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Outline

e Some elements of statistical physics [Lecture 1]

e Sampling the microcanonical ensemble [Lectures 1-3]
@ Hamiltonian dynamics and ergodic assumption

@ Longtime numerical integration of the Hamiltonian dynamics

e Sampling the canonical ensemble [Lectures 2-4-5]
@ Stochastic differential equations (Langevin dynamics)

@ Markov chain approaches (Metropolis-Hastings)

e Lab sessions
@ integration of Hamiltonian dynamics

@ Metropolis algorithm
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General references (1)

e Statistical physics: theoretical presentations

@ R. Balian, From Microphysics to Macrophysics. Methods and Applications
of Statistical Physics, volume | - Il (Springer, 2007).

@ many other books: Chandler, Ma, Phillies, Zwanzig, ...

e Computational Statistical Physics

@ D. Frenkel and B. Smit, Understanding Molecular Simulation, From
Algorithms to Applications (Academic Press, 2002)

@ M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation
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@ M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford
University Press, 1987)

@ D. C. Rapaport, The Art of Molecular Dynamics Simulations (Cambridge
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@ B. J. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics, (Cambridge
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e Sampling the canonical measure

@ L. Rey-Bellet, Ergodic properties of Markov processes, Lecture Notes in
Mathematics, 1881 1-39 (2006)

@ E. Cances, F. Legoll and G. Stoltz, Theoretical and numerical comparison of some
sampling methods, Math. Model. Numer. Anal. 41(2) (2007) 351-390

@ T. Lelievre, M. Rousset and G. Stoltz, Free Energy Computations: A
Mathematical Perspective (Imperial College Press, 2010)
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@ T. Lelievre and G. Stoltz, Partial differential equations and stochastic methods in
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Some elements of statistical
physics

Gabriel Stoltz (ENPC/INRIA) Kanpur, July 2017 5/82



General perspective (1)

e Aims of computational statistical physics
@ numerical microscope

@ computation of average properties, static or dynamic

e Orders of magnitude
o distances ~1 A=10"1m
@ energy per particle ~ kgT ~ 4 x 1072! J at room temperature
@ atomic masses ~ 10726 kg
e time ~ 107 s
@ number of particles ~ Ny = 6.02 x 10%
e “Standard” simulations
@ 10 particles [“world records”: around 10° particles]
@ integration time: (fraction of) ns [“world records”: (fraction of) us]
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General perspective (2)

What is the melting temperature of argon?
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(a) Solid argon (low temperature)
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General perspective (3)

“Given the structure and the laws of interaction of the particles, what are

the macroscopic properties of the matter composed of these particles?”
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General perspective (4)

What is the structure of the protein? What are its typical conformations,
and what are the transition pathways from one conformation to another?
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Microscopic description of physical systems: unknowns
e Microstate of a classical system of N particles:
(¢,p) = (q1,---,aN, P1,---,PN) EE
Positions ¢ (configuration), momenta p (to be thought of as M¢)
e In the simplest cases, £ = D x R3*V with D = R3Y or T3V

e More complicated situations can be considered: molecular constraints
defining submanifolds of the phase space

e Hamiltonian H(q,p) = Exin(p) + V(¢), where the kinetic energy is

mq Id3 0

1 _
Eyin(p) = §pTM ', M=

0 my Idg
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Microscopic description: interaction laws

e All the physics is contained in V

@ ideally derived from quantum mechanical computations
@ in practice, empirical potentials for large scale calculations

e An example: Lennard-Jones pair interactions to describe noble gases

V(ql, .

1<i<j<N

o =1[(2)*- (2]

o=3.405x 10710 m

A :
e {s/kB:119.8 K
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Microscopic description: boundary conditions

Various types of boundary condi-
tions: O o AT
o VAL - WAL : A
e Periodic boundary T e T
conditions: easiest way to 5 4 oy 3
mimick bulk conditions ol
e Systems in vacuo (D = R?) & e o ! o
e Confined systems (specular 6 )  — o
reflection): large surface ) ! 2
effects b ‘1:\'} Wy » Wy SRR
@ Stochastic boundary - o oo
conditions (inflow/outflow of 7 8 9
particles, energy, ...)
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Thermodynamic ensembles (1)

e Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,. .. )

(A)p =Eu(A4) = /gA(q,p)u(dqdp)

e Choice of thermodynamic ensemble
@ least biased measure compatible with the observed macroscopic data
@ Volume, energy, number of particles, ... fixed exactly or in average
e Equivalence of ensembles (as N — +0o0)

e Constraints satisfied in average: constrained maximisation of entropy

S(0) =~k [ pnpd,

(A reference measure), conditions p > 0, /pd)\ =1, /Az-pd)\ =A;
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Two examples: NVT, NPT ensembles
e Canonical ensemble = measure on (g, p), average energy fixed Ag = H

v (dg dp) = Zyyp e PP dg dp J

1
with 5 = T the Lagrange multiplier of the constraint /ngdq dp = Eyg

e NPT ensemble = measure on (¢, p,x) with z € (—1,400)
3N
@ z indexes volume changes (fixed geometry): D, = ((1 + x)L’]I‘)
o Fixed average energy and volume /(1 + 2)3L3 p Mdq dp dx)

e Lagrange multiplier of the volume constraint: 5P (pressure)

e (de dq dp) = Zhy @ PPH 0" PP 11y 1y pyppony drdgdp. |
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Observables

e May depend on the chosen ensemble! Given by physicists, by some
analogy with macrosocpic, continuum thermodynamics

