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and Paraskevi Gkeka (Sanofi)

MAC-MIGS One-Day Meeting on Mathematical Topics in Machine Learning

Gabriel Stoltz (ENPC/Inria) June 2021 1 / 28



Outline

•Molecular systems and basics of statistical physics

Reaction coordinates and free energy

A (short/biased) review of machine learning approaches for RC

•Free-energy biasing and iterative learning with autoencoders1

Autoencoders and their training

General presentation of the iterative algorithm

Illustration/sanity checks on toy examples

•Applications to systems of interest (alanine dipeptive, HSP90)

1Z. Belkacemi, P. Gkeka, T. Lelièvre, G. Stoltz, arXiv preprint 2104.11061
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Molecular description of systems
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Statistical physics (1)

What is the structure of the protein? What are its typical conformations,
and what are the transition pathways from one conformation to another?
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Statistical physics (2)

•Microstate of a classical system of N particles:

(q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ E = (aT)3N × R3N

Positions q (configuration), momenta p (to be thought of as Mq̇)

•Hamiltonian H(q, p) = V (q) +

N∑
i=1

p2
i

2mi
(physics is in V )

Macrostate: Boltzmann–Gibbs probability measure (NVT)

µ(dq dp) = Z−1
NVT e−βH(q,p) dq dp, β =

1

kBT

•Typical evolution equations: Langevin dynamics (friction γ > 0){
dqt = M−1pt dt

dpt = −∇V (qt) dt− γM−1pt dt+
√

2γβ−1 dWt
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Reaction coodinates (RC) / collective variables (CV)

•Reaction coordinate ξ : RD → Rd with d� D

• Ideally: ξ(qt) captures the slow part of the dynamics

•Free energy computed on Σ(z) = {q ∈ (aT)D | ξ(q) = z} (foliation)

F (z) = − 1

β
ln

(∫
Σ(z)

e−βV (q) δξ(q)−z(dq)

)

•Various methods: TI, FEP, ABF, metadynamics, etc2

2Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective
(Imperial College Press, 2010)
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Some representative approaches for finding RC/CV (1)

•Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)

•Short list of data-oriented approaches (depending on the data at hand...)

[supervised learning] separate metastable states

[unsupervised] distinguish linear models (PCA) and nonlinear ones
(e.g. based on autoencoders such as MESA3)

[dynamics] operator based approaches (VAC, EDMD, diffusion maps,
MSM; incl. tICA and VAMPNets)

(Huge litterature! I am not quoting precise references here because the list would be too long)

•Other classifications4,5 possible, e.g. slow vs. high variance CV

3W. Chen and A.L. Ferguson, J. Comput. Chem. 2018; W. Chen, A.R. Tan, and
A.L. Ferguson, J. Chem. Phys. 2018

4P. Gkeka et al., J. Chem. Theory Comput. 2020
5A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Chem. Rev. 2021
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Some representative approaches for finding RC/CV (2)
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Free-energy biasing and iterative
learning with autoencoders
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Autoencoders (1)
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Autoencoders (2)

•Data space X ⊆ RD, bottleneck space A ⊆ Rd with d < D

f(x) = fdec

(
fenc(x)

)
where fenc : X −→ A and fdec : A −→ X

Reaction coordinate = encoder part

ξ = fenc

•Fully connected neural network, symmetrical structure, 2L layers

•Parameters p = {pk}k=1,...,K (bias vectors b` and weights matrices W`)

fp(x) = g2L [b2L +W2L . . . g1(b1 +W1x)] ,

with activation functions g` (examples: tanh(x), max(0, x), etc)
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Training autoencoders

•Theoretically: minimization problem in P ⊂ RK

pµ ∈ argmin
p∈P

L(µ,p),

with cost function

L(µ,p) = Eµ(‖X − fp(X)‖2) =

∫
X
‖x− fp(x)‖2 µ(dx)

• In practice, access only to a sample: minimization of empirical cost

L(µ̂,p) =
1

N

N∑
i=1

‖xi − fp(xi)‖2, µ̂ =
1

N

N∑
i=1

δxi

•Typical choices: canonical measure µ, data points xi postprocessed from
positions q (alignement to reference structure, centering, reduction to backbone carbon

atoms, etc)
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Training on modified target measures

• Interesting systems are metastable (no spontaneous exploration of phase space)

Sample according to a biased distribution µ̃ (importance sampling)

•Need for reweighting to learn the correct encoding!

w(x) =
µ(x)

µ̃(x)

•Minimization problem: theoretical cost function

L(µ,p) =

∫
X
‖x− fp(x)‖2w(x)µ̃(dx),

actual cost function

L(µ̂wght,p) =

N∑
i=1

ŵi‖xi − fp(xi)‖2, ŵi =
µ(xi)/µ̃(xi)

N∑
j=1

µ(xj)/µ̃(xj)

•Only requires the knowledge of µ and µ̃ up to a multiplicative constant.
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How training is actually performed...

