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This chapter presents the physical and mathematical frameworks to understand the basic no-
tions of molecular simulation and statistical physics. Section 1.1 recalls the aims of computational
statistical physics, gives some historical landmarks, and provides the orders of magnitude of the
quantities to be computed. Section 1.2 discusses how physical systems are described at the mi-
croscopic level: unknowns, boundary conditions, interaction potentials, etc. Section 1.3 is a short
summary of the most important concepts of statistical physics which will be of constant use
throughout these lecture notes, in particular elements on thermodynamic ensembles. For a more
comprehensive introduction to statistical physics, the reader can for instance refer to [21], as well
as textbooks on molecular simulation [5, 223, 97, 269].

1.1 Computational statistical physics: some landmarks

Before giving a detailed mathematical framework for computational statistical physics, we first
describe the scientific context, by recalling in Section 1.1.1 some order of magnitudes for the
quantities under investigation, and by making explicit in Section 1.1.2 what we understand to be
the current aims of molecular simulation.

1.1.1 Some orders of magnitude

In the framework of statistical physics, matter is most often described at the atomic level, either in a
quantum or classical framework. Some of the concepts developed in this introduction may however
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Physical constant Usual notation Value
Avogadro number NA 6.02× 1023

Boltzmann constant kB 1.381× 10−23 J/K
Reduced Planck constant ~ 1.054× 10−34 Js

Elementary charge e 1.602× 10−19 C
Electron mass me 9.11× 10−31 kg
Proton mass mp 1.67× 10−27 kg
Electron-Volt eV 1.602× 10−19 J

Table 1.1. Some important physical constants or quantities in quantum and statistical physics.

be used in other physical frameworks than molecular simulation (for instance, the Hamiltonian
dynamics presented in Section 2.1 is the fundamental evolution equation in celestial mechanics).

In these lecture notes, only classical systems are considered. Some important physical constants
are recalled in Table 1.1. From those constants, the orders of magnitudes of the classical description
of matter at the microscopic level can be inferred. The typical distances `0 are of the order of
1 Å (10−10 m), the energies ε0 are of the order of kBT ' 4 × 10−21 J at room temperature, so
that, using the equality (1.8) below, the typical times t0 are of the order of 6× 10−13 s when the
proton mass is the reference mass m0. The precise choice of the reference values for the length,
mass, time and energy depends on the system of interest; see the discussion following (1.8).

The orders of magnitude used in the microscopic description of matter are far from the orders of
magnitude of the macroscopic quantities we are used to. For instance, the number of particles under
consideration in a macroscopic sample of material is of the order of the Avogadro number NA ∼
1023. For practical numerical computations of matter at the microscopic level, the dynamics has
to be discretized, the timestep to be used being a fraction of the typical time t0 introduced above,
typically of the order of 10−15 s. Following the dynamics of every atom on a time of the order of
a second would therefore require simulating NA atoms and performing O(1015) time steps, which
is of course impossible! These numbers should be compared with the current orders of magnitude
of the problems that can be tackled with classical molecular simulation, such as the simulation
of a bacterial cytoplasm of 100 million atoms over 100 ns [281], the simulation of an entire gene
locus of 1 billion atoms over 1 ns [146], or the simulation of a polycrystalline microstructure of
100 billion atoms for 500 ps [251]. Smaller system in sizes could also be integrated over times of
the order of milliseconds [250, 205].

To give some insight into such large numbers, it is helpful to compute the number of moles of
water on earth. Recall that one mole of water corresponds to 18 mL, so that a standard glass of
water contains roughly 10 moles, and a typical bathtub contains 105 mol. On the other hand, there
are approximately 1.3× 1018 m3 of water in the oceans, i.e. 7.2× 1022 mol, a number comparable
to the Avogadro number. This means that inferring the macroscopic behavior of physical systems
described at the microscopic level by the dynamics of several millions of particles only is like
inferring the ocean’s dynamics from hydrodynamics in a large bathtub or a small pond...

Describing the macroscopic behavior of matter knowing its microscopic description therefore
seems out of reach. Statistical physics allows us to bridge the gap between microscopic and macro-
scopic descriptions of matter, at least at a conceptual level. The question is whether the estimated
quantities for a system of N particles correctly approximate macroscopic properties, formally ob-
tained in the thermodynamic limit N → +∞ (the density being kept fixed). In some cases, in
particular for simple homogeneous systems, the macroscopic behavior is well approximated by
small-scale simulations, see Section 1.1.2. However, the convergence of the estimated quantities as
a function of the number of particles involved in the simulation should be checked in all cases.

1.1.2 Aims of molecular simulations

Despite its intrinsic limitations in terms of spatial and timescales, molecular simulation has been
used and developed over the past 70 years, and its number of users keeps increasing. As we
understand it, it has two major aims nowadays.
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First, it can be used as a numerical microscope, which allows us to perform “computer” exper-
iments. This was the initial motivation for simulations at the microscopic level: physical theories
were tested on computers. This use of molecular simulation is particularly clear in its historic
development, which was triggered and sustained by the physics of simple liquids. Indeed, there
was no good analytical theory for these systems, and the observation of computer trajectories
was very helpful to guide the physicists’ intuition about what was happening in the system, for
instance the mechanisms leading to molecular diffusion. In particular, the pioneering works on
Monte-Carlo methods [195], and the first molecular dynamics simulation [4] were performed be-
cause of such motivations. Today, understanding the behavior of matter at the microscopic level
can still be difficult from an experimental viewpoint (because of the high resolution required, both
in time and in space), or because we simply do not know what to look for! Numerical simulations
are then a valuable tool to test some ideas or obtain some data to process and analyze in order
to help assessing experimental setups. This is particularly true for current nanoscale systems in
electronics, or for biological systems which can nowadays be imaged with nanometer precision.

Another major aim of molecular simulation, maybe even more important than the previous one,
is to compute macroscopic quantities or thermodynamic properties, typically through averages of
some functionals of the system. In this case, molecular simulation is a way to obtain quantitative
information on a system, instead of resorting to approximate theories, constructed for simplified
models, and giving only qualitative answers. Sometimes, these properties are accessible through
experiments, but in some cases only numerical computations are possible since experiments may
be unfeasible or too costly (for instance, when high pressure or large temperature regimes are
considered, or when studying materials not yet synthesized).

More generally, molecular simulation is a tool to explore the links between the microscopic and
macroscopic properties of a material, allowing to address modelling questions such as “Which mi-
croscopic ingredients are necessary (and which are not) to observe a given macroscopic behavior?”,
or “How do the particles organize themselves to create a macroscopic state of matter?”

An example: the equation of state of Argon

Let us make precise to some extent the second aim mentioned above, namely the computation of
average properties. We illustrate it with a simple but realistic example. We consider microscopic
systems composed of N particles in dimension 3 (typically atoms, i.e. nuclei together with their
electronic clouds), described by the positions of the particles q = (q1, · · · , qN ) ∈ D and the
associated momenta p = (p1, · · · , pN ) ∈ R3N . The set D, which is called the configuration space,
is typically an open subset (possibly the whole) of R3N , or D = (LT)3N for some parameter L > 0
(where T = R/Z denotes the one-dimensional torus). The choice of D depends on the boundary
conditions at hand, see Section 1.2.1. The vector (q, p) is called the microscopic state or the
configuration of the system. The set of all possible microscopic configurations (q, p) is called the
phase space.

In the framework of statistical physics, macroscopic quantities of interest are written as averages
over thermodynamic ensembles, which are probability measures over the admissible microscopic
configurations:

Eµ(ϕ) =
ˆ
E
ϕ(q, p)µ(dq dp). (1.1)

In this expression, the function ϕ is called an observable. The probability measure µ has support
on the phase space and depends on the thermodynamic ensemble used, see Section 1.2 for further
precisions on the most common choices.

Remark 1.1 (Generalization to other configuration spaces). All the results presented in
these notes may be generalized to the case when the configuration space D is not Rn, but some subset
of Rn, with appropriate boundary conditions on the frontier ∂D (for instance, reflecting boundary
conditions). One could also consider systems with molecular constraints (for instance, some inter-
atomic distances being fixed), in which case D is a submanifold of R3N and the phase-space is the
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cotangent space T ∗D. We however refrain from doing so in order to keep the presentation simpler;
see for instance [178, Chapter 3] for discussions on how to handle molecular constraints.

A statistical description through a probability measure µ is a convenient description since the
complete microscopic information is both unimportant (what matters are average quantities, and
not the positions of all particles composing the system) and too large to be processed.

An example of property of interest for Argon is the bulk pressure P . For particles of masses mi,
described by their positions qi and their momenta pi, it is given by P = Eµ(ϕ) with

ϕ(q, p) =
1

3|D|

N∑
i=1

Å |pi|2
mi
− qi ·

∂V

∂qi
(q)

ã
, (1.2)

where |D| is the physical volume of the box occupied by the fluid, and the potential energy
function V is made precise below, see (1.5)-(1.6).

In practice, such averages may yield results that are very close to experimental measurements,
even for systems which are small in comparison to the actual sizes of macroscopic systems (provided
the interaction potentials are short-ranged). For example, the equation of state of Figure 1.1, which
relates the density and the pressure at a fixed temperature, has been computed with a system of
a few thousand particles only, a number which is 20 orders of magnitude lower than the Avogadro
number. To obtain these results, a cubic system with periodic boundary conditions and fixed
temperature was considered, with a box size chosen to match the desired density, and the pressure
was computed as P = Eµ(ϕ) with ϕ given in (1.2) (techniques to do will be extensively presented
in these lecture notes). The computed results are compared with experimental measurements.1
The agreement is very good in the case of Argon. Notice also that high-pressure results, not easily
obtained from experiments, can be computed.

Fig. 1.1. Numerical equation of state of argon at T = 300 K (’+’) and experimental reference curve
(solid line). The picture on the right is a zoom on the low density/low pressure part of the curve, where
the ideal gas regime is plotted in dash-dotted line.

Besides static equilibrium properties of the form of (1.1), it is also possible to consider dy-
namical properties depending on the actual time evolution of the system (correlation functions,
transport coefficients such as thermal conductivity, exit times from a region in phase space,...);
see for instance Chapters 8 and 9.

1.2 Microscopic description of physical systems

The description of systems in statistical physics requires a fundamental ingredient: microscopic
interaction laws between the constituents of matter and possibly the environment. The interactions
1 See for instance the NIST webpage http://webbook.nist.gov/chemistry/fluid/
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between the particles are taken into account through a potential function V , depending on the
positions q only. The total energy of the system is then given by the Hamiltonian

H(q, p) = U(p) + V (q), (1.3)

where the kinetic energy is

U(p) =
1

2
pTM−1p, M =

Ö
m1 Id3 0

. . .
0 mN Id3

è
.

The matrix M is called the mass matrix. A Hamiltonian such as (1.3) is said to be separable
since it writes as the sum of two terms, depending only on the momenta and the positions,
respectively. Most Hamiltonians encountered in applications are separable, and we will in any
case restrict ourselves to separable Hamiltonians in these notes. An instance of a non-separable
Hamiltonian is the case when the mass-matrix depends on the configuration q of the system, which
is for example the case when the configuration is described in terms of so-called internal variables
(angles, distances between atoms, etc). Non-separable Hamiltonians can also be considered for
mathematical proofs, as the modified Hamiltonians used in the backward analysis of Hamiltonian
dynamics (see Section 2.2).

In order to describe more precisely the interactions between the elementary constituents of
the system, several points have to be made precise. First, the boundary conditions of the system
must be specified (see Section 1.2.1). We next discuss the interaction potential V in Section 1.2.2.
This function is very important since it incorporates almost all the physics of the problem. It is
therefore no surprise that obtaining reliable potential functions is still a very active research field.

1.2.1 Boundary conditions

Several boundary conditions can be imposed onto the system:

(i) Many current simulations are performed using periodic boundary conditions, so that surface
effects can be avoided and configurations typically encountered in the bulk of the system can
be obtained. In this case, a particle interacts not only with all the particles in the systems,
but also with their periodic images (see Figure 1.2). In practice, interactions with a finite
interaction range are set to 0 when the distance between two or several particles exceeds a
given cut-off radii rcut. When cubic domains of length L are considered as in Figure 1.2, i.e.
D = (LT)3N , the domain length should be chosen so that rcut < L/2. This ensures that a
particle interacts either with the primitive particle, or at most one of its periodic images.
Long-range interactions such as Coulomb interactions require a dedicated treatment, where
the potential energy function is decomposed into a short range part with finite interaction
range, and a long range part where particles and all of their periodic images are taken into
account using dedicated techniques such as Ewald’s sum [255];

(ii) In some simulations, the system is allowed to visit the entire physical space (D = R3N ). This
is the case for isolated systems, such as molecules in vacuo. It may be convenient however
to quotient out translations in this case since the potential energy is usually invariant under
these transformations;

(iii) It is sometimes necessary to consider confined systems. In this case, the positions of the
particles are restricted to some predefined region of space, and some rules have to be set
when the particles attain the boundary (such as specular reflection of the momenta).

Let us finally mention that open systems with inflows or outflows of energy, particles etc., are
sometimes considered. In this case, there may be some exchanges or forcing at the boundaries.
Such situations are not considered in these notes.
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Fig. 1.2. System with periodic boundary conditions. The simulation cell is numbered ”1”, and the other
cells are obtained by translation. The particles inside the primitive cell have interactions with particles in
all the other cells.

1.2.2 Potential functions

Ab initio interaction potentials.

Ideally, the interaction potentials between the particles should be obtained in a non-empirical ap-
proach by resorting to ab initio computations. To reduce the computational cost of the simulations,
it is customary to rely on the Born–Oppenheimer assumption, which assumes that, due to the very
large difference in mass between nuclei and electrons, the evolution of the electronic and nuclear
degrees of freedom can be decoupled, more precisely that the electronic degrees of freedom can be
described by a wavefunction where only the positions of the nuclei enter as parameters (in partic-
ular, it is not necessary to take the nuclear momenta into account). Moreover, the wavefunction is
the ground state of the Schrödinger operator associated with the fixed nuclei. More mathematical
precisions on this approximation can be found in [264] for instance. Under the Born–Oppenheimer
assumption, the energy of the system of nuclei of charges Zi at positions qi is therefore obtained
by adding the Coulomb interaction energies between the nuclei, and the electronic ground-state
energy:

V (q1, . . . , qN ) =
∑

16i<j6N

ZiZj
|qi − qj |

+ Velec(q1, . . . , qN ). (1.4)

Denote by M = Z1+ · · ·+ZN the number of electrons. The system is assumed to be neutral. The
electronic ground-state energy is obtained by minimizing the electronic problem over the Hilbert
space H of admissible wavefunctions, which is a subset of the space of antisymmetric functions
in L2(R3,C). We omit the spin variable for notational simplicity although this variable is very
important for quantitative computations. The electronic problem then reads



1.2 Microscopic description of physical systems 9

Velec(q1, . . . , qN ) = inf
{ ¨

ψ, “Hq1,...,qNψ
∂
H

∣∣∣ ψ ∈ H, ‖ψ‖L2 = 1
}
,

where the electronic Hamiltonian operator reads“Hq1,...,qN = −
M∑
m=1

1

2
∆xm −

M∑
m=1

N∑
i=1

Zi
|xm − qi|

+
∑

16n<m6M

1

|xn − xm|
.

We refer for instance to [46] for further precision on the computation of ab initio interaction
potentials. Such computations are however very time-consuming, so that only small systems can
be simulated this way (using Born-Oppenheimer molecular dynamics [206] or the Car-Parrinello
approach [50]).

Empirical potentials.

In practice, empirical formulas for the potential energy function are used to study larger systems.
These empirical formulae are obtained by assuming a functional form for the interaction poten-
tial, which depends on a set of parameters. These parameters may be chosen so that the potential
energy function is as close as possible to the function (1.4) obtained from small ab initio computa-
tions. Alternatively, the parameters may be such that average properties computed from molecular
simulations match experimental thermodynamic properties such as the equation of state of the
material, its heat capacity, etc.

A very simple example of an empirical potential is the potential function of a fluid composed
of N particles, interacting through a pairwise additive potential depending only on the distance
between the particles:

V (q1, . . . , qN ) =
∑

16i<j6N

V(|qi − qj |). (1.5)

For example, noble gases are well described using (1.5) when V is the Lennard-Jones potential
(depicted in Figure 1.3)

V(r) = 4 ε

Å(σ
r

)12
−
(σ
r

)6ã
. (1.6)

This potential depends on two parameters: an energy ε and a distance σ. For Argon for instance,
a good model is obtained with ε = 1.66 × 10−21 J, and σ = 3.405 Å. The model (1.5)-(1.6) is
suitable for noble gases since these systems are monatomic and the corresponding atoms have
closed electronic shells. Therefore, the dominant physical interaction is the weakly attractive long-
range van der Waals contribution, which scales as r−6.

Potential functions for molecules.

Many systems of interest contain molecules. Their description requires interaction potentials ac-
counting for covalent bonds between atoms and various bending or torsion angles between sub-
sequent covalent bonds. This is modelled through elementary interactions involving two atoms or
more. In order to present some typical elementary interactions used to describe molecules, it is
convenient to introduce the vectors ri,j = qj − qi for 1 6 i, j 6 N .

(1) The interactions between two atoms involved in a covalent bond can be modelled via a
harmonic potential energy

V2(qi, qi+1) =
k2
2

(
|ri,i+1| − `eq

)2
,

where `eq is the equilibrium length, and k2 is a stiffness parameter;
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Fig. 1.3. Lennard-Jones potential (1.6) where the distance and the energy are expressed in terms of the
equilibrium distance 21/6σ and the reference energy ε.

(2) Three atoms linked by two successive covalent bonds sharing a common atom (typically,
three carbon atoms along the backbone of a polymer chain) can interact via the three-body
interaction potential energy

V3(qi, qi+1, qi+2) =
k3
2
(θi − θeq)2,

where the bond angle θi is

θi = arccos
Å
ri,i+1

|ri,i+1|
· ri+1,i+2

|ri+1,i+2|

ã
,

while θeq is the equilibrium bond angle, and k3 is a stiffness parameter;
(3) Likewise, four atoms linked by three successive covalent bonds may experience the four-body

interaction potential energy

V4(qi, qi+1, qi+2, qi+3) = utors(cosφi), (1.7)

where the dihedral angle φi is obtained from the relation

cosφi = −
ri,i+1 × ri+1,i+2

|ri,i+1 × ri+1,i+2|
· ri+1,i+2 × ri+2,i+3

|ri+1,i+2 × ri+2,i+3|
.

Such local interactions have to be complemented by non-bonded interactions, e.g. van der Waals
forces modelled by Lennard–Jones potentials, and Coulomb interactions; see [246] for further
precisions.

A typical example of a simple molecular system is depicted in Figure 1.4 (left), which corre-
sponds to the pentane molecule in the so-called united-atom representation (see [244]). In this
representation, the hydrogen atoms are not explicitly taken into account. We label by q1, . . . , q5
the positions of the carbon atoms in the pentane molecule, while q6, . . . , qN are the positions of the
solvent particles. The solvent particles are assumed to interact with all the other atoms through a
pairwise potential Vsol depending only on the relative distance. The total interaction energy then
reads

V (q) = Vpentane(q1, . . . , q5) + Vsolvent(q6, . . . , qN ) + Vinteraction(q),

with
Vsolvent(q6, . . . , qN ) =

∑
66i<j6N

Vsol(|qi − qj |),

and
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Vinteraction(q) =

5∑
i=1

N∑
j=6

Vsol(|qi − qj |).

The interactions within the molecule are typically modelled by

Vpentane(q1, . . . , q5) =

4∑
i=1

V2(qi, qi+1) +

3∑
i=1

V3(qi, qi+1, qi+2)

+

2∑
i=1

V4(qi, qi+1, qi+2, qi+3),

where the dihedral potential function utors in (1.7) is given by an expression of the form

utors(x) = c1(1− x) + 2c2(1− x2) + c3(1 + 3x− 4x3).

The parameters ci (i = 1, 2, 3) used in the united-atom model of [244] are such that there are three
stable dihedral angles, the one at φ = 0 being energetically more favorable than the others (see
Figure 1.4, right).
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Fig. 1.4. Left: Schematic representation of a pentane molecule in a solvent (projected on a two-
dimensional plane), and definition of the bond angles and dihedral angles. Right: Typical shape of the
torsion potential for the dihedral angle.

More realistic force fields.

Pairwise additive potentials such as (1.5), and two-, three- or four-body bonded interactions may
not be a good approximation of the many-body ab initio potential function (1.4). Many studies
aim at proposing better empirical potential functions (or force fields). Various works in the nineties
constructed empirical potentials whose expressions are motivated by the underlying physics, such
as the (Modified) Embedded-Atom Model potentials [24], or bond-order potentials of REBO [263]
or ReaxFF [270] types, which contain term depending on the local coordination of the atoms. The
latter potentials can even account for chemical reactions (i.e. bond breakings and bond formations).
More recently, machine learning approaches were used to construct numerical potentials which have
an accuracy comparable to ab-initio potentials; see for instance the review article [106].