@ Pressure (derivative of the free energy with respect to volume)
;N 2
A = — S 4V, V
(4,p) 3D ;:1 ( =4V (Q))

N
1 2
e Kinetic temperature A(q,p) = SN Z D
B “ my;

=1

@ Specific heat at constant volume: canonical average

Na
Cv = N (<H2>NVT - <H>12\IVT)

Main issue J

Computation of high-dimensional integrals... Ergodic averages

e Also techniques to compute interesting trajectories (not presented here)
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Sampling the microcanonical
ensemble
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Outline

e Sampling the microcanonical measure
@ Definition of the microcanonical measure
@ The Hamiltonian dynamics and its properties

@ The ergodic assumption

e Standard numerical analysis of ordinary differential equations
o Consistency, stability, convergence

@ Standard examples

e Longtime numerical integration of the Hamiltonian dynamics
o Failure of standard schemes
@ Symplecticity and construction of symplectic schemes

@ Elements of backward error analysis
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The microcanonical measure

Lebesgue measure conditioned to S(E) = {(q,p) €& ‘ H(q,p) = E}

(co-area formula)

Microcanonical measure

- _ O-S(E)(dqdp)

me.5(dqdp) = 2505 (gp)—p(dgdp) = Z5 S22

1% c,E( q p) E H(q,p) E( q p) E ‘VH(Q7P)’
VH(thl) VH(Q27P2)
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The Hamiltonian dynamics (1)

Hamiltonian dynamics

dzg) = VpH(q(t),p(t)) = M 'p(t)
%¥>:_vguﬂmpw>=—vku»

Assumed to be well-posed (e.g. when the energy is a Lyapunov function)

e Flow: ¢(qo,po) solution at time ¢ starting from initial condition (qo, po)

e Why Hamiltonian formalism? (instead of working with velocities?)
@ Note that the vector field is divergence-free

divy (V,H(a(t) p(t)) ) +divy (= Vo H(a(t), p(t)) = 0

@ Volume preservation/ dqdp:/ dq dp
é(B) B
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The Hamiltonian dynamics (2)

e Other properties
@ Preservation of energy Ho ¢y = H

4 [ (a0).00)] = V41 (a0).p0)- 20 19, 1 (g(0),p(e) 2 = 0

e Time-reversibility ¢_; = S o ¢y 0 .S where S(q,p) = (g, —p)

Proof: use S? = Id and note that

So¢_i(qo,po) = (q(—t), —p(—t))
is a solution of the Hamiltonian dynamics starting from (qo, —po), as is

¢+ 0.5(qo, o). Conclude by uniqueness of solution.

@ Symmetry ¢_; = d){l (in general, ¢1rs = ¢ 0 @)

Gabriel Stoltz (ENPC/INRIA) Kanpur, July 2017 20 / 82



Ergodicity of the Hamiltonian dynamics

e Invariance of the microcanical measure by the Hamiltonian dynamics

Ergodic assumption

1T
(AYNVE = / A(q,p) pme,E(dgdp) = lim — / A(oe(q,p)) dt
S(E) T—~+o00 T 0

N

e Wrong when spurious invariants are conserved, such as E Di
i=1

Energy

0.0 T ; T
-15 -1.0 -05 0.0

Position
Kanpur, July 2017
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Numerical approximation

e The ergodic assumption is true...

e for completely integrable systems and perturbations thereof (KAM),
upon conditioning the microcanonical measure by all invariants

e if stochastic perturbations are considered?

— Although questionable, ergodic averages are the only realistic option

e Requires trajectories with good energy preservation over very long times
— disqualifies default schemes (Explicit/Implicit Euler, RK4, ...)

e Standard (simplest) estimator: integrator (¢" !, p"*t1) = ®a(¢™, p")

1 Niter
(Anve = & > A(g",p")
iter n—1

or refined estimators using some filtering strategy?

'E. Faou and T. Leligvre, Math. Comput. 78, 2047-2074 (2009)
2Cances et. al, J. Chem. Phys., 2004 and Numer. Math., 2005
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Outline

e Sampling the microcanonical measure
@ Definition of the microcanonical measure
@ The Hamiltonian dynamics and its properties

@ The ergodic assumption

e Standard numerical analysis of ordinary differential equations
@ consistency, stability, convergence

@ standard examples

e Longtime numerical integration of the Hamiltonian dynamics
o Failure of standard schemes
@ Symplecticity and construction of symplectic schemes

@ Elements of backward error analysis
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Some fundaments of numerical integration of ODEs

dy(t
e Consider an ordinary differential equation Zi) = f(y(t))

e Assume that it is well posed (unique solution for all initial conditions)

y(t) = ¢ (y(O)) =y(0) + /Ot f(y(s)) ds

e Introduce y", approximation of y(t,) with ¢, = nAt (fixed time step)
One step method

