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Outline

e Examples of high-dimensional probability measures
@ Statistical physics

@ Bayesian inference

e Markov chain methods
@ Metropolis—Hastings algorithm
@ Hybrid Monte Carlo and its variants

e Methods based on stochastic differential equations
@ An introduction to SDEs (generators, invariant measure, discretization, etc)

@ Langevin-like dynamics

e Variance reduction techniques

e Large scale Bayesian inference
@ Mini-batching
@ Adaptive Langevin dynamics
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General references (1)

e Computational Statistical Physics

@ D. Frenkel and B. Smit, Understanding Molecular Simulation, From Algorithms to
Applications (Academic Press, 2002)

@ M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford,
2010)

@ M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford University
Press, 1987)

@ D. C. Rapaport, The Art of Molecular Dynamics Simulations (Cambridge
University Press, 1995)

@ T. Schlick, Molecular Modeling and Simulation (Springer, 2002)

e Computational Statistics [my personal references... many more out there!]
@ J. Liu, Monte Carlo strategies in scientific computing, Springer, 2008

@ W. R. Gilks, S. Richardson and D. J. Spiegelhalter (eds), Markov chain Monte
Carlo in practice (Chapman & Hall, 1996)

e Machine learning and sampling
@ C. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)
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General references (2)

e Sampling the canonical measure

@ L. Rey-Bellet, Ergodic properties of Markov processes, Lecture Notes in
Mathematics, 1881 1-39 (2006)

@ E. Cances, F. Legoll and G. Stoltz, Theoretical and numerical comparison of some
sampling methods, Math. Model. Numer. Anal. 41(2) (2007) 351-390

@ T. Lelievre, M. Rousset and G. Stoltz, Free Energy Computations: A
Mathematical Perspective (Imperial College Press, 2010)

@ B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and
Stochastic Numerical Methods (Springer, 2015).

@ T. Lelievre and G. Stoltz, Partial differential equations and stochastic methods in
molecular dynamics, Acta Numerica 25, 681-830 (2016)

e Convergence of Markov chains

@ S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability (Cambridge
University Press, 2009)

@ R. Douc, E. Moulines, P. Priouret and P. Soulier, Markov chains (Springer, 2018)
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Sampling high-dimensional
probability measures

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019  5/65



Statistical physics (1)

e Aims of computational statistical physics
@ numerical microscope

@ computation of average properties, static or dynamic

e Orders of magnitude
o distances ~1 A=10"1m
@ energy per particle ~ kgT ~ 4 x 1072! J at room temperature
@ atomic masses ~ 10726 kg
e time ~ 107 s
@ number of particles ~ Ny = 6.02 x 10%
e “Standard” simulations
@ 10 particles [“world records”: around 10° particles]
@ integration time: (fraction of) ns [“world records”: (fraction of) us]
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Statistical physics (2)

What is the melting temperature of argon?
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(a) Solid argon (low temperature)

Gabriel Stoltz (ENPC/INRIA)

o oo ©

(#)
BBeP 6 2 %o
&)@CQOO O%:@ Ct)c(é
oy 9 C§Q)

(b) Liquid argon (high temperature)
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Statistical physics (3)

“Given the structure and the laws of interaction of the particles, what are

the macroscopic properties of the matter composed of these particles?”
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Equation of state (pressure/density diagram) for argon at 7' = 300 K
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Statistical physics (4)

What is the structure of the protein? What are its typical conformations,
and what are the transition pathways from one conformation to another?

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019  9/65



Statistical physics (5)
e Microstate of a classical system of N particles:
(¢,p) = (q1,---,aN, P1,---,PN) EE
Positions ¢ (configuration), momenta p (to be thought of as M¢)
e In the simplest cases, £ = D x R3*V with D = R3Y or T3V

e More complicated situations can be considered: molecular constraints
defining submanifolds of the phase space

e Hamiltonian H(q,p) = Exin(p) + V(¢), where the kinetic energy is

mq Id3 0

1
—pIM™p, M=

Ekin(p) = 92

0 my Idg
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Statistical physics (6)

e All the physics is contained in V
@ ideally derived from quantum mechanical computations
@ in practice, empirical potentials for large scale calculations

e An example: Lennard-Jones pair interactions to describe noble gases

Vigs,--oav) = Y ollgg=al)
1<i<j<N = 0]
o\ 12 o\6 s ]
<[] -
U(r) €|: r r & 1
0 =3.405x10"" m R
Argon: . ‘ ‘ ‘ ‘ ‘
E/kB = 1198 K 1.0 15 2.0 25
Reduced interatomic distance
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Statistical physics (7)
e Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,. .. )