Non-dimensional units.

In practice, it is more convenient (and numerically more stable) to work with non-dimensional
quantities, so that all quantities that appear in the numerical computations are of order 1. In
general, reduced units require the following reference quantities:

• a reference mass m0, for instance the mass of the heaviest or the lightest atom in the system;
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• a reference energy ε0, given by the magnitude of a typical interaction energy, or alternatively
by kBT . This energy is therefore of the order of 10−21 J;

• a reference length `0, given by the typical interaction distance, for instance a covalent bond
length when molecules are present in the system. Usually, `0 is of the order of several Angströms.

Moreover, other reference quantities can be derived from the above fundamental reference quan-
tities. For instance, a reference time t0 is obtained by requiring that the typical kinetic energy is
of the order of magnitude of the reference energy:

m0

Å
`0
t0

ã2
= ε0,

so that

t0 =
m

1/2
0 `0

ε
1/2
0

. (1.8)

This time is typically of the order of the pico-second.
For the sake of concreteness, let us consider two examples. The first one is Argon, which

has a molar mass M = 39.95 g/mol. Interactions within this system are well described by the
Lennard-Jones potential (1.5)-(1.6), with the parameters ε = 1.66×10−21 J and σ = 3.405 Å. The
reference mass is the mass of an atom m0 = 6.64× 10−26 kg, the equilibrium interaction distance
`0 = 21/6σ = 3.82 Å can be chosen as a reference length, and the reference energy may be chosen
as ε0 = 1.66× 10−21 J. The time unit obtained from (1.8) is then t0 = 2.42× 10−12 s.

A second example corresponds to covalent bonds.A
ECRIRE

1.3 Thermodynamic ensembles

The macroscopic state of a system is described, within the framework of statistical physics, by a
probability measure µ on the phase space E = D × R3N . Macroscopic features of the system are
then computed as averages of an observable ϕ with respect to this measure, as given by (1.1):

Eµ(ϕ) =
ˆ
E
ϕ(q, p)µ(dq dp).

We therefore call the measure µ the macroscopic state of the system – also know as thermodynamic
ensemble. The motivation for switching from a microscopic to such a macroscopic description is
provided in Section 1.3.1.

We present more thoroughly in this section two very commonly used thermodynamic ensembles,
namely the microcanonical ensemble (Section 1.3.2) and the canonical ensemble (Section 1.3.3).
These ensembles describe respectively isolated systems, and systems at a fixed temperature (in
contact with a so-called thermostat or energy reservoir). We also mention some other thermody-
namic ensembles in Section 1.3.4, for the sake of completeness.

Let us already emphasize the mathematical challenge in computing ensemble averages such
as (1.1): the very high dimensionality of the integral under consideration prevents the use of
standard quadrature methods. In practice, the only realistic option is to rely on ergodic averages,
where configurations (qn, pn) are generated according to the probability measure µ (or possibly
according to a measure µ̃ very close to µ, the difference between µ and µ̃ originating from errors
in the numerical integration of a continuous dynamics for instance) by integrating a time-discrete
dynamics. The ensemble average (1.1) is then approximated by

lim
Niter→+∞

1

Niter

Niter∑
n=1

A(qn, pn). (1.9)

Let us already emphasize that the successive configurations are not independent in general. The
numerical techniques of course depend on the thermodynamic ensemble at hand.
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1.3.1 Motivation

The first point to mention is that the complete knowledge of a system at the atomistic level is
impossible by the Heisenberg uncertainty principle: momenta and positions cannot be simulta-
neously determined with absolute precision. The second point is that very small discrepancies in
the initial conditions are usually exponentially magnified in time due to the chaotic nature of the
underlying dynamics (such as the Hamiltonian dynamics presented in Section 2.1.1). The notion
of trajectory is therefore not relevant.

Next, note that the number of degrees of freedom is overwhelmingly large: assume that 1 octet
of data is sufficient to encode the position and momentum of a single particle. Then, a current
standard harddrive of 1 To = 1012 octet would allow to store the configuration of 1012 particles.
Encoding the configuration of a macroscopic system composed of O(NA) particles would require
100 billion of harddrives... which is way too much for practical computations! In fact, it turns out
that, in many situations, considering so many degrees of freedom is also unnecessary since we are
only interested in a few average properties (pressure, heat capacity, etc), and these averages turn
out to converge quite fast with the system size when the interaction potentials are sufficiently
short-ranged.

Finally, when looking at a trajectory (qn, pn) for a Lennard-Jones fluid evolving according to a
deterministic dynamics such as the Hamiltonian dynamics, we see that a tagged particle seems to
move in a random fashion, and that the instantaneous values of observables ϕ(qn, pn) are erratically
distributed around some average value. This is the final motivation for replacing a deterministic
description in terms of a full knowledge of the miscropic configuration by a probabilistic one, where
we only define the probability to observe collections of microscopic configurations.

1.3.2 The microcanonical ensemble

The thermodynamic ensemble naturally associated with the Hamiltonian dynamics (2.6) is the
microcanonical ensemble, which describes isolated systems at constant energy. This ensemble is
also often termed NVE ensemble, the capital letters referring to the invariants of the system,
namely the number of particles N , the volume of the simulation box V , and the energy E.

The corresponding probability measure is the normalized uniform probability measure on the
set S(E) of configurations at the given energy level E:

S(E) =
{
(q, p) ∈ E

∣∣∣ H(q, p) = E
}
. (1.10)

We present two ways to understand this idea. A more practical construction, which provides the
basis for numerical methods, is postponed to Section 2.1.4.

An explicit construction

The building block for the construction of the microcanonical measure is the measure δH(q,p)−E(dq dp),
where the conditioning relies on level sets of constant total energy. This measure can be obtained
by an explicit construction, using a limiting procedure. Consider a given energy level E, some
small energy variation ∆E > 0, and define

N∆E(E) =
{
(q, p) ∈ E

∣∣∣ E 6 H(q, p) 6 E +∆E
}
. (1.11)

Then, the following integral of a given test function ϕ expresses the fact that the set N∆E(E) is
endowed with a uniform measure:

ΠE,∆E(ϕ) =
1

∆E

ˆ
N∆E(E)

ϕ(q, p) dq dp.

In the limit ∆E → 0, a measure supported on the submanifold S(E) is recovered. Notice that
this measure is not normalized to 1 a priori. The measure δH(q,p)−E(dq dp) is defined through the
expectations of any observable ϕ as
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ˆ
S(E)

ϕ(q, p) δH(q,p)−E(dq dp) = lim
∆E→0

1

∆E

ˆ
N∆E(E)

ϕ(q, p) dq dp. (1.12)

The construction highlights the fact that the regions where |∇H| is large have a lower weight in
the average since the volume of the infinitesimal domain included in N∆E(E) and centered at
(q, p) ∈ S(E) is proportional to |∇H(q, p)|−1, see Figure 1.5. This observation is consistent with
the result (1.15) below, obtained with the co-area formula, and motivates the factor |∇H(q, p)|−1
on the right-hand side of (1.15).

Once the measure δH(q,p)−E(dq dp) is defined, the microcanonical measure is obtained by a
suitable normalization:

µmc,E(dq dp) = Z−1E δH(q,p)−E(dq dp), (1.13)

where the partition function used in the normalization

ZE =

ˆ
S(E)

δH(q,p)−E(dq dp)

is assumed to be finite. See the discussion after (1.17) for some sufficient conditions to this end.
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S(E +∆E)

∇H(q1, p1) ∇H(q2, p2)

Fig. 1.5. Limiting procedure used to construct the microcanonical measure. The volume of the in-
finitesimal domain between S(E) and S(E +∆E) centered at a given point (q, p) ∈ E is proportional to
|∇H|−1.

An alternative definition of the microcanonical measure

The measure δH(q,p)−E(dq dp) for a given energy level E has support in S(E), and is defined by
the following relation: for all test functions f : E → R and g : R→ R,

ˆ
E
g(H(q, p)) f(q, p) dq dp =

ˆ
R
g(E)

ˆ
S(E)

f(q, p) δH(q,p)−E(dq dp) dE. (1.14)

By the co-area formula [88, 7], an alternative expression of the measure δH(q,p)−E(dq dp) is

δH(q,p)−E(dq dp) =
σS(E)(dq dp)

|∇H(q, p)|
, (1.15)

where σS(E)(dq dp) is the area measure induced by the Lebesgue measure on the manifold S(E)
when the phase space is endowed with the standard Euclidean scalar product.

The microcanonical measure can then be rewritten as
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µmc,E(dq dp) = Z−1E δH(q,p)−E(dq dp) = Z−1E
σS(E)(dq dp)

|∇H(q, p)|
, (1.16)

with

ZE =

ˆ
S(E)

δH(q,p)−E(dq dp) =

ˆ
S(E)

σS(E)(dq dp)

|∇H(q, p)|
. (1.17)

The partition function ZE is finite for instance when S(E) is bounded and |∇H| 6= 0 on this
set. Since we consider only separable Hamiltonians, the condition |∇H(q, p)| = 0 is equivalent to
p = 0 and ∇V (q) = 0. Therefore, |∇H| 6= 0 is ensured as soon as ∇V (q) 6= 0 for all configurations
(q, 0) ∈ S(E).

1.3.3 The canonical ensemble

In many physical situations, systems in contact with some energy thermostat are considered,
rather than isolated systems with a fixed energy. In this case, the energy of the system fluctuates.
The temperature (a notion to be defined in this context...) is however fixed. In this situation,
the microscopic configurations are distributed according to the so-called canonical measure. The
canonical ensemble is also often termed NVT ensemble, since the number of particles N , the
volume V and the temperature T are fixed.

We first define the canonical measure, then give some elements on its derivation from a principle
of entropy maximization under constraints, and close this section with a brief presentation of some
techniques to sample the canonical measure.

Definition of the canonical measure

We assume in the sequel that e−βV ∈ L1(D). The canonical probability measure µ on E reads

µ(dq dp) = Z−1µ exp(−βH(q, p)) dq dp, (1.18)

where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann constant). The normaliza-
tion constant

Zµ =

ˆ
E
exp(−βH(q, p)) dq dp

in (1.18) is called the partition function. When the Hamiltonian H is separable, the canonical
measure is of the tensorized form

µ(dq dp) = ν(dq)κ(dp),

where ν and κ are the two following probability measures:

ν(dq) = Z−1ν e−βV (q) dq, Zν =

ˆ
D
e−βV (q) dq, (1.19)

and

κ(dp) =

Å
β

2π

ã3N/2 N∏
i=1

m
−3/2
i exp

Å
−β
2
pTM−1p

ã
dp. (1.20)

Under µ, the position q and the momentum p are independent random variables. Therefore, sam-
pling configurations (q, p) according to the canonical measure µ(dq dp) can be performed by inde-
pendently sampling positions according to ν(dq) and momenta according to κ(dp).

It is straightforward to sample from κ since the momenta are Gaussian random variables.
The actual issue is therefore to sample from ν. Appropriate methods to this end are presented in
Section 1.4.
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Some elements on the derivation of the canonical measure

A standard way to derive the expression (1.18) of the canonical probability in physics textbooks is
to consider a large system in the NVE ensemble, and determine the distribution of the configuration
in a small subset of it (see for instance [269, Section 4.3] among many other similar references).
The large system should be considered as the system of interest and the environment, which acts
as some thermostat, and with which the smaller system of interest exchanges energy.

An alternative derivation, mathematically more satisfactory but physically less intuitive, is
based on maximizing the entropy under the constraint that the energy is fixed in average. Such a
derivation is performed in [21] for instance. The constraint that the average energy of the system
is fixed formalizes the idea that the system under study exchanges energy with the thermostat or
energy reservoir to which it is coupled. The energy is therefore not fixed, but it has nonetheless a
well-defined average value.

Consider a measure which has a density ρ(q, p) with respect to the Lebesgue measure. The
constraints on the admissible functions ρ(q, p) are

ρ > 0,

ˆ
E
ρ(q, p) dq dp = 1,

ˆ
E
H(q, p)ρ(q, p) dq dp = E (1.21)

for some energy level E. The first two conditions ensure that ρ is the density of a probability
measure, while the last one expresses the conservation of the energy in average.

Statistical entropy.

The statistical entropy is defined as

S(ρ) = −
ˆ
E
ρ(q, p) ln ρ(q, p) dq dp. (1.22)

It quantifies the amount of information missing, or the “degree of disorder” as is sometimes stated
in a more physical language. We refer to Chapter 3 in [21] for a detailed discussion on the properties
ofS. The statistical entropy allows us to give a rigorous meaning to the idea that a thermodynamic
measure is (quoting [21, Section 4.1.3]) “the most disordered macrostate possible compatible with the
data,” or, equivalently, the measure which “contains no more information than is strictly necessary
to take the data into account.” The amount of information or disorder is quantified by the entropy.

Let us motivate the fact that large values of the statistical entropy (1.22) indeed correspond
to probability measures which are the least informative. We quantify this by showing that the
maximizer of the statistical entropy for bounded phase spaces E is unique, and corresponds to
the uniform probability distribution (the expression of this maximiser can be found by writing
the formal Euler–Lagrange equations associated with the maximization problem, as we do below
to derive the expression of the canonical measure). Assume momentarily that |E| < +∞ and
consider the density ρE(q, p) = |E|−11E(q, p) of the uniform probability measure on E . A simple
computation first shows that

S(ρE) = ln |E|. (1.23)

Then, for any probability density ρ,

S(ρ)−S(ρE) = −
ˆ
E
ρ ln ρ+

ˆ
E
ρE ln ρE =

ˆ
E
ρ ln

Å
ρE
ρ

ã
6
ˆ
E
ρ

Å
ρE
ρ
− 1

ã
= 0,

where we used the inequality lnx 6 x − 1 for all x > 0, with equality if and only if x = 1. This
proves therefore that

ρE = argmin

ß
S(ρ), ρ ∈ L1(E), ρ > 0,

ˆ
E
ρ = 1

™
(1.24)

is the unique maximiser of the statistical entropy.
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Remark 1.2 (Physical relevance of the statistical entropy). The main point in the above
derivation is that the maximiser of (1.22) is the uniform probability measure on E when this set
is finite. However, there are various other functionals whose maximizer is the uniform probability
measure. One interest of the statistical entropy is its extensivity. This is discussed in [21, Chap-
ter 3]. It can also be seen on the expression (1.23) of the maximal entropy in simple systems, such
as independent particles in a bounded phase space. In this situation, E = EN for some bounded
domain E , so that the statistical entropy is indeed proportional to N .

Maximization of the statistical entropy under constraints.

We come back to the case when E is not necessarily bounded. The canonical measure is recovered
as the solution to the following optimization problem, similar to (1.24) but with an additional
constraint on the average energy:

sup

ß
S(ρ), ρ ∈ L1(E), ρ > 0,

ˆ
E
ρ = 1,

ˆ
E
Hρ = E

™
. (1.25)

Formally, the Euler-Lagrange equation satisfied by an extremum reads

S′(ρ) + λ+ γH = 0,

where λ, γ are the Lagrange multipliers associated with the two constraints in (1.25) (normalization
and average energy fixed). Since S′(ρ) = −1− ln ρ, a candidate maximizer in (1.25) is the measure
with density

exp (1 + λ+ γH(q, p)) .

Usually, the Lagrange multiplier γ associated with the energy constraint is denoted by −β (with
β > 0 in order for the measure to be normalizable), and exp(1 + λ) = Z−1 is a normalization
constant. The Lagrange multiplier β exists and is unique since

β 7→ E(β) =

ˆ
E
H e−βH

ˆ
E
e−βH

is an increasing function. This is a consequence of the negativity of the derivative of the average
energy

E ′(β) = −

ˆ
E
(H − E(β))2 e−βH
ˆ
E
e−βH

when H is not constant.
It is easy to verify that the canonical measure with density Z−1e−βH is indeed the unique

maximizer of (1.25), as shown in [21, Section 4.2]. For the sake of completeness, we sketch the
proof of this statement. Consider two functions ρ1, ρ2 satisfying (1.21). Using again the inequality
lnx 6 x− 1 (with equality if and only if x = 1),ˆ

E
ρ1 ln ρ2 −

ˆ
E
ρ1 ln ρ1 =

ˆ
E
ρ1 ln

Å
ρ2
ρ1

ã
6
ˆ
E
ρ1 − ρ2 = 0.

Equality holds if and only if ρ1(q, p) = ρ2(q, p) almost everywhere. Then, choosing ρ2(q, p) =
Z−1 exp(−βH(q, p)), it holds, for any ρ satisfying the constraints (1.21):

−
ˆ
E
ρ ln ρ 6 −

ˆ
E
ρ ln

(
Z−1e−βH

)
= lnZ + β

ˆ
E
H ρ.

In view of the energy constraint (last condition in (1.21)), we therefore obtain

S(ρ) 6 lnZ + βE = S
(
Z−1e−βH

)
,

with equality if and only if ρ(q, p) = Z−1 exp(−βH(q, p)). This shows that the canonical measure
is indeed the unique maximizer of the entropy under the constraints (1.21).
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1.3.4 Other thermodynamic ensembles (complements)

We saw in Section 1.3.3 that the Boltzmann-Gibbs probability measure (1.18) can be seen as the
phase space probability measure maximizing the statistical entropy among the set of phase space
probability measures compatible with the observed macroscopic data (in this case, average energy
given). The derivation performed for an average energy fixed may be performed for any average
thermodynamic quantity, leading to other thermodynamic ensembles. The choice of the ensemble
amounts to choosing which quantities are fixed exactly or in average. This is in accordance with
the general philosophy that thermodynamic ensembles are probability measures on the set of all
possible microscopic configurations, consistent with the macroscopic state of the system.

We present in this section a general derivation of thermodynamic ensembles associated with a
given set of constraints, and next focus on two examples, the isobaric-isothermal ensemble (NPT)
where the number of particles, the pressure and the temperature are fixed, and the grand-canonical
ensemble (µVT) where the chemical potential, the volume and the temperature are fixed. Many
other cases could be treated in a similar fashion (fixed temperature and magnetization for a spin
system, fixed temperature and average velocity for a fluid, etc.). This section is not necessary for
understanding the remainder of these notes, and can be omitted in a first reading.

General derivation

Assume that the microscopic state of the system is described by (q, p, x), where (q, p) denotes as
above a phase space configuration, and where x ∈ X is some additional degree of freedom. We
denote by Dx and Ex the set of admissible positions q and configurations (q, p) for a given value
of x, so that the set of admissible configurations (q, p, x) is the space

E =
⋃
x∈X
Ex × {x}.

Denote by λ(dq dp dx) some reference measure on E . This measure expresses the a priori informa-
tion available on the system. Here, we will consider a reference measure of the form

λ(dq dp dx) = 1(q,p)∈Ex dq dp π(dx).

The conditional measure with respect to the parameter x (i.e. the measure obtained in the (q, p)
variables when the parameter x is kept fixed) is the usual Lebesgue measure on the set of admissible
configurations. The reference measure π on the variable x depends on the problem at hand.

Consider then a measure ρ(dq dp dx) describing the macroscopic state of the system, and sev-
eral observables ϕ1, . . . , ϕM , functions of (q, p, x), whose averages are fixed. We assume that the
measure ρ(dq dp dx) is absolutely continuous with respect to the reference measure λ(dq dp dx),
and denote, with an abuse of notation, by ρ(q, p, x) the corresponding density. In this setting, the
statistical entropy is defined as

Sλ(ρ) = −
ˆ
E
ρ(q, p, x) ln ρ(q, p, x)λ(dq dp dx),

and the probability measure describing the system is obtained as the solution of the following
maximization problem:

sup
ρ∈S(ϕ0

1,...,ϕ
0
M )

{
Sλ(ρ)

}
, (1.26)

with

S(ϕ0
1, . . . , ϕ

0
M ) =

ß
ρ ∈ L1(λ)

∣∣∣∣ ρ > 0,

ˆ
E
ρ dλ = 1,

ˆ
E
ϕiρ dλ = ϕ0

i , ∀i ∈ {1, . . . ,M}
™
.

The necessary condition to be satisfied by an extremum of (1.26) is the following: there ex-
ist (α0, . . . , αM ) ∈ RM+1 such that
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S′λ(ρ) + α0 +

M∑
i=1

αiϕi = 0.

Therefore,

ρ(q, p, x) = Z−1 exp

(
M∑
i=1

αiϕi(q, p, x)

)
. (1.27)

Remark 1.3 (Nonequilibrium steady states). Let us stress that the above derivation is per-
formed under the assumption that the system is at equilibrium. In particular, no notion of dynamics
is required. For nonequilibrium systems in a steady state, the dynamics has to be made precise. It
is not always clear whether a stationary probability measure exists, and, when it exists, whether it
is unique and whether the distribution of the microscopic configurations converges to it. In general,
no explicit expression of the invariant measure is available, in contrast to formulas such as (1.27).
See Chapter 8 for a more precise discussion.