Yt = Qps (y")

e Simplest example: Explicit Euler
yrt =yt ALf(Y")

in which case ®a¢(y) =y + At f(y)
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Further examples

e Explicit methods

A
e Heun: y"*t! =y + ?t (f(yn) + f(y” + Atf(yn)))

@ Fourth order Runge-Kutta scheme

yn—i-l — yn + At

Fly™) +2f(Y"H) +2f(Y"2) + f(Y™H)

6
At At
with Y7 =y + ") 5 Y =y 4 f(YTT) S5 and
Yn+3 — yn + f(Yn+2)At
e Implicit methods [solve using a fixed-point iteration for instance]
o Implicit Euler: y™*t =y + At f (y"*)

_ At
o Trapezoidal rule: "1 =¢" + 5 (f(y”) + f(yn+1))

n n+1
o Midpoint: "™ =y + At f <y+2y>
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Standard error analysis

e Error on the trajectory over finite times
@ local error at each time step (consistency + rounding off error)
@ accumulation of the errors (stability)

e A numerical method is convergent when the global error satisfies

At—0 \ 0<n<N

i, (15" = y(n80)]) =0 J

e Order p consistency: quantification of the error over one time step

e(yo) = y(At) — Dar(yo) = O(APHY) J

e Example: explicit Euler is of order 1 — Taylor expansion
2

o8~ (st At fo)) = Sy 080, ') = 0,0 (u(7)) ()
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Standard error analysis

e Stability: for all sequences y" 1 = ®a;(y") and 2" = Dy (2") + 07,
it holds (S independent of At)

N
n__ . n < S 0o _ 0 5
Jmax fly" = 2" (\y z \+HZOH H)

True when [[®a¢(y1) — Par(y2) [ < Ay — w2l

e A method which is stable and consistent is convergent
(take 2™ = y(nAt) exact solution, so that d,, is the local truncation error)

e For a method of order p, there are N = [T'/At] integration steps

o<n<N

max ||ly" —y(tn)|| < C(T)ALP J

with a prefator which typically grows exponentially with 7'...
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Outline

e Sampling the microcanonical measure
@ Definition of the microcanonical measure
@ The Hamiltonian dynamics and its properties

@ The ergodic assumption

e Standard numerical analysis of ordinary differential equations
@ consistency, stability, convergence

@ standard examples

e Longtime numerical integration of the Hamiltonian dynamics
o Failure of standard schemes
@ Symplecticity and construction of symplectic schemes

@ Elements of backward error analysis
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Longtime integration: failure of default schemes

e Appropriate notion of stability: longtime energy preservation

Hamiltonian dynamics as a first-order differential equation

q . 0 I3N>
— 4 — JVH(y), J=
Y <p> Y (y) (_ Lx 0

1
e Analytical study of ®a; for 1D harmonic potential V (q) = §w2q2

n+l _ n —-1,n
q =q"+ AtM— p", ntl _ 1 At\
{ p"tl = pn — AtVV (q"), so that y —wAr 1 )Y

Modulus of eigenvalues [Ay| = V1 + w?At? > 1, hence exponential
increase of the energy

e For implicit Euler and Runge-Kutta 4 (for At small enough), exponential
decrease of the energy

e Numerical confirmation for general (anharmonic) potentials
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Which qualitative properties are important?

e Time reversibility ®a¢ 05 =5 o &_a, usually verified

Check it for Explicit Euler @54 (¢, p) = (q+ AtM ™" p,p— AtVV(q))
g—AtM™1p

Euler _ _ q— AtM71 p _ _ Euler
Ox; (g, —p) = (—p — AtVV(q) =S p+ AtVV(q) =S (‘I)—At (‘LP))
e Symmetry @g% = ®_ A, is not trivial at all

e Oriented volume preservation: linear case in 2D
@ two independent vectors ¢ = (z,y) and ¢’ = (2/,y’), oriented volume

and =xy —ay=q¢"Jd, J= (_01 é)
@ linear transformation A, so that ¢ — Aq and ¢ — Aq’
atJqd — q" AT JA
e unchanged provided ATJA = J
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Longtime integration: symplecticity (1)

e Generalization to higher dimensions and nonlinear transformations

o mapping g(¢,p) = (91(¢,); - - -, gen (¢, 0))"
@ Jacobian matrix ¢'(q, p)

991 Og1 991 091

opn " dgsn  Op; T Opsn
J(q,p) = " -

OgeénN Ogen  OgsN OgeN

dgn  Igsn  Op1 Ogaan

Symplectic mapping

[9'(¢,p))" Tg (q.p) = J

e A mapping is symplectic if and only if it is (locally) the flow of a
Hamiltonian system

e A composition of symplectic mappings is symplectic
Gabriel Stoltz (ENPC/INRIA) Kanpur, July 2017
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Longtime integration: symplecticity (2)

e Proof: A Hamiltonian mapping is symplectic

Derive the Jacobian matrix ¢ (¢,y) = (%)ati(y)
Y

&= a% (dééiy)) - %UVH(@@») = J(VH (&) a¢51(/y)

so that, using JT = —J

% (0T T0(0)) = (O (T H(@:()) T To@) + 0" (VH(ge(y))) (1) = 0

The conclusion follows since (0)7Jy(0) = J. Converse statement: “integrability
Lemma" (see Hairer/Lubich/Wanner, Theorem VI.2.6 and Lemma VI1.2.7)

e Composition of symplectic mappings g, h: use (go h)’ = (¢’ o h)h' and
T
W(a,p)" (g'(h(,p))) T (o' (hla:p) ) (a.p) = W' (a. )T TW (a,p) = J
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Longtime integration: symplecticity (3)

e Stability result

Approximate longtime energy conservation

For an analytic Hamiltonian H and a symplectic method ®a; of order p,
and if the numerical trajectory remains in a compact subset, then there
exists h > 0 and At* > 0 such that, for At < At*,