(@hu =Eu(p) = /g@(q,p)u(dqdp)

e Choice of thermodynamic ensemble
@ least biased measure compatible with the observed macroscopic data
@ Volume, energy, number of particles, ... fixed exactly or in average
e Equivalence of ensembles (as N — +0o0)

e Canonical ensemble = measure on (g, p), average energy fixed H

pnvr(dgdp) = Zyp e PP dg dp J

1
with 8 = T the Lagrange multiplier of the constraint /ngdq dp = Ey
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Bayesian inference (1)

L4 Data set {yi}i:Ln':Ndata

e Elementary likelihood P(y|q), with ¢ parameters of probability measure

e A priori distribution of the parameters pprior (usually not so informative)
Aim

Find the values of the parameters ¢ describing correctly the data: sample

Naata

(q (prrlor H Pyz|q

e Example of Gaussian mixture model
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Bayesian inference (2)

e Elementary likelihood approximated by mixture of K Gaussians

P(y|6) = éak\/gexp <A2k(y - Mk:)2>

e Parameters 0 = (a1,..., QK 1,1y« LKy Ay« - - AE) With
pr €R, A 20, 0<ap <1, a1+--+axg=1
e Prior distribution: Random beta model: additional variable
@ uniform distribution of the weights aj
o i ~N (M, R2/4) with M = mean of data, R = maxy; — miny;
e \;, ~I'(a, B) with 8 ~T(g,h), g=0.2 and h = 100g/aR?
Aim
Find the values of the parameters (namely 6, and possibly K as well)
describing correctly the data

[RG97] S. Richardson and P. J. Green. J. Roy. Stat. Soc. B, 1997.
[JHSO05] A. Jasra, C. Holmes and D. Stephens, Statist. Science, 2005
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Bayesian inference (3)
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Left: Lengths of snappers (Ngata = 256), and a possible fit for K = 3
using the last configuration from the trajectory plotted in the right picture.

Right: Typical sampling trajectory, Metropolis/Gaussian random walk
with (o4, 04,0,,08) = (0.0005,0.025, 0.05, 0.005).

[I1S88] A. J. Izenman and C. J. Sommer, J. Am. Stat. Assoc., 1988.
[BMY97] K. Basford et al., J. Appl. Stat., 1997
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Bayesian inference (4)
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Left: Thickness of Mexican stamps (“Hidalgo stamp data”, Ngata = 485),
and two possible fits for K = 3 (“genuine multimodality”, solid line:

dominant mode).
Right: Typical sampling trajectory

[TSM86] D. Titterington et al., Statistical Analysis of Finite Mixture Distributions, 1986.

[FS06] S. Frithwirth-Schnatter, Finite Mixture and Markov Switching Models, 2006.
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Bayesian inference (5)

Scatter plot of the marginal distribution of (u1,log A1) for the Fish data,
for various values of K =4,5,6
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Standard techniques to sample probability measures (1)

e The basis is the generation of numbers uniformly distributed in [0, 1]

e Deterministic sequences which look like they are random...

e Early methods: linear congruential generators (“chaotic” sequences)

T,
c—1

Tpt+1 = axy +b mod c, Uy, =

@ Known defects: short periods, point alignments, etc, which can be
(partially) patched by cleverly combining several generators

e More recent algorithms: shift registers, such as Mersenne-Twister
— defaut choice in e.g. Scilab, available in the GNU Scientific Library

e Randomness tests: various flavors
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Standard techniques to sample probability measures (2)

e Classical distributions are obtained from the uniform distribution by...
xr
@ inversion of the cumulative function F(x) :/ f(y) dy (which is
—00

an increasing function from R to [0, 1])
X=FYU)~ f(z)dx

Proof: P{a < X < b} =P{a < F~1(X) < b} =P{F(a) < U < F(b)} = F(b) — F(a) = /b f(z) dz

1
Example: exponential law of density Acfkml{zgn}, F(z) = 1{120}(1 — c’Am), so that X = 7X InU

@ change of variables: standard Gaussian G = /—21n U cos(27Us)