Isobaric-isothermal ensemble (NPT)

Let us now present a first application of the above general derivation. Isobaric-isothermal ensembles
are characterized by the fact that the energy and the volume of the system are fixed in average
only. Consider for example a periodic system for which the size of the unit cell can vary in one
direction, and denote by x > 0 the length of unit cell in this direction (while it is fixed to L in the
two remaining directions). Then,

Dx =
[
xT× (LT)2

]N
, Ex =

[
xT× (LT)2

]N × R3N .

We choose a uniform measure on all possible volumes:

X = (0,+∞), λ(dq dp dx) = 1(q,p)∈Ex1x>0 dq dp dx.

The constraints to be taken into account are ϕ1 = H (average energy fixed), and ϕ2(x, q, p) = xL2

(average volume fixed).
Applying the results of the general derivation to the NPT case, it is easily seen that the

probability measure describing the equilibrium is

ρNPT(dq dp dx) = Z−1NPT e−βPL
2x e−βH(q,p) 1{q∈[xT×(LT)2]N} dq dp dx,

where the Lagrange multiplier associated with the volume constraint is written as βP . The quantity
P can be identified with the pressure.

Grand canonical ensemble (µVT)

We now describe a second application of the above general derivation. Consider a fluid of N
indistinguishable particles. The additional variable describing the microscopic state of the system
is the number N ∈ N∗ of particles contained in a periodic cubic box of volume L3. For a given
number N of particles, the set of admissible configurations is

EN = (LT)3N × R3N .

The reference measure for the number N of particles

+∞∑
n=1

1

n!
δn(dN)

is the uniform measure on the set of positive integers, up to factors n! which are related to the
indistinguishability of the particle (see for instance [199, Chapter 3] for further precision on the
construction of the reference measure for the grand-canonical ensemble). Therefore,
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λ(dq dp dN) =

+∞∑
n=1

1

n!
1(q,p)∈En dq dp δn(dN).

We denote by Hn the Hamiltonian function on each space En, which is a function of the variables
(q1, . . . , qn, p1, . . . , pn). The Hamiltonian H is then defined as H(q, p, n) = Hn(q, p) for (q, p) ∈ En.

The constraints to be taken into account are ϕ1 = H (average energy fixed) and ϕ2(x, q,N) =
N (average number of particles fixed). Applying the results of the general derivation, the grand-
canonical equilibrium measure reads:

ρµVT(dq dp dN) = Z−1µVT

+∞∑
n=1

eβµn

n!
e−βHn(q,p) 1(q,p)∈En dq dp δn(dN), (1.28)

where βµ is the Lagrange multiplier associated with the average number constraint.2 The param-
eter µ can be identified with the chemical potential.

1.4 A review of dynamics to sample the canonical ensemble

We present in this section various other ways to sample the canonical ensemble, not necessarilya ecrire
efficient or mainstream approaches. The aim is to give a feeling for the diversity of the techniques
which can be used – including purely deterministic approaches, stochastic differential equations,
and piecewise deterministic Markov processes.add also

Metropo-
lis here?

We do not discuss the efficiency of the various methods.

1.4.1 Deterministic dynamics

The original idea of Nosé was to introduce an extra variable ξ mimicking the influence of an energy
reservoir. This variable can act as a friction or anti-friction term depending on the sign of ξ, and
has an associated “mass” parameter Q > 0. It in fact provides a feedback mechanism: the friction
is increased if the kinetic temperature is too large, and decreased otherwise. More precisely,

q̇ =M−1p,

ṗ = −∇V (q)− ξp,

ξ̇ =
1

Q

Å
pTM−1p− 3N

β

ã (1.29)

The generator of this dynamics reads L = Lham +LNH with Lham = pTM−1∇q −∇V (q)T∇p and

LNH = −ξpT∇p +
1

Q

Å
pTM−1p− 3N

β

ã
∂ξ.

A simple computation shows that L∗ = −L+ 3Nξ and

L
Å
H(q, p) +

Qξ2

2

ã
= −3N

β
ξ

An invariant probability measure is

π(dq dp dξ) = Z−1Q e−βH(q,p)e−βQξ
2/2 dq dp dξ,

as follows from the fact that L†
Ä
e−βH(q,p)e−βQξ

2/2
ä
= 0. Note that the marginal in the vari-

ables (q, p) of this distribution is the canonical measure (1.18).
2 The notation µ for the chemical potential, standard in the physics and chemistry literature, should not
be confused with the notation used for the canonical measure throughout these lecture notes.
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This dynamics is typically discretized using time reversible and measure preserving splittings,
or using a Hamiltonian reformulation. Time averages typically converge faster than for stochastic
dynamics but possibly to a wrong value. Ergodicity is the key issue for this technique. In fact,
proofs of non-ergodicity were obtained in limiting regimes (KAM tori). In practice, difficulties are
encountered for heterogeneous systems (e.g. two populations of atoms with very different masses).

Various (unsatisfactory) remedies were suggested, ranging from Nosé-Hoover chains, mas-
sive Nosé-Hoover thermostatting, etc [269]. A more satisfactory remedy consists in adding
some stochasticity by considering an additional Ornstein-Uhlenbeck process on ξ, ergodic for
e−βQξ

2/2 dξ. The corresponding dynamics, known as Langevin Nosé-Hoover, reads
dqt =M−1pt dt

dpt = (−∇V (qt)− ξtpt) dt

dξt =

ï
Q−1

Å
pTt M

−1pt −
3N

β

ã
− γξt

ò
dt+

 
2γ

βQ
dWt

Its generator is L = Lham + LNH + γLthm with

Lthm = −ξ∂ξ +
1

βQ
∂2ξ .

This dynamics is ergodic for π.

1.4.2 Langevin-like dynamics

works of Brown and Einstein, see the first chapters in [204], the latter reference also provides many
interesting results on the Langevin equation and its overdamped limit REVOIR

REF

Overdamped Langevin dynamics

Langevin dynamics

Generalized Langevin dynamics

A Mori-Zwanzig derivation is provided in [159] from a generalized Hamiltonian system: a particle
coupled to harmonic oscillators with a distribution of frequencies.

For M = Id, 
dq = pt dt

dpt = −∇V (qt) dt+Rt dt

ε dRt = −Rt dt− γpt dt+
 

2γ

β
dWt

The unique invariant probability measure of the system is

π(dq dp dR) = Z−1γ,ε exp

Å
−β
ï
H(q, p) +

ε

2γ
R2

òã
The Langevin dynamics is recovered in the limit ε → 0. Proofs of convergence follow the same
scheme as for Langevin dynamics. See ?? for estimates similar to the ones obtained in Section 5.5.1.

Dissipative Particle Dynamics

The Langevin dynamics is not Galilean invariant, hence not consistent with hydrodynamics. A
simple remedy is to consider friction forces depending on relative velocities.
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dqt =M−1pt dt

dpi,t = −∇qiV (qt) dt+
∑
i 6=j

Ç
−γχ2(rij,t)vij,t dt+

 
2γ

β
χ(rij,t) dWij

å
with γ > 0, rij = |qi − qj |, vij =

pi
mi
− pj
mj

, χ > 0, and Wij = −Wji. A simple computation shows

that the canonical measure is invariant and the total momentum

N∑
i=1

pi

is an preserved by the dynamics.
Ergodicity is an issue [249]. Numerical discretizations are typically obtained by a splitting

strategy [248].

1.4.3 Piecewise deterministic Markov processes

We present in this section deterministic dynamics, where particles evolve in straight lines with
some velocities, interrupted by stochastic modifications of the velocities at random times. Such
processes fall into the class of piecewise deterministic Markov processes (PDMP). The model
considered here was initially proposed in the physics literature [220] but was also independently
introduced in the mathematics literature [202].quote also

Andersen

Andersen dynamics and the like

We consider the case when the mass matrix is diagonal. Andersen dynamics amount to resampling
individual components of the momenta at rate γ/D. This corresponds to the generator

L = Lham + γLAR, LAR =
1

D

D∑
i=1

(PD − 1), (1.30)

where

(Piϕ)(q, p) =

 
β

2πmi

ˆ
R
ϕ(q, p1, . . . , pi−1, ξ, pi+1, . . . , pD) e

−βξ2/(2mi) dξ.

Linear Boltzmann dynamics resampling all components of the momenta at the same time:

L = Lham + γLLB, LLB = P − 1, P = P1 . . . PD. (1.31)

BPS

The stochastic modifications of the velocities have two origins: (i) changes in the potential energy
landscape the particles visit, which leads to velocities being changed from p to R(q, p); (ii) momenta
resampling at exponential times in order to ensure that ergodicity holds. More precisely, the
generator of the dynamics writes L = Lj/d + γLthm with

Lj/dϕ(q, p) = pT∇qϕ(q, p) + λ(q, p)
(
ϕ(q,R(q)p)− ϕ(q, p)

)
,

Lthmϕ(q, p) =

ˆ
RD

(
ϕ(q, p′)− ϕ(q, p)

)
κ(dp′),

with the jump rate and the post-collisional velocity respectively given by

λ(q, p) = max
(
0, pT∇V (q)

)
, R(q)p = p− 2Π∇V (q)p,
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where the projector Πa reads

Πap =
(pTa)a

|a|2
.

A simple computation shows that R(q)2 = IdRD .
To check the invariance of the canonical measure by this dynamics, we check that each part

preserves the invariant measure. For the thermalization part,
ˆ
E
Lthmϕdµ =

ˆ
D

Åˆ
RD

ϕ(q, p′)κ(dp′)

ã
ν(dq)−

ˆ
E
ϕdµ = 0.

For the jump/drift part, we use the fact that κ is invariant by R(q) to write
ˆ
E
Lj/dϕdµ =

ˆ
E
λ(q, p)

(
ϕ(q,R(q)p)− ϕ(q, p)

)
µ(dq dp) +

ˆ
E
pT∇V (q)ϕ(q, p)µ(dq dp)

=

ˆ
E

(
λ(q,R(q)p)− λ(q, p)

)
ϕ(q, p)µ(dq dp) +

ˆ
E
pT∇V (q)ϕ(q, p)µ(dq dp).

Now, note that λ(q,R(q)p) = max(0,−pT∇V (q)) so that λ(q,R(q)p)−λ(q, p) = −pT∇V (q). This
allows to conclude to the invariance of µ by Lj/d.

Remark 1.4. The proof of the invariance of the canonical measure can be extended to any measure
of the form ν(dq)κ̃(dp) upon two conditions: (i) appropriately changing the thermalization part by
resampling the new velocity from κ̃, i.e. upon considering the thermalization operator

Lthmϕ(q, p) =

ˆ
RD

(
ϕ(q, p′)− ϕ(q, p)

)
κ̃(dp′);

(ii) ensuring that κ̃ is invariant by R(q).

In fact, exponential convergence rates in certain metrics can also be obtained [202].
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This chapter focuses on the longtime integration of the Hamiltonian dynamics. The motivation
for performing such simulations is that average properties with respect to the microcanonical
measure (1.13) are approximated in practice using averages over such trajectories. The consistency
of this approach relies on an ergodic assumption (see (2.21) below), which can be proved to hold
only for sufficiently simple systems, and provided no other invariants than the energy are present.

From a numerical perspective, a minimal requirement for integration schemes is that they
preserve well the energy over very long times. This means that energy cannot increase or decrease
in a systematic way as the number of integration steps goes to infinity, for a fixed and finite
timestep; although it can oscillate around some average value, with an amplitude diminishing
as the timestep is reduced. (Near)Energy preservation motivates the notion of stability we will
consider for these schemes. Ergodicity however always remains a concern.

Section 2.1 presents the Hamiltonian dynamics, and gives its properties. In particular, ergodic-
ity is discussed in Section 2.1.4. We then turn to numerical methods dedicated to the computation
of longtime averages in Section 2.2. Some extensions, in particular to stiff and constrained sys-
tems, are hinted at in Section 2.3. Our presentation is based on the review article [113], which is
an excellent introduction to the domain of geometric numerical integration, which studies schemes
preserving invariants or characteristic features of the continuous system at hand (a typical quantity
being the energy). Another nice introduction to the geometric numerical integration of Hamiltonian
systems is the book by Leimkuhler and Reich [170]. A more advanced reference, which provides
an extensive treatment of the topic, is the monograph by Hairer, Lubich and Wanner [114].

2.1 The Hamiltonian dynamics and its properties

We consider in this section the time evolution of isolated systems described at the microscopic
level. We denote by D the dimension of the positions q and momenta p variables, so that the
phase-space E is of dimension 2D. For instance, D = 3N when the system is composed of N
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particles in a 3-dimensional physical space. We assume in all this chapter that the system has an
energy described by a Hamiltonian function H(q, p), which is as smooth as needed.

After a general presentation of the Hamiltonian dynamics in its usual form in Section 2.1.1, an
equivalent reformulation is proposed in Section 2.1.3. We then recall some important properties
of the dynamics in Section 2.1.2, and conclude with a discussion on its (non)ergodic properties in
Section 2.1.4.

2.1.1 The Hamiltonian dynamics

General formulation

Hamiltonian dynamics describe the evolution of isolated physical systems. They are a system of
ordinary differential equations which reads in general

dq(t)

dt
= ∇pH(q(t), p(t)),

dp(t)

dt
= −∇qH(q(t), p(t)).

(2.1)

Initial conditions
(q(0), p(0)) = (q0, p0) (2.2)

should be provided. Introducing the matrix

J =

Å
0 IdD
−IdD 0

ã
, (2.3)

and denoting by y = (q, p) ∈ E , the Hamiltonian dynamics can be rewritten as the first-order
ordinary differential equation:

dy

dt
= J∇H(y) = J

Å
∇qH(q, p)
∇pH(q, p)

ã
. (2.4)

Let us discuss the existence and uniqueness of trajectories. We assume to this end that ∇H
is locally Lipschitz continuous. Then, J∇H is locally Lipschitz continuous, and the Cauchy–
Lipschitz theorem ensures the existence and uniqueness of C1 trajectories for positive times up to
an explosion time that depends a priori on the initial condition. In order to prove that the solution
is globally well defined, more assumptions are needed. We give below some sufficient conditions
for the global well posedness of the dynamics for separable potentials.

We always assume in the sequel that the Cauchy problem (2.1)-(2.2) is well-posed for any
initial condition (q0, p0) ∈ E . A mathematical object which will be of constant use in this chapter
is the flow of the Hamiltonian dynamics.

Definition 2.1. Fix t > 0. The flow φt the application which associates to some initial condi-
tion (q0, p0) the solution (q(t), p(t)) = φt(q

0, p0) to (2.1) at time t > 0.

Let us emphasize that (2.1) is an autonomous equation since the system is assumed to be
isolated, so that the flow only depends on the duration time t of the trajectory, and not on the
initial and final times separately.

The flow is a semi-group: φt+u = φt ◦ φu for all t, u > 0. Actually, it is possible to define the
backward evolution φ−t for t > 0, using for instance the reversibility of the dynamics (see (2.15)
below), so that φt+u = φt ◦ φu for all t, u ∈ R.

Another important property, which we will repeatedly use, is the following phase-space vol-
ume preservation (see Section 2.1.2 below for a proof and further comments): For all measurable
subsets B ⊂ R2D, ˆ

φt(B)

dq dp =

ˆ
B

dq dp.

This identity, often referred to as Liouville’s theorem, motivates the fact that the Hamiltonian
dynamics is naturally written in terms of the momenta rather than velocities. It allows to change
variables by replacing (q, p) by φt(q, p), without the addition of Jacobian terms.
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Hamiltonian dynamics for separable potentials

A physically very relevant situation in practice corresponds to separable Hamiltonians of the
form (1.3), namely

H(q, p) =
1

2
pTM−1p+ V (q). (2.5)

In this case, the Hamiltonian dynamics reduces to
dq(t)

dt
= ∇pH(q(t), p(t)) =M−1p(t),

dp(t)

dt
= −∇qH(q(t), p(t)) = −∇V (q(t)).

(2.6)

When reformulating this dynamics in terms of the positions only, one obtains

M
d2q(t)

dt2
= −∇V (q(t)),

which is Newton’s second law.
A sufficient condition for the dynamics (2.6) to be well posed for all times t > 0 is that ∇V

is locally Lipschitz continuous (so that the existence and uniqueness of the trajectories is granted
for small positive times) and that V is bounded below. In order to prove this statement, we
denote by V− = infD V . We first note that the total energy is conserved when the solution is
well defined, see (2.8) below. This shows that |p(t)| 6

√
H(q0, p0)− V− is uniformly bounded,

and hence positions grow at most linearly in time. Therefore, y(t) cannot explode in finite time
and the dynamics is globally well posed. In fact, as the above elementary proof shows, a sufficient
condition for the trajectory starting from any initial (q0, p0) to be globally well defined is that V
is bounded below and ∇V is locally Lipchitz continuous on the set {q ∈ D |V (q) 6 H(q0, p0)}.

2.1.2 Properties of the Hamiltonian dynamics

The Hamiltonian dynamics (2.1) has several interesting mathematical and structural properties:

(1) Symmetry. Since φt ◦ φ−t = Id,
φ−t = φ−1t . (2.7)

(2) Energy conservation. The choice ϕ = H in the reformulation of the Hamiltonian dynam-

ics (2.16) leads to
dH(q(t), p(t))

dt
= 0, which means that

∀t > 0, H(q(t), p(t)) = H(q0, p0). (2.8)

(3) Volume preservation. For all measurable sets B ⊂ E , and for all t ∈ R,
ˆ
φt(B)

dq dp =

ˆ
B

dq dp. (2.9)

The volume conservation (2.9) is a consequence of the equality

Jacφt(q, p) = 1, (2.10)

where1 Jacφt(q, p) = |det(∇φt(q, p))|. In the latter expression, our convention for defining the
gradient of a mapping g(q, p) = (g1(q, p), . . . , g2D(q, p))

T is the following:

1 In fact, as can seen from proof of Lemma 2.1 below, it actually holds that det(∇φt(q, p)) = 1.
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∇g(q, p) =

à ∂g1
∂q1

. . .
∂g1
∂qD

∂g1
∂p1

. . .
∂g1
∂pD

. . . . . .
∂g2D
∂q1

. . .
∂g2D
∂qD

∂g2D
∂p1

. . .
∂g2D
∂q2D

í
.

For a given vector h ∈ R2D, the vector ∇g(q, p)h therefore has components ∇gi(q, p)Th, which
is consistent with the fact that ∇g(q, p)h approximates g((q, p) + h) − g(q, p). We will also
write in the sequel, using the notation y = (q, p),

∂g

∂y
= ∇g.

The proof of (2.10) relies on the fact that the Hamiltonian vector field is divergence-free:

div(J∇H) = divq(∇pH)− divp(∇qH) =

D∑
i=1

(∂qi∂pi − ∂pi∂qi)H = 0.

The following lemma then allows us to conclude.

Lemma 2.1 ([Lemma VII.3.1 in [114]). The flow of a differential equation ẏ = f(y) in
Rn is volume-preserving if and only if divf(y) = 0 for all y ∈ Rn.

In fact, as the following proof shows, a stronger property than valume preservation holds true
since det(∇φt(y)) = 1 for all y ∈ Rn and t > 0.

Proof. Fix an initial condition y0 ∈ Rn and introduce Y (t) = ∇φt(y0). Then, a simple com-
putation shows that

Ẏ (t) = A(t)Y (t), A(t) = ∇f(φt(y0)), (2.11)

with Y (0) = Id. Now, the Abel–Liouville–Ostrogradskii identity implies that

d

dt

(
detY

)
= Tr(A) detY. (2.12)

This identity is obtained by noting that, for a matrix B ∈ Rn×n,

det(Y + εBY ) = det(Id + εB) detY =
(
1 + εTr(B) + O(ε2)

)
detY,

and using the differential equation on Y (t) to write

Y (t+ h) = Y (t) +

ˆ h

0

A(t+ s)Y (t+ s) ds = Y (t) + hA(t)Y (t) + O(h2).

Since Tr(A(t)) = (divf)(φt(y0)), we deduce from (2.12) that the requirement detY (t) =
detY (0) = 1 for all t ∈ R is equivalent to (divf)(φt(y0)) = 0 for all t ∈ R. The conclusion
follows since y0 is arbitrary. ut

When D = 1, i.e. for 2-dimensional Hamiltonian systems, we discuss in the following Re-
mark 2.1 that the preservation of signed volumes (and not just volumes themselves) can
be reformulated in a seemingly more complicated way, which however allows to characterize
Hamiltonian systems (as made clear in Theorem 2.2 below).

Remark 2.1 (Preservation of signed volumes by linear maps in dimension 2). Con-
sider the linear mapping Φ(y) = Ay for y ∈ R2 and A ∈ R2×2. The signed volume of the paral-
lelogram generated by two vectors y = (y1, y2) and z = (z1, z2) is y ∧ z = y1z2 − y2z1 = yTJz.
Under the mapping Φ, the parallelogram generated by y and z is transformed into the paral-
lelogram generated by Ay and Az, whose signed volume is (Ay)TJ(Az). The equality of these
volumes for all possible vectors y, z ∈ R2 is thus equivalent to ATJA = J . The latter equality
implies in particular |detA| = 1, i.e. the linear mapping Φ is volume preserving.
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(4) Symplecticity. The matrix J defined by (2.3) is antisymmetric and orthogonal since JT =
−J = J−1. In particular, J2 = −Id. The following property may be seen as an appropriate
generalization of the preservation of signed volumes, for general nonlinear mappings, and
dimensions D > 1 (recall the criterion for the preservation of signed volumes obtained for
linear mappings in dimension 2D = 2 at the end of Remark 2.1).