H(q",p") = H(q°p") + O(AtP)

for exponentially long times nAt < eM/A!,

e Weaker results under weaker assumptions?

e Does not say anything on the statistical behavior! (except for integrable
systems)

Near energy preservation is a necessary condition

*Hairer/Lubich/Wanner, Springer, 2006 and Acta Numerica, 2003
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Longtime integration: constructing symplectic schemes (1)

e Splitting strategy for a general ODE y(t) = f(y), flow ¢,
e Decompose the vector field as f(y) = fi(y) + f2(y)
@ Define the flows ¢ associated with each elementary ODE 2(t) = fi(2)
e Motivation: (almost) analytical integration of elementary ODEs

@ Generalization to a decomposition into m > 2 parts
e Trotter splitting (first order accurate)
dar = G 0 YA + O(AL?) = ¢4, 0 dA, + O(AL?)
e Strang splitting (second order)
NS ¢1At/2 o ¢As © ¢>1At/2 +0(At%) = ¢2At/2 ONE ¢2At/2 +O0(At%)

e Extension to higher order schemes (Suzuki, Yoshida)
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Longtime integration: constructing symplectic schemes (2)

- 71 .
¢=M pand{q 0

e Splitting Hamiltonian systems: . .
PITHne g {pz 0 p==VV(q)

o Flows ¢{(q,p) = (q+t M 'p,p) and ¢?(q,p) = (¢,p — tVV(q))

e Symplectic Euler A: first order scheme ®a; = ¢4, 0 ¢h,

qn-‘rl — qn + AtM_lpn
pn+1 — pn _ AtVV(q"+1)

Composition of Hamiltonian flows hence symplectic

e Linear stability: harmonic potential A(At) = <—w12At 1 (?utAt)2>

e Eigenvalues || =1 provided wA? < 2
— time-step limited by the highest frequencies
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Longtime integration: symmetrization of schemes*

e Strang splitting ®a; = gb?m/? ok, 0 qSQAt/Q, second order scheme

Stormer-Verlet scheme

At_
pn+1/2: pn _ ?vv(q )

qn+1 — qn+At M—lpn+1/2

NI
pn-i-l — pn+1/2 . 7vv(q +1)

e Properties:
@ Symplectic, symmetric, time-reversible

@ One force evaluation per time-step, linear stability condition wAt < 2
n+1 _ 2qn + qnfl
At?

o In fact, M2 =-VV(¢")

*L. Verlet, Phys. Rev. 159(1) (1967) 98-105
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Molecular constraints

e |In some cases, mechanical systems are constrained

e Numerical motivation: highly oscillatory systems

o Fast oscillations of the system, e.g. vibrations of bonds and bond
angles

@ Severe limitations on admissible time steps since wA? < 2
@ Remove the limitation by constraining these degrees of freedom

@ Introduces some sampling errors, which can be corrected

e Other motivation: computation of free energy difference with
thermodynamic integration

e The Hamiltonian dynamics has to be modified consistently, and
appropriate numerical schemes have to be devised (RATTLE)
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Outline

e Sampling the microcanonical measure
@ Definition of the microcanonical measure
@ The Hamiltonian dynamics and its properties

@ The ergodic assumption

e Standard numerical analysis of ordinary differential equations
@ consistency, stability, convergence

@ standard examples

e Longtime numerical integration of the Hamiltonian dynamics
o Failure of standard schemes
@ Symplecticity and construction of symplectic schemes

@ Elements of backward error analysis
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Some elements of backward error analysis

e Philosophy of backward analysis for EDOs: the numerical solution is...
@ an approximate solution of the exact dynamics ¢ = f(y)
@ the exact solution of a modified dynamics : y"™ = z(t,)

— properties of numerical scheme deduced from properties of 2 = fa.(2)

Modified dynamics
i = far(2) = f(2) + AtFi(2) + APF(2) + ...,  2(0) =4°

e For Hamiltonian systems (f(y) = JVH(y)) and symplectic scheme:

Exact conservation of an approximate Hamiltonian Ha¢, hence
approximate conservation of the exact Hamiltonian

(wAt)?

