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Motivation

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V which maps a configuration
(x1, ..., xN) = x ∈ R

3Natom to an energy V (x1, ..., xNatom
). The

dimension d = 3Natom is large (a few hundred thousand to
millions).
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Dynamics

Newton equations of motion:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the overdamped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Macroscopic quantities of interest

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃
1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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A toy model for solvation
Influence of the solvation on a dimer conformation [Dellago, Geissler].
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
−→ simulation
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Limitation of direct molecular dynamics
Direct molecular dynamics is a very powerful technique to sample
atomistic trajectories, in order to compute thermodynamic or
dynamical quantities.

Orders of magnitude: LJ potential costs ∼ 2µs/atom/timestep;
EAM potential costs ∼ 5µs/atom/timestep; AIMD costs (at least)
1 min/atom/timestep.

Thus, molecular dynamics’ reach is limited in terms of time and
length scales. −→ Depending on the quantity of interest, MD is
combined with other algorithms to get better sampling.

For thermodynamic quantities: variance reduction methods
(stratification, importance sampling, control variate, ...)
For dynamic quantities: effective dynamics, rare event sampling
methods, ...

All these techniques require a collective variable.
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Outline

Outline of this presentation:

1. Definition of the free energy associated with a collective
variable.

2. Using a collective variable to estimate thermodynamics
quantities: adaptive biasing techniques.

3. Using a collective variable to access dynamical quantites:
effective dynamics.

4. Conclusion and discussion: what is a good collective variable?
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Collective variable and free energy
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Collective variable
Generally speaking, a collective variable is a low dimensional
function ξ : Rd → R

k (with k ≪ d), which summarizes, in some
sense, the state of the system. In the following, for simplicity, we
assume that ξ is periodic and of dimension 1:

ξ : Rd → T.

If well chosen, this collective variable can be used to address the
metastability issues.

The free energy associated with ξ will play a central role.

For example, in the 2d simple examples: ξ(x , y) = x .
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Free energy
Let us introduce two probability measures associated with µ and ξ:

• The image of the measure µ by ξ:

ξ∗µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µ(dx |ξ(x) = z) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z))
.
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Free energy (2d case)
In the simple case ξ(x , y) = x , we have:

• The image of the measure µ by ξ:

ξ∗µ (dx) = exp(−βA(x)) dx

where the free energy A is defined by:

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

and Σ(x) = {(x , y), y ∈ R}.

• The probability measure µ conditioned to ξ(x , y) = x :

µ(dy |x) =
exp(−βV (x , y)) dy

exp(−βA(x))
.
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Free energy on a simple example
What is free energy ? The simple example of the solvation of a
dimer. (Profiles computed using thermodynamic integration.)
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The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density. Related question: interpretation of the free energy barrier in terms of

dynamics ?
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Free energy calculation techniques
There are many free energy calculation techniques:

(a) Thermodynamic integration. (b) Histogram method.

(c) Non equilibrium dynamics. (d) Adaptive biasing techniques.
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Adaptive biasing techniques

15 / 53



Introduction Free energy Adaptive biasing techniques Effective dynamics Conclusion

Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)
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A 2d example of a free energy biased trajectory: energetic barrier.
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Free energy biased dynamics (2/2)
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Updating strategies
How to update At ? Two methods depending on wether A′

t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.
To avoid geometry problem, an extended configurational space
(x , z) ∈ R

n+1 may be considered, together with the meta-potential:

V k(x , z) = V (x) + k(z − ξ(x))2.

Choosing (x , z) 7→ z as a collective variable, the associated free
energy Ak is close to A (in the limit k → ∞, up to an additive constant).

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations [TL, M. Rousset, G. Stoltz, J Chem Phys, 2007]:

A′
t At

V ABF Wang-Landau
V k e-ABF metadynamics
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The mean force
For the Adaptive Biasing Force (ABF) method, the idea is to
directly compute an approximation of the mean force A′(z).

Main ingredient: the derivative A′(z) can be obtained as an
average wrt µ(dx |ξ(x) = z) [Sprik, Ciccotti, Kapral, Vanden-Eijnden, E, den Otter, ...]:

A′(z) =

∫

Σ(z)

(

∇V · ∇ξ

|∇ξ|2
− β−1

div

(

∇ξ

|∇ξ|2

))

e−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx)

=

∫

Σ(z)
f dµ(dx |ξ(x) = z) = Eµ(f (X )|ξ(X ) = z).