Definition 2.2. For an open set U ⊂ E, a mapping g : U → R2D of class C1 is symplectic if
∇g(q, p) satisfies

∀(q, p) ∈ U, (∇g)TJ∇g = J. (2.13)

It is easily shown that the flow φt associated with (2.1) is symplectic for all t ∈ R (this is a result
due to Poincaré); see Theorem 2.1 below. Note that the volume preservation property (2.9)
of the flow φt is recovered as a consequence of the symplecticity property since (2.13) with
g = φt implies that (det∇φt)2 = 1 (in fact, in view of the initial condition det∇φ0 = 1,
it holds det∇φt = 1). The symplecticity property is stronger than volume preservation, and
can be understood as the conservation of the signed volume of elementary parallelograms,
see [170, Section 3.5] or [114, Section VI.2] for pedagogical presentations. Remark 2.1 shows
that symplecticity is equivalent to the preservation of the signed volume in dimension 2.

Theorem 2.1 (Symplecticity of the Hamiltonian flow). Let H(q, p) be a C2(U) function,
for an open set U ⊂ R2D. Then for any fixed t ∈ R such that the flow φt of (2.1) exists, the
mapping φt is symplectic.

Proof. Note first that

d

dt

Å
∂φt(y)

∂y

ã
=

∂

∂y

Å
dφt(y)

dt

ã
=

∂

∂y

(
J∇H(φt(y))

)
= J∇2H(φt(y))

∂φt(y)

∂y
.

Let us now fix y and introduce Ψ : t 7→ ∂φt(y)

∂y
. Then, using that (∇2H)T = ∇2H,

d

dt

(
Ψ(t)TJΨ(t)

)
= Ψ(t)T∇2H(φt(y))J

TJΨ(t) + Ψ(t)TJ2∇2H(φt(y))Ψ(t) = 0,

where we used JT = −J . This shows that Ψ(t)TJΨ(t) = Ψ(0)TJΨ(0) = J , which gives the
claimed result. ut

Actually, the symplecticity of the flow is indeed a characteristic feature of Hamiltonian systems.
To prove this, we introduce the notion of locally Hamiltonian systems: the differential equation
ẏ = f(y) is locally Hamiltonian on an open set U if, for every y0 ∈ U , there exists an open
neighborhood N of y0 and a function H : N → R (depending possibly on y0) such that the
force field can be written f(y) = J∇H(y) for all y ∈ N .

Theorem 2.2 (Theorem VI.2.6 in [114]). Let f : U → R2D be continuously differentiable.
Then, the differential equation ẏ = f(y) is locally Hamiltonian on U if and only if its flow
φt : U → R2D is symplectic for all sufficiently small t > 0.

Proof. In view of Theorem 2.1, we only need to prove that if the flow is symplectic, then
the differential equation is locally Hamiltonian, i.e. for any initial condition y0, there exists a
function H such that f = J∇H in the neighborhood of y0. To this end, we differentiate the
symplecticity condition

(∇φt)T J∇φt = J

with respect to time, and use (2.11) to obtain (using again the notation Y (t) = ∇φt(y0))

Y (t)T
(
A(t)TJ + JA(t)

)
Y (t) = 0.

At time t = 0, since JT = −J , this condition means that JA(0) = J∇f(y0) is a symmetric
matrix for all y0 ∈ U . Upon introducing the function h(y0) = −Jf(y0), the latter condition
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can be restated as ∇h(y0) being a symmetric matrix for all y0 ∈ U . Let us show that this
implies that, for any y0 ∈ U , there exists a neighborhood N ⊂ U of y0 and a function H such
that h(y) = ∇H(y) for any y ∈ N . This indeed proves the theorem since f = Jh = J∇H.
We next define the following function H in an open ball centered at y0 and contained in U :

H(y) =

ˆ 1

0

(y − y0)Th(y0 + t(y − y0)) dt. (2.14)

The latter formula is natural because the right hand side of the previous equality is indeed
equal to H(y)−H(y0) when h is the gradient of some function H integrated along the straight
path going from y0 to y. In order to check that it indeed holds that h = ∇H for the function H
defined in (2.14), we use the symmetry property ∂ykhi = ∂yihk, to write, for a component yk
(1 6 k 6 n),

∂ykH(y) =

ˆ 1

0

(
hk(y0 + t(y − y0)) + t

2D∑
i=1

(yi − y0,i)∂ykhi(y0 + t(y − y0))

)
dt

=

ˆ 1

0

(
hk(y0 + t(y − y0)) + t

2D∑
i=1

(yi − y0,i)∂yihk(y0 + t(y − y0))

)
dt

=

ˆ 1

0

d

dt

(
thk(y0 + t(y − y0))

)
dt = hk(y),

which allows to conclude. ut

Additional properties can hold true in specific situations. For instance, the Hamiltonian dy-
namics (2.6) associated with the separable Hamiltonian (2.5) (or more generally with separable
Hamiltonians with kinetic energies which are even) is reversible in the following sense.

(5) Reversibility. Assume that H is of the separable form (2.5), and consider the momentum
reversal function

S(q, p) = (q,−p).

Then, the time-reversed evolution φ−t for t > 0, defined by (2.7), coincides with a forward
evolution with momenta reversed (the so-called backward flow):

φ−t = S ◦ φt ◦ S. (2.15)

This statement can be proved as follows. Consider initial conditions (q0, p0) ∈ E , denote by
(q(t), p(t)) the solution of the Hamiltonian dynamics starting from this initial condition, and
by (q̂(t), p̂(t)) the solution of the Hamiltonian dynamics starting from the momenta-reversed
initial condition (q0,−p0). Note that

d

dt

Å
q(−t)
−p(−t)

ã
=

Å
−q̇(−t)
ṗ(−t)

ã
=

Å
−M−1p(−t)
−∇V (q(−t))

ã
= J∇H(q(−t),−p(−t)).

Therefore, (q(−t),−p(−t)) = (S ◦ φ−t)(q0, p0) and (q̂(t), p̂(t)) = (φt ◦ S)(q0, p0) are both
solutions of the Hamiltonian dynamics, starting from the same initial condition (q0,−p0);
hence they are equal: φt ◦S = S ◦ φ−t. The conclusion (2.15) follows by composing both sides
with S and using S2 = Id.

Exercise 2.1. Prove that (2.15) holds for separable Hamiltonians of the form H(q, p) = V (q) +
U(p) with U even ( i.e. U(−p) = U(p)). More generally, prove that the flow of the dynamics®

q̇(t) = F (q(t), p(t)),

ṗ(t) = G(q(t), p(t)),

is reversible when F (q,−p) = −F (q, p) and G(q,−p) = G(q, p).
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2.1.3 Equivalent reformulations

We present in this section a more abstract reformulation of (2.1) in terms of semigroups, which
will be useful to determine the order of certain integration schemes, and, maybe more importantly,
allows to make contact with the infinitesimal generators of stochastic differential equations we will
encounter in Chapters 4 and 5.

Let us introduce the first order differential operator

Lham = ∇pHT∇q −∇qHT∇p,

considered for instance as an operator on C0(E), with domain C1(E) (recall that we assumed H
to be as smooth as needed in order to simplify the presentation; here, H ∈ C1(E) is a sufficient
condition for the statement on the domain of Lham). A simple computation shows that, for any
ϕ ∈ C1(E),

d

dt

[
ϕ(q(t), p(t))

]
= (Lhamϕ) (q(t), p(t)). (2.16)

This means that Lham can be seen as the infinitesimal generator2 of the following semigroup
on C0(E): refaire

topo sur
semi-
groupes
et les no-
tations
associees ?

(Ptϕ)(q, p) = ϕ(φt(q, p)). (2.17)

The operator Lham is therefore called the generator of the dynamics.
The transport equation (2.16) (or equivalently the Hamiltonian equation (2.6)) may also be

restated as an evolution equation for the phase space density of the particles. Assume that the

lien à
faire avec
partie
Tony/Julien

initial conditions (q0, p0) are random variables distributed according to some probability measure
with density ψ0(q, p) with respect to the phase space Lebesgue measure dq dp (the associated ex-
pectation being denoted by E), and that each initial phase space configuration is evolved according
to the dynamics (2.6). Then the configurations φt(q0, p0) at time t are distributed according to
a measure with density ψ(t, q, p), whose evolution is governed by the following partial differential
equation (called the Liouville equation), understood in the distributional sense:

∂tψ = ∇qHT∇pψ −∇pHT∇qψ = L†hamψ = −Lhamψ, ψ(0, q, p) = ψ0(q, p), (2.18)

where L†ham = −Lham is the adjoint of Lham on L2(E) (we used here the fact that the Hamiltonian
vector field is divergence-free). The Liouville equation (2.18) can be derived using (2.16). Indeed,
for any ϕ ∈ C1(E) with compact support,

d

dt

Åˆ
E
ϕ(q, p)ψ(t, q, p) dq dp

ã
=

d

dt
E
(
ϕ(q(t), p(t))

)
= E

(
Lhamϕ(q(t), p(t))

)
=

ˆ
E
Lhamϕ(q, p)ψ(t, q, p) dq dp,

so that ˆ
E
(∂tψ − L†hamψ)ϕ = 0,

which leads to (2.18). Finally, note that the method of characteristics allows to solve (2.18)
as ψ(t, q, p) = ψ0(φ−t(q, p)).

2 Recall that the generator L of a continuous semigroup Pt is characterized by the following strong limit:

∀ϕ ∈ D(L), Pt − Id

t
ϕ −−−→

t→0
Lϕ.
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2.1.4 The microcanonical measure as an ergodic limit

Practitioners often want to compute microcanonical averages as ergodic limits over Hamiltonian
trajectories. Notice first that the measure µmc,E(dq dp), which is supported on the submani-
fold S(E) defined in (1.10), is invariant by the flow φt of the Hamiltonian dynamics for all energy
levels E. Indeed, by the conditioning formula (1.14), and using the fact that Jacφt = 1 (see (2.10)),
we obtain, for two bounded measurable functions ϕ : R2D → R and ψ : R→ R and any time t ∈ R,

ˆ
R
ψ(E)

ˆ
S(E)

ϕ(φt(q, p)) δH(q,p)−E(dq dp) dE

=

ˆ
E
ψ(H(q, p))ϕ(φt(q, p)) dq dp

=

ˆ
E
ψ(H ◦ φ−t(Q,P ))ϕ(Q,P ) dQdP

=

ˆ
E
ψ(H(Q,P ))ϕ(Q,P ) dQdP

=

ˆ
R
ψ(E)

ˆ
S(E)

ϕ(q, p) δH(q,p)−E(dq dp) dE,

where we have used the change of variables (Q,P ) = φt(q, p) and the invariance of the Hamiltonian
by the flow φt. Therefore,ˆ

S(E)

ϕ(q, p) δH(q,p)−E(dq dp) =

ˆ
S(E)

(ϕ ◦ φt) (q, p) δH(q,p)−E(dq dp) (2.19)

for all times t ∈ R and all test functions ϕ, which shows the claimed invariance.

Remark 2.2. A more intuitive way to understand the equality (2.19) is to perform the same
change of variables as above when integrating the bounded measurable function f over the do-
main N∆E defined in (1.11). In view of the property φ−1t = φ−t, it holds φ−1t (N∆E(E)) = N∆E(E)
(the inclusion φ−1t (N∆E(E)) = N∆E(E) is clear by energy preservation; for the equality, note that
for any (q, p) ∈ N∆E(E), the configuration (Q,P ) = φt(q, p) belongs to φ−1t (N∆E(E)) and is such
that φ−1t (Q,P ) = (q, p)). Then,

1

∆E

ˆ
N∆E(E)

ϕ(Q,P ) dQdP =
1

∆E

ˆ
N∆E(E)

(ϕ ◦ φt) (q, p) dq dp.

The argument is concluded by using (1.12) to obtain (2.19) in the limit ∆E → 0.

The invariance of the microcanonical measure by the Hamiltonian flow can be reformulated
using the generator Lham introduced in Section 2.1.3 as: for any ϕ ∈ C∞(E) with compact support,

ˆ
S(E)

Lhamϕdµmc,E(dq dp) = 0. (2.20)

In view of the preservation of the microcanonical measure by the Hamiltonian flow, the following
ergodicity assumption can therefore be considered: Thermodynamic integrals of the form (1.1) are
computed as trajectory averages

ˆ
S(E)

ϕ(q, p)µmc,E(dq dp) = lim
T→+∞

1

T

ˆ T

0

ϕ(φt(q
0, p0)) dt, (2.21)

where φt is the flow of the Hamiltonian dynamics (2.6), and the initial condition (q0, p0) is such
that H(q0, p0) = E.

Ergodicity can be rigorously shown to hold for completely integrable systems and their per-
turbations (see for instance [15]). In general however, no convergence result can be stated, and
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examples of non-ergodicity can be found. A simple instance of non-ergodicity is the following.
Consider the one-dimensional double-well potential

V (q) =
(
q2 − 1

)2
. (2.22)

The submanifolds S(E) for E < 1 are composed of two simply connected subdomains, and ergod-
icity can only be expected in a given connected component (see Figure 2.1). Other instances of
non-ergodicity are situations when there are other invariants than the energy (such as the total
momentum of the system, for instance). In those cases, ergodicity is possible only with respect to
the Lebesgue measure conditioned to the set of all the invariants of the dynamics.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.0
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1.0
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E
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e
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Fig. 2.1. When H(q, p) = 0.6 for the double-well potential (2.22), the only positions which can be
obtained are in the union of two disjoint intervals {q < 0 |V (q) 6 0.6} and {q > 0 |V (q) 6 0.6}. If the
Hamiltonian dynamics starts with an energy H(q0, p0) = 0.6 and a negative value of q0, it cannot explore
positive positions.

Remark 2.3 (Rate of convergence of ergodic averages). We highlight on a specific example
the statement that, when ergodic averages converge to the correct value, they do so with a fast
convergence rate, scaling as the inverse of the integration time – in contrast to stochastic dynamics,
for which the error is much larger since it is inversly proportional to the square-root of the time
(see for instance Section 4.2.2). More precisely, consider a function ϕ ∈ C1(E), bounded and
with bounded derivatives to simplify the discussion. Note first that the average of ϕ against the
microcanonial measure is 0 in view of (2.20). Next, by (2.16),

1

τ

ˆ τ

0

(Lhamϕ) (q(t), p(t)) dt =
1

τ

[
ϕ(q(τ), p(τ))− ϕ(q(0), p(0))

]
. (2.23)

This shows the trajectory average of ϕ converges to 0, so that the ergodic assumption holds in
this case. Moreover, the error is of order 1/τ . It is in fact a general practical observation that
deterministic methods allow for a faster convergence, although the limit of trajectory averages may
not correspond to the average with respect to the canonical measure when ergodicity does not hold.

Remark 2.4 (Viriel’s theorem, taken from [113]). Consider the separable Hamiltonian (2.5)
and the observable ϕ(q, p) = p · q, for which Lhamϕ(q, p) = pTM−1p − q · ∇V (q). We assume
in this remark that the Hamiltonian dynamics is ergodic. Under appropriate assumptions on the
potential energy function (for instance, growth conditions on V ensuring that |ϕ| 6 aH + b for
some constants a, b > 0), the right-hand side of (2.23) converges to 0 as τ → +∞, so that

lim
τ→+∞

1

τ

ˆ τ

0

p(t)TM−1p(t) dt = lim
τ→+∞

1

τ

ˆ τ

0

q(t) · ∇V (q(t)) dt.
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This equality states that the potential part of the pressure is proportional to the kinetic energy
(recall the definition (1.2) of the pressure observable), an equipartition theorem known as the
Viriel relation in the physics and chemistry literature.

From a numerical viewpoint, the computation of averages according to the right-hand side
of (2.21) requires very stable algorithms allowing a longtime integration of the Hamiltonian dy-
namics with a very good preservation of the energy, such as the Verlet algorithm (2.28). This
is the subject of Section 2.2. The numerical analysis of microcanonical sampling methods based
on these properties (in the very particular case of completely integrable systems) can be read
in [44, 45]. There exist also stochastic methods based on constrained diffusion processes to sample
the microcanonical measure, see [89, 90]. The aim of these methods is to destroy all invariants of
the dynamics, except the energy.

2.2 Numerical integration of the Hamiltonian dynamics

We discuss in this section numerical schemes to integrate (2.6). We restrict the discussion to
separable Hamiltonians with qudratic kinetic energies for simplicity of exposition and because this
is the most common situation in practice, but various arguments can be adapted to cover more
general situation (separable Hamiltonians with non-quadratic kinetic energies, or non-separable
Hamiltonians). We denote by (qn, pn) an approximation of (q(tn), p(tn)) at time tn = n∆t for a
given, fixed timestep ∆t > 0. A numerical scheme is characterized by a mapping Φ∆t : E → E such
that

∀n ∈ N,
(
qn+1, pn+1

)
= Φ∆t(q

n, pn).

Let us first mention a few reasons why it is both hopeless and useless to integrate precisely the
Hamiltonian dynamics in the context of molecular simulation:

(i) The Hamiltonian dynamics is known to be strongly sensitive to the initial conditions, or to
numerical errors such as round-off errors: Small differences between two initially close con-
figurations are exponentially magnified as time passes. Since the initial conditions can neveruse word

“chaotic”?
what
would be
a good
reference?

be known exactly for physical reasons in molecular systems (in particular because there are
too many atoms whose positions and momenta are required) and very long integration times
are needed, this is a first reason not to try to integrate too precisely the Hamiltonian dynam-
ics. The situation may of course be different in other application fields where Hamiltonian
dynamics are used for systems with less degrees of freedom, such as celestial mechanics.

(ii) Moreover, given the large number of particles in molecular simulations (hence the numeri-
cal cost of evaluating forces), the very small time-steps that would be needed to integrate
precisely the trajectory are prohibitive.

(iii) Finally, the aim of many current computations in computational statistical physics is the
evaluation of average properties along a long trajectory (see the ergodicity assumption (2.21)
above). Therefore, it is sufficient to ensure a correct sampling rather than integrating precisely
the trajectory. In particular, a basic requirement is the preservation of the energy over long
trajectories.

The above arguments led to the development of numerical techniques dedicated to Hamiltonian
systems, fully taking into account the energy preservation as a basic first requirement, and as a
definition of stability. This requirement is different from the usual finite time error analysis for
discretizations of ODEs (see e.g. [115]), which gives results on the error at finite times in the
limit when the discretization timestep goes to 0. The numerical analysis of Hamiltonian dynamics
rather considers the regime where the time step is fixed (possibly to a relatively small value) and
the integration time goes to infinity. In this context, the order of the numerical scheme (i.e. the
integer α such that the error between the exact solution over a time interval ∆t and the numerical
solution after one step of the numerical scheme is of order ∆tα+1) is not used to quantify the
magnitude of the error of the numerical approximation compared to the reference dynamics on
finite-time intervals, but rather to determine bounds on the error on the energy of the system.
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We first show that standard integration schemes fail to preserve the energy in the longtime
limit in Section 2.2.1. We next present in Section 2.2.2 dedicated numerical schemes to integrate
the Hamiltonian dynamics, which turn out to have very nice long time properties, as explained
from a mathematical viewpoint in Section 2.2.3.

2.2.1 Failure of standard integration schemes

In view of (2.4), the Hamiltonian dynamics is a standard ordinary differential equation (ODE).
Therefore, all standard integration schemes can be used to approximate its solution. However,
the standard numerical analysis of such schemes only provides error estimates on trajectories
over finite time intervals, and focuses on the order of the scheme with the aim of improving the
precision of the integration. The proofs of such finite time approximation results rely on stability
properties over finite integration times, typically obtained using a (discrete) Gronwall inequality.
Such analysis does not provide information over long times, and actually many integration schemes
which are perfectly valid to approximate the solution over finite time intervals [0, T ] when ∆t→ 0
do not correctly preserve the energy over very long times – namely, for ∆t > 0 fixed, looking at
the solution at time n∆t when n → +∞. Moreover, the quest for high order schemes is not as
relevant in molecular simulation as for standard ODE problems: a much more relevant issue is the
ability to (approximately) preserve the energy.

We motive in this section why dedicated numerical techniques are needed to integrate the
Hamiltonian dynamics by showing how various standard integration schemes fail to preserve the
energy. We perform the analysis on an analytical case, but let us emphasize that numerical exper-
iments show that the conclusions drawn in this section remain valid for generic nonlinear systems
(see for instance [114, Chapter 1]).

Consider the one-dimensional harmonic oscillator with unit mass and pulsation ω, for which
the Hamiltonian H : R2 → R reads

H(q, p) =
ω2q2

2
+
p2

2
.