1 . "+o00 1 de
Proof: E(f(X,Y)) = 2—/2 f(aw:,y)ef(IzJFyQ)/2 dacdy:/ f (v/T cos 6, /T sin6) 5e7T/2 dr—
T JR: 0

27

@ using the rejection method
Find a probability density g and a constant ¢ > 1 such that 0 < f(x) < cg(x). Generate i.i.d. variables

on yn e nn s g
( ,U™) ~ g(z)dz ® U0, 1], compute r"* = ———, and accept X" if r™ > U
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Standard techniques to sample probability measures (3)

e The previous methods work only
o for low-dimensional probability measures

@ when the normalization constants of the probability density are known

e In more complex cases, one needs to resort to trajectory averages

Ergodic methods

Niter
1 n
g ) ——— d
Niter =il SO( ) Niter—>+00 pap

e Find methods for which
@ the convergence is guaranteed? (and in which sense?)

@ error estimates are available? (typically with Central Limit Theorem)
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Standard techniques to sample probability measures (4)

e Assume that 2" ~ 7 are idependently and identically distributed (i.i.d.)

Law of Large Numbers for o € L!(7)

1 Niter

SNiger = 77 Z p(x") ——— Ex(yp) =/ pdr  almost surely
Nlter el Niger——+00 X

Central Limit Theorem for ¢ € L?(r)

Ve (St [ 0m) s N0.02), 02 = [ o~ Bl i

Niger——+00

%¢
V Niter
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Outline

e Examples of high-dimensional probability measures
@ Statistical physics

@ Bayesian inference

e Markov chain methods
@ Metropolis—Hastings algorithm
@ Hybrid Monte Carlo and its variants

e Methods based on stochastic differential equations
@ An introduction to SDEs (generators, invariant measure, discretization, etc)

@ Langevin-like dynamics

e Variance reduction techniques

e Large scale Bayesian inference
@ Mini-batching
@ Adaptive Langevin dynamics
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Metropolis—Hastings algorithms
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Metropolis-Hastings algorithm (1)
e Markov chain method!:?, on position space
e Given ¢", propose ¢""! according to transition probability 7'(¢", §)

@ Accept the proposition with probability min (1, r(q", (T“Ll) where

r(g,q) = v(dg) oc e=?V(@.

If acception, set ¢"t! = §"!; otherwise, set ¢"*! = ¢".

e Example of proposals
e Gaussian displacement "1 = ¢" + o G™ with G™ ~ N(0,1d)

/2
e Biased random walk3* §"*! = ¢" — aVV(q") + Fa el

'Metropolis, Rosenbluth (x2), Teller (x2), J. Chem. Phys. (1953)
2W. K. Hastings, Biometrika (1970)
3G. Roberts and R.L. Tweedie, Bernoulli (1996)

*P.J. Rossky, J.D. Doll and H.L. Friedman, J. Chem. Phys. (1978)
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Metropolis-Hastings algorithm (2)

e The normalization constant in the canonical measure needs not be known

e Transition kernel: accepted moves + rejection

P(q,dq') = min (1,7(¢,q) ) T(q.¢') dq’ + (1 = a(g) ) ,(da),

where a(q) € [0,1] is the probability to accept a move starting from g:

a(q) :/Dmin <1vr(q,q/)>T(q,Q’) dq'.

e Rejection rate 1 — a(q) ~ /o for RWMH, and o2 for MALA

e The canonical measure is reversible with respect to v

P(q,dq")v(dg) = P(q',dq)v(dq)

This implies invariance: // P(q,dq’)v (dQ)Z/Dso(Q)V(dQ)

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019
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Metropolis-Hastings algorithm (3)

e Proof: Detailed balance on the absolutely continuous parts

min (1,7(q,q")) T(g, dg')v(dg) = min (1,7(q’, q)) r(a,4")T (g, dg")v(dq)
= min (1, r(q’, q)) T(q',dq)v(dq")

. . . . 1 ’
using successively min(1,7) = r min (1, 7) and r(q,q ) =
g (1,7) L) andra.d) = s

e Equality on the singular parts (1 — a(q)) d4(dg")v(dg) = (1 — a(q"))d, (dg)v(dg")
/D /D 6(a.¢') (1 — olq)) bg(dg)v(dg) = /D 6(¢0)(1 — ag))v(dg)
- /D /D 6(a,0)(1 — a(q))by (dg)(dg)

e Note: other acceptance ratios R(r) possible as long as R(r) = rR(1/r), but the
Metropolis ratio R(r) = min(1,r) is optimal in terms of asymptotic variance®