Notice that actually, for any biasing potential Vb(ξ(x)),

A′(z) =

∫

Σ(z)
f e−β(V−Vb◦ξ) δξ(x)−z(dx)

∫

Σ(z)
e−β(V−Vb◦ξ) δξ(x)−z(dx)

.
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The mean force (2d case)
In the simple case ξ(x , y) = x , this writes:

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

Σ(x)
∂xV (x , y) e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

Σ(x)
∂xV (x , y)µ(dy |x).

And for any biasing potential Vb(x),

A′(x) =

∫

Σ(x)
∂xV (x , y) e−β(V (x ,y)−Vb(x)) dy

∫

Σ(x)
e−β(V (x ,y)−Vb(x)) dy

.
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method
The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

22 / 53



Introduction Free energy Adaptive biasing techniques Effective dynamics Conclusion

The ABF method
The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .
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The ABF method
The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Back to the 2d example
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Back to the toy example for solvation
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Compact state. Stretched state.

The collective variable ξ is the distance between the two
monomers. −→ simulation
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Longtime convergence and entropy (1/3)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇

(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3/3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇

(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)
∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤
1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ Small R
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Convergence of ABF (1/3)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫
f ψ δξ(x)−z(dx)

∫
ψ δξ(x)−z(dx)

.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures µ(dx |ξ(x) = z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:
• the rate r of convergence of ψ =

∫

ψ δξ(x)−z(dx) to ψ∞,
• the LSI constant ρ (the real limitation).
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Convergence of ABF (2/3)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µ(dx |ξ(x) = z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z ,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).

29 / 53



Introduction Free energy Adaptive biasing techniques Effective dynamics Conclusion

Convergence of ABF (3/3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it only remains to consider
Em...
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃

∑N
m=1

f (Xm,N
t ) δα(ξ(Xm,N

t )− z)
∑N

m=1
δα(ξ(Xm,N

t )− z)
.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃

∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze.
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ABF: extensions and open problems

Numerical aspects:

• Multiple walker ABF [C. Chipot, TL, K. Minoukadeh]

• Projection on a gradient of the mean force (Helmholtz
decomposition) [J. Hénin, TL, 2016-2017]

• collective variables in larger dimension: exchange bias,
separated representations [Ehrlacher, TL, Monmarché, 2019], learning
techniques.

Theoretical aspects:

• Analysis when the mean force (or the free energy) is
approximated using time averages [M. Benaïm, G. Fort, B. Jourdain, TL, P.

Monmarché, G. Stoltz, P.A. Zitt, 2014-2021]

• Extension of the analysis to the Langevin dynamics [M. Benaïm, P.

Monmarché, 2018]
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CV for enhanced sampling: take-home message

Free energy adaptive biasing techniques require a (low-dimensional)
collective variable. They force the system to visit all the values of
the collective variable.

A good collective variable is thus such that if ξ(X ) is well sampled,
than X is well sampled.

A prototypical example of a bad collective variable is when the law
of X given ξ(X ) = z is difficult to sample (multimodal). This is
consistent with the mathematical analysis of the convergence of
ABF using entropy techniques.

A prototypical example of a good collective variable is when X is
almost fully determined when ξ(X ) is known. For example a
quantitative estimate is: the smaller E (Var(X |ξ(X ))), the better.
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Effective dynamics
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General setting

Consider the stochastic dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t .

This dynamics is ergodic with respect to

µ(dx) = Z−1 exp(−βV (x)) dx .

Assume we are given a smooth one dimensional function
ξ : Rd → R.

Objective: build a closed Markov dynamics that approximates the
dynamics (ξ(X t))t≥0.

Side question: is it true that the mean transition time can be
computed using an Eyring-Kramers formula of the form
C exp(β∆A)?
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Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

First attempt:

dz̃t = b̃(t, z̃t) dt +
√

2β−1σ̃(t, z̃t) dBt

with dBt =
∇ξ(X t)
|∇ξ(X t)|

· dWt ,

b̃(t, z̃) = E

(

(−∇V · ∇ξ + β−1∆ξ)(X t)
∣

∣

∣
ξ(X t) = z̃

)

σ̃2(t, z̃) = E

(

|∇ξ|2(X t)
∣

∣

∣
ξ(X t) = z̃

)

.