•Gradient descent with minibatching: randomly reshuffle data points,

pr = pr−1 − η∇pLr(pr−1), Lr(p) =
1

m

(r+1)m∑
i=rm+1

‖xi − fp(xi)‖2

One epoch = dN/me gradient steps (in order to visit all the data)

•Actual procedure:
Use keras module in python

Computation of gradient performed with backpropagation

Optimization in fact performed with Adam algorithm
(weights summing to 1 to use default optimization parameters)

“Early stopping” (stop when validation loss no longer improves)

•Many local minima...
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Proof of concept (1)

•Gaussian distributions µi = N (0,Σi) with

Σ1 =

(
1 0
0 0.01

)
, Σ2 =

(
0.01 0

0 1

)
Datasets Di of N = 106 i.i.d. points

•Autoencoders with 2 layers of resp. 1 and 2 nodes, linear activation
functions (' PCA)

•Training on:

D1

D2

D2 with reweighting ŵi ∝ µ1/µ2
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Proof of concept (2)

Heat maps of fenc
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Third encoder very similar to the first: projection on x1.
Second encoder projects on a direction close to x2.
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Proof of concept with free energy biasing (1)

Two dimensional potential (“entropic switch”)6

V (x1, x2) = 3e−x
2
1

(
e−(x2−1/3)2 − e−(x2−5/3)2

)
− 5e−x

2
2

(
e−(x1−1)2 + e−(x1+1)2

)
+ 0.2x4

1 + 0.2(x2 − 1/3)4

Trajectory from qj+1 = qj −∇V (qj)∆t+
√

2β−1∆tGj for β = 4 and
∆t = 10−3 −→ metastability in the x1 direction

6S. Park, M.K. Sener, D. Lu, and K. Schulten (2003)
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Proof of concept with free energy biasing (2)

•Free energy biasing: distributions Z−1
i exp (−β [V (q)− Fi(ξi(q))])

F1(x1) = − 1

β
ln

(∫
R

e−βV (x1,x2)dx2

)
, F2(x2) = −β−1 ln

(∫
R
... dx1

)
Three datasets: unbiased trajectory, trajectories biased using F1 and F2

(free energy biased trajectories are shorter but same number of data points N = 106)

•Autoencoders: 2-1-2 topology, activation functions tanh (so that RC is
in [−1, 1]) then identity

•Five training scenarios:

training on long unbiased trajectory (reference RC)

ξ1-biased trajectory, with or without reweighting

ξ2-biased trajectory, with or without reweighting
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Proof of concept with free energy biasing (3)

Normalize to compare

ξnorm
AE (x) =

ξAE(x)− ξmin
AE

ξmax
AE − ξmin

AE
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(distinguishes well the 3 wells)
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x2-biased trajectory
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Full iterative algorithm (Free Energy Biasing and Iterative Learning with AutoEncoders)

Input: Initial condition q0, autoencoder topology and initialization parameters Ainit, number of
samples N , simulation procedure S and adaptive biasing procedure SAB, maximum number of
iterations Imax, minimum convergence score smin

Initialization
Sample traj0 ← S(q0, N)
Initialize autoencoder AE0 ← Ainit

Train AE0 on traj0 with weights (ŵ0, . . . , ŵN ) = (1, . . . 1)
Extract the encoder function ξ0 : x 7→ ξ0(x)

Iterative update of the reaction coordinate
Set i← 0, s← 0
While i < Imax and s < smin Treshold smin to be determined

Set i← i+ 1
Sample traji, Fi ← SAB(q0, N, ξi−1) in our case: extended ABF

Compute weights ŵj ∝ e−βFi(ξi−1(x
j))

Initialize autoencoder AEi ← Ainit

Train AEi on traji with sample weights ŵj
Extract the encoder function ξi : x 7→ ξi(x)
Set s← regscore(ξi−1, ξi) Convergence metric to be made precise

Set ξfinal ← ξi

Production of output:
Sample trajfinal, Ffinal ← SAB(q0, Nfinalξfinal) with Nfinal large enough to ensure PMF convergence
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Discussion on the convergence criterion

•Check convergence of CV?
Quantify ξi ≈ Φ(ξi−1) for some monotonic function Φ

•Approach: approximate Φ by a linear model → linear regression

•Regression score between ξ and ξ′

Two sets of values of RC (ξ(q1), . . . , ξ(qN )) and (ξ′(q1), . . . , ξ′(qN ))

Match them with a linear model M(z) = Wz + b

Coefficient of determination R2 = 1−

N∑
i=1

∥∥ξ′(qi)−M(ξ(qi))
∥∥2

N∑
i=1

∥∥ξ′(qi)− ξ̄′∥∥2

Maximization of R2 w.r.t. W, b provides regscore(ξ′, ξ)

•Value of smin computed using some bootstrap procedure
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The iterative algorithm on the toy 2D example

Left: with reweighting
Convergence to RC ' x1

Right: without reweighting
No convergence
(cycles between two RCs)
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Applications to systems of interest
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Alanine dipeptide

•Molecular dynamics:
openmm with openmm-plumed to link it with plumed

colvar module for eABF and computation of free energies
timestep 1 fs, friction γ = 1 ps−1 in Langevin dynamics

•Machine learning:
keras for autoencoder training
input = carbon backbone (realignement to reference structure and centering)

neural network: topology 24-40-2-40-24, tanh activation functions
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Ground truth computation

Long trajectory (1.5 µs), N = 106 (frames saved every 1.5 ps)

RC close to dihedral angles Φ,Ψ

Quantify smin = 0.99 for N = 105 using a bootstraping procedure

For the iterative algorithm: 10 ns per iteration
(compromise between times not too short to allow for convergence of the free energy, and not

too large in order to alleviate the computation cost)
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Results for the iterative algorithm

iter. regscore (Φ,Ψ)
0 − 0.922
1 0.872 0.892
2 0.868 0.853
3 0.922 0.973
4 0.999 0.972
5 0.999 0.970
6 0.999 0.971
7 0.999 0.967
8 0.998 0.966
9 0.999 0.968
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HSP90 (work in progress...)

Chaperone protein
assisting other
proteins to fold
properly and
stabilizing them
against stress,
including proteins
required for tumor
growth

−→ look for inhibitors
(e.g. targeting binding
region of ATP; focus
only on the
N-terminus domain )

(picture from https://en.wikipedia.org/wiki/File:Hsp90 schematic 2cg9.png)
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HSP90 (work in progress...)

6 conformational states, data from 10 × 20 ns trajectories, input features
= 621 C carbons, AE topology 621-100-5-100-621
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