







# Langevin dynamics at equilibrium and out of equilibrium from hypocoercivity to efficient sampling

#### Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

In collaboration with A. Iacobucci, S. Olla, S. Redon, J. Roussel, E. Vanden-Eijnden; and currently B. Leimkuhler and M. Sachs

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")

# Outline

- A quick introduction to computational statistical physics
- Equilibrium Langevin dynamics
  - Various convergence results
  - A focus on the approach by Dolbeault, Mouhot and Schmeiser

#### Various extensions/modifications

- Modified kinetic energies
- Rates of convergence for nonequilibrium Langevin dynamics
- Constructing control variates
- Proving the convergence of Temperature Accelerated Dynamics

# A quick introduction to computational statistical physics

# Computational statistical physics

- Predict macroscopic properties of matter from its microscopic description
- Microstate
  - positions  $q = (q_1, \dots, q_N)$  and momenta  $p = (p_1, \dots, p_N)$ • energy  $V(q) + \sum_{i=1}^N \frac{p_i^2}{2m_i}$
- Macrostate
  - described by a probability measure  $\mu$
  - constraints fixed exactly or in average (number of particles, volume, energy)
- Properties :

• static  $\langle A \rangle = \int_{\mathcal{E}} A(q, p) \, \mu(dq \, dp)$  (equation of state, heat capacity,...)

• dynamic (transport coefficient, transition pathway, etc)

# Examples of molecular systems (1)

#### What is the melting temperature of Argon?



(a) Solid Argon (low temperature)

(b) Liquid Argon (high temperature)

## Examples of molecular systems (2)

Equation of state of Argon: density as a function of pressure at fixed temperature T = 300 K



# Examples of molecular systems (3)



Ubiquitin: what is its structure? What are its conformational changes?

# Some orders of magnitude...

- Physical orders of magnitude
  - $\bullet~{\rm distances} \sim 1~{\rm \AA} = 10^{-10}~{\rm m}$
  - energy per particle  $\sim k_{
    m B} T \sim 4 imes 10^{-21}$  J at 300 K
  - $\bullet$  atomic masses  $\sim 10^{-26}~{\rm kg}$
  - typical times  $\sim 10^{-15}~{\rm s}$
  - number of particles  $\sim \mathcal{N}_{A} = 6.02 \times 10^{23}$

#### • "Standards" simulations

- 10<sup>6</sup> particles ["heroic": from 10<sup>9</sup> particles on]
- total time: (fraction of) ns ["heroic": (fraction of)  $\mu s$ ]
- Computation of high dimensional integrals...

$$ightarrow$$
 Ergodic methods  $rac{1}{t}\int_{0}^{t} A(q_{s},p_{s})\,ds \xrightarrow[t
ightarrow +\infty]{} \langle A 
angle$ 

# Equilibrium Langevin dynamics

# Langevin dynamics (1)

• Positions  $q \in \mathcal{D} = (L\mathbb{T})^d$  or  $\mathbb{R}^d$  and momenta  $p \in \mathbb{R}^d$  $\rightarrow$  phase-space  $\mathcal{E} = \mathcal{D} \times \mathbb{R}^d$ 

• Hamiltonian  $H(q, p) = V(q) + \frac{1}{2}p^T M^{-1}p$  (more general kinetic energies U(p) can be considered<sup>1</sup>)

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t \end{cases}$$

• Friction  $\gamma > 0$  (could be a position-dependent matrix)

<sup>&</sup>lt;sup>1</sup>Redon, Stoltz, Trstanova, J. Stat. Phys. (2016)

# Langevin dynamics (2)

- Evolution semigroup  $\left(\mathrm{e}^{t\mathcal{L}}\varphi\right)(q,p) = \mathbb{E}\left[\varphi(q_t,p_t) \left| (q_0,p_0) = (q,p) \right]\right]$
- $\bullet$  Generator of the dynamics  ${\cal L}$

$$rac{d}{dt}\left(\mathbb{E}\left[arphi(q_t, p_t) \left| (q_0, p_0) = (q, p) 
ight]
ight) = \mathbb{E}\left[(\mathcal{L}arphi)(q_t, p_t) \left| (q_0, p_0) = (q, p) 
ight]
ight.$$