2
e Harmonic oscillator: Ha:(q,p) = H(q,p) — ?q for Verlet
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General construction of the modified dynamics

e |terative procedure (carried out up to an arbitrary truncation order)

e Taylor expansion of the solution of the modified dynamics

2(AL) = 2(0) + At 2(0) + Af;z'(o) .

i { £(0) = £(2(0)) + AtF(2(0)) + O(AL?)
£(0) = 0.f(2(0)) - f(2(0)) + O(At)

Modified dynamics: first order correction

(80 =3 + ¢ 76 + A% (R + 30569761 ) +O(ar)

e To be compared to y' = ®a¢(y°) = y° + Atf(y°) + ...
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Some examples

e Explicit Euler y* = 3% + At f(y"): the correction is not Hamiltonian

1 1 M7V, V(g VpH
Fl(Z) = —iazf(z)f(z) ) <V2V(q) . Mglp> 7 (—Vqulh>

e Symplectic Euler A
qn+1 fry qn + AtMil n7

1
The correction derives from the Hamiltonian Hi(q,p) = ipTM_lqu(q)

1 MWV \ _ ( VoHi(qp)
Fi(q,p) = B (—VZV(q) . M1p> N (—qu}1(q,p))

Energy H + AtH; preserved at order 2, while H preserved only at order 1
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Sampling the canonical ensemble

Gabriel Stoltz (ENPC/INRIA) Kanpur, July 2017 42 / 82



Classification of the methods

e Computation of (4) = / A(q,p) u(dqdp) with
&

1
— g—1o—BH(ap) —
pw(dgdp) = Z, e dgdp, B T

e Actual issue: sampling canonical measure on configurational space
v(dq) = 2,7V dg

e Several strategies (theoretical and numerical comparison®)
@ Purely stochastic methods (i.i.d sample) — impossible...
@ Stochastic differential equations
@ Markov chain methods
@ Deterministic methods a /a Nosé-Hoover

In practice, no clear-cut distinction due to blending...

°E. Cancgs, F. Legoll and G. Stoltz, M2AN, 2007
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Outline

e Markov chain methods

o Metropolis-Hastings algorithm

e Stochastic differential equations
@ General perspective (convergence results, ...)
e Overdamped Langevin dynamics (Einstein-Schmolukowski)
@ Langevin dynamics

@ Extensions: DPD, Generalized Langevin
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Metropolis-Hastings algorithm (1)
e Markov chain method®’, on position space
e Given ¢", propose ¢""! according to transition probability 7'(¢", §)

@ Accept the proposition with probability min (1, r(¢", g" ™!

q") where

r(g,q) = v(dg) oc e=?V(@.

If acception, set ¢"t! = §"!; otherwise, set ¢"*! = ¢".

e Example of proposals

e Gaussian displacement "1 = ¢" + o G™ with G™ ~ N(0,1d)

/2
o Biased random walk®9 §"! = ¢" — aVV(q") + Fa G"

®Metropolis, Rosenbluth (x2), Teller (x2), J. Chem. Phys. (1953)
"W. K. Hastings, Biometrika (1970)

8G. Roberts and R.L. Tweedie, Bernoulli (1996)

°P.J. Rossky, J.D. Doll and H.L. Friedman, J. Chem. Phys. (1978)
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Metropolis-Hastings algorithm (2)

e The normalization constant in the canonical measure needs not be known

e Transition kernel: accepted moves + rejection
Plq,dq') = min (1,7(0,¢)) T(a.¢) dd + (1= a(0))8,(dd)),

where a(q) € [0, 1] is the probability to accept a move starting from g:
a(@) = [ min (Lr(a.))T(a.¢)dd.
D

e The canonical measure is reversible with respect to v

P(q,dq")v(dg) = P(q',dq)v(dq)

This implies invariance: /Dw(q’)P(q,dq’) V(dq):/pw(q) v(dq)
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Metropolis-Hastings algorithm (3)

e Proof: Detailed balance on the absolutely continuous parts

min (1,7(¢¢)) T4, dq')v(dq) = min (1,7(¢',q)) (a, a')T (¢, dq')(da)
= min (1, r(q’, q)) T(q',dq)v(dq")

. . . . 1 ’
using successively min(1,7) = r min (1, 7) and r(q,q ) =
g (1,7) L) andra.d) = s

e Equality on the singular parts (1 — a(q)) d4(dg")v(dg) = (1 — a(q"))d, (dg)v(dg")
/D /D 8(0:4) (1 — o(q)) So(dq ) (dg) = /D 6(¢9)(1 — a(g))v(dg)
- /D /D 6(a,0)(1 — a(d))by (dg)(dg)

e Note: other acceptance ratios R(r) possible as long as R(r) = rR(1/r), but the
Metropolis ratio R(r) = min(1,r) is optimal in terms of asymptotic variance'®

19p_ Peskun, Biometrika (1973)
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Metropolis-Hastings algorithm (4)

e Irreducibility: for almost all gy and any set S of positive measure, there
exists n such that

P (a0, S) = / P(qo,dz) P (2,8) > 0
€D

e Assume also aperiodicity (comes from rejections)

Niter
e Pathwise ergodicity*! N th%O A § CA(q") = /D A(q) v(dq)
iter 1ter n=1

e Central limit theorem for Markov chains under additional assumptions:

Niter
1 law 2
Niger | — A" )— | A —_ ,
V Niter | 55— n§:1 (q") /D () v(dq)| ———— N(0,07)