One-step integrators then reduce to linear evolutions of the form

yn+1 =

Å
qn+1

pn+1

ã
= A∆ty

n, (2.24)

the matrix A∆t depending on the numerical scheme at hand. For the explicit Euler scheme for
example,

A∆t =

Å
1 ∆t

−ω2∆t 1

ã
.

This matrix has eigenvalues λ∆t,± = 1± iω∆t (as can be checked from the fact that the sum of the
eigenvalues is 2, while their product is 1 + ω2∆t2). Since |λ∆t,±| =

√
1 + ω2∆t2 > 1, the energy

exponentially increases in time: indeed, writing

A∆t = P−1∆t Λ∆tP∆t, Λ∆t =

Å
λ∆t,+ 0
0 λ∆t,−

ã
,

and noting that

H(y) = yTKy, K =
1

2

Å
ω2 0
0 1

ã
,

the energy can be written as
H(qn, pn) = zT0 Λ

n
∆t
‹K∆tΛ

n
∆tz0,

where z0 = P∆ty0 and ‹K∆t = P−T∆t KP
−1
∆t is symmetric definite positive. In particular, there

exists α > 0 (independent of ∆t > 0) such that H(qn, pn) > α‖Λn∆tz0‖.
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For the implicit Euler scheme, the energy exponentially decreases in time. A simple computa-
tion indeed allows to rewrite this scheme in the explicit form (2.24) (thanks again to the quadratic
nature of the Hamiltonian) with

A∆t =
1

1 + ω2∆t2

Å
1 ∆t

−ω2∆t 1

ã
.

The eigenvalues of this matrix are λ∆t,± = (1 ± iω∆t)−1, which are such that |λ∆t,±| =(
1 + ω2∆t2

)−1/2
< 1.

Let us consider one last example: the 4th order Runge-Kutta scheme, which is a default scheme
for the integration of many ODEs since it is quite precise while still being relatively cheap from a
computational viewpoint (it has order α = 4, as the name indicates). The iterations read:

yn+1 = yn +∆t
f(Y n) + 2f(Y n+1) + 2f(Y n+2) + f(Y n+3)

6
. (2.25)

with 
Y n = yn,

Y n+1 = yn + f(Y n)∆t/2,

Y n+2 = yn + f(Y n+1)∆t/2,

Y n+3 = yn + f(Y n+2)∆t.

For the simple situation considered here, simple computations reveal that the matrix A∆t in (2.24)
reads

A∆t = Id2 +∆tB +
∆t2

2
B2 +

∆t3

6
B +

∆t4

24
B4, B =

Å
0 1
−ω2 0

ã
.

Since M2 = −ω2Id2, we finally obtain

A∆t =

Ü
1− (ω∆t)2

2
+

(ω∆t)4

24
∆t

Å
1− (ω∆t)2

6

ã
−ω2∆t

Å
1− (ω∆t)2

6

ã
1− (ω∆t)2

2
+

(ω∆t)4

24

ê
.

The eigenvalues of A∆t are

λ∆t,± = 1− (ω∆t)2

2
+

(ω∆t)4

24
± iω∆t

Å
1− (ω∆t)2

6

ã
,

so that

|λ∆t,±| =

 
1− (ω∆t)6

72
+

(ω∆t)8

576
.

This shows that for ω∆t > 0 sufficiently small (numerically, ω∆t 6 2.828427), it holds |λ∆t,±| < 1,
hence the energy is exponentially decreasing.

The lesson from the above failures to preserve the energy over long times is that we really must
take into account the specific properties of the Hamiltonian dynamics in order to come up with
good integrators. Among the five properties listed in Section 2.1.2, which can be readily extended
to numerical schemes (for example, time reversibility corresponding to S ◦ Φ∆t ◦ S = Φ−∆t, while
symmetry is expressed as (Φ∆t)

−1
= Φ−∆t), time reversibility for sure is not sufficient since the

standard integrators above satisfy this property. For instance, the numerical flow of the explicit
Euler method

ΦEuler
∆t (q, p) =

(
q +∆tM−1 p, p−∆t∇V (q)

)
satisfies

ΦEuler
∆t (q,−p) =

(
q −∆tM−1 p,−p−∆t∇V (q)

)
= S

(
q −∆tM−1 p, p+∆t∇V (q)

)
= S

(
ΦEuler
−∆t (q, p)

)
.
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The crucial property turns out to be symplecticity, which, as we have seen, is equivalent to the fact
that the dynamics is locally Hamiltonian. It may therefore be of no surprise that the preservation
of the symplectic structure provides some form of preservation of the Hamiltonian nature of the
dynamics. Let us however mention that there are some results on the longtime energy preservation
for schemes which are not symplectic, in particular for symmetric numerical methods (such that
Φ∆t ◦ Φ−∆t = Φ−∆t ◦ Φ∆t = Id) applied to integrable systems; see [113, Chapter XI].

2.2.2 Symplectic schemes

We show in this section one way to construct symplectic schemes for the Hamiltonian dynam-
ics (2.6) associated with separable Hamiltonians, and derive in particular the most common nu-
merical integrator used in practice for Hamiltonian dynamics: the Störmer-Verlet scheme.

Construction of symplectic schemes

A systematic and nice way to construct symplectic schemes relies on a splitting strategy where
the Hamiltonian of the system is decomposed into elementary Hamiltonians, chosen such that
the associated Hamiltonian dynamics are analytically integrable. The one-step integrator is then
obtained by composition of the time evolutions of the elementary Hamiltonian dynamics. The
resulting numerical scheme is automatically symplectic in view of Theorem 2.1 and the following
result.

Theorem 2.3. The composition g ◦ h of two symplectic mappings h : U → Rn and g : h(U)→ Rn

is symplectic.

Proof. The proof relies on the equality ∇(g ◦ h) = [(∇g) ◦ h]∇h. Therefore,

[∇(g ◦ h)]T J [∇(g ◦ h)] = [∇h]T [(∇g) ◦ h]T J [(∇g) ◦ h] [∇h] = [∇h]T J [∇h] = J,

where we successively used the symplecticity of g and h. ut
A simple and nice splitting is based upon the decomposition of the total Hamiltonian into its

potential and kinetic parts:

H(q, p) = H1(q, p) +H2(q, p), H1(q, p) =
1

2
pTM−1p, H2(q, p) = V (q).

This corresponds to the decomposition of the original dynamics asß
q̇ = M−1 p,
ṗ = 0,

ß
q̇ = 0,
ṗ = −∇V (q).

Each of the above dynamics is Hamiltonian and analytically integrable, with respective flows

φ1t (q, p) = (q + tM−1p, p), φ2t (q, p) = (q, p− t∇V (q)).

A Trotter splitting where positions are updated first leads to the following scheme

(qn+1, pn+1) =
(
φ2∆t ◦ φ1∆t

)
(qn, pn),

called “symplectic Euler A”, and which reads more explicitly®
qn+1 = qn +∆tM−1 pn,

pn+1 = pn −∆t∇V (qn+1).
(2.26)

When the flows are composed the other way round, a different symplectic scheme is obtained
(“symplectic Euler B”): ®

pn+1 = pn −∆t∇V (qn),

qn+1 = qn +∆tM−1 pn+1.
(2.27)

Both schemes are explicit and of order α = 1, time reversible but not symmetric.

Exercise 2.2. Check that the numerical methods (2.26) and (2.27) are symplectic by a direct
computation based on the definition (2.13).
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The Verlet scheme

There is some arbitrariness in the choice of the operation to perform first in the symplectic Euler
schemes. It is natural to make the operations more symmetric by relying on a Strang splitting,
which can be seen as a symmetrization of the symplectic Euler schemes. The so-obtained scheme
is called the Störmer-Verlet scheme since it was rediscovered by Verlet in the context of molecular
dynamics [271]; and was in fact already known by Störmer in the context of celestial mechanics
at the beginning of the 20th century, and even by Newton (see [113, Section 1.3] for historical
precisions). The Verlet algorithm is nowadays the standard integration scheme for Hamiltonian
dynamics. It reads 

pn+1/2 = pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1).

(2.28)

The numerical flow associated with this scheme is denoted by ΦVerlet
∆t in the sequel. Note that

ΦVerlet
∆t = φ2∆t/2 ◦ φ

1
∆t ◦ φ2∆t/2.

It is easy to check that the scheme is time reversible and symmetric. It is of course symplec-
tic by construction. It also requires only one force evaluation per timestep upon saving the
force ∇V (qn+1) at used in the last update of the n-th timestep to re-use in the first update
of the (n+ 1)-th timestep.

Determination of the order of the Verlet scheme

The Verlet scheme can be shown to be of order α = 2, i.e.

ΦVerlet
∆t = φ∆t +O(∆t3), (2.29)

where φt is the flow of the Hamiltonian dynamics (2.6). This can be proved by simple Taylor
expansions, as usually done to determine the local consistency error of numerical schemes for
ODEs (see for instance [167, Section 2.2.3]).

We present here an alternative approach to proving (2.29). Let us emphasize that this approach
is unnecessarily complicated if the only aim was to prove (2.29), but we insist on presenting it since
it allows to introduce concepts and manipulations which are crucial for the numerical analysis of
discretizations of stochastic differential equations (see in particular Sections 6.1 and 6.2.4). The
analysis in this section can therefore be seen as some investment for the chapters to come.

The first step is to rewrite the equality (2.29) as an equality of appropriate semigroups. Intro-
duce to this end the following operators:

A = pTM−1∇q, B = −∇V (q)T∇p,

and consider the following evolution operators:(
etAϕ

)
(q, p) = ϕ(φ1t (q, p)) = ϕ(q + tM−1p, p),(

etBϕ
)
(q, p) = ϕ(φ2t (q, p)) = ϕ(q, p− t∇V (q)).

(2.30)

As the notation suggests, the evolution operators etA and etB respectively admit A and B as
infinitesimal generators, all these operators being defined on appropriate functional spaces (for
instance, etA and etB are bounded operators on C0(R2D) while A and B can be defined as un-
bounded operators with domain C1(R2D)). The symplectic Euler schemes and the Verlet scheme
can be equivalently written in terms of the evolution operators etA, etB . Consider for instance the
symplectic Euler scheme (2.26), and denote by PA,B∆t its evolution operator:
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PA,B∆t ϕ

ä
(q, p) =

(
ϕ ◦ φ2∆t ◦ φ1∆t

)
(q, p) =

(
e∆tAe∆tBϕ

)
(q, p).

The last equality is easily obtained by a direct computation based on the expressions (2.30). Note
that the order of the operations is changed when passing from flows to semigroups (etB , which is
associated with φ2t , acts first). This inversion is known as Vertauschungssatz (see for instance the
discussion in [114, Section III.5.1]). It arises from the fact that the numerical method modifies the
distribution of the variables, whereas the evolution operator encodes the evolution of observables
(determined by the adjoint of the operator encoding the evolution of the distribution). Similarly,
the evolution operators for the symplectic Euler B scheme and the Verlet scheme respectively read

PB,A∆t = e∆tBe∆tA, PB,A,B∆t = e∆tB/2e∆tAe∆tB/2.

Remark 2.5 (Stochastic integrators). The above ordering of the integrators is also the correct
one for stochastic evolutions. We will see such dynamics in greater detail in the following chapters,
but let us already present a simple example illustrating the above discussion on the ordering of the
evolution operators. Consider for instance a numerical scheme of the form®

qn+1/2 = Φ1(q
n, Zn1 ),

qn+1 = Φ2(q
n+1/2, Zn2 ),

where (Zn1 )n>0 and (Zn2 )n>0 are sequences of independent variables, the variables (Zni ) being sam-
pled from distributions µi for i = 1, 2. Define also the evolution operators

(Piϕ) (q) = EZi
(
ϕ(Φi(q, Zi))

)
,

where expectations are taken with respect to all realizations of the random variable Zi ∼ µi. Then,

(Pϕ) (q) = E
[
ϕ(qn+1)

∣∣∣ qn = q
]
= EZn1

(
EZn2

[
ϕ
(
Φ2(q

n+1/2, Zn2 )
)]∣∣∣ qn = q

)
= EZn1

(
(P2ϕ)(q

n+1/2)
∣∣∣ qn = q

)
= (P1P2ϕ) (q).

The local consistency orders α of the schemes are, from an algebraic viewpoint, most conve-
niently obtained with the Baker-Campbell-Hausdorff (BCH) formula. For Trotter splittings, we
formally have

etXetY = eZt , Zt = t(X + Y ) +
t2

2
[X,Y ] + O(t3), (2.31)

where
[X,Y ] = XY − Y X (2.32)

is the commutator between the operatorsX and Y . Upon iterating (2.31) (writing first etX/2etY/2 =
etZt , noting that etY/2etX/2 = e−tZ−t and finally using (2.31) again for etZte−tZ−t), the following
equality holds for Strang splittings:

etX/2etY etX/2 = eSt , St = t(X + Y ) +
t3

12

Å
−1

2

[
X, [X,Y ]

]
+
[
Y, [Y,X]

]ã
+O(t5). (2.33)

We next prove the formulas (2.31)-(2.32) for bounded operators, and then make precise how (2.31)
and (2.33) should be understood for unbounded operators.

To prove the equality (2.31) for bounded operators X,Y (in particular matrices; see [114,
Section III.4.2]), we start by writing

etX = Id + tX +
t2

2
X2 + t3RX,t, RX,t = X3

+∞∑
n=0

tn

(n+ 3)!
Xn.
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Note that RX,t is a bounded operator, whose norm can be uniformly controlled for t in finite time
intervals. A similar expansion holds for etY . Then,

etXetY =

Å
Id + tX +

t2

2
X2 + t3RX,t

ãÅ
Id + tY +

t2

2
Y 2 + t3RY,t

ã
= Id + t(X + Y ) +

t2

2

(
X2 + 2XY + Y 2

)
+ t3R̃X,Y,t,

(2.34)

where R̃X,Y,t is a family of bounded operators, whose norms can be uniformly controlled on finite
time intervals. Now,

X2 + 2XY + Y 2 = (X + Y )2 + [X,Y ].

On the other hand, writing Zt = t(X + Y ) + t2Z + t3R̂X,Y,t with Z bounded and where R̂X,Y,t is
a family of bounded operators whose norms can be uniformly controlled on finite time intervals,

eZt = Id + Zt +
Z2
t

2
+ t3RZt,t

= Id + t(X + Y ) +
t2

2

(
(X + Y )2 + 2Z

)
+ t3R̂Z,t,

where again R̂Z,t is a family of bounded operators whose norms can be uniformly controlled on
finite time intervals. Comparing this equality with (2.34) shows that the choice

Z =
1

2
[X,Y ],

allows to recover (2.31)-(2.32). The higher order terms in the expansion of Zt in powers of t can
be found by induction.

For unbounded operators, the equalities (2.31)-(2.33) should be seen as a convenient way to
obtain the expressions of the first terms of the expansion of the semigroup in powers of t, upon
formally writing the exponential as a series: for Ut = etX ,

Ut = U0 + t
dUt
dt

∣∣∣∣
t=0

+
t2

2

d2Ut
dt2

∣∣∣∣
t=0

+ · · ·+ tn

n!

dnUt
dtn

∣∣∣∣
t=0

+
tn+1

n!

ˆ 1

0

(1− θ)n dn+1Us
dsn+1

∣∣∣∣
s=θt

dθ

= Id + tX +
t2

2
X2 + · · ·+ tn

n!
Xn +

tn+1

n!

ˆ 1

0

(1− θ)nUθtXn+1 dθ.

Equality holds in the strong sense for sufficiently smooth functions, belonging to
⋂n+1
k=1 D(Xk),

whereD(Xk) is the domain of the operatorXk, considered for instance on C0(E). For the operators
A,B and Lham we consider here, note that iA, iB and iLham are symmetric and in fact self-adjoint
on L2(E), so that their semigroups can be defined by calculus; or simply from formulas such
as (2.30).

As an application,

e∆tAe∆tB = Id +∆t(A+B) +
∆t2

2

(
(A+B)2 + [A,B]

)
+∆t3Rt,

where Rt is a differential operator involving a finite number of derivatives. This should be compared
to the semigroup (2.17) associated with the exact evolution: using Lham = A+B,

e∆t(A+B) = Id +∆t(A+B) +
∆t2

2
(A+B)2 +∆t3R̃t,

so that (e∆tAe∆tB−e∆t(A+B))ϕ = O(∆t2) when ϕ is sufficiently smooth. A careful inspection of the
remainder term shows that it depends on derivatives of ϕ up to order 2. The choice ϕ(q, p) = (q, p)
shows that the local truncation error is of order ∆t2, so that the first order splittings given by the
symplectic Euler method lead to first order schemes. Similarly,

PVerlet
∆t = e∆tB/2e∆tAe∆tB/2 = e∆t(A+B) +O(∆t3),

so that the Verlet scheme is of order 2.
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Remark 2.6. Higher-order splittings can be considered, although stability then becomes an issue
since operations with negative timesteps are introduced. We refer to [114, Section II.4] for a com-
plete discussion of these issues.

Linear stability analysis of the Verlet scheme

We consider again the one-dimensional example treated in Section 2.2.1. The iterates of the Verlet
scheme can be formulated asÅ

qn+1

pn+1

ã
= A∆t

Å
qn

pn

ã
, A∆t =

Ö
1− (ω∆t)2

2
∆t

−ω2∆t

Å
1− (ω∆t)2

4

ã
1− (ω∆t)2

2

è
.

The eigenvalues of the matrix A∆t are the solutions of the following equation in x:Å
1− (ω∆t)2

2
− x
ã2

+
(ω∆t)2

2

Å
2− (ω∆t)2

2

ã
= 0.

Setting ξ = (ω∆t)2/2, the latter equation is of the form (1− ξ − x)2 = −ξ(2− ξ), with solutions
x± = 1− ξ ± i

√
ξ(2− ξ) when ξ(2− ξ) > 0, and x± = 1− ξ ±

√
ξ(ξ − 2) when ξ(2− ξ) 6 0. The

eigenvalues of A∆t therefore have modulus 1 if and only if

ω∆t 6 2. (2.35)

In this case, the trajectory (qn, pn)n>0 is bounded. Otherwise, one eigenvalue has a modulus translate
into ac-
tual or-
ders of
magnitude

strictly larger than 1, so that the trajectory (qn, pn)n>0 is not bounded in general. Besides, a
straightforward computation shows that the modified energy

H∆t(q, p) = H(q, p)− (ω∆t)2

4
ω2q2

is preserved exactly: H∆t(q
n, pn) = H∆t(q

0, p0) for all n > 0. Therefore, when ω∆t < 2, the
boundedness of the trajectory implies immediately that the energy is preserved at second order in
the timestep, for all times:

sup
n∈N

∣∣∣H(qn, pn)−H(q0, p0)
∣∣∣ 6 C∆t2.

We will see below in Section 2.2.3 that this is in fact a general property of symplectic schemes:
the exact energy is preserved approximately as a consequence of an approximate energy being
conserved exactly.

Exercise 2.3. Study the stability of the symplectic Euler schemes, and find a modified en-
ergy H∆t(q, p) = H(q, p) + a∆tqp exactly preserved by the numerical scheme for the one-
dimensional harmonic oscillator.

For general potential energy functions beyond purely quadratic ones, there is no simple rule
to place an upper bound on the time-step. However, the linear stability requirement suggests
that an admissible time-step should be a fraction of the fastest vibration period in the system.
For molecular systems, this corresponds to timesteps of the order of a femtosecond (10−15 s) – a
fraction of the typical times hinted at in Section 1.1.1.

2.2.3 Longtime stability of symplectic schemes

The Verlet scheme can be rewritten in a seamingly more direct form: a simple computation indeed
shows that the positions qn obtained by the Verlet scheme (2.28) satisfy
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M
qn+1 − 2qn + qn−1

∆t2
= −∇V (qn),

which is the simple centered finite-difference discretization for the equationM
d2q

dt2
(t) = −∇V (q(t)).

However, the very good properties of the numerical method cannot be understood from this
perspective. It is important to keep both variables q and p, and study the numerical flow ΦVerlet

∆t

of (2.28).
The longtime stability properties of symplectic numerical methods applied to Hamiltonian

systems can be proved with the help of the so-called backward analysis. Contrarily to standard error
analysis where the numerical trajectory is considered as an approximation of the true trajectory
of the exact problem

ẏ = f(y), y(0) = y0,

backward analysis consists in interpreting the numerical trajectory generated by a numerical
method Φ∆t as the exact trajectory of some modified ordinary differential equation

ż = f∆t(z), z(0) = y0. (2.36)

By this we mean that yk = z(k∆t); see Figure 2.2 for a graphical illustration. The modified
force field f∆t is therefore chosen such that z(∆t) coincides with Φ∆t(y0) for any y0. In practice,
only the first orders of f∆t with respect to ∆t are computed, with corrections chosen such that
|z(∆t)− Φ∆t(y0)| is much smaller than |y(∆t)− Φ∆t(y0)|.

a

b

c

d

e

f
g

h

i

Fig. 2.2. Exact trajectory y(t) (solid line) and numerical trajectory yk (dots), interpolated by the
trajectory of the modified dynamics z(t) (dashed line).