Generator of the Langevin dynamics  $\mathcal{L} = \mathcal{L}_{\rm ham} + \gamma \mathcal{L}_{\rm FD}$ 

$$\mathcal{L}_{ham} = p^T M^{-1} \nabla_q - \nabla V^T \nabla_p, \qquad \mathcal{L}_{FD} = -p^T M^{-1} \nabla_p + \frac{1}{\beta} \Delta_p.$$

• Existence and uniqueness of the invariant measure characterized by

$$orall arphi \in C_0^\infty(\mathcal{E}), \qquad \int_{\mathcal{E}} \mathcal{L} arphi \, d\mu = 0$$

• Here, canonical measure

$$\mu(dq\,dp)=Z^{-1}\mathrm{e}^{-eta H(q,p)}\,dq\,dp=
u(dq)\,\kappa(dp)$$

## Fokker–Planck equations

• Evolution of the law  $\psi(t,q,p)$  of the process at time  $t \ge 0$ 

$$\frac{d}{dt}\left(\int_{\mathcal{E}}\varphi\,\psi(t)\right) = \int_{\mathcal{E}}(\mathcal{L}\varphi)\,\psi(t)$$

• Fokker–Planck equation (with  $\mathcal{L}^{\dagger}$  adjoint of  $\mathcal{L}$  on  $L^{2}(\mathcal{E})$ )

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

• It is convenient to work in  $L^2(\mu)$  with  $f(t) = \psi(t)/\mu$ 

• denote the adjoint of  ${\mathcal L}$  on  $L^2(\mu)$  by  ${\mathcal L}^*$ 

$$\mathcal{L}^* = -\mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$$

- Fokker–Planck equation  $\partial_t f = \mathcal{L}^* f$
- Convergence results for  $\mathrm{e}^{t\mathcal{L}}$  on  $L^2(\mu)$  are very similar to the ones for  $\mathrm{e}^{t\mathcal{L}^*}$

## Hamiltonian and overdamped limits

- As  $\gamma \rightarrow$  0, the Hamiltonian dynamics is recovered
- Overdamped limit  $\gamma \to +\infty$  or  $m \to 0$

$$q_{\gamma t}-q_0=-rac{1}{\gamma}\int_0^{\gamma t}
abla V(q_s)\,ds+\sqrt{rac{2}{\gammaeta}}W_{\gamma t}-rac{1}{\gamma}\left(p_{\gamma t}-p_0
ight)$$

which converges to the solution of  $dQ_t = -\nabla V(Q_t) \, dt + \sqrt{rac{2}{eta}} \, dW_t$ 

- In both cases, slow convergence to equilibrium
  - it takes time to change energy levels in the Hamiltonian limit<sup>2</sup>
  - $\bullet$  for m fixed, time has to be rescaled by a factor  $\gamma$

<sup>2</sup>Hairer and Pavliotis, *J. Stat. Phys.*, **131**(1), 175-202 (2008) Gabriel Stoltz (ENPC/INRIA)

# Ergodicity results (1)

- Almost-sure convergence<sup>3</sup> of ergodic averages  $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$
- Asymptotic variance of ergodic averages

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E} \left[ \widehat{\varphi}_{t}^{2} \right] = 2 \int_{\mathcal{E}} \left( -\mathcal{L}^{-1} \Pi_{0} \varphi \right) \Pi_{0} \varphi \, d\mu$$

where  $\Pi_0 \varphi = \varphi - \mathbb{E}_\mu(\varphi)$ 

• A central limit theorem holds<sup>4</sup> when the equation has a solution in  $L^2(\mu)$ 

Poisson equation in  $L^2(\mu)$ 

$$-\mathcal{L}\Phi = \Pi_0 \varphi$$

• Well-posedness of such equations? Hypoelliptic operator

<sup>3</sup>Kliemann, *Ann. Probab.* **15**(2), 690-707 (1987) <sup>4</sup>Bhattacharya, *Z. Wahrsch. Verw. Gebiete* **60**, 185–201 (1982) Gabriel Stoltz (ENPC/INRIA)