°P. Peskun, Biometrika (1973)
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Metropolis-Hastings algorithm (4)

e Irreducibility: for almost all gy and any set S of positive measure, there
exists n such that

P (a0, S) = / P(qo,dz) P (2,8) > 0
€D

e Assume also aperiodicity (comes from rejections)

Niter

> el = /D</>(Q) v(dg)

n=1

e Pathwise ergodicity®  lim
iter—+00 Niter

e Central limit theorem for Markov chains under additional assumptions:

Niter
1 law 2
/ Niter | —— E ") — dq)| ———— N(0,
iter Nicer Z QD(Q) /DSO(Q) V( Q) Nigor—+00 ( Jcp)

®S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability (1993)
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Metropolis-Hastings algorithm (5)

e The asymptotic variance 02 takes into account the correlations:

= Vary (¢) + 2 Z E,|(¢(a") ~ Eo(9) (9(a") — Eu())]
1 Niter

Proof: Consider § = ¢ — I, (i) and the average ®y., = N o(q")
iter n—1

Niter
~ 1 ~ ~

Compute NjierE, (@?Vim) =N, E E, (ﬁp(qn)w(qm))
iter —0

Stationarity E, (@'(q”)(ﬁ(qm)) =E, ((ﬁ(q”_m)ﬁ(qo)> for n. > m, implies

<1 - te) (t’ﬁ(qn)(ﬁ(qo))

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019
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Metropolis-Hastings algorithm (6)

e Estimation of ai by block averaging (batch means)

N M 9 1 kN
2 _ : k 1 k _ n
%= w3 2 (PR Bhr) s = 3 @)
k=1 n=(k—1)N+1

o
Expected ok N/ pdv + —% gk \with @* i.id.
N N N

» 90
.0

310 a0

[

3 570
10° =
5 oo

kst [0}
o
Qo S50
10 °
B 3 40
e
@ =
107 &30
S Energy
= 20
3

107 10

3 3 5 g 7 s
10 10 10 10 10 10 % 30

Trajectory length N Logarithmic block lenath (p)
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Metropolis-Hastings algorithm (7)

e Useful rewriting: number of correlated steps U?p = Neorr Var, (o)

o Numerical efficiency: trade-off between acceptance and sufficiently large
moves in space to reduce autocorrelation (rejection rate around 0.5)’

e Refined Monte Carlo moves such as
@ “non physical’ moves
@ parallel tempering
o replica exchanges
@ Hybrid Monte-Carlo

e A way to stabilize discretization schemes for SDEs

"Roberts/Gelman/Gilks (1997), ..., Jourdain/Leligvre/Miasojedow (2012)
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Hybrid Monte—Carlo
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The Hamiltonian dynamics (1)

Hamiltonian dynamics
dzg) = VpH(q(t),p(t)) = M 'p(t)
%¥>:_vguﬂmpw>=—vku»

Assumed to be well-posed (e.g. when the energy is a Lyapunov function)
e Flow: ¢(qo,po) solution at time ¢ starting from initial condition (qo, po)

e Why Hamiltonian formalism? (instead of working with velocities?)
@ Note that the vector field is divergence-free

divy (V,H(a(t) p(t)) ) +divy (= Vo H(a(t), p(t)) = 0

@ Volume preservation/ dqdp:/ dq dp
é(B) B
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The Hamiltonian dynamics (2)

e Other properties
@ Preservation of energy Ho ¢y = H

4 [ (a0).00)] = V41 (a0).p0)- 20 19, 1 (g(0),p(e) 2 = 0

e Time-reversibility ¢_; = S o ¢y 0 .S where S(q,p) = (g, —p)

Proof: use S? = Id and note that

So¢_i(qo,po) = (q(—t), —p(—t))
is a solution of the Hamiltonian dynamics starting from (qo, —po), as is

¢+ 0.5(qo, o). Conclude by uniqueness of solution.