The next step is to study the properties of the modified problem in order to deduce properties of
the numerical scheme. For symplectic methods approaching symplectic flows, the modified equation
is still Hamiltonian. Therefore, some modified energy is preserved exactly. This property is finally
used to show that the exact energy is preserved approximately. In fact, some rather involved
analysis has to be used since the modified Hamiltonian is defined as a formal series, which does
not converge in general. Optimal truncations should then be considered, and the modified energy
is therefore not strictly preserved, but the error terms are very small.

We present an introduction to the backward analysis of symplectic methods in this section, by
first computing the first order term in the modified equation for two simple schemes, namely the
explicit Euler and a symplectic Euler scheme. We then prove that any truncation of the modified
equation for symplectic methods is of Hamiltonian type. This allows to conclude to the longtime
energy preservation, which is the last step of our proof. For the last two steps, we rely on the
presentation of [113, Sections 4 and 5]; see also [114] for an extensive presentation of backward
analysis for Hamiltonian systems.
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Explicit expressions of the leading order terms in the modified equations

The fundamental idea behind the construction of the modified force field f∆t in (2.36) is to compare
the Taylor expansion of the numerical method Φ∆t to the Taylor expansion of the solution to the
modified equation z(∆t) after one step. Let us consider the explicit Euler and the symplectic
Euler schemes. Both are of order 1, meaning that Φ∆t(y0)− y(∆t) = O(∆t2). Our aim is to find
a modified force field f∆t such that Φ∆t(y0)− z(∆t) = O(∆t3). To this end, we make the ansatz

f∆t(y) = f(y) +∆tF (y).

We generalize this procedure in the sequel.
A Taylor expansion of the solution of the modified equation gives

z(∆t) = z(0) +∆t ż(0) +
∆t2

2
z̈(0) + . . .

= y0 +∆t[f(y0) +∆tF (y0)] +
∆t2

2
∇f∆t(y0)ż(0) + . . .

= y0 +∆tf(y0) +∆t2
ï
1

2
∇f(y0)f(y0) + F (y0)

ò
+O(∆t3).

Now, for the explicit Euler scheme,

ΦEE
∆t (y

0) = y0 +∆tf(y0).

The choice F (y) = − 1
2∇f(y)f(y) ensures that ΦEE

∆t (y
0) − z(∆t) = O(∆t3). For Hamiltonian

dynamics, one finds

F (y) = −1

2

Å
0 M−1

−∇2V (q) 0

ãÅ
M−1p
−∇V (q)

ã
=

1

2

Å
M−1∇V (q)
∇2V (q)M−1p

ã
. (2.37)

This force is not of Hamiltonian type. Indeed, if there existed ‹H such that

F (q, p) = J∇‹H(q, p) =

Ç
∇p‹H(q, p)

−∇q‹H(q, p)

å
,

then we would have div(q,p)F = 0, which is clearly not the case for (2.37).
For the symplectic Euler scheme (2.26), it holds®

qn+1 = qn +∆tM−1 pn,

pn+1 = pn −∆t∇V (qn)−∆t2∇2V (qn)M−1pn +O(∆t3),

which shows that
F (q, p) =

1

2

Å
M−1∇V (q)
−∇2V (q)M−1p

ã
= J∇‹H(q, p),

with ‹H(q, p) =
1

2
pTM−1∇V (q). (2.38)

The leading order term of the modified dynamics is therefore of Hamiltonian type (but not sepa-
rable).

Exercise 2.4. Show that the leading order term of the modified dynamics for the other symplectic
Euler scheme (2.26) corresponds to the opposite of (2.38).

Exercise 2.5. Show, by following the approach presented in [113, Section 4.2], that the leading
order of the modified Hamiltonian for the Verlet scheme reads‹H(q, p) =

1

12
pTM−1∇2V (q)M−1p− 1

24
∇V (q)TM−1∇V (q).
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Truncations of the modified equation for symplectic methods

We prove here that the fact that the modified dynamics is Hamiltonian for symplectic schemes is
not an accident. We follow the pedagogical account of [113, Section 4].

Consider first a general differential equation ẏ = f(y). Assuming that the numerical method
admits a Taylor series expansion of the form

Φ∆t(y) = y +∆tf(y) +∆t2Ψ2(y) +∆t3Ψ3(y) + . . .

with smooth vector fields Ψj , we can iterate the argument presented on two simple examples in
the previous section and construct vector fields F1, F2, . . . such that the flow ϕN,t associated with
the modified force field

fN,∆t = f +∆tF1 + · · ·+∆tNFN

coincides with the numerical solution up to error terms of order ∆tN+2 over one timestep:

Φ∆t(y) = ϕN,∆t(y) + O(∆tN+2). (2.39)

Remark 2.7. Of course, if the numerical method is of order α (i.e. Φ∆t(y) = φ∆t(y)+O(∆tα+1)),
then the α − 1 first order correction terms vanish: F1 = · · · = Fα−1 = 0. Moreover, if the leading
order term of the local trunction error is Eα+1, namely

Φ∆t(y) = φ∆t(y) +∆tα+1Eα+1(y) + O(∆tα+2),

and since ϕα,∆t = ϕ∆t +∆tα+1Eα+1 when choosing Fα = Eα+1, it follows that (2.39) holds with
N = α.

Consider now a symplectic method Φ∆t, which is of order α > 1. We proceed by induction,
and assume that, at order N , the modified force field is of Hamiltonian type:

fN,∆t = J∇H +∆tJ∇H1 + · · ·+∆tNJ∇HN .

The aim is to prove that FN+1 = J∇HN+1 for some Hamiltonian HN+1. This is satisfied at
order N = 0. Now, the induction assumption implies that the flow ϕN,t is symplectic since it is
associated with a Hamiltonian dynamics. In addition,

ϕN+1,∆t(y) = ϕN,∆t(y) +∆tN+2FN+1(y) + O(∆tN+3),

so that (2.39) implies

Φ∆t(y) = ϕN,∆t(y) +∆tN+2FN+1(y) + O(∆tN+3),

∇Φ∆t(y) = ∇ϕN,∆t(y) +∆tN+2∇FN (y) + O(∆tN+3).

The symplecticity condition ∇Φ∆t(y)TJ∇Φ∆t(y) = J therefore leads to

J =
î
∇ϕN,∆t(y) +∆tN+2∇FN+1(y) + O(∆tN+3)

óT
J
î
∇ϕN,∆t(y) +∆tN+2∇FN+1(y) + O(∆tN+3)

ó
= ∇ϕN,∆t(y)TJ∇ϕN,∆t(y) +∆tN+2

(
∇ϕN,∆t(y)TJ∇FN+1(y) +∇FN+1(y)

TJ∇ϕN,∆t(y)
)
+O(∆tN+3)

= J +∆tN+2
(
J∇FN+1(y) +∇FN+1(y)

TJ
)
+O(∆tN+3),

where we have used ∇ϕN,∆t(y) = Id + O(∆t) and the symplecticity of ϕN,∆t in the second and
third lines. Since the last equality is true for all ∆t > 0 and y ∈ E , it holds

∀y ∈ E , J∇FN+1(y) +∇FN+1(y)
TJ = 0.

Therefore, J∇FN+1(y) is a symmetric matrix for all y ∈ E , so that JFN+1(y) = −∇HN+1(y) for
some Hamiltonian HN+1 (see the proof of Theorem 2.2 for a proof of the latter statement), which
gives the claimed result.

Remark 2.8. In fact, the above proof only shows that the modified dynamics is locally Hamilto-
nian. In order to have some globally defined Hamiltonian, one should add some extra assumptions,
typically that the domain on which the Hamiltonian dynamics is defined is simply connected, in
order for the construction (2.14) to make sense over all the domain; see the discussion in [114,
Sections VI.2 and IX.3].
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Longtime energy preservation

The previous results in this section show that a symplectic method applied to a Hamiltonian evo-
lution admits a modified equation which is Hamiltonian at all orders. Moreover, the Hamiltonian
correction terms are locally bounded (see the explicit construction in (2.14)). We can then show
that the energy is very well preserved over very long times provided the trajectory remains in a
compact set of E .
Theorem 2.4. Consider a symplectic numerical method of order α > 1, and assume that the
numerical trajectory (qn, pn) remains in a compact subset of E. Then, there exists C > 0 such
that, for any a > α+ 1, there is Ca > 0 for which∣∣H(qn, pn)−H(q0, p0)

∣∣ 6 C∆tα + Ca∆t
at, 0 6 t = n∆t 6

1

∆ta
.

A careful proof shows that Ca depends on derivatives of H up to order a in the compact
subset where the trajectory remains. The precise interpretation of this result is the following: for
physical times t� ∆tα−a which are very large when ∆t is small, the dominant term in the error
is C∆tα. Therefore, the energy typically oscillates around the initial energy, with an amplitude
related to the order of the numerical method. In fact, under additional technical conditions, precise
estimates can be obtained on Ca. Upon resorting to some optimal truncation of the series (i.e.
optimizing the error bound with respect to a), Theorem 2.4 can be improved by stating a near
energy conservation over time intervals which grow exponentially with the timestep.

Theorem 2.5 (Theorem IX.8.1 in [114]). Consider an analytic Hamiltonian H and a sym-
plectic method Φ∆t of order α. If the numerical trajectory remains in a compact subset, there
exists τ > 0 and ∆t∗ > 0 such that, for ∆t ∈ (0, ∆t∗],

H(qn, pn) = H(q0, p0) + O(∆tα)

for exponentially long times n∆t 6 eτ/∆t.

Proof (of Theorem 2.4). Consider the modified equation of order a− 1. Since α > 1, the modified
Hamiltonian dynamics is generated by the modified Hamiltonian‹Ha−1(q, p) = H(q, p) +∆tαHα(q, p) + · · ·+∆ta−1Ha−1(q, p).

By construction, the flow of the modified dynamics ϕa−1,t preserves ‹Ha−1 and is such that
ϕa−1,t(q

k, pk) = (qk+1, pk+1) + O(∆ta+1). Therefore, the variations in the modified energy over
one timestep are ∣∣∣‹Ha−1(q

k+1, pk+1)− ‹Ha−1(q
k, pk)

∣∣∣ 6 Ca∆t
a+1.

Then,∣∣∣‹Ha−1(q
n, pn)− ‹Ha−1(q

0, p0)
∣∣∣ = ∣∣∣∣∣

n−1∑
k=0

‹Ha−1(q
k+1, pk+1)− ‹Ha−1(q

k, pk)

∣∣∣∣∣ 6 Ca∆t
a n∆t.

The claimed result follows by a triangular inequality since
∣∣∣‹Ha(q

n, pn)−H(qn, pn)
∣∣∣ 6 C∆ta. ut

Let us however, one last time, emphasize again that the near energy preservation is a only
necessary condition for the statistical correctness of ergodic averages. The results presented in
this section do not guarantee the convergence of trajectorial averages towards ensemble averages:
ergodicity remains a pending issue. As acknowledged in [113, Section 5.3]:

The success of the Störmer-Verlet method in [molecular dynamics] lies in the observation
that the method is apparently able to reproduce the correct statistical behaviour over long
times. Since Verlet (1967), this has been confirmed in countless computational experiments.
Backward error analysis gives indications as to why this might be so, but to our knowledge
there are as yet no rigorous mathematical results in the literature explaining the favourable
statistical behaviour.

To the best of our knowledge, the last statement still holds...
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2.3 Extensions
needs to
be com-
pleted...

The timestep in the Verlet method is limited by the stability requirement (2.35). In actual
systems such as biological molecules, it is common to have very stiff bonds (covalent bonds),
which therefore severely limit the timesteps which can be used. In order to alleviate this limitation,
several techniques have been developped, in particular

• the replacement of very stiff bonds by rigid bonds. This requires simulating constrained systems,
using appropriate generalizations of the Verlet scheme such as the RATTLE method, see [171];

• multiple timestep strategies, where the stiff parts of the system are evolved using a small
timestep, while the less stiff degrees of freedom are evolved with a larger timestep. There are
however resonance issues.

In addition, there are situations in which non-separable systems should be considered. The Verlet
algorithm then needs to be generalized. There are also ways to add randomness to the Hamiltonian
evolution in order to ensure ergodicity [90].
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The Metropolis–Hastings algorithm
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We present in this chapter the Metropolis algorithm [195] and some of its variants. This algo-
rithm can be understood as a Markov chain on a continuous state space. We therefore start this
chapter by recalling in Section 3.1 some background material on Markov chains in such spaces.
This complements Lecture ??. We next present the Metropolis algorithm in Section 3.2, in its gen- add refer-

enceeral form, and give some versions which are commonly used in molecular simulation. The longtime
convergence of the law of the associated Markov chain is discussed in Section 3.3, relying on a
general result by Hairer and Mattingly [118] which provides a more analytical point of view on
Markov chains than the maybe more standard approach by Meyn and Tweedie [196]. The impli- quote also

recent
book by
Moulines
and co’

cation of the convergence analysis of the law in terms of the convergence of trajectory averages is
finally discussed in Section 3.4, where a central limit theorem allows in particular to asymptotically
quantify the statistical error.

3.1 Some background material on Markov chains

We present Markov chains in terms of the positions only, for notational simplicity and in order
to introduce the simplest versions of the Metropolis–Hastings algorithm. We denote by D the
configuration space, which may be either RD or a compact domain such as (LT)D (see Chapter 1).
Extensions to Markov chains involving more degrees of freedom, for instance Markov chains in
phase space where the unknowns are the positions and momenta of particles, are straightforward.

3.1.1 Definition of Markov chains in a continuous state space

A time-homogeneous Markov chain (qn)n>0 is a sequence of random variables sampled from a
probability transition kernel P (q, dq′): At each iteration n, the new state qn+1 is sampled knowing
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only qn (and not the previous iterations), according to the probability distribution P (qn, dq′).
Notice that, since P (qn, dq′) is a probability distribution, the following normalization condition is
satisfied:

∀q ∈ D,
ˆ
D
P (q, dq′) = 1.

When P (q, dq′) has a density with respect to the Lebesgue measure dq′, with a slight abuse of
notation, we still denote by P the probability transition density, so that the transition kernel is in
this case P (q, q′) dq′.

Remark 3.1. When the transition kernel depends on the time index n, the chain is called time-
inhomogeneous.

More constructively, a Markov chain can generically be written as follows:

qn+1 = F (qn, Θn),

where (Θn)n>0 is a sequence of independent identically distributed random variables. In this
case, the transition kernel is characterized by the following equality: For any state q and for any
observable ϕ (i.e. a bounded measurable function),

(Pϕ)(q) =

ˆ
D
ϕ(q′)P (q, dq′) = E

[
ϕ
(
F (q,Θ1)

)]
, (3.1)

where the expectation is with respect to Θ1. Again, with some abuse of notation, we use the same
notation for the evolution operator and the integral kernel of this operator.

3.1.2 Properties of Markov chains

To study the longtime properties of a time homogeneous chain, two features are of interest:

• Stationarity. A probability distribution π is a stationary probability distribution of P (or is
said invariant for P ) when ˆ

q∈D
P (q, dq′)π(dq) = π(dq′),

which may be equivalently restated as the following equality of averages for any bounded
measurable test function ϕ:ˆ

D

ˆ
D
ϕ(q′)P (q, dq′)π(dq) =

ˆ
D
ϕ(q)π(dq). (3.2)

This condition means that, if the random variable q0 is distributed according to π, then so
is q1, and, by induction, qn as well.

• Irreducibility. A Markov chain is said to be irreducible with respect to some measure ρ when,compare
with the
concepts
intro-
duced in
the lec-
tures by
Lelièvre/Reygner

for any Borel subset S ⊂ D such that ρ(S) > 0, and any initial condition q0 ∈ D, it holds
Pq0(τS < +∞) > 0, where τS = inf{n > 0, qn ∈ S} is the first entry time into the set S.
It is often useful to formulate irreducibility in terms of the nth step transition probability,
defined by induction as

Pn(q, dq′) =

ˆ
Q∈D

P (q, dQ)Pn−1(Q, dq′),

with P 1(q, dq′) := P (q, dq′). Irreducibility can then be formulated as follows: For any Borel
subset S ⊂ D such that ρ(S) > 0 and any initial condition q0 ∈ X , there exists n > 0
(depending on q0 and S) such that Pn(q0, S) > 0.
In particular, the Markov chain P is aperiodically irreducible with respect to ρ if for any
measurable set S such that ρ(S) > 0, and π-almost all initial condition q0, there exists n0 > 0
such that for any n > n0,

Pn(q0, S) > 0. (3.3)

This means that the set S can be reached in n steps with positive probability starting from q0.
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Additional features can be of interest, which give a more detailed information on the structure of
the Markov chain. This is the case of the following notion of reversibility.

• Reversibility. The chain P is said to be reversible with respect to π as soon as the following
detailed balance condition is satisfied:

P (q, dq′)π(dq) = P (q′, dq)π(dq′). (3.4)

The reversibility condition implies the stationarity of π. Indeed, a simple computation shows
that, for a bounded measurable function ϕ and using (3.4),

ˆ
D

ˆ
D
ϕ(q′)P (q, dq′)π(dq) =

ˆ
D

ˆ
D
ϕ(q′)P (q′, dq)π(dq′)

=

ˆ
D

Åˆ
D
P (q′, dq)

ã
ϕ(q′)π(dq′)

=

ˆ
D
ϕ(q′)π(dq′),

which is the stationarity condition (3.2). The detailed balance condition (3.4) is equivalent
to the following statement: If q0 is distributed according to π, then for any n, the sequence
(q0, . . . , qn) has the same probability distribution as the time-reversed sequence (qn, . . . , q0).

3.1.3 Convergence of trajectory averages

An important result is that stationarity and aperiodic irreducibility imply ergodicity, understood
as the almost-sure convergence of averages along realizations of the Markov chain (see [196, The-
orem 17.1.7]):

Proposition 3.1. Let (qn)n>0 be a Markov chain in D with invariant probability measure π. If
(qn)n>0 is aperiodically irreducible, then it is pathwise ergodic, meaning that for any bounded
measurable function ϕ and π-almost all initial conditions q0:

lim
n→+∞

1

n

n∑
k=1

ϕ(qk) =

ˆ
D
ϕ(q)π(dq) a.s.

Two comments are in order:

(i) we will see in Theorem 3.1 one way to prove the existence of an invariant probability measure
in situations where there is no obvious candidate (as is the case when considering discretiza-
tions of stochastic differential equations, see for instance Section 6.1). Some Markov chains
such as the Metropolis–Hastings algorithm discussed in Section 3.2 have by construction an
invariant measure whose expression is explicitly known. Note also that π is automatically
absolutely continuous with respect to the measure ρ with respect to which irreducibility
holds.

(ii) the restriction that the ergodic average converges only for almost all initial conditions can
be strengthened to hold for all initial conditions under some regularity conditions on the
transition kernel; more precisely that the transition kernel P (q, dq′) is absolutely continuous
with respect to the invariant probability measure π for all q ∈ D, and that the Markov chain
is irreducible with respect to π (see [266, Corollary 1], based on [207]).

Example 3.1. Consider a system with a finite state space TN = {1, 2, . . . , N} with periodic this exam-
ple should
be in the
lectures
on fi-
nite state
spaces

boundary conditions, i.e. m + kN is identified with m for any 1 6 m 6= N and k ∈ Z, and the
following evolution rule: the current state qn ∈ TN is changed to qn+1 = qn + 1 with probability
a ∈ [0, 1], and to qn+1 = qn − 1 with probability 1− a. Then, when a 6= 0, the uniform measure

µ =
1

N

N∑
m=1

δm
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is the unique stationary measure. The Markov chain is reversible with respect to this measure if
and only if a = 1/2. Let us also remark that the convergence is somehow the slowest in this case,
since a diffusive behavior is observed; where some ballistic transport arises as soon as a > 0 is
different from 1/2.

3.2 The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm generates a Markov chain of the system configurations (qn)n>0

having as invariant distribution the marginal of the canonical measure in the position variables
(defined in (1.19))

ν(dq) = Z−1e−βV (q) dq. (3.5)

It consists in a two-step procedure. First, a move is generated, according to some given proposition
transition kernel T (q, dq′). Then, the latter proposal move is either accepted or rejected, according
to a rule such that the probability distribution ν(dq) is an invariant measure of the corresponding
Markov chain. The original Metropolis algorithm was proposed in [195], and relied on symmetric
proposals in the configuration space, meaning that

T (q, dq′) dq = T (q′, dq) dq′.

It was later refined in [121] in order to allow for non-symmetric propositions which can bias
proposals towards higher probability regions with respect to the target distribution ν.

We start by describing the method in Section 3.2.1, then present some of its mathematical
properties in Section 3.2.2, and conclude by giving practical examples in Section 3.2.3.

