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General perspective

When using Monte Carlo, there are several ways �rare events� can
adversely a¤ect performance or even viability of the method

Large relative variance of standard Monte Carlo when estimating small
probabilities
Poor communication/ergodicity properties when using MCMC for
stationary distributions

For purposes of design and qualitative understanding of the methods,
need some way to characterize the impact of these events

Large deviation theory gives such information

Advantages: generally works directly with quantities of interest�not a
surrogate
Disadvantages: is an asymptotic theory (is it the right asymptotic for
the problem at hand?); often requires solution to a variational problem
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Problem of Interest

Compute the average potential energy, heat capacity, other functionals
with respect to a Gibbs measure of the form

�(dx) = e�V (x)=�dx
.
Z (�);

and V is the potential of a (relatively) complex physical system.

Here
primary interest is as the marginal (independent) distribution on spatial
variables of stationary distribution of a Hamiltonian system. E.g.,

��(dx ; dp) / e�
1
�
V (x)� 1

�

Pn
j=1

p2j
2m dxdp:

However many problems from other areas take this form, e.g., Bayesian
inference, inverse problems, pattern theory, etc., where V depends on
data. Here � = kBT .
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Problem of Interest

We use that �(dx) is the stationary distribution of the solution to

dX = �rV (X )dt +
p
2�dW ;

as well as a variety of related discrete time models.

The function V (x) is
de�ned on a large space, and includes, e.g., various inter-molecular
potentials. In general, it may have a very complicated surface, with many
deep and shallow local minima. Representative quantities of interest:

average potential:
Z
V (x)

e�V (x)=�dx
Z (�)

heat capacity:
Z "

V (x)�
Z
V (y)

e�V (y )=�dy
Z (�)

#2
e�V (x)=�dx
Z (�)

:
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Problem of Interest

An example of a potential energy surface is the Lennard-Jones cluster of
38 atoms. This potential has � 1014 local minima.

The lowest 150 and
their �connectivity�graph are as in the �gure (taken from Doyle, Miller &
Wales, JCP, 1999).

Other examples may have discrete (but very large!) domains of integration.
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Large deviation theory for empirical measure

LD theory for empirical measure problem originates with
Donsker-Varadhan and Gärtner.

Consider

dX = b(X )dt + �(X )dW ; X (0) = x0

and for large T

�T (dx) =
1
T

Z T

0
�X (t)(dx)dt:

Then considered as taking values in P(Rd ) and for small � > 0,

P
n
�T 2 N�(�)

o
� e�TJ0(�):

Here J0(�) � 0 measures deviations from the LLN limit (ergodic theorem)
�, where � is unique invariant probability for X . For di¤usions satisfying a
detailed balance, J0 takes an explicit form.
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Large deviation theory for empirical measure

Form of the rate.

We have the variational representation

� 1
T
logP

n
�T 2 N�(�)

o
= inf

u
E
�
1
T

Z T

0
u(t)2dt +11N�(�)c (��

T )

�
;

where u is progressively measurable with respect to W ,

d �X = b( �X )dt + �( �X )dW + �( �X )u; �X (0) = x0

and

��T (dx) =
1
T

Z T

0
� �X (t)(dx)dt:
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Large deviation theory for empirical measure

Form of the rate.y Let A be the generator of X and

kukL2� =
�Z

Rd
ju(x)j2�(dx)

�1=2
;

Au f = Af + (�u) � rf ; f 2 C1c ;

S(�) =
�
u 2 L2� :

Z
Rd
(Au f )(x)�(dx) = 0 8 f 2 C1c

�
:

Using the representation and a weak convergence analysis, one can show

for �(x) = d�
d� (x), �

1=2 2W 1;2, that

J0(�) = inf
u2S(�)

1
2
kuk2L2� if S(�) 6= ;:

yproof from Dupuis and Lipshutz, 2016.
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Large deviation theory for empirical measure

One can explicitly identify the minimum. IBP on
R
Rd (A

u f )(x)�(dx) = 0
suggests we consider u = r', ' a weak sense soln to

�'+r log � � r' = 1
�
A��:

Then completion of squares shows this u is optimal. If b = �rU, � = I ,
then this reduces to

�'+r log � � r' = �(log � + U) +r log � � r(log � + U):

In the case solution by inspection is ' = log � + U. Thus

J0(�) =
1
2
kr log �k2L2� :
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An accelerated algorithm: parallel tempering

How to speed up a single particle.