S Meyn and R. Tweedie, Markov Chains and Stochastic Stability (1993)
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Metropolis-Hastings algorithm (5)

e The asymptotic variance o takes into account the correlations:
+o00o
02 = Var,(A) + 2 ZEV [(A(qo) —E,(A4))(A(¢") — EV(A))}
n=1

e Numerical efficiency: trade-off between acceptance and sufficiently large
moves in space to reduce autocorrelation (rejection rate around 0.5)!2

e Refined Monte Carlo moves such as
@ “non physical” moves

parallel tempering

replica exchanges

Hybrid Monte-Carlo

e A way to stabilize discretization schemes for SDEs

2Roberts/Gelman/Gilks (1997), ..., Jourdain/Leligvre/Miasojedow (2012)
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Outline

e Markov chain methods

o Metropolis-Hastings algorithm

e Stochastic differential equations
@ General perspective (convergence results, ...)
e Overdamped Langevin dynamics (Einstein-Schmolukowski)
@ Langevin dynamics

@ Extensions: DPD, Generalized Langevin
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Langevin dynamics
e Stochastic perturbation of the Hamiltonian dynamics : friction v > 0
dge = M~ 'p, dt

2
dpy = —VV (qr) dt—y M 'py dt + /% AW,

e Motivations
@ Ergodicity can be proved and is indeed observed in practice
@ Many useful extensions (dissipative particle dynamics, rigorous NPT
and puVT samplings, etc)

e Aims
@ Understand the meaning of this equation
@ Understand why it samples the canonical ensemble
@ Implement appropriate discretization schemes
o Estimate the errors (systematic biases vs. statistical uncertainty)
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An intuitive view of the Brownian motion (1)

e Independant Gaussian increments whose variance is proportional to time
V0<t0<t1<<tn, Wt¢+1—Wt¢NN(07ti+l_ti)

where the increments Wy, , — W, are independent

e G ~ N(m,c?) distributed according to the probability density

g(x) = ! eXp<—(x_m)2>

oV 2T 202

e The solution of dg; = odW; can be thought of as the limit At — 0

¢ = " + oVALGT, G" ~ N(0,1) i.i.d.

where ¢" is an approximation of g,
e Note that ¢" ~ N (q°, onAt)

e Multidimensional case: Wy = (Wi, ..., Wy,) where W; are independent

Gabriel Stoltz (ENPC/INRIA) Kanpur, July 2017 52 /82



An intuitive view of the Brownian motion (2)

e Analytical study of the process: law ¢(t, q) of the process at time ¢
— distribution of all possible realizations of ¢; for

@ a given initial distribution ¢(0, q), e.g. d,0

@ and all realizations of the Brownian motion

Averages at time t

E(A() = /D A(g)¥(t,q) dg

e Partial differential equation governing the evolution of the law

Fokker-Planck equation

02

o = ?Alb

Here, simple heat equation — “diffusive behavior”
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An intuitive view of the Brownian motion (3)

e Proof: Taylor expansion, beware random terms of order v/ At
A") = A(a" +oVALG")
oAt

=A(q") + oVAIG" - VA(¢") + — (G (VA ()G + O(At3/2)

Taking expectations (Gaussian increments G™ independent from the current position ¢")
oAt
2

B4 ()] B[4+ TRt aawn)] + o(ar)

n+1y n 0_2
Ag™) A(Q)_7AA(qn)

Therefore, E [ — 0. On the other hand,

A n+1 — A(g™
e |2 )At - —>5t(]E [A(Qt)}) Z/DA(q)C'?W(t,q) dg.
This leads to
0= [a@ovtaa-% [aawvtaii= [ aw(owita) - G aven)a

This equality holds for all observables A.
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General SDEs (1)

e State of the system X € R4, m-dimensional Brownian motion, diffusion
matrix o € RIxm

dX; = b(Xy) dt + o(X;) dW; J

to be thought of as the limit as At — 0 of (X™ approximation of X, )
XM= X" 4 Ath(X™) + VALo(XMG™,  G" ~ N (0,1d,,)
e Generator

d d
1 1
L=0b(z) - V+ 500%3) V2= bi(x)0s, + 3 > (00" ()], ; 0.0,

i=1 ij=1

e Proceeding as before, it can be shown that

o (Ela@)) = [ Aow=B[(ea) ()] = [ care
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General SDEs (2)

Fokker-Planck equation

Op = L

where L£* is the adjoint of £

/ (LA) (2) B(z) do = / A(z) (£°B) (2) dz
X X
e Invariant measures are stationary solutions of the Fokker-Planck equation

Invariant probability measure ¥ (z) dz

LYoo = 0, /Xz/)oo(:c) de =1, Yoo = 0

e When L is elliptic (i.e. ool has full rank: the noise is sufficiently rich),
the process can be shown to be irreducible = accessibility property

Pt(ac,S) :P(Xt €S|X0 :CC) >0
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General SDEs (3)

e Sufficient conditions for ergodicity
@ irreducibility
@ existence of an invariant probability measure ¥ () dx

Then the invariant measure is unique and

1t
lim T/o @(Xt)dt:/)(go(:v) Voo(x) dx a.s.