3.2.1 Description of the algorithm

Given a target probability distribution ν and a proposition transition kernel T , the Metropolis–
Hastings algorithm constructs in a systematic way a Markov chain reversible with respect to ν. The
detailed balance condition (3.4) is usually not verified for T and ν, and a correction has therefore
to be considered. For this correction to be possible, the proposition kernel T (q, dq′)must have some
reversibility property, in the sense that the measures T (q, dq′) ν(dq) and T (q′, dq) ν(dq′) have to
be mutually absolutely continuous (or equivalent) for all q, q′ ∈ D, in order for the Metropolis–
Hastings ratio to be defined and positive (see below). Under this assumption, the algorithm is the
following.

Algorithm 3.1 (Metropolis–Hastings algorithm). Assume that the two measures T (q′, dq) ν(dq′)
and T (q, dq′) ν(dq) are equivalent and introduce the Metropolis–Hastings ratio:

r(q, q′) =
T (q′, dq) ν(dq′)

T (q, dq′) ν(dq)
.

The ratio r(q, q′) is defined and positive for almost any couple of states (q, q′) with respect to the
measure T (q, dq′) ν(dq). Consider an initial configuration q0 and iterate on n > 0,

(1) Propose a new state q̃n+1 from qn according to the proposition kernel T (qn, ·);
(2) Accept the proposition with probability

R(qn, q̃n+1) = min
(
1, r(qn, q̃n+1)

)
,

and set in this case qn+1 = q̃n+1; otherwise, set qn+1 = qn.

In practice, the second step consists in drawing (independently) a random variable Un with
uniform law on (0, 1), and accepting (resp. rejecting) the move if Un 6 min

(
1, r(qn, q̃n+1)

)
(resp.

if Un > min
(
1, r(qn, q̃n+1)

)
). The algorithm can therefore be summarized as follows:
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qn+1 = qn + 1{Un6R(qn,q̃n+1)}

(
q̃n+1 − qn

)
.

An important point in this method is that the distribution ν has to be known only up to a
multiplicative constant to perform this algorithm. This is fortunate for computational statistical
physics, since the partition function Z in (3.5) is not usually unknown.

It may be worth emphasizing that, as for “direct” probabilistic methods such as the rejec-
tion method, proposal moves which are rejected are discarded, but, in contrast to the “direct”
probabilistic methods, a new configuration qn+1, equal to the previous one qn, is obtained in
any case. This is important to estimate correctly canonical averages: Configurations where many
propositions are rejected are counted several times (and possibly many times) in the average.

Example 3.2 (Symmetric proposition kernels). As an example, let us consider the case of
the canonical sampling of positions using a symmetric proposition kernel, which therefore satisfies:

T (q, dq′) dq = T (q′, dq) dq′.

It is thus reversible with respect to the Lebesgue measure (so that the Lebesgue measure is in par-
ticular an invariant measure of the Markov chain with kernel T ), whereas we would like the Markov
chain to be reversible with respect to the canonical measure. This is why an acceptance/rejection
step is required, the corresponding Metropolis–Hastings ratio being simply the Metropolis ratio

r(q, q′) = exp [−β(V (q′)− V (q))] .

In this case, the interpretation of the algorithm is particularly simple. If the proposed move has
a lower energy, it is always accepted, which allows to visit more frequently the states of higher
probability. On the other hand, transitions to less likely states of higher energies are not forbidden
(but accepted less often), which is important to observe transitions from one metastable region to
another when these regions are separated by some energy barrier.

3.2.2 Mathematical properties of the Metropolis–Hastings algorithm

Let us first provide an expression of the transition kernel of the Metropolis–Hastings algorithm,
relying on (3.1). For a given smooth test function ϕ,

Eqn
[
ϕ(qn+1)

]
= Eqn

[
ϕ
(
qn + 1Un6R(qn,q̃n+1)

(
q̃n+1 − qn

))]
= Eqn

[
R(qn, q̃n+1)ϕ(q̃n+1)

]
+ Eqn

[
1−R(qn, q̃n+1)

]
ϕ(q),

where the second line follows by computing the expectation with respect to Un. Since q̃n+1 is
distributed according to T (q, dq′) when qn = q, the probability transition kernel of the Metropolis–
Hastings chain reads

P (q, dq′) = R(q, q′)T (q, dq′) + (1− α(q)) δq(dq′), (3.6)

where α(q) ∈ [0, 1] is the probability to accept a move starting from q (considering all possible
propositions):

α(q) =

ˆ
D
R(q,Q)T (q, dQ).

The first part of the transition kernel corresponds to the accepted transitions from q to q′, which
occurs with probability R(q, q′) = min (1, r(q, q′)); while the term (1−α(q))δq(dq′) encodes all the
rejected steps.

A distinctive feature of Metropolis–Hastings algorithm is their built-in reversibility with respect
to the target measure.

Lemma 3.1. The Metropolis–Hastings transition kernel P is given in (3.6) is reversible with re-
spect to ν. In particular, ν is an invariant probability measure for P .
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Proof. Consider

P (q, dq′)ν(dq) = min (1, r(q, q′))T (q, dq′)ν(dq) + (1− α(q)) δq(dq′)ν(dq). (3.7)

Using the identity r(q, q′) = 1/r(q′, q) and the algebraic equality for r > 0:

min (1, r) = rmin

Å
1,

1

r

ã
,

the first term on the right-hand side of (3.7) can be rewritten as

min (1, r(q, q′))T (q, dq′)ν(dq) = min (1, r(q′, q)) r(q, q′)T (q, dq′)ν(dq)

= min (1, r(q′, q))T (q′, dq)ν(dq′).

On the other hand, for a given bounded measurable function ϕ,
ˆ
D

ˆ
D
ϕ(q, q′) (1− α(q)) δq(dq′)ν(dq) =

ˆ
D
ϕ(q, q)(1− α(q))ν(dq)

=

ˆ
D

ˆ
D
ϕ(q, q′)(1− α(q′))δq′(dq)ν(dq′),

so that (1− α(q)) δq(dq′)ν(dq) = (1−α(q′))δq′(dq)ν(dq′). This shows finally the reversibility prop-
erty P (q, dq′)ν(dq) = P (q′, dq)ν(dq′). ut

Remark 3.2. The Metropolis–Hastings algorithm relies on the acceptance ratio A(r) = min(1, r) ∈
[0, 1]. There are in fact (infinitely many) other functions A with values in [0, 1] which sat-
isfy A(r) = rA(1/r), and thus lead to a Markov chain reversible with respect to ν by a straightfor-
ward adaptation of the proof of Lemma 3.1. For instance (see [102]), one can consider the family
of acceptance functions

Aγ(r) =
r

1 + r

Å
1 + 2

ï
1

2
min

Å
r,
1

r

ãòγã
,

indexed by a real number γ > 1. The Metropolis rule corresponds to γ = 1, while the Barker
rule A(r) = r/(r + 1) (introduced in [23]) is formally recovered for γ = +∞. However, it can be
shown that the Metropolis rule is optimal in terms of asymptotic variance (see [219]; as well as
Section 3.4 below for a discussion on asymptotic variance), which is why this algorithm is usually
preferred, although the use of a Barker rule can sometimes be beneficial (see for instance [92] where
the Barker rule allows to decrease the timestep bias compared to Metropolis-like dynamics when
computing properties obtained from discretizations of certain stochastic differential equations).

To conclude to the pathwise ergodicity of the algorithm using Proposition 3.1, it remains to
check whether the chain is aperiodically irreducible. This property depends on the proposal ker-
nel T , and should be checked for the model at hand. Note that as soon as the Metropolis–Hastings
ratio r(q, q′) > 0 for all (q, q′) ∈ D2 for instance, the aperiodic irreducibility of the proposal transi-
tion T alone (with respect to the reference measure ν) is equivalent to the aperiodic irreducibility
of the Markov chain induced by the Metropolis Algorithm 3.1. We discuss the irreducibility of
some concrete instances of the Metropolis–Hastings algorithms in Section 3.2.3.

Besides determining the theoretical convergence of the algorithm, the proposed kernel is also
a key element in devising efficient algorithms. It is observed in practice that the optimal accep-
tance/rejection rate, in terms of the variance of the estimator (a mean of some functional over a
trajectory) for example, is often around 0.5, ensuring some balance between

• large moves that decorrelate the iterates when they are accepted (hence reducing the correla-
tions in the chain, which is interesting for the convergence to happen faster, see Section 3.4),
but lead to high rejection rates (and thus, degenerate samples since the same position may be
counted several times);

• and small moves that are less rejected but do not decorrelate the iterates much.
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This trade-off between small and large proposal moves has been investigated rigorously in some
simple cases in [234, 235], where some optimal acceptance rates are obtained in a limiting regime
where the dimension goes to infinity, for potentials which are sums of one dimensional potentials:
V (q) = v(q1)+· · ·+v(qD). This analysis can be extended to target probability measures with some
form of correlation, and to more general Markov chains than the ones considered in Section 3.2.3. More pre-

cise re-
view of
literature
here

In practice, it is always a good idea to run some preliminary small simulations to determine orders
of magnitude for the optimal acceptance rate, based on some metric such as the mean square
displacement E(|qn+1 − qn|2).

3.2.3 Some examples of proposition transition kernels

We present in this section two paradigmatic choices for the proposal kernel in the Metropolis–
Hastings algorithm, and hint at (the very many) extensions.

Symmetric moves

The most simple transition kernels are based on random walks. For instance, it is possible to
modify the current configuration by a random perturbation, such as

q′ = q + σG, G ∼ N (0, IdD),

where σ > 0 is some scale parameter. The associated proposal probability kernel reads

T (q, dq′) =
Ä
σ
√
2π
ä−D

exp

Å
−|q

′ − q|2

2σ2

ã
dq′.

Of course, uniformly distributed displacements for instance could be considered as well:

q′ = q + σU, U ∼ U
(
(−1, 1)D

)
in which case

T (q, dq′) = (2σ)−D 1|q′−q|6σ dq
′.

Both these proposals are symmetric. The problem with such proposals is that they are uninformed
and therefore not well suited in general to the target probability measure at hand (creating very
correlated successive configurations for small σ, or very unlikely moves for large σ).

Another symmetric proposal which may be used in the case of many particle systems for which
q = (q1, . . . , qN ) in a physical space of dimension d (so that D = dN) consists in applying a
random walk displacement to only one particle chosen at random. This may help proposing moves
which are more likely to be accepted than when updating all particles simultaneously (think for
example of a relatively dense fluid). For instance, for a uniformly distributed perturbation with a
typical magnitude σ > 0, the transition kernel is

T (q, dq′) =
1

N

N∑
i=1

Ñ∏
j 6=i

δqj (dq
′
j)

é(
d∏

α=1

1|q′i,α−qi,α|6σ

)
dq′i

(2σ)d
,

where qi,α is the α-th component of qi.
For random walk proposals, under weak assumptions on the potential energy function, it is

possible to transform a given configuration into another one in a finite number of steps by moving
individually one particle after another. This shows the irreducibility of the chain. should

this be
made
precise?
painful...
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Non-symmetric move

An instance of a non-symmetric proposal which may be useful to sample the canonical mea-
sure (3.5) is the one used in the so-called Metropolis-Adjusted Langevin Algorithm (MALA) in
the statistics literature [235], known as Smart MC in the chemistry literature [237]:

q′ = q − σ2∇V (q) +

 
2σ2

β
G, G ∼ N (0, IdD). (3.8)

The proposal is built on the time discretization (with time step σ2 > 0) of the overdamped
Langevin dynamics which is ergodic with respect to the canonical measure (see Chapter 4). The
acceptance-rejection step corrects the bias introduced by the time discretization. Roughly speak-
ing, the added drift term proportional to −∇V (q) brings back the system to regions of higher
probability, while the random term adds some stochastic fluctuations. The associated transition
kernel reads

T (q, dq′) =

Å
β

4πσ2

ãD/2
exp

Å
−β |q

′ − q + σ2∇V (q)|2

4σ2

ã
dq′.

Notice that in this case T (q, dq′) dq 6= T (q′, dq) dq′.

Exercise 3.1. For practical implementation, it is numerically more stable to compute the loga-
rithmic acceptance rate log r(q, q′). Show that for the proposal (3.8),

log r(q, q′) = β [V (q)− V (q′)] +
1

2

[
G2 − Gσ(q, q′)2

]
,

for some function Gσ such that lim
σ→0
Gσ(q, q′) = −G.

Remark 3.3. For small values of σ, it can be shown that the average rejection rate

1−
ˆ
D
α(q) ν(dq)

scales as σ for random walk proposals, while it scales as σ3 for MALA. This can be proved by
straightforward Taylor expansions, see for instance [91].better

reference?
Refinements and extensions

Since the proposal kernel T lies at the heart of the method, it is no surprise that a large fraction of
the literature from the application fields (chemistry, physics, materials science, etc) deals with new
and creative proposal kernels, using for instance “non-physical moves” where molecules are broken
and other ones are linked together ; see for instance [97, Chapter 13] for some examples. Another
important class of methods relies parallel tempering strategies [186], where several replicas of the
system are simulated in parallel at different temperatures, and sometimes exchanges between two
replicas at different temperatures are attempted, the probability of such an exchange being givenwrite ex-
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by a Metropolis–Hastings ratio.

other ex-
tensions
to men-
tion –
delayed
rejection
and co’
for in-
stance

3.3 Convergence of the law

We present in this section a result on the exponential convergence of the evolution operator in
some space of functions growing not too fast at infinity [118]. Similar results are provided in [196];
see also [228] for stochastic differential equations. We first give in Section 3.3.1 a convergence
result in a general form on an abstract configuration space X , since this result will be used in
many situations in the sequel: time-discrete or time-continuous dynamics, in terms of positions or
positions and momenta. The first situation we discuss concerns time-discrete dynamics (Markov
chains), in positions; see Section 3.3.3.

In this section, and in the sequel, we denote byB∞(X ) the Banach space of bounded measurable
functions on X endowed with the norm

‖ϕ‖B∞ = sup
x∈X
|ϕ(x)|.
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3.3.1 A general result

Consider a stochastic evolution described by its evolution operator P , with associated kernel
P (x, dx′). Recall that bounded measurable functions are evolved as

(Pϕ)(x) =

ˆ
X
ϕ(x′)P (x, dx′).

To define the evolution of probability measures, we introduce the set B(X ) of Borel subsets of X ,
and define

∀S ∈ B(X ), (Pµ)(S) =

ˆ
X
P (x, S)µ(dx).

Note that these definitions imply ˆ
X
(Pϕ) dµ =

ˆ
X
ϕd(Pµ). (3.9)

Indeed, the equality is a result of the above definitions when ϕ = 1S for any S ∈ B(X ), and from
that we deduce the equality for any bounded measurable functions (see for instance [243]). We
make the following assumptions.

Assumption 3.1 (Lyapunov condition). There exists a function W : X → [0,+∞) and con-
stants K > 0 and γ ∈ (0, 1) such that

∀x ∈ X , (PW )(x) 6 γW (x) +K.

Remark 3.4. Note that, upon replacing X with {x ∈ X |W (x) < +∞}, it can be assumed that
W (x) < +∞ for any x ∈ X .

This assumption implies that the dynamics returns to the region of the configuration space
where the values of W are not too large. Typically, one chooses functions W which go to infinity
at infinity, so that the Lyapunov condition ensures that the dynamics returns to a compact region
around the origin. Let us also insist on the fact that we require W > 0 (in order to be able to
divide by 1 + W , see (3.10) below).

Assumption 3.2 (Minorization condition). There exists a constant α ∈ (0, 1) and a probabil-
ity measure λ such that

inf
x∈C

P (x, dy) > αλ(dy),

where C = {x ∈ X |W (x) 6 R} for some R > 2K/(1− γ), where γ,K are introduced in Assump-
tion 3.1.

For compact position spaces, this condition is the standard Doeblin condition, which implies
exponential convergence in total variation. Here, the condition ensures that there is a sufficiently add ref
strong coupling of the evolution in the region where the Lyapunov function is sufficiently small.
It is in fact possible to replace Assumption 3.2 by weaker condition, see Remark 3.7 below.

We next introduce the functional space used to measure convergence, which we denote
by B∞W (X ). It is the Banach space of measurable functions ϕ such that

‖ϕ‖B∞W =

∥∥∥∥ ϕ

1 + W

∥∥∥∥
B∞

< +∞. (3.10)

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, P admits a unique invariant
probability measure µ which satisfies ˆ

X
W dµ < +∞. (3.11)

Moreover, there exist C > 0 and r ∈ (0, 1) such that, for any ϕ ∈ B∞W (X ),

∀n ∈ N,

∥∥∥∥Pnϕ− ˆ
X
ϕdµ

∥∥∥∥
B∞W

6 Crn
∥∥∥∥ϕ− ˆ

X
ϕdµ

∥∥∥∥
B∞W

. (3.12)
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Let us now present a more compact reformulation of this inequality in terms of operators. Introduce

B∞W ,0(X ) =
ß
ϕ ∈ B∞W (X )

∣∣∣∣ˆ
X
ϕdµ = 0

™
.

Then, (3.12) can be equivalently written as an inequality of bounded operators on B∞W ,0(X ):

‖Pn‖B(B∞W ,0(X )) 6 Crn. (3.13)

Remark 3.5 (sub-exponential convergence rates). It is possible to weaken the Lyapunov
condition (4.55) for instance as LW 6 φ(W ) + b, where φ is a non-negative, non-decreasing,
concave function such that φ(x)/x → 0 as x → +∞. In this case, algebraic rates of decay are
typically obtained instead of exponential ones; see [73] or [52] for further details.

Theorem 3.1 allows us to obtain bounds on the resolvent Id − P , which will prove useful
in various contexts (definition and quantitative estimates of the variance of Markov chains in
Section 3.4, error estimates on transport coefficients in Section 8.4, etc).

Corollary 3.1. If the assumptions of Theorem 3.12 are satisfied, the bounded operator Id− P is
invertible on B∞W ,0(X ), and ∥∥∥(Id− P )−1∥∥∥

B(B∞W ,0(X ))
6

C

1− r
.

Proof. The series with general term Pn is convergent in B
Ä
B∞W ,0(X )

ä
in view of (3.13). In addition,

a simple computation gives, for N ∈ N fixed,

(Id− P )
N∑
n=0

Pn =

(
N∑
n=0

Pn

)
(Id− P ) = Id− PN+1,

so that, when N → +∞,

(Id− P )
+∞∑
n=0

Pn =

(
+∞∑
n=0

Pn

)
(Id− P ) = Id.

This shows that Id− P is invertible and

(Id− P )−1 =

+∞∑
n=0

Pn. (3.14)

Moreover, ∥∥∥(Id− P )−1∥∥∥
B(B∞W ,0(X ))

6
+∞∑
n=0

‖Pn‖B(B∞W ,0(X )) 6 C

+∞∑
n=0

rn =
C

1− r
,

which gives the desired bound. ut

Remark 3.6. In the subsequent chapters, we will in fact consider Lyapunov functions with values
larger than 1, which correspond to W̃ = 1+W with the notation of this chapter. Assumption (3.1)
should then be replaced by

P W̃ 6 γW̃ + ‹K, ‹K = K + 1− γ,

while Assumption 3.2 should be checked in the set C =
¶
x ∈ X

∣∣∣ W̃ (x) 6 R
©

for some R > 1 +

2(‹K − 1 + γ)/(1− γ).
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3.3.2 Proof of Theorem 3.1

The proof of Theorem 3.1, reproduced from [118], is divided into three steps:

(1) We first introduce a family of equivalent metrics on B∞W (X ), which allows to simplify some
computations.

(2) We then prove a contraction principle in one of these equivalent metrics (see Proposition 3.3).
(3) We finally obtain the existence of the invariant measure by a fixed-point strategy (see Propo-

sition 3.4).

We start by considering two families of equivalent norms, parameterized by a > 0. The first
one corresponds, with the notation introduced above, to the norms ‖ · ‖B∞aW

:

‖ϕ‖B∞aW
=

∥∥∥∥ ϕ

1 + aW

∥∥∥∥
B∞

.

The associated induced metric on probability measures is

ρa(µ1, µ2) = sup
‖ϕ‖B∞

aW
61

ßˆ
X
ϕ(x)

(
µ1(dx)− µ2(dx)

)™
=

ˆ
X
(1 + aW (x))|µ1 − µ2|(dx). (3.15)

The second one is induced by the following metrics on X :

da(x, y) =

{
0 if x = y,

2 + a
(
W (x) + W (y)

)
if x 6= y.

Although this definition looks odd, it can be checked that da indeed is a distance. We then consider
the Lipschitz seminorm on measurable functions induced by da:

‖ϕ‖a = sup
x 6=y

|ϕ(x)− ϕ(y)|
da(x, y)

,

as well as the induced metric on probability measures:

da(µ1, µ2) = sup
‖ϕ‖a61

ßˆ
X
ϕ(x)

(
µ1(dx)− µ2(dx)

)™
. (3.16)

In fact, as made precise in the following proposition, the two families of norms ‖ · ‖B∞aW
and ‖ · ‖a

are closely related, and induce the same distance on probability measures. The basic idea is that
an element ϕ ∈ B∞aW can be written as ϕ = (1 + aW )φ with φ ∈ B∞(X ).

Proposition 3.2. It holds ‖ϕ‖a = min
c∈R
‖ϕ+ c‖B∞aW

. Therefore, da(µ1, µ2) = ρa(µ1, µ2).

