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We have some system (e.g., adatoms on a surface).  
  
We know that if we wait long enough, something will happen. 
And then something else, and then something else,… 
 
Using MD, we can run about 1 microsecond -- might not even see  
first event. 
 
How do we accurately predict the long-time evolution? 
 
Often the long-time evolution involves infrequent events… 

The time-scale challenge!
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Characteristics of AMD methods!

•! In principle, the escape time can be collapsed to 
something approaching the correlation time – a few 
vibrational periods. 

•! When barriers are high, large boosts can be achieved 

•! When the barriers are low, boost is low. 
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Hyperdynamics!
Builds on umbrella-sampling techniques (e.g., Valleau 1970’s) 

Assumptions: 
- infrequent events 

- transition state theory (no recrossings)  

AFV, J. Chem. Phys. 106, 4665 (1997) 

Procedure: 
-! design bias potential !V (zero at dividing surfaces; causes no recrossings) 

-! run thermostatted trajectory on the biased surface (V+!V) 

-! accumulate hypertime as 

         thyper= "!tMDexp[!V(R(t))/kBT] 

Result: 
      - state-to-state sequence correct (relative escape rates are preserved) 

-! time converges on correct value in long-time limit (vanishing relative error) 

V+!V 

V 
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Hyperdynamics – the bias potential!

The hard part is designing the bias potential. 

 

It needs to be zero on all dividing surfaces, even though we 

don’t know in advance what the escape pathways are. 

 

It also needs to maintain the TST-obeying nature of the 

dynamics – it cannot introduce any recrossings or other 

correlated events. 
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    Miron and Fichthorn, J. Chem. Phys. 119, 6210 (2003) 
 
 
Bias is based on bond distortions; shuts off completely when 
the relative distortion $ of any “bond” exceeds a pre-chosen 
critical value q (e.g., q=0.3). 
 
Simple and inexpensive to evaluate. 
 
Probably the best existing bias potential. 
 
 

Bond boost method!
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    Miron and Fichthorn, J. Chem. Phys. 119, 6210 (2003) 
 
 
Bias is based on bond distortions; shuts off completely when 
the relative distortion $ of any “bond” exceeds a pre-chosen 
critical value q (e.g., q=0.3). 
 
Simple and inexpensive to evaluate. 
 
Probably the best existing bias potential. 
 
Simplified version (“simple bond boost”): !V depends purely 
on the coordinate ($max) of the most-distorted bond (Perez et 
al 2009).   
 

Bond boost method!
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Simplified bond-boost bias potential!

$max 

0 

q -q 

$ij =  (rij-rij
min)/rij

min      = relative bond distortion 
 

!V($max) = S [1-($max/q)2] 
S 

!V depends purely on coordinate ($max) of most-distorted bond. 
At most, one bond at a time has any bias force. 

minimum minimum trajectory point 

!V 
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Simple bond-boost bias example!

Cu adatom on Cu(100) surface 
 
Hop barrier = 0.53 eV 
 

                      boost factor 
 T(K)      hop time      (S=0.4 eV)    
300 K      27 µs          3.1x104        
200 K      0.8 s           1.1x108 
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Local hyperdynamics for large systems!
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Local Hyperdynamics!
      S.Y. Kim, D. Perez, and AFV, J. Chem. Phys. 139, 144110 (2013). 
 
Modified formulation of hyperdynamics that gives constant boost for 
arbitrarily large systems. 
 

  
 
 
 
 
 
 
 
 
 
Key concept: Most systems we are interested in are intrinsically local in 
their behavior.  A transition, or near-transition, in one region of system 
should not have any significant effect on atoms that are far away. 
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Local hyperdynamics - procedure!

Each bond (i) has its own local domain (I). 
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Local hyperdynamics - procedure!

Each bond (i) has its own local domain (I). 
 
Each domain has its own bias energy !VI=CI!Vbias(RI(t)) and boost factor BI 
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain). 
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Local hyperdynamics - procedure!

Each bond (i) has its own local domain (I). 
 
Each domain has its own bias energy !VI=CI!Vbias(RI(t)) and boost factor BI 
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain). 
 
The bias energy in domain I is used to determine the force only on bond i.  
E.g., with a simple bond-boost bias there is a force on a bond if and only if 
it is the most distorted bond in its own domain. 
 
A domain-bias multiplier (CI) is adjusted for each domain to make its 
average boost <BI> match the target boost factor Btarget. 
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The boostostat!
Instead of pre-adjusting the {CI} values for the current state, we have found that 
we can simply apply a “boostostat” to gently but constantly push on these {CI} 
values during the simulation to move the boost for each domain towards the correct 
target boost. 
 
For each domain I at each MD step:  
      

 CI(t+!t) =  CI(t) – %B!tMD[BI(t) - Btarget]/Btarget 
 
where   %B = boostostat coupling strength    (~109 - 1010 s-1) 

time (10-10 s) 

%B ( s-1) = 
 
109, 1010, 1011 

108 
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Note - the dynamics are not conservative!

The force on bond i (the center of domain I) is taken to be 
 

 fi=-!!VI/!xi . 
 
However, the force on nearby bond j is given by 
 

 fj=-!!VJ/!xj , 
 
so this is not conservative dynamics. 
 

bond i 

domain I 
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local hyperdynamics 

Bulk Ag 
(homogeneous system) B

oo
st
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Number of atoms 

Local hyperdynamics - scaling!
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accuracy of the rates!
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Local hyperdynamics – rate tests !

Narrow strip of Ag(100), 8 adatoms, top layer and adatoms free to move  
(72 moving atoms), periodic in x, EAM potential.  Langevin friction = 1012 s-1. 
 