T—o00

e Rate of convergence given by Central Limit Theorem: ¢ = ¢ — /¢¢00

v (k[ Cetxpa— [ o) 72 MO,

T—+o0o

+o00
with 033 = QE[/ &(Xt){p’(Xo)dt} (proof: later, discrete time setting)
0
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SDEs: numerics (1)

e Numerical discretization: various schemes (Markov chains in all cases)

e Example: Euler-Maruyama

xntl — xn + At b(Xn) + /AtU(Xn) G™, G" NN(O,Idd)

e Standard notions of error: fixed integration time T < 400
e Strong error  sup E|X" — X, a¢| < CA
0<n<T /At
o Weak error: sup |E[p (X"™)] —E[p(Xnat)]| < CAP (for any ¢)
0<n<T/At
@ “mean error” vs. “error of the mean”

e Example: for Euler-Maruyama, weak order 1, strong order 1/2 (1 when
o constant)
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Generating (pseudo) random numbers (1)

e The basis is the generation of numbers uniformly distributed in [0, 1]

e Deterministic sequences which look like they are random...

e Early methods: linear congruential generators (“chaotic” sequences)

Ln

Tpt+1 = axy +b mod c, Uy, = 7
c —_

@ Known defects: short periods, point alignments, etc, which can be
(partially) patched by cleverly combining several generators

e More recent algorithms: shift registers, such as Mersenne-Twister
— defaut choice in e.g. Scilab, available in the GNU Scientific Library

e Randomness tests: various flavors
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Generating (pseudo) random numbers (2)

e Standard distributions are obtained from the uniform distribution by...
@ inversion of the cumulative function F(x) :/ f(y) dy (which is

an increasing function from R to [0, 1])
X=FYU)~ f(z)dx

Proof: P{a < X < b} =P{a < F~1(X) < b} =P{F(a) < U < F(b)} = F(b) — F(a) = /b f(z) dz

1
Example: exponential law of density Acfkml{zgn}, F(z) = 1{120}(1 — c’Am), so that X = 7X InU

@ change of variables: standard Gaussian G = /—21n U cos(27Us)

1 . "+o00 1 de
Proof: E(f(X,Y)) = 2—/2 f(a:,y)ef(12+y2>/2 dacdy:/ f (v/T cos 6, /T sin6) 5e7T/2 dr—
T JR: 0

27

@ using the rejection method
Find a probability density g and a constant ¢ > 1 such that 0 < f(x) < cg(x). Generate i.i.d. variables

on yn e nn s g
( ,U™) ~ g(z)dz ® U0, 1], compute r"* = ———, and accept X" if r™ > U
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SDEs: numerics (2)

Niter
. . : 1
e Trajectorial averages: estimator ®p,, = . E e(X™)
1ter n=1

e Numerical scheme ergodic for the probability measure 9o A/

e Two types of errors to compute averages w.r.t. invariant measure

@ Statistical error, quantified using a Central Limit Theorem

O At
Oy — n Gy . Gy ~N(0,1
Nltcr /‘Pwoo,At /Niter Nltcr iter ( )

@ Systematic errors
e perfect sampling bias, related to the finiteness of At

/Qowoo,At_/ proo‘gcsztp
X X

o finite sampling bias, related to the finiteness of N,
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SDEs: numerics (3)

Expression of the asymptotic variance: correlations matter!

+o0o
Py = Varlg)+ 2 EFMFXO),  F=p- [ovma
n=1

2
where Var(y) :/ P oo At :/ @ hso,At — </ sowoo,m>
X X X

N
_ 1 iter i
Proof: compute NigorE (Cb?\’iter) =5 > ]E(;Z(X”)«Z(X"L))

iter n ,m=0

Stationarity E(@(X”)J(Xm)) = E(@(x"*m)@(xﬂ)) implies

Niver (P, ) =B(2 (X°)7) +2 2 <1 - ) E(EX™M3(x)

iter

e Useful rewriting: number of correlated steps JQAW = Neorr Var(ep)

2 e
e Note also that UZAW ~ EE [/ o(Xt)p(Xo) dt}
0
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SDEs: numerics (4)

e Estimation of o, by block averaging (batch means)

N M 5 1 kN

2 i 1 k _ i i

OAty = N7A14121+Oo M Z (‘I’N - ‘I’NM) , Oy = N Z ©(q"p")
k=1 i=(k—1)N+1

UAt, k . koo
Expected ®% N/ © VYoo, A + =2 @8 with 9% i.id.
N ¥ t TV

SN
®
g

°,
=]
g 3

S
I
g

Standard deviation
8 &

S,

Energy

Variance of trajectory averages

5 6

10 10 10 0 5 10 15 20 25 30

Trajectory length N Loqarithmic block lenath (p)
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Metastability: large variances...
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Need for variance reduction techniques! (more on Friday)
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Outline

e Markov chain methods

o Metropolis-Hastings algorithm

e Stochastic differential equations
@ General perspective (convergence results, ...)
e Overdamped Langevin dynamics (Einstein-Schmolukowski)
@ Langevin dynamics