Then, for all time t ≥ 0, L(ξ(X t)) = L(z̃t) ! But b̃ and σ̃ are
untractable numerically...
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Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

The effective dynamics:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with dBt =
∇ξ(X t)
|∇ξ(X t)|

· dWt ,

b(z) = Eµ

(

(−∇V · ∇ξ + β−1∆ξ)(X )
∣

∣

∣
ξ(X ) = z

)

σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

.

Related approaches: Mori-Zwanzig and projection operator
formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin,

Pavliotis/Stuart, ...].
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Link with the free energy

Let us introduce the free energy A associated with ξ.
The effective dynamics is:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with
b(z) = −A′(z)σ2(z) + β−1∂z(σ

2).

It is thus the reversible dynamics wrt exp(−A(z)) dz , with a metric
tensor defined by σ2(z).

If the effective dynamics is correct and if the metastable states of
interest are defined in terms of ξ, in the limit β → 0, one can thus
justify the use of an Eyring-Kramers formula to estimate the mean
transition time.
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Illustration on the toy model for solvation
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The collective variable is the distance between the two black
particles. Here, σ2 = 2 (and thus b = −2A′).

β Reference Eff. dyn. Eff. dyn. with b = −A′ and σ = 1

0.5 262 ± 6 245 ± 5 504 ± 11

0.25 1.81 ± 0.04 1.68 ± 0.04 3.47 ± 0.08
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Error analysis

Three mathematical results on the error introduced by the closure
approximation:

• weak: error analysis on the time marginals

• strong: error analysis on the trajectories

• intermediate: error analysis on the reaction rate
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Error analysis on the time marginals

Theorem Under the assumptions (ξ(x1, . . . , xn) = x1 for simplicity):

(H1) The conditional probability measures µ(·|ξ(x) = z) satisfy a
Logarithmic Sobolev Inequality with constant ρ,

(H2) Bounded coupling assumption: ‖∂1∂2,...,nV ‖L∞ ≤ κ.

Then, ∃C > 0, ∀t ≥ 0,

H(L(ξ(X t))|L(zt)) ≤ C
κ

ρ

(

H(L(X 0)|µ)− H(L(X t)|µ)
)

,

where H(φ|ψ) =

∫

ln

(

φ

ψ

)

φ is the relative entropy.

If ρ is large (timescale decoupling assumption), the error is small.

The proof [Legoll, TL] is based on entropy techniques, logarithmic
Sobolev inequalities and a micro-macro separation of the total
entropy in the spirit of [Grunewald, Otto, Reznikoff, Villani].
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Error analysis on the trajectories
Theorem Under the assumptions (ξ(x1, . . . , xn) = x1 for simplicity):

(H1’) The conditional probability measures µ(·|ξ(x) = z) satisfy a
Poincaré inequality with constant ρ,

(H2’) Bounded coupling assumption: ‖∂1∂2,...,nV ‖L2(µ) ≤ κ,

(H3) b is one-sided Lipschitz (−b′ ≤ Lb) and such that
∫

Rd

(

sup
y∈[−|x |,|x |]

|b′(y)|

)2

µ(dx) <∞.

Then, if z0 = ξ(X 0) is distributed according to a measure µ0 such
that dµ0

dµ
∈ L∞,

E

(

sup
t∈[0,T ]

|ξ(X t)− zt |

)

≤ C
κ

ρ

The proof [Legoll, TL, Olla] uses probabilistic arguments (Poisson
equations, and Doob’s martingale inequality).
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Error analysis on the transition times
Let us assume that we are given two states A and B which can be
defined thanks to ξ: x ∈ A/B ⇐⇒ ξ(x) ∈ Ā/B̄.
Let us define the committor function for the original dynamics:

q(x) = P
x(τB < τA)

and for the effective dynamics:

q̄(z) = P
z(τB̄ < τĀ).

Let us consider the equilibrium reaction rates ν and ν̄ for the
original and effective dynamics.
Theorem One has:

ν̄ = ν + β−1

∫

(A∪B)c
|∇(q − q̄ ◦ ξ)|2dµ.

The proof [Hartmann, Schütte, Zhang] is based on the formula which defines
the reaction rate as a function of the committor function [E, Vanden

Eijnden].
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Choosing the committor as the collective variable

Consequences:

• For given fixed A and B, the best collective variable minimizes
the reaction rate of the effective dynamics.

• If ξ is such that q(x) = q̃(ξ(x)), then q̄ = q̃ and ν = ν̄. In
this case, one can check that the mean transition time from A
to B for the original dynamics is equal to the mean transition
time from Ā to B̄ for the effective dynamics.