@ Symmetry ¢_; = d){l (in general, ¢1rs = ¢ 0 @)

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019  33/65



The Hamiltonian dynamics (3)

e Numerical integration: usually Verlet scheme® (Strang splitting)

Stormer-Verlet scheme

At
pn+1/2: Pt — 7vv(qn)

qn—i-l =q" + At M—lpn+1/2

At

n+1 :pn+1/2 _ 5 vv(qn-‘rl)

p

e Properties:
@ Symplectic, symmetric, time-reversible
@ One force evaluation per time-step, linear stability condition wAt < 2
qn+1 o 2qn + qn—l
o In fact, M =-VV ("

8. Verlet, Phys. Rev. 159(1) (1967) 98-105
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Hybrid Monte Carlo (1)

e Measure ju(dqdp) = e PH(@P) dg dp with marginal v(dq) = e V(@ dq

e Markov chain in the configuration space?10:

parameters 7 and At

@ generate momenta p™ according to Zp_ e~ PP M~ p/2 dp

@ compute an approximation of the flow ®.(¢",p") = (¢"!, p"*!) of
the Hamiltonian dynamics (i.e. Verlet scheme with 7/At timesteps)

o set ¢"t! = ¢! with probability mln(l e~ AH@ 5" ) =H(q" p ))),

otherwise set ¢" 1! = ¢".
e Rejection rate of order At? when 7 = O(1), and A3 for 7 = At

e Various extensions, including correlated momenta, random times 7,
constraints, ...

e Ergodicity is an issue (quadratic potential with 7 = period)

°S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Phys. Lett. B (1987)
1°Ch. Schiitte, Habilitation Thesis (1999)
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(Generalized) Hybrid Monte Carlo (1)

e Transformation S = S~ leaving u(dz) invariant, e.g. S(q,p) = (¢, —p)

T(S(z"), S(dx)) 7(dz')
T(x,dx') w(dx)

e Assume that r(z,2) = is defined and positive

Generalized Hybrid Monte Carlo
@ given z", propose a new state Z"! from 2™ according to T'(z", -);
@ accept the move with probability min (1,7“(:5”,:2“"“)), and set in

this case "1 = "1, otherwise, set 2! = S(z2").

e Reversibility up to S, i.e. P(x,dz’) u(dx) = P(S(2),S(dx)) u(dx")

e Standard HMC: T'(q,dq’) = ds,(4)(dq’), momentum reversal upon
rejection (not important since momenta are resampled, but is important
when momenta are partially resampled)

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019 3665



(Generalized) Hybrid Monte Carlo (2)

Complete algorithm (M =1d, g = 1): starting from (¢",p"),
Partially resample momenta as p"t%/2 = ap™ + V1 — a2 G"
Perform one Verlet step as (¢"11,p" 1) = ®ar(q", p")
Compute the acceptance probability a™ = eH (@™ p")—H @+ p")
Sample U™ ~ U]0, 1]

If U™ < a™, set (¢"Lpntt) =
otherwise set (¢"*!, ”“) (q

( +1 ~rz+1)
n n+1/2)

e Ergodicity no longer is an issue (irreducibility much easier to prove than
for standard HMC)
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Outline
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Langevin dynamics

e Stochastic perturbation of the Hamiltonian dynamics : friction v > 0

dg = M~ 'p, dt
2
dps = —VV(q) dt—y M 1p, dt + v/ % AW,

e Motivations
@ Ergodicity can be proved and is indeed observed in practice
@ Many useful extensions

e Aims
@ Understand the meaning of this equation
@ Understand why it samples the canonical ensemble
@ Implement appropriate discretization schemes
o Estimate the errors (systematic biases vs. statistical uncertainty)
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A (practical) introduction to SDEs
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An intuitive view of the Brownian motion (1)

e Independant Gaussian increments whose variance is proportional to time
V0<t0<t1<<tn, Wt¢+1—Wt¢NN(07ti+l_ti)

where the increments Wy, , — W, are independent

e G ~ N(m,c?) distributed according to the probability density

g(x) = ! eXp<—(x_m)2>

oV 2T 202

e The solution of dg; = odW; can be thought of as the limit At — 0

¢ = " + oVALGT, G" ~ N(0,1) i.i.d.

where ¢" is an approximation of g,
e Note that ¢" ~ N (q°, 0?nAt)

e Multidimensional case: Wy = (Wi, ..., Wy,) where W; are independent
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An intuitive view of the Brownian motion (2)

e Analytical study of the process: law ¢(t, q) of the process at time ¢
— distribution of all possible realizations of ¢; for