A key idea: �parallel tempering� (also called �replica exchange�, due to
Geyer, Swendsen and Wang).

Idea of parallel tempering, two temperatures.

Besides � 1 = � ,
introduce higher temperature � 2 > � 1. Thus

dX1 = �rV (X1)dt +
p
2� 1dW1

dX2 = �rV (X2)dt +
p
2� 2dW2;

with W1 and W2 independent. Then one obtains a Monte Carlo
approximation to

�(x1; x2) = e�
V (x1)
�1 e�

V (x2)
�2

�
Z (� 1)Z (� 2):
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An accelerated algorithm: parallel tempering

Now introduce swaps, i.e., X1 and X2 exchange locations with state
dependent intensity

ag(x1; x2) = a
�
1 ^ �(x2; x1)

�(x1; x2)

�
= a

�
1 ^ e�

h
V (x1)
�1

+
V (x2)
�2

i
+
h
V (x2)
�1

+
V (x1)
�2

i�
;

with a > 0 the �swap rate.�
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An accelerated algorithm: parallel tempering

Now have a Markov jump-di¤usion. Easy to check: with this swapping
intensity still have detailed balance, and thus

�(x1; x2) = e�
V (x1)
�1 e�

V (x2)
�2

�
Z (� 1)Z (� 2):

Increased temperature � higher di¤usivity of X a2
� easier communication for X a2
� passed to X a1 via swaps

This helps overcome the �rare event sampling problem.�As we will see,
there is a second �rare event problem�of a di¤erent sort that it also helps
overcome.
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Large deviations analysis

What does theory say about parallel tempering?

Suppose � given such that

�(x1; x2) =
d�
d�
(x1; x2)

is smooth. Then we have monotonic form

I a(�) = J0(�) + aJ1(�)

where J0 is the rate for �no swap�dynamics and

J1(�) =
Z
Rd�Rd

g(x1; x2)`

 s
�(x2; x1)
�(x1; x2)

!
�(dx1dx2)

with

` (z) = z log z � z + 1
�
= 0 z = 1
> 0 z 6= 1 .
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Large deviations analysis
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Large deviations analysis

Rate for low temperature marginal. By contraction principle, for
probability measure 

I a1 () = inf fI a(�) : �rst marginal of � is g :

If (dx1) 6= �1(dx1) = e�
V (x1)
�1 dx1

�
Z (� 1), then for a 2 (0;1)

I a1 () > I
0
1 ()

and
I a1 () " some �nite limit.

Exponentially faster decay for probability to be in any nice set that does
not contain the target �1.
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In�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt
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In�nite swapping limit

Temperature swapping.

Process:

dY a1 = �rV (Y a1 )dt +
p
2r1(Z a)dW1

dY a2 = �rV (Y a2 )dt +
p
2r2(Z a)dW2;

where r(Z a(t)) jumps between � 1 and � 2 with intensity ag(Y a1 (t);Y
a
2 (t)).

Approximation to �(dx):

1
T

Z T

0

h
1f0g(Z

a)�(Y a1 ;Y a2 )(dx) + 1f1g(Z
a)�(Y a2 ;Y a1 )(dx)

i
dt:
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In�nite swapping limit

The advantage is a well de�ned weak limit as a!1:

dY1 = �rV (Y1)dt +
p
2� 1�1(Y1;Y2) + 2� 2�2(Y1;Y2)dW1

dY2 = �rV (Y2)dt +
p
2� 2�1(Y1;Y2) + 2� 1�2(Y1;Y2)dW2;

�T (dx) =
1
T

Z T

0

�
�1(Y1;Y2)�(Y1;Y2) + �2(Y1;Y2)�(Y2;Y1)

�
ds;

and

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)

; �2(x1; x2) =
e
�
h
V (x2)
�1

+
V (x1)
�2

i
Z�(x1; x2)

:

Theorem:
�
�T
	
satis�es the large deviation principle with rate I1.
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In�nite swapping limit

Remarks
Prove a uniform result (can let a! a� 2 [0;1], T !1 in any
order).
The invariant distribution of (Y1;Y2) is the symmetrized measure

1
2
[�(x1; x2) + �(x2; x1)]

=
1

2Z (� 1)Z (� 2)

�
e�

V (x1)
�1 e�

V (x2)
�2 + e�

V (x2)
�1 e�

V (x1)
�2

�
:

