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Metropolis et al (1953)

Local hard-sphere Monte Carlo:

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

i = 7 i = 8 (rej.) i = 9 (rej.) i = 10 i = 11 i = 12 (rej.)

. . . has rejections . . .

. . . is reversible (satis�es detailed balance) . . .

. . . makes �nite moves . . .

. . . has been generalized to arbitrary potentials.
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Hard spheres

Displacements (δx , δy ) sampled uniformly in ([−δ, δ], [−δ, δ])
Algorithm satis�es detailed balance:

π(a)p(a→ b) = π(b)p(b → a)

with π(a) = π(b) = π(c), for all legal con�gurations of hard
spheres
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Detailed balance - global balance

�ow in ≡ �ow out (global balance condition):∑
k

π(k)p(k → a)︸ ︷︷ ︸
�ow into a

∑
k ϕ(k→a)

=
∑
k

π(a)p(a→ k)︸ ︷︷ ︸∑
k ϕ(a→k) �ow out of a

�ow ϕ(a→ b) ≡ �ow ϕ(b → a) (detailed balance condition):
Metropolis algorithm (for �ows and cond. probabilities)

ϕ(a→ b) = min(π(a), π(b))

p(a→ b) = min

(
1,
π(b)

π(a)

)
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Lifting - one (hard) sphere 1/2



Lifting - one (hard) sphere 2/2

Diaconis et al (2000)

lifting ≡ additional variable

Dynamical critical exponent z = 1 rather than z = 2

Irreversible Markov chain
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Lifting - two hard spheres 1/1

. . . has no rejections . . .

. . . is irreversible (violates detailed balance) . . .

. . . makes �nite moves . . .

. . . generalizes to arbitrary potentials.
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Lifting - N hard spheres

t t+1 t+2

c2 a2 d2
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. . . is irreversible (violates detailed balance) . . .

. . . must make in�nitesimal moves . . .

. . . generalizes to arbitrary potentials.
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Lifting algorithm for general potentials

In�nitesimal physical moves

Liftings rather than rejections.

Global balance rather than detailed balance.

Bernard, Krauth, Wilson, (2009).

For general pair potentials, replace Metropolis by factorized �lter

pMet(a→ b) = min
[
1, exp(−β

∑
i<j(E

b
ij − E a

ij ))
]

pMet(a→ b) = min
[
1,
∏

i<j exp(−β(Eb
ij − E a

ij ))
]

pfact(a→ b) =
∏

i<j min
[
1, exp(−β(Eb

ij − E a
ij ))
]

Michel, Kapfer & Krauth JCP (2014)
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Metropolis �lter

pMet(a→ b) = min
[
1, exp(−β(Eb − E a))

]

Energy-based: MCMC knows its own weight.



Factorized �lter 1/2

pfact(a→ b) =
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pair-energy based

bad idea, because pfact(a→ b) ≤ pMet(a→ b)
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Factorized �lter 2/2

Acceptance probability

pfact(a→ b) =
∏

i<j min
[
1, exp(−β(Eb

ij − E a
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]

pfact(a→ b) =
∏

i<j pij

pair-energy based.

consensus rule (European-union like)

In�nitesimal move: at most a single rejection

lifting framework applicable
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First-order liquid-hexatic transition in hard disks.
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Applications - Soft disks

Soft disks: V ∝ (σ/r)n.

Mapping to Yukawa potentials.

Kapfer & Krauth (PRL 2015).

Two melting scenarios depending on softness n of potential.



Applications - Hard spheres

Crystallization from liquid initial con�gurations

(ν = 0.548, N = 1Mio).

Isobe & Krauth J. Chem. Phys. (2015)

Considerable speedup of crystallization dynamics



Applications - Spin systems (XY, Heisenberg)

Continuous spin systems:

All rotations counter-clockwise, even for spin glass.

Michel, Mayer & Krauth (EPL 2015)

fast, but z ∼ 2 dynamical scaling in 2D XY model.

Nishikawa, Michel, Krauth & Hukushima (PRE 2015),

evidence for z = 2→ z = 1 reduction in 3D Heisenberg model.
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Applications - Long-range systems 1/2

pMet(a→ b) = min
[
1, exp(−β(Eb − E a))

]
Long-range particle system:

Energy criterium problematic



Applications - Long-range systems 2/2

pfact(a→ b) =
∏

i<j min
[
1, exp(−β(Eb

ij − E a
ij ))
]

︸ ︷︷ ︸
p
accept

ij

if prejectij � 1: consider subset of pairs.

no more Ewald summation, no more Fourier methods.

treat Coulomb forces directly.

Kapfer & Krauth (manuscript in preparation).



2D melting transition

Generic 2D systems cannot crystallize (Peierls, Landau 1930s)

but they can turn solid (Alder & Wainwright, 1962).

Nature of transition disputed for decades (quid KTHNY?,

quid hexatic?)
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Possible phases in two dimensions

Phase positional order orientational order

solid algebraic long-range

hexatic short-range algebraic

liquid short-range short-range
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Hard-disk con�guration

10242 hard disks

circular color code for orientational order

Bernard, Krauth (PRL 2011)



Equilibrium equation of state

First-order transition (Bernard & Krauth, PRL (2011)).

Many con�rmations.



Phase coexistence in hard disks

10242 systems.

Densities η = 0.700 (a), η = 0.704 (b), η = 0.708 (c).

Phase coexistence =⇒ Coarsening =⇒ Slow dynamics.

cf. Engel et al (2013).



Possible phases (again)

Phase positional order orientational order

solid algebraic long-range

hexatic short-range algebraic

liquid short-range short-range



Spatial correlations at η = 0.718 and 0.720

Two-dimensional pair correlations, sample-averaged.

At η = 0.718; hexatic.

At η ∼ 0.720: solid.

Bernard & Krauth (PRL 2011).

Many con�rmations.
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Conclusions

Event-chain, factorized Metropolis, lifting:

`Beyond Metropolis' paradigm for Monte Carlo computations,
mathematically challenging, completely general, many
applications.
Makes in�nitesimal moves.
Uses lifting.
Breaks detailed balance.
Ignores its own energy.

Hard disks:

The mother of MCMC models & of 2D physics.
Hexatic phase exists, �rst-order liquid-hexatic transition.
Hexatic-solid transition is KT.
Communities A and B were wrong.

Many extensions, both for physics and for algorithms.




