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Presentation of the institutions at play

• CERMICS: Applied mathematics laboratory of Ecole des Ponts

18 permanent members (16 HdR)

about 30 PhD students and 10 postdocs

research directions:

applied probability
modeling, analysis and simulation
optimization and operations research

• MATHERIALS: project-team of Inria Paris

8 permanent researchers

strong overlap with CERMICS

analysis and development of simulation methods for multiscale models
(incl. stochastic homogenization) and molecular simulations
(quantum/classical)
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What can (and cannot) applied mathematics do?

We, applied mathematicians...

work on simplified models (one dimensional reaction coordinates,
overdamped Langevin dynamics, etc) → this make us look like fools...

exaggerate sources of errors (for instance by considering situations
which rarely happen in practice) → this makes us insufferable

...but the aim is to

rigorously understand why some methods work and some don’t
(mathematical proofs)

devise new numerical strategies based on this theoretical
understanding

validate them on toy examples

transfer the knowledge to practitionners by helping them to
implement the methods into their own codes
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Computational Statistical Physics

• Predict macroscopic properties of materials from their microscopic
description

• Microstate

positions q = (q1, . . . , qN ) and momenta p = (p1, . . . , pN )

energy of the system H(q, p) = V (q) +

N∑
i=1

p2
i

2mi

(almost) all the physics is in the choice of V ...

• Macrostate

described by a probability measure µ

constraints fixed exactly or in average (number of particles, volume,
energy)

• Properties: static (equation of state, heat capacities, etc) and
dynamical (transport coefficient, transition pathway, etc)
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Examples of molecular systems (1)

Ubiquitin (protein): structure? conformational changes?
→ In silico drug design
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Examples of molecular systems (2)

What is the melting temperature of Argon?

(a) Solid Argon (low temperature) (b) Liquid Argon (high temperature)
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Examples of molecular systems (3)

Equation of state of Argon: density as a function of pressure, T = 300 K
(comparison with data of National Institute of Standards and Technology)
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Explore extreme conditions of matter...
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Some orders of magnitude...

• Physical quantities

distances ∼ 1 Å = 10−10 m

energy per particle ∼ kBT ∼ 4× 10−21 J at 300 K

atomic masses ∼ 10−26 kg

typical times ∼ 10−15 s

number of particles ∼ NA = 6.02× 1023

• “Standard” simulations

106 particles [“heroic”: 109 particles and more]

total time: (fraction of) ns [“heroic”: (fraction of) µs]

• Analogy to understand what such large numbers represent...

about 1022 moles of water on Earth

106 moles of water ∼ 1 m3
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Aims of computational statistical physics

• “Numerical microscope”

gaining some insight into physical mechanisms at the atomic scale

From the press release for the Nobel prize in Chemistry 2013
(Karplus/Levitt/Warshel)

Today the computer is just as important a tool for chemists as
the test tube. Simulations are so realistic that they predict the
outcome of traditional experiments.

• Computation of average properties (static)

〈A〉 =

ˆ
E
A(q, p)µ(dq dp)

Computation of high dimensional integrals

µ is a probability measure

A is the observable
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Outline

• Computation of average properties (free energy, error estimation)

• Computation of transport coefficients

• Sampling reactive trajectories

Main message

A careful construction of the numerical method can reduce both
systematic and statistical errors

Note: takes a lot of time to understand hence improve numerical
methods in molecular dynamics [and the impetus comes from various
channels...]

T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular
dynamics, Acta Numerica 25, 681-880 (2016)
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Computation of

average properties
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Free energy computations (1)

• Canonical distribution µ(dq dp) = Z−1e−βH(q,p) dq dp

• For a given reaction coordinate ξ(q), compute the function

F (z) =

ˆ
ξ−1{z}

e−βH(q,p) δξ(q)−z(dq)

Thermodynamic integration, free energy perturbation, nonequilibrium
techniques, adaptive methods (ABF, ?-metadynamics, ... )

• ABF in the simplest case (ξ(q) = q1) dqt = −∇
(
V − Ft ◦ ξ

)
(qt) dt+

√
2β−1 dWt,

F ′t(z) = E
(
f(qt)

∣∣∣ξ(qt) = z
)


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Free energy computations (2)

• Our contributions for ABF include:

a theoretical understanding of the improved convergence rate
compared to unbiased dynamics (entropy methods)

improvements of the simulation methods: use of replicas and
selection (implemented in NAMD)

multidimensional reaction coordinate case: projecting the current
estimated mean force onto a gradient

• Other results for adaptive dynamics:

convergence of Wang-Landau type dynamics (including Self-Healing
Umbrella Sampling and Well-Tempered metadynamics)

suggestion of modifications in the methods to improve convergence
rates (e.g. allow for larger steps in the free energy update for WTM)

• Also results for other types of dynamics/methods:

constraints (overdamped/underdamped, TI, Jarzynski–Crooks, etc)

temperature accelerated molecular dynamics
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Finding good reaction coordinates

• Reaction coordinates are often chosen based on chemical intuition

• Use machine learning techniques to automatically find RC?

supervised techniques (known metastable conformations)

unsupervised techniques (autoencoders, tICA/EDMD, etc)

PhD thesis started in November in collaboration with Sanofi
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Errors on average properties (1)

• Errors due to timestep discretization?