# Ergodicity results (2)

• Invertibility of  $\mathcal{L}$  on subsets of  $L_0^2(\mu) = \left\{ \varphi \in L^2(\mu) \mid \int_{\mathcal{E}} \varphi \, d\mu = 0 \right\}$ ?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} \mathrm{e}^{t\mathcal{L}} \, dt$$

- $\bullet$  Prove exponential convergence of the semigroup  $\mathrm{e}^{t\mathcal{L}}$ 
  - various Banach spaces  $E \cap L^2_0(\mu)$
  - Lyapunov techniques<sup>5,6,7</sup>  $L_W^{\infty}(\mathcal{E}) = \left\{ \varphi \text{ measurable}, \left\| \frac{\varphi}{W} \right\|_{L^{\infty}} < +\infty \right\}$
  - standard hypocoercive<sup>8</sup> setup  $H^1(\mu)$
  - $E = L^2(\mu)$  after hypoelliptic regularization<sup>9</sup> from  $H^1(\mu)$
  - coupling arguments<sup>10</sup>

<sup>5</sup>L. Rey-Bellet, *Lecture Notes in Mathematics* (2006)

- <sup>6</sup>Hairer and Mattingly, Progr. Probab. **63** (2011)
- <sup>7</sup>Mattingly, Stuart and Higham, Stoch. Proc. Appl. (2002)
- <sup>8</sup>Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
   <sup>9</sup>F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)
- <sup>10</sup>A. Eberle, A. Guillin and R. Zimmer, arXiv preprint **1703.01617** (2017)

Gabriel Stoltz (ENPC/INRIA)

Duke, March 2018 15 / 24

# Direct $L^2(\mu)$ approach

- Assume that the potential V is smooth and  $^{11,12}$ 
  - the marginal measure  $\nu$  satisfies a Poincaré inequality

$$\|\Pi_0\varphi\|_{L^2(\nu)}^2 \leqslant \frac{1}{C_{\nu}} \|\nabla_q\varphi\|_{L^2(\nu)}^2.$$

 $\bullet$  there exist  $c_1>$  0,  $c_2\in[0,1)$  and  $c_3>$  0 such that V satisfies

$$\Delta V \leqslant c_1 + rac{c_2}{2} |
abla V|^2, \quad |
abla^2 V| \leqslant c_3 \left(1 + |
abla V|\right).$$

There exist C > 0 and  $\lambda_{\gamma} > 0$  such that, for any  $\varphi \in L_0^2(\mu)$ ,  $\forall t \ge 0, \qquad \left\| e^{t\mathcal{L}} \varphi \right\|_{L^2(\mu)} \leqslant C e^{-\lambda_{\gamma} t} \|\varphi\|_{L^2(\mu)}.$ 

with convergence rate of order min $(\gamma, \gamma^{-1})$ : there exists  $\overline{\lambda} > 0$  such that  $\lambda_{\gamma} \ge \overline{\lambda} \min(\gamma, \gamma^{-1}).$ 

<sup>11</sup>Dolbeault, Mouhot and Schmeiser, *C. R. Math. Acad. Sci. Paris* (2009) <sup>12</sup>Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015) Gabriel Stoltz (ENPC/INRIA)

# Sketch of proof

• Modified square norm  $\mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|^2 - \varepsilon \langle A\varphi, \varphi \rangle$  for  $\varepsilon \in (-1, 1)$  and

$$A = \left(1 + (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^* (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})\right)^{-1} (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^*, \qquad \Pi_{\rho} \varphi = \int_{\mathbb{R}^D} \varphi \, d\kappa$$

•  $A = \prod_p A(1 - \prod_p)$  and  $\mathcal{L}_{ham}A$  are bounded so that  $\mathcal{H} \sim \| \cdot \|_{L^2(\mu)}^2$ 

Coercivity in the scalar product  $\langle \langle \cdot, \cdot \rangle \rangle$  induced by  $\mathcal{H}$ 

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \widetilde{\lambda}_{\gamma} \|\varphi\|^2,$$