The �implied potential�

� log
�
e�

V (x1)
�1 e�

V (x2)
�2 + e�

V (x2)
�1 e�

V (x1)
�2

�
has lower energy barriers than the original

V (x1)
� 1

+
V (x2)
� 2

:
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In�nite swapping limit

Densities when V (x) is a double well, orginal product density and density
of implied potential:

Paul Dupuis (Brown University) 2 February 2016



In�nite swapping limit

Remarks

To get the INS approximation �T (dx), we simulate (Y1;Y2), form its
empirical measure, and push this through a deterministic
�re-weighting�map M to get �T :

M[�](A) =
Z
A
[�1(y1; y2)�(dy1dy2) + �2(y1; y2)�(dy2dy1)] :

Two interpretations of the rate function in terms of rates J0 of
(X1;X2) and K of (Y1;Y2):

I1(�) =
�
J0(�) �(x1; x2) = �(x2; x1)
1 else

= inf fK (�) : � = M[�]g :

The minimizing � is always symmetric, and enforces the �weighted�
symmetry on � due to the form of M.
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A second rare event issue

A problem that has attracted a lot of attention: how to select the
temperatures.

Suppose � 1 �xed and assume interest is in this temperature. How to
choose � 2 (and � 3; :::)?

If only rare event issue sampling problem (long time correlation)
tempted to choose � 2 large.

One cannot do this for parallel tempering since too few acceptances if
gap too large.

But in�nite swapping �hard codes� the swaps, so why not?

One reason: for many interesting functionals (risk-sensitive
functionals), there is another rare event problem.
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A second rare event issue

What is an ordinary integral? One of the form

1
Z (�)

Z
F (x)e�V (x)=�dx ; e.g.,

1
Z (�)

Z
V (x)e�V (x)=�dx :

What is a risk-sensitive functional? Ones of the form

1
Z (�)

Z
eF (x)=�e�V (x)=�dx ;

and integrals heavily in�uenced by the tail of the distribution.

Examples: heat capacity, functionals arising in �free energy calculations�.

For ordinary functionals with INS, bigger � 2 is true at least for some
circumstances. Not so for risk-sensitive functionals.
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A second rare event issue

To illustrate, we eliminate the time correlation aspect, and assume iid
samples (Y1;Y2) drawn from the target symmetrized distribution

1
2
[�(x1; x2) + �(x2; x1)] =

1
2Z (� 1)Z (� 2)

�
e�

V (x1)
�1 e�

V (x2)
�2 + e�

V (x2)
�1 e�

V (x1)
�2

�
:

To simplify consider the risk-sensitive quantity

1
Z (� 1)

Z
A
e�V (x)=� 1dx =

1
Z (� 1)

Z
e�11Ac (x)=� 1e�V (x)=� 1dx ;

where A does not include the global min of V . Probability of interest
decay rate:

�� log
�

1
Z (�)

Z
A
e�V (x)=�dx

�
! inf

x2A
V (x):
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A second rare event issue

The estimate given by INS is

�� 1;� 2 = 1A(Y1)
e�

V (Y1)
�1

� V (Y2)
�2

e�
V (Y1)
�1

� V (Y2)
�2 + e�

V (Y2)
�1

� V (Y1)
�2

+1A(Y2)
e�

V (Y2)
�1

� V (Y1)
�2

e�
V (Y1)
�1

� V (Y2)
�2 + e�

V (Y2)
�1

� V (Y1)
�2

:

Now let � 2 = a� 1 = a� , a 2 [1;1) and consider the limit � # 0.

Appropriate measure of performance the decay rate of variance/second
moment. Using LD calculations,

�� log
�
E[�� 1;� 2 ]2

�
! min

�
1+

1
a
; 2� 1

a

��
inf
x2A

V (x)
�
:

Optimal decay rate is 32 infx2A V (x), achieved when a = 2.
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A second rare event issue

Remarks

Can extend to more temperatures

Current project: put dynamics back in and consider double limit
T !1 and � 1 # 0
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A diagnostic for convergence

For temperature swapped parallel tempering, let

�i (t) = process component assigned dynamic with temperature � i ;

so f�i (t); i = 1; : : : ;Kg is a permutation on f1; : : : ;Kg, with �(0) = �
(the identity permutation).

Then for parallel tempering,

T (�) =
1
T

Z T

0
1f�i (t)=�gdt

is the empirical measure on the particle/temperature associations, and is a
(random) probability measure on �K = fpermutations of f1; : : : ;Kgg.
There is an analogue for INS.
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A diagnostic for convergence

Lemma
For either PT or INS,

T (�)! 1
K !

for � 2 �K , a.s.