• In particular, if one chooses ξ(x) = q(x), then the reaction
rate and the transition times are exactly reproduced by the
effective dynamics.
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Recent extensions and on-going works

We recently extended the error analysis on the time marginals and
the trajectories to general vectorial reaction coordinates and to
non-reversible dynamics (non-gradient forces) (collab. with F. Legoll, U.

Sharma and W. Zhang).

From a numerical viewpoint, these coarse-grained dynamics can be
used as predictors in predictor-corrector schemes (parareal
algorithms) (collab. with F. Legoll and G. Samaey).

Questions:

• How to systematically improve the coarse-grained model (GLE,
increase the dimension of the Markov model, ...)?

• Coarse-graining may involve rescaling in time/space.
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CV for dynamics: take-home message

From a dynamical viewpoint, a good collective variable is such that

• (i) ξ determines the dynamical quantities we are interested in
(e.g. the states, the observables of interest, the transition
pathway, ...) and

• (ii) (ξ(X t))t≥0 is close to a homogenous Markov process.

In this case, one can consider the effective dynamics (zt)t≥0 (in R
k)

to estimate dynamical quantities of the original dynamics (in R
d).

The framework used to analyze the efficiency of ABF (functional
inequalities) also apply to estimate the error of the effective
dynamics.

The committor is a natural collective variable to build a good
effective dynamics.
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Conclusion
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What is a good collective variable?

A collective variable is a low dimensional function ξ : Rd → R
k of

the cartesian coordinates.

• The practical viewpoint: physically based collective variable
A good collective variable describes the state of the system: it can
be interpreted physically, and measured experimentally.
Examples: angles, distances, coordination number, ...

• The thermodynamic viewpoint: collective variable for efficient
sampling of the canonical measure
A good collective variable is such that if ξ(X ) is well sampled, then
X is well sampled.
Examples of numerical methods which require such a good
collective variable: umbrella sampling, thermodynamic integration,
free energy adaptive biasing methods.
This point of view has been used to build collective variables:
MESA [Ferguson], AE-ABF [Belkacemi, Gkeka, TL, Stoltz].
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What is a good collective variable?

• The dynamical viewpoint: collective variable to estimate
dynamical quantities
A good collective variable is such that (i) ξ determines the
dynamical quantities of interest and (ii) (ξ(X t))t≥0 is close to a
homogenous Markov process.

Examples of numerical methods which require such a good
collective variable: Effective dynamics based on free energy,
Splitting techniques (AMS, FFS, TIS).

Remark: We focused on continuous collective variables, but the
same discussion applies to discrete collective variables (in particular
to build Markov State Models).
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Some natural candidates

• Energy
The energy can be used as a collective variable to enhance the
sampling of the canonical measure (Wang-Landau algorithm).

Difficulty: how to choose the range of energy to be visited? The
volume of {x ,V (x) = z} increases quickly with z .

• Committor function
The committor function is a natural 1d collective variable.

It is the central object of the Transition Path Theory [E, Vanden Einjden].

The effective dynamics on the committor function is exact in terms
of reaction rate and transition times [Hartmann, Schütte, Zhang].

The committor function is the optimal importance function for
many rare event sampling methods: splitting techniques and
importance sampling methods on path space.
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Some natural candidates
• Eigenfunctions of the transition operator
Effective dynamics built using the eigenvectors as collective
variables have the same leading eigenvalues as the original
dynamics [Hartmann, Schütte, Zhang].

In the small temperature regime, eigenfunctions are piecewise
constant, the constancy zones being neighborhoods of the local
minima of V .

Example of numerical methods to approximate eigenfunctions:
diffusion map, Koopman operator approaches (tICA), ...

Remarks:

• In practice, the eigenfunctions can be approximated using the
committor functions associated with core sets [Sarich, Schütte]

• The committor and the eigenfunctions are high dimensional
functions: approximation by neural networks is natural.
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What’s next?

How to use the mathematical insights we gain on what
characterizes a good collective variable to actually build collective
variables?

How to solve the chicken and egg problem: (i) one needs a good
sampling to build a collective variable and (ii) a good sampling
requires a good collective variable...

• Gabriel Stoltz will present how machine learning techniques
can be used to build collective variables.

• Thomas Pigeon will illustrate these techniques during a
hands-on session.
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