed process (y;),
Yelxe ~ g(ye[xt)-

Sequential analysis of HMMs amounts to recover quantities such as
p(xt|yo:t) (filtering), p(xe+1lyo:t) (prediction), p(yo.t) (marginal
likelihood), etc., recursively in time. Many applications in
engineering (tracking), finance (stochastic volatility), epidemiology,
ecology, neurosciences, etc.
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Feynman-Kac formalism

Taking Gi(x¢—1,%t) := gr(ye|X¢), we see that sequential analysis of
a HMM may be cast into a Feynman-Kac model. In particular,
filtering amounts to computing

Qt(p) = Z: E

t
Xt G0 XO HGs Xs— 1>Xs]>

s=1

with Z; = E [Go(Xo) H Gs(xs—l,Xs)]

s=1

and expectations are wrt the law of the Markov chain (x;).
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Feynman-Kac formalism

Taking Gi(x¢—1,%t) := gr(ye|X¢), we see that sequential analysis of
a HMM may be cast into a Feynman-Kac model. In particular,
filtering amounts to computing

Qt(p) = E

t
Xt G0 XO HGs Xs— 1>Xs )
Z

s=1

with Z; = E [Go(Xo) H Gs(xs—l,Xs)]

s=1
and expectations are wrt the law of the Markov chain (x;).
Note: FK formalism has other applications that sequential analysis

of HMM. In addition, for a given HMM, there is a more than one
way to define a Feynmann-Kac formulation of that model.
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Particle filtering: the algorithm

Operations must be be performed for all n €1 : N.
At time 0,

(a) Generate x5 ~ mg(dxo).
(b) Compute WJ = Go(x§)/ SN _, Go(xg") and
10 Go(xg).
Recursively, for time t =1: T,
(a) Generate a | ~ M(thi’}’)

(b) Generate X7 ~ my(x:t X, 1 tdxy).

(c) Compute W7 = Gy(xi* e X0/ S Gl T xm)
and ZN = Ztl\il{ Z Ge(x,= 17Xn)}-
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Source for image: some dark corner of the Internet.
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PF output

At iteration t, compute
N
in(@) = Z WY o(xf)
n=1

to approximate Q¢(y) (the filtering expectation of ). In addition,

compute
zl

as an approximation of Z; (the likelihood of the data).
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Formalisation

We can formalise the succession of Steps (a), (b) and (c) at

iteration t as an importance sampling step from random probability
measure

N
> WS (dRe1)me(Re-1, dxe) (1)
n=1

to

{same thing} X G(X¢—1, X¢).
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Formalisation

We can formalise the succession of Steps (a), (b) and (c) at
iteration t as an importance sampling step from random probability
measure

N
> WS (dRe1)me(Re-1, dxe) (1)
n=1
to
{same thing} X G(X¢—1, X¢).

Idea: use QMC instead of MC to sample N points from (1); i.e.
rewrite sampling from (1) this as a function of uniform variables,
and use low-discrepancy sequences instead.
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Intermediate step

More precisely, we are going to write the simulation from

N
Z Wt,Ll(;Xg_l (df)zt_l )mt(f)\(/t_l, dXt)

n=1
as a function of u? = (uf,v7), u? €[0,1], v € [0,1]9, such that:
® We will use the scalar u] to choose the ancestor X;_1.

H n n
® We will use v{ to generate x{ as
n ~ n
xi = Fe(Xe-1, V)

where I; is a deterministic function such that, for
d ~ ~
V? ~ Z/[ [0, 1] , rt(xt_]_,vg) ~ mt(Xt_]_,dXt).
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Intermediate step

More precisely, we are going to write the simulation from

N
Z Wt,Ll(;Xg_l (df)zt_l )mt(f)\(/t_l, dXt)

n=1
as a function of u? = (uf,v7), u? €[0,1], v € [0,1]9, such that:
® We will use the scalar u] to choose the ancestor X;_1.

H n n
® We will use v{ to generate x{ as
n ~ n
xi = Fe(Xe-1, V)

where I; is a deterministic function such that, for
d ~ ~
V? ~ Z/[ [0, 1] , rt(xt_]_,vg) ~ mt(Xt_]_,dXt).

The main problem is point 1.
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Cased =1

______________________

Simply use the inverse transform method: X7 ; = F~1(ul'), where
F is the empirical cdf of

N
D W0k (dXe1).

n=1
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Fromd=1tod >1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

N

> W0k (dXe1).
n=1

Idea: we “project” the x7_;'s into [0, 1] through the (generalised
t—1 g

inverse of the Hilbert curve, which is a fractal, space-filling curve
H:[0,1] — [0,1]¢.
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Fromd=1tod >1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

N
> W0k (dXe1).

n=1

Idea: we “project” the x7_;'s into [0, 1] through the (generalised)

inverse of the Hilbert curve, which is a fractal, space-filling curve
H:[0,1] — [0,1]¢.