Small enough to run fast, but large enough and complex enough to test 
method. 
 
Both hops and exchanges can occur. 
 
Transitions observed and then rejected so the rates stay constant. 
 
 

end view side view 

x ! 
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Local hyperdynamics – rate tests !

Hop pathway:    Ea=0.504 eV,   &0=3.53x1012 Hz 
 
 
 
Exchange pathway:    Ea=0.651 eV,   &0=6.48x1012 Hz 
 
 
 

Side-hop pathway:    Ea=0.743 eV,   &0=3.02x1012 Hz 
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T=500K,  Btarget=100,  %B=2X1010, range D=10 Å 

Local hyperdynamics test on strip system !

Boostostat coef %B (s-1) 

hop 

exchange 

side hop 

+ = local hyper   
x = direct MD 

process type 

(final state with 
follow-on event)  
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Boostostatting through a transition: 
Ag(100) test system!

•! Defective Ag surface: adatom, adatom 
dimer, vacancy 

•! 434 atoms, 218 moving 

•! T=325K, '=5x1011 s-1 

•! Locality radius D=10 Å           

•! On-the-fly boostostatting,  %
B
=2x1010 s-1   

Btarget=100 

•! Coefficients {CI} reset locally to 0.2 eV 
after each transition 

•! About 25 thermally relevant transitions. 
Rates vary over three orders of 
magnitude. 
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Local hyperdynamics – could it be exact?!

We can show that local hyperdynamics should give increasingly accurate results 
as the local bias range is increased, for any proper form of bias potential. 
 
For the simple bond-boost bias potential: 
 
We can show that for a homogeneous system (all bonds the same) the force 
“errors” arising from the non-conservative dynamics “cancel” (as discussed next). 
  
For a non-homogeneous system, it does not seem that there should be exact 
cancellation. 
   
Yet, every test we have done shows very high accuracy, making us suspect there 
may be something more general that can be derived about this kind of dynamics. 
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The domain crescent cases when CI=CJ!
(for simple bond boost bias) 
 
Bond j is the most distorted bond in domain I+J 

  ! exact (fj(I)=fj) 
 
 
Some other bond k in I�J is the most distorted in domain I+J    

  ! exact (fj(I)=fj=0) 
 
 
Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)   

  ! error (fj(I)"0, fj=0) 
 
Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)       

  ! error (fj(I)=0, fj"0) 
 
The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent 
   ! exact (fj(I)=fj=0) 
 
 
 

case  
 
1 
 
 
 
2 
 
 
 
3 
 
 
 
4 
 
 
 
5 

I J 

j 
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The domain crescent cases when CI=CJ!
(for simple bond boost bias) 
 
Bond j is the most distorted bond in domain I+J 

  ! exact (fj(I)=fj) 
 
 
Some other bond k in I�J is the most distorted in domain I+J    

  ! exact (fj(I)=fj=0) 
 
 
Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)   

  ! ”error” (fj(I)"0, fj=0) 
 
Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)       

  ! error (fj(I)=0, fj"0) 
 
The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent 
   ! exact (fj(I)=fj=0) 
 
 
 

case  
 
1 
 
 
 
2 
 
 
 
3 
 
 
 
4 
 
 
 
5 

I J 

j 

If I-crescent and J-crescent are statistically equivalent, 
then CI = CJ, and error 3 and error 4 “cancel” in a time average. 
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The core argument – time reordering!
If D > 2L (L=local range of interaction), then all bonds in both crescents are 
more than a distance D away from bond i or bond j.  
 
Large bond distortions come and go in the I crescent, dictating, from a large 
distance away, what bond i thinks the force on bond j should be.  Meanwhile, 
the actual force on bond j is dictated by the (distant) bonds in crescent J. 
 
Because the bonds in crescent J are identical to the bonds in crescent I, the 
bond-length fluctuations in crescent J that can shut down bond j are also 
identical, other than a random reordering in time, to the bond-length 
fluctuations in crescent I. 
 
A force-expectation discrepancy can arise only when there is no force on bond i.  
Thus, the abrupt turning-on and turning-off of the force on bond j, which also 
happens in regular hyperdynamics (though less often), will still give appropriate 
Langevin evolution of bond j from the point of view of bond i, whether or not 
the sequence is reordered in time.  Bond i has no way of telling the difference. 
Locally, then, for all j bonds within a range L=D/2 of bond i, the evolution is 
equivalent to true Langevin evolution on V+!V, and should give the same boost 
factor for that region as a global bias on domain I would give.  And this same 
statement can be made for every bond i in the system.  
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Probing for accuracy problems in local hyper!

We have found that it is difficult to even create a test case that can clearly 
distinguish right from wrong (e.g., to use in developing a more accurate 
variation on local hyperdynamics). 
 
We have tested various inhomogeneous systems and find the results are still 
very accurate. 
 
The errors we do see are so small that they might even be caused by setting the 
range D too small, or setting the target boost too high. 



Los Alamos 
LA-UR-16-20856 

Conclusions – Local Hyperdynamics!

A new, local formulation of hyperdynamics makes an advance on the 
size-scale problem in accelerated molecular dynamics methods. 
 
Scalable, with constant boost, to arbitrarily large systems, provided 
the lowest barrier in system does not decrease with increasing 
system size. 
 
We understand why it should be correct for homogeneous systems. 
 
We are surprised how accurate it is for every system we have tried, 
homogeneous or not.  Perhaps there is something deeper going on… 
 
 
 
 
 

S.Y. Kim, D. Perez, and AFV, J. Chem. Phys. 139, 144110 (2013). 