@ Extensions: DPD, Generalized Langevin
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Overdamped Langevin dynamics

e SDE on the configurational part only (momenta trivial to sample)

dqt = —VV(qt) dt + \/gth J

e Invariance of the canonical measure v(dq) = ¥o(q) dgq

Yo(q) = 27 e V@), = / e V(@) gq
D
1
g
1
e invariance of ¢y: adjoint L*¢ = div, ((VV)tp + BV(M)
o elliptic generator hence irreducibility and ergodicity

2At

g

e Generator L = -VV(q) -V, + =4,

e Discretization ¢"™! = ¢" — At VV (¢") + G" (+ Metropolization)
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Langevin dynamics (1)

e Stochastic perturbation of the Hamiltonian dynamics

dg = M~ 'p, dt
dps = —VV(q) dt—yM 1 p; dt + o dW;

® v,0 may be matrices, and may depend on ¢

e Generator £ = Lyam + Lihm

dN
Loam = p" M7V = VV(@)V, = Y 20, - 0,V (09,
i=1 "

~ 1 o2
Lipm = —p' M I’YTVp —+ > (O'UT) : Vf, (: ?Ap for scalar a)
e [rreducibility can be proved (control argument)
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Langevin dynamics (2)

e Invariance of the canonical measure to conclude to ergodicity?

Fluctuation/dissipation relation

ool = implies L* (e_BH> =0

e Proof for scalar v, 0: a simple computation shows that

Elﬁam = _Ehama EhamH =0

1
e Overdamped Langevin analogy Liym = 7y <—pTM_1Vp + 5Ap>
— Replace ¢ by p and VV'(q) by M~1p

TM—I
thm [exp (_61)2]))} =0

e Conclusion: £f, ~and L, both preserve e ##(@P) dg dp
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Langevin dynamics (3)

e Prove exponential convergence of the semigroup et

e various Banach spaces £ N L3(p)

e Lyapunov techniques!3:14

Ly (&) = {cp measurable, < +oo}

Il .-

standard hypocoercive!® setup H' ()

o
o E = L%(p) after hypoelliptic regularization'® from H'(u)
e Direct L?(p) approach’

13|, Rey-Bellet, Lecture Notes in Mathematics (2006)

“*Hairer and Mattingly, Progr. Probab. 63 (2011)

3Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)

"Dolbeault, Mouhot and Schmeiser (2009, 2015)
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Numerical integration of the Langevin dynamics (1)

e Splitting strategy: Hamiltonian part + fluctuation/dissipation

{ do= Mipar [0 5
dp; = —V'V (q;) dt dp; = —y M~ Lp, dt + ,/% AW,

e Hamiltonian part integrated using a Verlet scheme

e Analytical integration of the fluctuation/dissipation part

d (eVMiltpt) — M (dpt + ’VM_lpt dt) =4/ Qgelet dWy

so that .
D = ef’y]V[_ltpO + 21 ef'y]\/[_l(tfs) dW,
V 8 Jo

t t
It can be shown that / f(s)dWs ~ N (0,/ f(s)2d3>
0 0
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Numerical integration of the Langevin dynamics (2)

e Trotter splitting (define aa; = e~ YMTIAL hoose YM~1At ~0.01 — 1)

At
pn+1/2 _ pn _ ? VV((]”),
qn+1 _ qn + Athlpn+1/2’

D +1 =p +1/2 7v‘/(q -i-l)7

1 —aoay

s

pn—l-l = O‘Atﬁn+1 + MGna

Error estimate on the invariant measure pa; of the numerical scheme

There exist a function f such that, for any smooth observable v,

/gz/)d,umZ/gwdu+At2/gwfdu+O(At3)

e Strang splitting more expensive and not more accurate
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Some extensions (1)

e The Langevin dynamics is not Galilean invariant, hence not consistent
with hydrodynamics — friction forces depending on relative velocities

Dissipative Particle Dynamics

dgy = M~ 'pydt
2
dpit = =V Vig)dt+) <—7X2(Tij,t)vz‘j,t dt + 4/ %X(Tij,t) dWij)
i#]
. . _ b Py —
with v >0, Tij = |q¢ —qj|, Vijg = — — —, X > 0, and Wij = —Wj'
m; mj
N
e Invariance of the canonical measure, preservation of Zpl-
18 i=1

e Ergodicity is an issue

e Numerical scheme: splitting strategy!®

8T Shardlow and Y. Yan, Stoch. Dynam. (2006)
19T Shardlow, SIAM J. Sci. Comput. (2003)
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Some extensions (2)

e Mori-Zwanzig derivation?® from a generalized Hamiltonian system:

particle coupled to harmonic oscillators with a distribution of frequencies

Generalized Langevin equation (A = Id)

dg=pdt

2
cdR; = —tht—’yptdt+,/%th

e Invariant measure Il(g,p, R) = Z,;; exp <—ﬁ [H(q,p) + ;Rﬂ)
’ Y

e Langevin equation recovered in the limit ¢ — 0

e Ergodicity proofs (hypocoercivity): as for the Langevin equation?!

2R, Kupferman, A. Stuart, J. Terry and P. Tupper, Stoch. Dyn. (2002)
2IM. Ottobre and G. Pavliotis, Nonlinearity (2011)
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