@ a given initial distribution ¢(0, q), e.g. d,0

@ and all realizations of the Brownian motion

Averages at time t

E(A() = /D A(g)¥(t,q) dg

e Partial differential equation governing the evolution of the law

Fokker-Planck equation

02

o = ?Alb

Here, simple heat equation — “diffusive behavior”
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An intuitive view of the Brownian motion (3)

e Proof: Taylor expansion, beware random terms of order v/ At
A (qn+1) — A (qn to /At Gn)
oAt

= A(q") +oVAIG" - VA" + T2 (@) (VPA()) G + O(At3/2)

Taking expectations (Gaussian increments G™ independent from the current position ¢")
oAt
2

B4 ()] B[4+ TRt aawn] + o(ar)

n+1y n 0_2
Ag™) A(Q)_7AA(qn)

Therefore, E [ — 0. On the other hand,

= 0. (ElA@)]) = [ Aot da
This leads to
0= [a@ovtaa-% [aawvtaii= [ aw(owita) - G aven)a

This equality holds for all observables A.
Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019 43 /65



General SDEs (1)

e State of the system X € R4, m-dimensional Brownian motion, diffusion
matrix o € RIxm

dX; = b(Xy) dt + o(X;) dW; J

to be thought of as the limit as At — 0 of (X™ approximation of X, )
XM= X" 4 Ath(X™) + VALo(XMG™,  G" ~ N (0,1d,,)
e Generator

d d
1 1
L=0b(z) - V+ 500%3) V2= bi(x)0s, + 3 > (00" ()], ; 0.0,

i=1 ij=1

e Proceeding as before, it can be shown that

(B0 ) = [ Aaw B[ ()] = [ €A
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General SDEs (2)

Fokker-Planck equation

Op = L

where L£* is the adjoint of £

/ (LA) (2) B(z) do = / A(z) (£°B) (2) dz
X X
e Invariant measures are stationary solutions of the Fokker-Planck equation

Invariant probability measure ¥ (z) dz

LYoo = 0, /Xz/)oo(:c) de =1, Yoo = 0

e When L is elliptic (i.e. ool has full rank: the noise is sufficiently rich),
the process can be shown to be irreducible = accessibility property

Pt(ac,S) :P(Xt €S|X0 :CC) >0
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General SDEs (3)

e Sufficient conditions for ergodicity
@ irreducibility
@ existence of an invariant probability measure ¥ () dx

Then the invariant measure is unique and

1t
lim T/o @(Xt)dt:/)(go(:v) Voo(x) dx a.s.

T—o00

e Rate of convergence given by Central Limit Theorem: ¢ = ¢ — /¢¢00

v (k[ Cetxpa— [ o) 72 MO,

T—+o0o

+o00
with 033 = QE[/ &(Xt){p’(Xo)dt} (proof: later, discrete time setting)
0
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SDEs: numerics (1)

e Numerical discretization: various schemes (Markov chains in all cases)

e Example: Euler-Maruyama

xntl — xn + At b(Xn) + /AtU(Xn) G™, G" NN(O,Idd)

e Standard notions of error: fixed integration time T < 400
e Strong error  sup E|X" — X, a¢| < CA
0<n<T /At
o Weak error: sup |E[p (X"™)] —E[p(Xnat)]| < CAP (for any ¢)
0<n<T/At
@ “mean error” vs. “error of the mean”

e Example: for Euler-Maruyama, weak order 1, strong order 1/2 (1 when
o constant)
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SDEs: numerics (2)

Niter
. . : 1
e Trajectorial averages: estimator ®p,, = . E e(X™)
1ter n=1

e Numerical scheme ergodic for the probability measure 9o A/

e Two types of errors to compute averages w.r.t. invariant measure

@ Statistical error, quantified using a Central Limit Theorem

O At
Oy — n Gy . Gy ~N(0,1
Nltcr /‘Pwoo,At /Niter Nltcr iter ( )

@ Systematic errors
e perfect sampling bias, related to the finiteness of At

/Qowoo,At_/ proo‘gcsztp
X X

o finite sampling bias, related to the finiteness of N,

Gabriel Stoltz (ENPC/INRIA) UM6P, Nov. 2019

48 /65



SDEs: numerics (3)

Expression of the asymptotic variance: correlations matter!