• Positions q ∈ D = (LT)d or Rd and momenta p ∈ Rd
→ phase-space E = D × Rd

• Hamiltonian (more general kinetic energies U(p) can be considered1)

H(q, p) = V (q) +
1

2
pTM−1p

Stochastic perturbation of the Hamiltonian dynamics
dqt = M−1pt dt

dpt = −∇V (qt) dt−γM−1pt dt+

√
2γ

β
dWt

• Friction γ > 0 and inverse temperature β =
1

kBT

1Redon, Stoltz, Trstanova, J. Stat. Phys. (2016)
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Errors on average properties (2)

• Decompose the dynamics in three parts as

(A)

{
dqt = M−1pt dt,

dpt = 0,

(B)

{
dqt = 0,

dpt = −∇V (qt) dt,

(C)

{
dqt = 0,

dpt = −M−1pt dt+

√
2

β
dWt.

• First order splitting schemes: Trotter splitting

PZY X∆t = e∆tZe∆tY e∆tX ' e∆t(A+B+γC)

• Second order schemes: Strang splitting

PZY XY Z∆t = e∆tZ/2e∆tY/2e∆tXe∆tY/2e∆tZ/2

• Other category: Geometric Langevin algorithms, e.g. P γC,A,B,A∆t
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Errors on average properties (3)

• PB,A,γC∆t corresponds to


p̃n+1 = pn −∇V (qn) ∆t,

qn+1 = qn + ∆tM−1p̃n+1,

pn+1 = α∆tp̃
n+1 +

√
1− α2

∆t

β
M Gn

where Gn are i.i.d. Gaussian and α∆t = exp(−γM−1∆t)

• P γC,Bη,A,Bη,γC
∆t for



p̃n+1/2 = α∆t/2p
n +

√
1− α∆t

β
M Gn,

pn+1/2 = p̃n+1/2 − ∆t

2
∇V (qn),

qn+1 = qn + ∆tM−1pn+1/2,

p̃n+1 = pn+1/2 − ∆t

2
∇V (qn+1),

pn+1 = α∆t/2p̃
n+1 +

√
1− α∆t

β
M Gn+1/2
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Errors on average properties (4)

• Invariant measure µγ,∆t different from µ

Error estimates on the biasˆ
E
ϕdµγ,∆t =

ˆ
E
ϕ
(

1 + ∆tpfγ

)
dµ+ O(∆tp+1)

with

p = 1 for Trotter splitting

p = 2 for Strang splitting and GLA

• Various asymptotic results in the Hamiltonian limit γ → 0 or in the
overdamped limit γ → +∞
→ e.g. understanding why the BAOAB scheme is much better than other
discretizations of Brownian dynamics

B. Leimkuhler, Ch. Matthews and G. Stoltz, The computation of averages from equilibrium and
nonequilibrium Langevin molecular dynamics, IMA J. Numer. Anal. 36(1), 13-79 (2016)
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Computation of

transport coefficients
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Computation of transport coefficients

• Thermal conductivity, shear viscosity, etc: takes a lot of time to
estimate (possibly several months)

• Green-Kubo formulas: integrated correlation functions

Effective diffusion at equilibrium

Unperiodized displacement Qt −Q0 =

ˆ t

0
M−1ps ds

D = lim
t→+∞

E [(Qt −Q0)⊗ (Qt −Q0)]

2t
=

ˆ +∞

0
E0

[
M−1pt ⊗M−1p0

]
dt

• Alternatively: linear response of steady-state nonequilibrium dynamics

• Issues/questions :

bias due to discretization in time

variance reduction (in progress)
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Results in 1D for ϕ = ψ = V ′ and cosine potential
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Sampling

reactive trajectories
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Sampling reactive trajectories (1)

• Motivation: Unbinding of a ligand from a protein

• Challenge: bridge the gap between timescales

Elementary time-step for the molecular dynamics = 10−15 s

Dissociation time ' 0.02 s
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Sampling reactive trajectories (2)

• Mathematical setting: rare event computation

Stochastic process (Xt)t≥0, stopping times τA and τB

Aim: simulate and compute the very small probability P(τB < τA)

Here sets A and B defined as metastable states (bound/unbound)

• Splitting technique: find intermediate events easier to simulate

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax < τA} ⊃ {τB < τA}

and simulate the successive conditional events: for k = 1, 2, . . .,

{τzq < τA} knowing that {τzq−1 < τA}

where τz = inf{t, ξ(Xt) > z} for good importance function ξ ∈ R.

• Adaptive feature: build the intermediate levels (zi)i≥1 on the fly →
Adaptive Multilevel Splitting algorithm (Cérou/Guyader, 2007)
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Schematic illustration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Schematic illusration of the AMS Algorithm

A B
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Sampling reactive trajectories (3)

• In collaboration with the group of K. Schulten (C. Mayne and I. Teo),
AMS is currently implemented in the NAMD code.

• Unbinding event of benzamidine from trypsin:

MD setup: about 70 000 atoms, CHARMM36 force field, NPT
conditions (298 K)

Estimated dissociation rate: koff = (260± 240)s−1 which is in the
same order of magnitude as the experimental rate (600± 300)s−1

Overall simulation time: 2.3 µs which is 4 orders of magnitude
shorter than than the estimated dissociation time

T. Lelièvre and L. Lopes, Analysis of the Adaptive Multilevel Splitting method with the alanine
di-peptide’s isomerization, Journal of Computational Chemistry, 40(11), 1198-1208 (2019)
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