As a consequence, for any given particle

fraction of time particle assigned dynamic k ! 1
K
:

Easy to compute during simulation.
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A diagnostic for convergence

For INS (notation of K = 2) the analogue of T (�) is

T (f1; 2g) = 1
T

Z T

0
�1(Y1;Y2)dt; T (f2; 1g) = 1

T

Z T

0
�2(Y1;Y2)dt;

de�ned in terms of the weights

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)

; �2(x1; x2) =
e
�
h
V (x2)
�1

+
V (x1)
�2

i
Z�(x1; x2)

:

Rate function for the pair (�T ; T ):

I (�; (w1;w2)) = inf
�
K (�) : � = M�;

Z
�1(x1; x2)�(dx1; dx2) = w1

�
;

where K is rate for empirical measure of (Y1;Y2),

M[�](A) =
Z
A
[�1(y1; y2)�(dy1dy2) + �2(y1; y2)�(dy2dy1)] :
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A diagnostic for convergence

Theorem
If (w1;w2) 6= (1=2; 1=2), then the minimizer in

� ! I (�; (w1;w2))

is not � = �.

Interpretation. By using the LDP (in the form of Gibbs conditioning
principle), the minimizing � is the overwhelmingly most likely location of
�T given T = (w1;w2). Thus if the particle/temperature association is
not close to uniform, then �T will not have converged.

Remark. Generalizes to K temperatures. The converse (unfortunately)
does not hold. However, the analysis of the variationals problem
w ! I (�; (w1;w2)) gives indicates other interesting aspects of INS.
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Implementation issues and partial in�nite swapping

As noted applications of parallel tempering use many temperatures
(e.g., K = 30 to 50) when V is complicated to overcome barriers of
all di¤erent heights.

Straightforward extension of in�nite swapping to K temperatures
� 1 < � 2 < � � � < �K . Bene�ts of symmetrization/equilibration even
greater, larger rate for lowest marginal.

But, coe¢ cients become complex, e.g., K ! weights, and each involves
many calculations. Not practical if K � 7.
Need for computational feasibility leads to partial in�nite swapping.
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Implementation issues and partial in�nite swapping

Partial in�nite swapping. Given any subgroup of set of permutations one
can construct a corresponding partial in�nite swapping dynamic.

Two
examples are Dynamics A and B in �gure:
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Implementation issues and partial in�nite swapping

Using partial in�nite swapping one can control the complexity of the
coe¢ cients and algorithm.

If one alternates between subgroups that generate full group of
permutations, one approximates full in�nite swapping (convergence
theorem in continuous time).
However, particles lose their temperature identity in in�nite swapping
limit (partial or otherwise). Cannot simply alternate�need a proper
�hando¤� rule.
Can identify the �distributionally correct�hando¤ rule, using that
partial swappings are limits of �physically meaningful�processes.
E.g., in a block of 4 locations xi associated with 4 temperatures � i ,
select a permutation � according to

e
�
�
V (x�(1))

�1
+
V (x�(2))

�2
+
V (x�(3))

�3
+
V (x�(4))

�4

�,X
��

e
�
�
V (x ��(1))

�1
+
V (x ��(2))

�2
+
V (x ��(3))

�3
+
V (x ��(4))

�4

�
;

and assign � i to x�(i).
CHARMM codes (http://www.charmm.org) due to Plattner, Meuwly
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Numerical examples

Relaxation study of convergence to equilibrium for LJ-38.

quantity of interest: average potential energy at various temperatures

used 45 temperatures, 3�6�6�� � ��6 type dynamic for partial in�nite
swapping

used Smart Monte Carlo for particle dynamics

lowest 1/3 of temperatures raised to push process away from
equilibrium (low temperature components pushed away from deep
minima)

then reduced to correct temperatures for 600 discrete time steps to
study return to equilibria

repeated 2000 times, we plot averages for lowest (and hardest)
temperature
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Numerical examples

Relaxation study of convergence to equilibrium for LJ-38: parallel
tempering versus partial in�nite swapping, only lowest temperature
illustrated.
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Numerical examples

For this system, reduction relative to parallel tempering: 1010 reduced to
106 steps with additional overhead of approximately 10%.
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Numerical examples

Convergence of the empirical measure on temperatures to uniform
distribution.
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Numerical examples

Convergence to equilibrium, single sample, 12 lowest temperatures:
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