UAtgp_Va’r +2ZE< ))7 @/:(p_/‘pwoo,At

2
where Var(y) :/ P oo At :/ " hso.At — </ ‘P%Z)oo,At>
X X X

2 e o
¢ Note also that aQAW ~ EE [/ o(X1)p(Xo) dt}
0

e Estimation with block averaging for instance, or approximation of
integrated autocorrelation
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Langevin-like dynamics
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Overdamped Langevin dynamics

e SDE on the configurational part only (momenta trivial to sample)

dqt = —VV(qt) dt + \/gth J

e Invariance of the canonical measure v(dq) = ¥o(q) dgq

Yo(q) = 27 e V@), = / e V(@) gq
D
1
g
1
e invariance of ¢y: adjoint L*¢ = div, ((VV)tp + BV(M)
o elliptic generator hence irreducibility and ergodicity

2At

g

e Generator L = -VV(q) -V, + =4,

e Discretization ¢"™! = ¢" — At VV (¢") + G" (+ Metropolization)
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Langevin dynamics (1)

e Stochastic perturbation of the Hamiltonian dynamics

dgy = M~'p; dt
dps = —VV(q) dt—yM p; dt + o dW;

® v,0 may be matrices, and may depend on ¢

e Generator £ = Lyam + Lihm

dN
Loam = p" M7V = VV(@)V, = Y 20, - 0,V (09,
i=1 "

~ 1 o2
Lipm = —p' M I’YTVp —+ > (O'UT) : Vf, (: ?Ap for scalar a)
e [rreducibility can be proved (control argument)
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Langevin dynamics (2)

e Invariance of the canonical measure to conclude to ergodicity?

Fluctuation/dissipation relation

ool = implies L* (e_BH> =0

e Proof for scalar v, 0: a simple computation shows that

Elﬁam = _Ehama EhamH =0

1
e Overdamped Langevin analogy Liym = 7y <—pTM_1Vp + 5Ap>
— Replace ¢ by p and VV'(q) by M~1p

TM—I
thm [exp (_61)2]))} =0

e Conclusion: £f, ~and L, both preserve e ##(@P) dg dp
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Langevin dynamics (3)

e Exponential convergence of semigroup e'* on Banach spaces E'N L3(p)

<—|—oo}

vl

Willg

e Hypocoercive'? setup H'(p), with hypoelliptic regularization®
directly'* L2(p)

e Coupling techniques!

@ Lyapunov techniques! on Ly (&) = {gomeasurable,

3 or

5

e Allows to define the asymptotic variance (with Ilp = ¢ — E,(¢))

+oo
ai = 2/0 / (etLng) My dudt = 2/(—£‘1H¢)H4p du

. Rey-Bellet, Lecture Notes in Mathematics (2006), Hairer/Mattingly (2011)
2Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
13F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)

“Dolbeault, Mouhot and Schmeiser (2009, 2015); Armstrong and Mourrat (2019)
®Eberle, Guillin and Zimmer (2019)
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Numerical integration of the Langevin dynamics (1)

e Splitting strategy: Hamiltonian part + fluctuation/dissipation

{ do= Mipar [0 5
dp; = —V'V (q;) dt dp; = —y M~ Lp, dt + ,/% AW,

e Hamiltonian part integrated using a Verlet scheme

e Analytical integration of the fluctuation/dissipation part

d (eVMiltpt) — M (dpt + ’VM_lpt dt) =4/ Qgelet dWy

so that .
D = ef’y]V[_ltpO + 21 ef'y]\/[_l(tfs) dW,
V 8 Jo

t t
It can be shown that / f(s)dWs ~ N (0,/ f(s)2d3>
0 0
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Numerical integration of the Langevin dynamics (2)

e Trotter splitting (define aa; = e~ YMTIAL hoose YM~1At ~0.01 — 1)

At
pn+1/2 _ pn _ 7 VV(q"),
qn+l _ qn +AtM71pn+l/2,

D +1 =p +1/2 . 7v‘/(q -I-l)

)

11—«
n+l _ ~n+1 + 2AtMGn,

p QAP 3

Error estimate on the invariant measure pa; of the numerical scheme

There exist a function f such that, for any smooth observable v,

/gz/)d,umZ/gwdu+At2/gwfdu+O(At3)

e Strang splitting more expensive and not more accurate
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Metastability: large variances...
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Need for variance reduction techniques!
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Outline

e Examples of high-dimensional probability measures
@ Statistical physics

@ Bayesian inference

e Markov chain methods
@ Metropolis—Hastings algorithm
@ Hybrid Monte Carlo and its variants

e Methods based on stochastic differential equations
@ An introduction to SDEs (generators, invariant measure, discretization, etc)