• Idea: control of  $||(1 - \Pi_p)\varphi||^2$  by  $\langle -\mathcal{L}_{FD}\varphi, \varphi \rangle$  (Poincaré); for  $||\Pi_p\varphi||^2$ ,

$$\|\mathcal{L}_{\mathrm{ham}}\Pi_{\rho}\varphi\|^{2} \geqslant rac{DC_{\nu}}{eta m}\|\Pi_{\rho}\varphi\|^{2}, \qquad \mathrm{hence} \ \mathcal{A}\mathcal{L}_{\mathrm{ham}}\Pi_{\rho} \geqslant \lambda_{\mathrm{ham}}\Pi_{
ho}$$

• Gronwall inequality  $\frac{d}{dt} \left( \mathcal{H}\left[ e^{t\mathcal{L}} \varphi \right] \right) = -\mathscr{D}\left[ e^{t\mathcal{L}} \varphi \right] \leqslant -\frac{2\lambda_{\gamma}}{1+\varepsilon} \mathcal{H}\left[ e^{t\mathcal{L}} \varphi \right]$ 

# Extensions/modifications

# Using modified kinetic energies

- General kinetic energy function U(p) in the Langevin dynamics
  - heavy/light tails
  - $\nabla U$  vanishes on open sets (ARPS)
- Can still prove convergence results (Lyapunov<sup>13</sup> or hypocoercivity<sup>14</sup>) although the dynamics is not hypoelliptic
- $\bullet$  Dedicated numerical schemes to integrate non-globally Lipschitz  $\nabla U$ 
  - Strang splitting between Hamiltonian part and fluctuation/dissipation
  - Metropolization of FD using a HMC-like scheme (weak order 3/2)

• Possible reduction of metastability by good choices of U (e.g. U = V in low dimensions)

<sup>13</sup>S. Redon, G. Stoltz and Z. Trstanova, J. Stat. Phys. (2016)

<sup>14</sup>G. Stoltz and Z. Trstanova, accepted in *Multiscale Model. Sim.* (2018)

# Rates of convergence for nonequilibrium Langevin dynamics

• Compact position space  $\mathcal{D}=(2\pi\mathbb{T})^d$ , constant force  $|\mathsf{F}|=1$ 

Langevin dynamics perturbed by a constant force term

$$\begin{cases} dq_t = \frac{p_t}{m} dt, \\ dp_t = (-\nabla V(q_t) + \tau F) dt - \gamma \frac{p_t}{m} dt + \sqrt{\frac{2\gamma}{\beta}} dW_t, \end{cases}$$

- Non-zero velocity in the direction F is expected in the steady-state
- F does not derive from the gradient of a periodic function
  of course, F = -∇W<sub>F</sub>(q) with W<sub>F</sub>(q) = -F<sup>T</sup>q
  - ...but W<sub>F</sub> is not periodic!

# Rates of convergence for nonequilibrium Langevin dynamics

- Lyapunov approaches are non-perturbative but also non-quantitative
- Suboptimal results by the standard hypocoercive approach in  $H^1(\mu)$  $\rightarrow$  nonequilibrium perturbation<sup>15</sup> of direct  $L^2(\mu)$  strategy
- Invariant measure  $\psi_\eta = h_\tau \mu$  with  $h_\tau \in L^2(\mu)$  for  $|\tau|$  small

#### Uniform rates for nonequilibrium perturbations

There exist  $C, \delta_* > 0$  such that, for any  $\delta \in [0, \delta^*]$ , there is  $\overline{\lambda}_{\delta} > 0$  for which, for all  $\gamma \in (0, +\infty)$  and all  $\tau \in [-\delta \min(\gamma, 1), \delta \min(\gamma, 1)]$ ,

$$\left\| \mathrm{e}^{t\mathcal{L}^*_{\gamma,\tau}} f - h_\tau \right\|_{L^2(\mu)} \leqslant C \mathrm{e}^{-\overline{\lambda}_\delta \min(\gamma,\gamma^{-1})t} \|f - h_\tau\|_{L^2(\mu)}$$

