Molecular simulation and the numerical microscope

Gabriel STOLTZ
gabriel.stoltz@enpc.fr

Journées scientifiques Inria, Bordeaux, juin 2018
Computational Statistical Physics

- Predict macroscopic properties of materials from their microscopic description

- **Microstate**
 - positions \(q = (q_1, \ldots, q_N) \) and momenta \(p = (p_1, \ldots, p_N) \)
 - energy of the system \(H(q, p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i} \)
 - (almost) all the physics is in the choice of \(V \)...

- **Macrostate**
 - described by a probability measure \(\mu \)
 - constraints fixed exactly or in average (number of particles, volume, energy)

- **Properties**: static (equation of state, heat capacities, etc) and dynamical (transport coefficient, transition pathway, etc)
Examples of molecular systems (1)

Ubiquitin (protein): structure? conformational changes?
→ In silico drug design
Examples of molecular systems (2)

What is the **melting temperature** of Argon?

(a) Solid Argon (low temperature)
(b) Liquid Argon (high temperature)
Examples of molecular systems (3)

Equation of state of Argon: density as a function of pressure, \(T = 300 \, \text{K} \) (comparison with data of National Institute of Standards and Technology)

Explore extreme conditions of matter...
Some orders of magnitude...

- **Physical quantities**
 - distances $\sim 1 \text{ Å} = 10^{-10} \text{ m}$
 - energy per particle $\sim k_B T \sim 4 \times 10^{-21} \text{ J at 300 K}$
 - atomic masses $\sim 10^{-26} \text{ kg}$
 - typical times $\sim 10^{-15} \text{ s}$
 - number of particles $\sim N_A = 6.02 \times 10^{23}$

- **“Standard” simulations**
 - 10^6 particles [“heroic”: 10^9 particles and more]
 - total time: (fraction of) ns [“heroic”: (fraction of) μs]

- **Analogy** to understand what such large numbers represent...
 - about 10^{22} moles of water on Earth
 - 10^6 moles of water $\sim 1 \text{ m}^3$
Aims of computational statistical physics

• “Numerical microscope”
 • gaining some **insight** into physical mechanisms at the atomic scale
 • From the press release for the Nobel prize in Chemistry 2013 (Karplus/Levitt/Warshel)

> Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments.

• **Computation of average properties** (static)

\[
\langle A \rangle = \int_{\mathcal{E}} A(q, p) \mu(dq \, dp)
\]

Computation of **high dimensional integrals**

• \(\mu\) is a probability measure
• \(A\) is the observable
High performance computations

- About 40% of running time in scientific computing centers devoted to molecular simulation (quantum + classical)

- **Parallelization strategies...**
 - spatial decomposition to compute forces and energies (every step)
 - time is intrinsically sequential...

- **Our scientific approach relies on**
 - testing new algorithms in home-made codes (e.g. SIMOL, co-developed with Inria)
 - implementing successful methods in codes targeted to specific applications (NAMD for computational biology, LAMMPS and STAMP for materials science, ...)

Numerical microscope
• Integrate the dynamics of the system, and visualize it...

Hamiltonian dynamics: fixed energy \(H(q, p) = E \)

\[
\begin{align*}
\frac{dq_t}{dt} &= M^{-1}p_t \, dt, \\
\frac{dp_t}{dt} &= -\nabla V(q_t) \, dt
\end{align*}
\]

• Many qualitative properties (time-reversibility, volume preservation, ...)

• Numerical integration
 • standard theory: fixed integration time, \(\Delta t \to 0 \)
 • longtime integration with \(\Delta t > 0 \) fixed requires a dedicated treatment
Hamiltonian dynamics and its integration (2)

- **Explicit Euler scheme**
 \[
 \begin{align*}
 q^{n+1} &= q^n + \Delta t \ M^{-1} p^n \\
 p^{n+1} &= p^n - \Delta t \ \nabla V(q^n)
 \end{align*}
 \]

- **Symplectic Euler scheme**
 \[
 \begin{align*}
 q^{n+1} &= q^n + \Delta t \ M^{-1} p^n \\
 p^{n+1} &= p^n - \Delta t \ \nabla V(q^{n+1})
 \end{align*}
 \]

- **Mathematical understanding through backward numerical analysis**

 Interpret the numerical solution of the exact problem as the exact solution of a modified problem

 Here, for symplectic Euler: the numerical trajectory lies on the orbits of a modified Hamiltonian dynamics

 \[
 H_{\Delta t}(q, p) = H(q, p) + \frac{\Delta t}{2} p^T M^{-1} \nabla V(q) + O(\Delta t^2)
 \]
Computation of average properties (static)
Thermodynamic properties

- Canonical measure (Boltzmann–Gibbs): fixed volume and temperature T

$$
\mu(dq \, dp) = Z^{-1} e^{-\frac{H(q,p)}{k_B T}} \, dq \, dp, \quad Z = \int_\mathcal{E} e^{-\frac{H}{k_B T}}
$$

Low energy states are more and more likely with lower temperatures

Langevin dynamics (friction $\gamma > 0$)

$$
\begin{align*}
 dq_t &= M^{-1} p_t \, dt, \\
 dp_t &= -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2\gamma k_B T} \, dW_t
\end{align*}
$$

- Ergodic averages $\frac{1}{t} \int_0^t A(q_s, p_s) \, ds \xrightarrow{t \to +\infty} \langle A \rangle = \int_\mathcal{E} A \, d\mu$

- Discretization of the stochastic differential equation \rightarrow stability, bias, ...

Emphasis here as well on **longtime properties** (invariant measure)
The actual mathematical challenge: metastability

Energetic vs. entropic barriers \(\rightarrow\) Variance reduction techniques, e.g. modifying \(-\nabla V\)
Computation of dynamical properties
Transport coefficients

- **Nonequilibrium driving** mimicking macroscopic experimental setups, for instance additional non-gradient force

Langevin dynamics with $q \in \mathbb{T}^d$ (magnitude of the forcing η)

\[
\begin{aligned}
dq_t &= M^{-1} p_t \, dt, \\
dp_t &= (-\nabla V(q_t) + \eta F) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2\gamma k_B T} \, dW_t
\end{aligned}
\]

- **Linear response** of an appropriate flux, here mobility α

\[
\alpha = \lim_{\eta \to 0} \frac{\mathbb{E}_\eta (F^T M^{-1} p)}{\eta} = \frac{1}{k_B T} \int_0^{+\infty} \mathbb{E}_0 \left[\left(F^T M^{-1} p_t \right) \left(F^T M^{-1} p_0 \right) \right] \, dt
\]

- **Variance reduction difficult** since invariant measure is not known... and depends non-trivially on the dynamics!