@ Langevin-like dynamics

e Variance reduction techniques

e Large scale Bayesian inference
@ Mini-batching
@ Adaptive Langevin dynamics
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Main strategies for variance reduction
e Example: computation of the integral /
[-1/2,1/2]7
o Estimation with i.i.d. variables X% ~ 1/([—1/2,1/2]9) as
SNiter = Nigar (F(XN) 4+ f(Xniee,))
e Asymptotic variance 0]20 = Var(f) — reduce it?

e Various methods (i.i.d. context, but can be extended to MCMC)
@ Antithetic variables Iy L ZzN:itfr (f (XZ) +f (—Xi) )

iter 2Niter

@ Control variates with U]%_g < a? and g analytically integrable

Niter

=S+ [

g
— [1/2,1/2)4

INiter -

@ Stratification: partition domain, sample subdomains, aggregate

@ Importance sampling
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Importance sampling

¢ Importance sampling function 1%

o Target measure mo(dz) = Z; eV @) da
@ Sample a modified target measure (dm) Z{;le_(v*'v)(‘”) dx

@ Reweight sample points ™ ~ 7 by eV
Niter

> elam)el /soe‘7 drg;
n=1 a.s.
PNpor V= . = /sod7ro

1t ro Ni r—
e te +oo /eV d?T"'
E e 14

e In practice, replace —VV with —VV — VV (in Langevin, MALA, etc)

e A good choice of the importance sampling function can improve the
performance of the estimator... but a bad choice can degrade it!
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High dimensional importance sampling

¢ General strategy:

e find some low-dimensional (nonlinear) function &£(x) which encodes
the metastability of the sampling method

@ bias by the associated free energy: ‘N/(x) = F(&(z)) with

e F2) — /eV(m) Se(a)—-(dz)

@ Simple case: {(z) = x1, in which case
F(z)=—In </ e~V (&2 ) gy dxd>

e Various methods to compute the free energy: thermodynamic
integration, umbrella sampling, adaptive methods, ...
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Free energy biasing for Bayesian inference
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Choices &(z) = p1 and &(x) =V (z)
[CLS12] N. Chopin, T. Leligvre and G. Stoltz, Statist. Comput., 2012
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Outline

e Examples of high-dimensional probability measures
@ Statistical physics

@ Bayesian inference

e Markov chain methods
@ Metropolis—Hastings algorithm
@ Hybrid Monte Carlo and its variants

e Methods based on stochastic differential equations
@ An introduction to SDEs (generators, invariant measure, discretization, etc)

@ Langevin-like dynamics

e Variance reduction techniques

e Large scale Bayesian inference
@ Mini-batching
@ Adaptive Langevin dynamics
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Bayesian inference in the large data context

e Data {y;}i=1,.n,,. to be explained by a statistical model
e Sample g from v(dq) = e V(@) dg = Z;lpprior(q) Hi\ff”‘ P(y;|q) dgq
@ For usual MCMC methods, each step costs O(Ngata)

e Mini-batching: Stochastic gradient Langevin dynamics!®

@ Assumption: for 1 < N < Ngata and Jy € {1,... ,N}N,

V(in p)(a)+ S V(in Ply;la) = YV (@46 G~ N(0,%(0)

JEIN

@ Amounts to introducing an additional Brownian motion of unknown
magnitude — bias
@ Assume that 3(g) is constant [Work of Inass Sekkat...]

Welling/Teh, ICML (2011)
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Removing the mini-batching bias

e Phase-space extension: momenta p and variable friction ¢

Adaptive Langevin dynamics®3

: unknown ¢ (scalar, for simplicity)
th = Milpt dta

dpy = (—VV(qr) — (M 'py) dt + 0 dW,
1
dGy = — (pf M~%p, — ' Tx (M) at

e Invariant measure with marginal in ¢ is always v (whatever o)

Tar—1 o
exp (—5 E L4 vig)+ (c—ﬂ> ]) dq dp d¢

e Convergence/CLT for time averages!”

7B Leimkuhler, M. Sachs and G. Stoltz, Hypocoercivity properties of adaptive
Langevin dynamics, arXiv preprint 1908.09363

3A. Jones and B. Leimkuhler, J. Chem. Phys. (2011); Ding et al., NIPS (2014);
B. Leimkuhler and X. Shang, SIAM J. Sci. Comput. (2015)
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