More precisely, we transform X into [0, 1]¢ through some function
¢, then we transform [0,1]% into [0, 1] through h = H~L.
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Hilbert curve

n=1 n=2

e |

The Hilbert curve is the limit of this sequence. Note the locality
property of the Hilbert curve: if two points are close in [0,1], then
the the corresponding transformed points remains close in [0, 1]7.
(Source for the plot: Wikipedia)
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SQMC Algorithm

At time 0,
(a) Generate a QMC point set u}V in [0,1]9, and
compute x§ = Fo(uf). (.. To = Fl)
(b) Compute W' = Go(x§)/ X1 Go(x§)-
Recursively, for time t =1: T,
(a) Generate a QMC point set ul'V in [0,1]9+; let
ug = (”l{"v?)-
(b) Hilbert sort find permutation o such that
hop(xIW) < ... < hoypx?™W).
(c) Generate al' using inverse CDF Algorithm, with
inputs sort(u}N) and th—(1 Y) and compute
x] = I't(x?g? 2 v?(")). (eg. T =Fpl)
(e) Compute
= GO X)) i G T )
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Some remarks

e Because two sort operations are performed, the complexity of
SQMC is O(Nlog N). (Compare with O(N) for SMC.)
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Some remarks

e Because two sort operations are performed, the complexity of
SQMC is O(Nlog N). (Compare with O(N) for SMC.)

e The main requirement to implement SQMC is that one may
simulate from Markov kernel m;(x;_1,dx;) by computing
xt = [¢(xt_1,u;), where uy ~ U[0,1]9, for some deterministic
function ¢ (e.g. multivariate inverse CDF).

e The dimension of the point sets ulN is 1 + d: first component
is for selecting the parent particle, the d remalnlng

components is for sampling x] given xt g
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Extensions

e If we use RQMC (randomised QMC) point sets u%:N, then
SQMC generates an unbiased estimate of the marginal
likelihood Z;.
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Main results

We were able to establish the following types of results: consistency
QF(p) = Q:(w) =0, as N — 400
for certain functions ¢, and rate of convergence
MSE [Q}(¢)] = o(N7?)

(under technical conditions, and for certain types of RQMC point
sets).
Theory is non-standard and borrows heavily from QMC concepts.
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Some concepts used in the proofs

Let X = [0,1]9. Consistency results are expressed in terms of the
star norm

IQ = Qell = sup

[0,b]C[0,1)9

<Q£V - Qt> (B)’ — 0.

This implies consistency for bounded functions ¢,

QN () — Qe(y) — 0.

The Hilbert curve conserves discrepancy:
|7V — 7y =0 = |7 =@l =0

where 7 € P([0,1]9), h:[0,1]¢ — [0,1] is the (pseudo-)inverse of
the Hilbert curve, and 7, is the image of 7 through 7.
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Application: autonomous positioning

Vehicle moves in 2D space, acquires its speeds every T, seconds,
and receives d, radio signals. Model is:

Pio .
yii = 10logq, (H LT > +uvp, i=1,...,d,
l

Xe = X1 + Tsve + Ts€;

and noise terms €;, v; are Laplace-distributed.
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Application: simulated data

Ts =1s, d, =5 (5 emiters), a; = 0.95.

15000

10000

5000

-15000 -10000 -5000 0

Figure : Simulated trajectory (15 min)
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Application: results
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Figure : Left: Gain factor vs time (PF MSE/SQMC MSE); Right:
number of time steps such that MSE(%;;) > 0.01Var(xs1|yo:t). as a
function of CPU time

25 / 34



Conclusion

e Only requirement to replace SMC with SQMC is that the
simulation of x7|x{_; may be written as a x{ = ['¢(x]_;,uf)
where u? ~ U[0,1]7.

e \We observe very impressive gains in performance (even for
small N or d = 6).

e Supporting theory.
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Further work

o Adaptive resampling (triggers resampling steps when weight
degeneracy is too high).

o Adapt SQMC to situations where sampling from mg(x}_;, dx;)
involves some accept/reject mechanism.

e Adapt SQMC to situations where sampling from m¢(x}_;, dx;)
is a Metropolis step. In this way, we could develop SQMC
counterparts of SMC samplers (Del Moral et al, 2006).

e SQMC? (QMC version of SMC?, C. et al, 2013)?
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Further work

o Adaptive resampling (triggers resampling steps when weight
degeneracy is too high).

o Adapt SQMC to situations where sampling from mg(x}_;, dx;)
involves some accept/reject mechanism.

e Adapt SQMC to situations where sampling from m¢(x}_;, dx;)
is a Metropolis step. In this way, we could develop SQMC
counterparts of SMC samplers (Del Moral et al, 2006).

e SQMC? (QMC version of SMC?, C. et al, 2013)?

Paper on Arxiv, was published last year as a read paper in JRSSB.
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Examples: Kitagawa (d

Well known toy example (Kitagawa, 1998):

2
yr = th + €t
Xt = b1xe_1 + b21fxﬁ + b3 cos(bst) + oy

No paramater estimation (parameters are set to their true value).
We compare SQMC with SMC (based on systematic resampling)
both in terms of N, and in terms of CPU time.
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Examples: Kitagawa (d
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Log-likelihood evaluation (based on T = 100 data point and 500
independent SMC and SQMC runs).
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Filtering: computing E(x¢|yo:+) at each iteration t. Gain factor is
MSE(SMC)/MSE(SQMC).
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o ENSAE

Examples: Multivariate Stochastic Volatility . CREST

Model is

1
Yt = S €t
1
Xt = M + ¢)(Xl'—]. - IJ/) + ‘Uil/t

with possibly correlated noise terms: (e, vt) ~ Nog(0, C).
We shall focus on d =2 and d = 4.
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o ENSAE

Examples: Multivariate Stochastic Volatility (d = 2) . CREST
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Log-likelihood evaluation (based on T = 400 data points and 200
independent runs).
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o ENSAE

Examples: Multivariate Stochastic Volatility (d = 2) &g CREST
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Log-likelihood evaluation (left) and filtering (right) as a function of
t.
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o ENSAE

Examples: Multivariate Stochastic Volatility (d = 4) . CREST
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Log-likelihood estimation (based on T = 400 data points and 200
independent runs)
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