• As a corollary: lower bounds on the spectral gap of order min $(\gamma, \gamma^{-1})$  $\rightarrow$  can be checked numerically <sup>16</sup>

<sup>15</sup>E. Bouin, F. Hoffmann, and C. Mouhot, *arXiv preprint* 1605.04121
 <sup>16</sup>A. Iacobucci, S. Olla and G. Stoltz, to appear in *Ann. Math. Quebec* (2017)
 Gabriel Stoltz (ENPC/INRIA)

21 / 24

# Constructing control variates

• The computation of transport coefficients by nonequilibrium steady-state techniques involves the computations of quantities of the form

$$rac{\mathbb{E}_\eta({\sf R})}{\eta}, \qquad |\eta| \ll 1$$

- $\rightarrow$  Magnification of the statistical error
- Typical cases:  $\mathcal{L}_{\eta} = \mathcal{L}_{0} + \eta \widetilde{\mathcal{L}}$ 
  - nonequilibrium perturbation
  - coupling parameter between otherwise independent systems
  - anharmonic part in an otherwise linear dynamics
- Control variate idea
  - note that  $\mathbb{E}_\eta(R-\mathcal{L}_\eta\Phi)=\mathbb{E}_\eta(R)$  for all  $\Phi$
  - ...but it may happen that  $\operatorname{Var}_{\eta}(R \mathcal{L}_{\eta}\Phi) \ll \operatorname{Var}_{\eta}(R)$
  - Optimal choice  $\Phi = \mathcal{L}_{\eta}^{-1}(R \mathbb{E}_{\eta}(R))$  unknown
  - approximate it by  $\mathcal{L}_0^{-1}(R \mathbb{E}_0(R))$

# Constructing control variates

- Error estimates for Galerkin discretization<sup>17</sup>
  - spectral basis (weighted Fourier modes + Hermites polynomials)
  - (non-)conformal formulation (basis functions of mean 0 or not)
  - estimation of consistency and approximation errors
- Error estimates on the variance for approximate control variate<sup>18</sup>
  - modified estimator based on  $R + \mathcal{L}_\eta \Phi_0$
  - the asymptotic variance is of order  $\eta^2$  when  $\Phi_0$  is exactly computed
  - applications to (i) 1D nonequilibrium Langevin, (2) thermal transport in 1D chains, (3) dimer in WCA solvent

<sup>17</sup>J. Roussel and G. Stoltz, to appear in M2AN (arXiv preprint 1702.04718)

<sup>18</sup>J. Roussel and G. Stoltz, *arXiv preprint* **1712.08022** 

# Proving the convergence of TAMD

• Additional variable z (e.g. free energy computation), higher temperature  $\bar{\beta}^{-1}$ , acceleration factor  $\delta^{-1} \rightarrow$ Nonequilibrium dynamics

$$\begin{cases} dq_t = \delta^{-1} M^{-1} p_t dt, \\ dp_t = -\delta^{-1} \nabla_q U_{\kappa}(q_t, z_t) dt - \delta^{-1} \gamma M^{-1} p_t dt + \sqrt{2\gamma(\beta\delta)^{-1}} dW_t^p, \\ dz_t = -\nabla_z U_{\kappa}(q_t, z_t) dt + \sqrt{2\overline{\beta}^{-1}} dW_t^z. \end{cases}$$

 $\bullet$  Effective dynamics as  $\delta \rightarrow 0$ 

$$dar{z}_t = -
abla_z A(ar{z}_t) \, dt + \sqrt{2ar{eta}^{-1}} \, dW^z_t, \qquad \mathrm{e}^{-eta A(z)} = \int_{\mathcal{D}_q} \mathrm{e}^{-eta U(q,z)} dq$$

- Convergence results<sup>19</sup>
  - Exponential decay of semigroup, rate close to effective dynamics
  - Expansion of the invariant measure in powers of  $\boldsymbol{\delta}$
  - Asymptotic variance agrees at first order in  $\delta$  with effective dynamics

<sup>19</sup>G. Stoltz and E. Vanden-Eijnden, *arXiv preprint* **1708.08800** Gabriel Stoltz (ENPC/INRIA)