Proof. Since |ϕ(x)| 6 ‖ϕ‖B∞aW
(1+ aW (x)) by definition of ‖ϕ‖B∞aW

, it follows that, for any x 6= y,

|ϕ(x)− ϕ(y)|
da(x, y)

6
|ϕ(x)|+ |ϕ(y)|

2 + aW (x) + aW (y)
6 ‖ϕ‖B∞aW

.

Therefore, ‖ϕ‖a 6 ‖ϕ‖B∞aW
. Now, replacing ϕ by ϕ+ c, we obtain ‖ϕ‖a = ‖ϕ+ c‖a 6 ‖ϕ+ c‖B∞aW

,
from which we conclude that ‖ϕ‖a 6 inf

c∈R
‖ϕ+ c‖B∞aW

.

To prove the converse inequality, we choose ϕ such that ‖ϕ‖a = 1, and set

cϕ = inf
x∈X

(
1 + aW (x)− ϕ(x)

)
. (3.17)

We can then prove the following facts.
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• The constant cϕ is finite. Indeed, consider y ∈ X such that W (y) < +∞ and |ϕ(y)| < +∞ (see
Remark 3.4). Then,

|ϕ(x)| 6 |ϕ(y)|+ |ϕ(x)− ϕ(y)| 6 |ϕ(y)|+ 2 + a
(
W (x) + W (y)

)
,

so that
1 + aW (x)− ϕ(x) > −1− aW (y)− |ϕ(y)|.

This shows that cϕ is bounded from below and |cϕ| < +∞.
• It holds |ϕ(x) + cϕ| 6 1 + aW (x). Indeed, on the one hand,

ϕ(x) + cϕ 6 ϕ(x) +
(
1 + aW (x)− ϕ(x)

)
= 1 + aW (x),

while on the other,

ϕ(x) + cϕ = inf
y∈X

(
1 + aW (y) + ϕ(x)− ϕ(y)

)
> inf
y∈X

(
1 + aW (y)− da(x, y)‖ϕ‖a

)
= inf
y∈X

(
1 + aW (y)− da(x, y)

)
= −

(
1 + aW (x)

)
.

In conclusion, ‖ϕ+ cϕ‖B∞aW
6 1 for the specific choice (3.17) when ‖ϕ‖a = 1. By homogeneity, for

general measurable functions ϕ,
inf
c∈R
‖ϕ+ c‖B∞aW

6 ‖ϕ‖a,

which allows to conclude to the equality. In fact, the infimum is a minimum since ‖ϕ+c‖B∞aW
→ +∞

as c→ ±∞
To prove the equality of the induced metrics da and ρa on the space of probability measures,

we first note that

{ϕ measurable : ‖ϕ‖a 6 1} =
{
φ+ c

∣∣φ measurable, ‖φ‖B∞aW
6 1
}
.

It is indeed clear that the set on the right hand side of the previous equality is included in the
set on the left hand side. The converse inequality follows from the fact that, for any measurable
function ϕ such that ‖ϕ‖a 6 1, there exists c ∈ R such that ‖ϕ‖a = ‖ϕ + c‖B∞aW

6 1, which
proves that ϕ indeed belongs to the set on the right hand side of the above equality. Therefore,
the functions belonging to the sets {ϕ measurable : ‖ϕ‖a 6 1} and {ϕ measurable : ‖ϕ‖B∞aW

6 1}
differ only by additive constants, which are unimportant in the integrals appearing on the right-
hand sides of the definitions (3.15) and (3.16), so that the induced metrics da and ρa on the space
of probability measures coincide. ut

Proposition 3.3. Suppose that Assumptions 3.1 and 3.2 hold. Then, there exists r ∈ (0, 1) and
a > 0 such that

‖Pϕ‖a 6 r‖ϕ‖a.

A careful inspection of the proof also allows to obtain quantitative bounds on r in terms of the
various constants appearing in Assumptions 3.1 and 3.2. Note that the above inequality can be
iterated to write ‖Pnϕ‖a 6 rn‖ϕ‖a. In order to conclude the proof of the theorem, we will however
need a final step: prove the existence of some invariant probability measure.

Proof. The result follows if we can show that there exist a > 0 and r ∈ (0, 1) such that

∀x 6= y, |Pϕ(x)− Pϕ(y)| 6 r da(x, y)‖ϕ‖a.

It is sufficient to prove the latter inequality with ‖ϕ‖a replaced by ‖ϕ‖B∞aW
on the right hand side,

and then consider the infimum over c of functions of the form ϕ+ c (as this does not change the
left hand side). We distinguish two cases, the value of a being determined by the second condition.



3.3 Convergence of the law 61

(i) If W (x)+W (y) > R (where R is defined in Assumption 3.2): in this case, x, y are typically far
away from the origin and we use the Lyapunov condition to obtain some average decrease.
More precisely, introduce γ0 = γ + 2K/R < 1 and, for some a ∈ (0, 1), consider γ1 =
(2+aRγ0)/(2+aR) ∈ (γ0, 1). With these choices, upon applying P to the inequality ϕ(x) 6
‖ϕ‖B∞aW

(1 + aW (x)), we obtain

|Pϕ(x)− Pϕ(y)| 6 ‖ϕ‖B∞aW

(
2 + aPW (x) + aPW (y)

)
6 ‖ϕ‖B∞aW

(
2 + γaW (x) + γaW (y) + 2aK

)
6 ‖ϕ‖B∞aW

(
2 + γ0aW (x) + γ0aW (y)

)
6 ‖ϕ‖B∞aW

γ1
(
2 + aW (x) + aW (y)

)
= ‖ϕ‖B∞aW

γ1da(x, y).

The last inequality is true as soon as 2 + aγ0R 6 γ1(2 + aR), which motivates the choice
of γ1.

(ii) If W (x)+W (y) 6 R: in this case, both x and y belong to C, and we use the coupling condition
given by the minoration property to obtain some average decrease. For z ∈ C, consider the
transition kernel ‹P (z, dz′) = 1

1− α

(
P (z, dz′)− αλ(dz′)

)
,

which is indeed positive and sums up to 1. Then,

Pϕ(x) = (1− α)‹Pϕ(x) + α

ˆ
X
ϕdλ, (3.18)

so that, upon applying ‹P to the inequality ϕ(x) 6 ‖ϕ‖B∞aW
(1 + aW (x)) and using ‹PW (z) 6

PW (z)/(1− α) for z ∈ C,

|Pϕ(x)− Pϕ(y)| = (1− α)
∣∣∣‹Pϕ(x)− ‹Pϕ(y)∣∣∣

6 (1− α)‖ϕ‖B∞aW

Ä
2 + a‹PW (x) + a‹PW (y)

ä
6 ‖ϕ‖B∞aW

(
2(1− α) + aPW (x) + aPW (y)

)
6 ‖ϕ‖B∞aW

(
2(1− α) + aγ[W (x) + W (y)] + 2aK

)
. (3.19)

We now choose a sufficiently small so that γ2 = min(1− α+ aK, γ) < 1. Then

|Pϕ(x)− Pϕ(y)| 6 ‖ϕ‖B∞aW
γ2da(x, y).

The proof is concluded by setting r = max(γ1, γ2). ut

Remark 3.7 (Weaker minorization conditions). As discussed in [116], it is possible to con-
sider a more general assumption than the minorization condition stated in Assumption 3.2; namely:
There exists a constant α ∈ (0, 1) such that, for all (x, y) ∈ X 2 with W (x) +W (y) 6 R (for some
R > 2K/(1− γ)), it holds

‖P (x, ·)− P (y, ·)‖TV := sup
‖ϕ‖B∞61

|(Pϕ)(x)− (Pϕ)(y)| 6 2(1− α).

It is clear from (3.18) that Assumption 3.2 implies the latter condition. The only part of the
proof which changes is the coupling estimate (3.19) in item (ii), for which one proceeds as follows.
Consider ϕ such that ‖ϕ‖B∞aW

6 1 and decompose it as ϕ = ϕ1 + ϕ2 with |ϕ1(z)| 6 1 and
|ϕ2(z)| 6 aW (z) for all z ∈ X . Then,

|Pϕ(x)− Pϕ(y)| 6 |Pϕ1(x)− Pϕ1(y)|+ |Pϕ2(x)− Pϕ2(y)|
6 2(1− α) + |Pϕ2(x)|+ |Pϕ2(y)|
6 2(1− α) + a(PW (x) + PW (y))

6 2(1− α) + γa(W (x) + W (y)) + 2aK,

which leads to (3.19) upon considering ϕ/‖ϕ‖B∞W .
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A direct corollary of Proposition 3.3 is the following contraction result.

Corollary 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Then, there exist r ∈ (0, 1) and a > 0
such that, for any µ1, µ2 ∈P(X ),

ρa(Pµ1, Pµ2) 6 rρa(µ1, µ2).

Proof. Note first that, in view of (3.9) and (3.16), Proposition 3.3 implies that da(Pµ1, Pµ2) 6
r da(µ1, µ2). The conclusion then follows from the equality of metrics da = ρa given by Proposi-
tion 3.2. ut

Note that this contraction principle immediately gives the uniqueness of the invariant measure
provided it exits. It in fact also allows to obtain the existence of the invariant measure.

Proposition 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, there exists a unique invari-
ant probability measure µ on X , which moreover satisfiesˆ

X
W dµ 6

K

1− γ
< +∞.

Proof. Consider any probability distribution µ0 on X (for instance δx0
for a given element x0 ∈ X ),

and define µn = Pnµ0. Then, by Corollary 3.2, there exist r ∈ (0, 1) and a > 0 such that
ρa(µn+1, µn) 6 rnρa(µ1, µ0). This shows that (µn) is a Cauchy sequence for the metric ρa. Now,
the space of probability measures integrating W is complete for ρa. This shows that there existsadd a

ref or a
proof?
(see com-
ments in
the tex)

a probability measure µ∞ such that µ→ µ∞ for the metric ρa.
The invariance of µ∞, namely Pµ∞ = µ∞, is obtained by passing to the limit in the inequality

ρa(µn+1, Pµ∞) 6 rρa(µn, µ∞), which gives ρa(µ∞, Pµ∞) = 0. The uniqueness is easy to obtain: if
µ∞,1 and µ∞,2 are invariant, then ρa(µ∞,1, µ∞,2) = ρa(Pµ∞,1, Pµ∞,2) 6 rρa(µ∞,1, µ∞,2), which
shows that ρa(µ∞,1, µ∞,2) = 0 and so µ∞,1 = µ∞,2.

Bounds on the integral of W with respect to µ are deduced by integrating both sides of the
Lyapunov condition with respect to µ∞:ˆ

X
W dµ∞ =

ˆ
X
PW dµ∞ 6 γ

ˆ
X

W dµ∞ +K,

which gives the desired upper bound. ut

Theorem 3.1 now follows by applying the contraction principle of Corollary 3.2 with µ1 replaced
by any initial distribution δx0

for x0 ∈ X , and with µ2 replaced by the invariant measure µ
given by Proposition 3.4. More precisely, for a given initial condition δx0

, it holds ρa(Pnδx0
, µ) 6

rnρa(δx0 , µ). For a given function ϕ ∈ B∞aW (X ), this implies, by definition of ρa,∣∣∣∣Pnϕ(x0)− ˆ
X
ϕdµ

∣∣∣∣ = ∣∣∣∣Pn Åϕ− ˆ
X
ϕdµ

ã
(x0)

∣∣∣∣ 6 ρa(P
nδx0

, µ)

∥∥∥∥ϕ− ˆ
X
ϕdµ

∥∥∥∥
B∞aW

6 rnρa(δx0
, µ)

∥∥∥∥ϕ− ˆ
X
ϕdµ

∥∥∥∥
B∞aW

.

Now, there exists a constant C ∈ R+ (which depends on a) such that, using the definition of
B∞aW (X ),

ˆ
X
φ(x)(δx0

(dx)− µ(dx)) = φ(x0)−
ˆ
X
φdµ 6 ‖φ‖B∞aW

Å
2 + aW (x0) + a

ˆ
X

W dµ

ã
6 C‖φ‖B∞W

(
1 + W (x0)

)
.

Therefore, ρa(δx0
, µ) 6 C(1 + W (x0)), and finally∣∣∣∣Pnϕ(x0)− ˆ

X
ϕdµ

∣∣∣∣ 6 Crn
(
1+W (x0)

) ∥∥∥∥ϕ− ˆ
X
ϕdµ

∥∥∥∥
B∞aW

6 ‹Crn(1+W (x0)
) ∥∥∥∥ϕ− ˆ

X
ϕdµ

∥∥∥∥
B∞W

,

which leads to (3.12).
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Remark 3.8. Note that the prefactors C, ‹C > 1 in the above estimates arise from some norm
equivalence. We will encounter again such prefactors in the theory of hypocoercivity, see Sec-
tions 5.5.1 and 5.4.3.

3.3.3 Application to the Metropolis–Hastings algorithm

A simple example to apply the above framework is the following. Consider the canonical mea-
sure (3.5) on a compact state space D, for a smooth potential energy function V , and a Metropolis–
Hastings algorithm with a symmetric proposal kernel with a density with respect to the Lebesgue
measure such that T (q, q′) > η > 0 for any q, q′ ∈ D. Since the potential V is bounded from above
and from below, there exists m,M > 0 such that

m 6 min
q∈D

e−βV (q) 6 max
q∈D

e−βV (q) 6M.

Therefore, since the acceptance rate is bounded from below by m/M , (3.7) implies that

P (q, dq′) >
mη

M
dq′.

This immediately gives the minorization condition in Assumption 3.2 with α = mη|D|/M and
λ(dq) = |D|−1 dq. Since the space is compact, the Lyapunov function can be chosen to be W = 0
in Assumption 3.1. We can then conclude to the exponential convergence in B∞: there exist C > 0
and r ∈ (0, 1) such that, for any ϕ ∈ B∞(D),∥∥∥∥Pnϕ− ˆ

D
ϕdν

∥∥∥∥
B∞

6 Crn
∥∥∥∥ϕ− ˆ

D
ϕdν

∥∥∥∥
B∞

.

3.4 Rate of convergence of ergodic averages

For ϕ ∈ L1(ν), the almost-sure convergence of the sample averages

ϕ̂Niter =
1

Niter

Niter−1∑
n=0

ϕ(qn) −−−−−−−→
Niter→+∞

ˆ
D
ϕdν

is given by Proposition 3.1. A natural question is to quantify the statistical error. This can be
performed using a Central Limit Theorem for Markov chains. Proving such a result requires
deep tools from probability theory such as a Central Limit Theorem for discrete martingales. We
will therefore only motivate here the expression of the asymptotic variance for a certain class of
observables (smaller than L2(ν)), using the operator bounds derived in the previous section. In
order to state the result, we introduce the operator Π defined for ϕ ∈ L1(ν) as

Πϕ = ϕ−
ˆ
D
ϕdν.

Proposition 3.5. Suppose that Assumptions 3.1 and 3.2 hold for a Lyapunov function W ∈ L2(ν),
and denote by ν the unique invariant measure of the Markov chain associated with P . Fix ϕ ∈
B∞W (X ). Then, the asymptotic variance of the random variable ϕ̂Niter is given by

lim
Niter→+∞

NiterVarν (ϕ̂Niter
) = Eν

(
Πϕ2

)
+ 2

+∞∑
n=1

Eν
[
Πϕ(qn)Πϕ(q0)

]
=

ˆ
D
Πϕ

[(
2(Id− P )−1 − Id

)
Πϕ
]
dν,

(3.20)

where expectations are with respect to initial conditions q0 ∼ ν and over all realizations of the
Markov chain.
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Note that upper bounds on (3.20) can be obtained by Corollary 3.1, as follows:∣∣∣∣ lim
Niter→+∞

NiterVarν (ϕ̂Niter)

∣∣∣∣ 6 Å1 + 2C

r − 1

ã
‖W ‖2L2(ν)‖ϕ‖

2
B∞W

.

In fact, it is possible to generalize the above result to any initial distribution since the law of the
Markov chain converges exponentially fast to the invariant measure ν under our assumptions. For
a Central Limit Theorem to hold, it suffices that the solution Φ to the Poisson equation

(Id− P )Φ = Πϕ (3.21)

belongs to L2(ν); see [196, Theorem 17.4.4]. The proof is based on a Central Limit Theorem
for discrete martingales. In view of Corollary 3.1, a sufficient condition for Φ ∈ L2(ν) is that
ϕ ∈ B∞W (X ) and W ∈ L2(π). The condition W ∈ L2(ν) can be proved by showing that a Lyapunov
condition holds for W 2 (i.e. Assumption 3.1 holds with W replaced by W 2).

Proof. Note that when q0 ∼ ν, it holds qn ∼ ν for all n > 1 and the following stationarity property
holds:

∀n,m > 0, Eν [Πϕ(q
n)Πϕ(qm)] = Eν

î
Πϕ(q|n−m|)Πϕ(q0)

ó
.

Then,

Niter Varν (ϕ̂Niter
) = Niter Eν

î
(Πϕ̂Niter

)
2
ó

=
1

Niter

Niter−1∑
n,m=0

Eν [Πϕ(q
n)Πϕ(qm)]

=
1

Niter

Niter−1∑
n=0

Eν
î
(Πϕ(qn))

2
ó
+

2

Niter

∑
06m<n6Niter−1

Eν [Πϕ(q
n)Πϕ(qm)]

= Eν
î
(Πϕ)

2
ó
+ 2

∑
16n6Niter−1

Å
1− n

Niter

ã
Eν
[
Πϕ(qn)Πϕ(q0)

]
,

where we used the stationary property in the last step. Note next that

Eν
[
Πϕ(qn)Πϕ(q0)

]
=

ˆ
D
(Πϕ)(PnΠϕ) dν.

Since, by (3.13),
|Πϕ(x)(PnΠϕ)(q)| 6 C‖ϕ‖2B∞W r

n(1 + W (q))2,

a dominated convergence argument shows that

NiterVarν(ϕ̂Niter) −−−−−−−→
Niter→+∞

σ2
ϕ,

with

σ2
ϕ = Eν

[
(Πϕ)2

]
+ 2

+∞∑
n=1

Eν
[
(Πϕ)(qn)(Πϕ)(q0)

]
=

ˆ
D
(Πϕ)

[
Id + 2

+∞∑
n=1

Pn

]
Πϕ dν

=

ˆ
D
(Πϕ)[2(Id− P )−1 − Id]Πϕ dν. (3.22)

where we used (3.14) in the last step. ut

It is instructive at this stage to compare the asymptotic variance (3.20) to the one obtained by
averages of independent and identically distributed (i.i.d.) random variables (qn)n>1 with common
law ν. When ϕ ∈ L2(ν), a Central Limit Theorem holds true for the estimator
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ϕ̂iid
Niter

=
1

Niter

Niter∑
n=1

ϕ(qn),

whose asymptotic variance is

σ2
ϕ,iid = lim

Niter→+∞
NiterVarν

ï(
Π̂ϕ

iid

Niter

)2ò
=

ˆ
D
(Πϕ)2dν.

We write the asymptotic variance (3.20) for time averages estimates with ergodic SDEs in terms
of the reference variance σ2

ϕ,iid as
σ2
ϕ = Ncorr,ϕσ

2
ϕ,iid, (3.23)

and interpret Ncorr,ϕ as some number of correlation steps. What is meant by that is that the mean-
square error of the estimator ϕ̂Niter

asymptotically behaves as σ2
ϕ/Niter = σ2

ϕ,iidNcorr,ϕ/Niter, so
that in order to have an estimator of the same quality as the one based on Niter i.i.d. samples,
Ncorr,ϕNiter steps of the Markov chain should be performed. add refer-

ences on
estimation
of asymp-
totic
variance:
e.g. [94]
and (ref-
erences
in) [178,
Sec-
tion 2.3.1.3]
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We discuss in this lecture the overdamped Langevin dynamics presented in Section 1.4.2. We
start by giving in Section 4.1 some mathematical properties of the dynamics, as well as possible
extensions. We next discuss the convergence of time averages along realizations of the dynamics
(see Section 4.2). We finally present in Section 4.3 various approaches to conclude to the longtime
convergence of the law of the process to its invariant measure.

4.1 Description of the dynamics and mathematical properties

Overdamped processes are stochastic dynamics on the system positions q ∈ D only. We first
describe in Section 4.1.1 the simplest version of overdamped Langevin dynamics, with a constant
diffusion coefficient and a gradient drift. Possible extensions are reviewed in Section 4.1.2. We
assume in all this lecture that the potential energy function V is smooth.

4.1.1 Simple overdamped Langevin dynamics

The simplest version of overdamped Langevin dynamics is the following stochastic differential
equation:

dqt = −∇V (qt) dt+

 
2

β
dWt, (4.1)

where t 7→ Wt is a standard D-dimensional Wiener process. As will be made clear below, the Below:
take out
the basic
material
on SDEs
already
discussed
in lectures
from T.
Lelievre
and J.
Reygner

unique invariant probability measure for the process (4.1) is the canonical measure (1.19), which
we recall here for convenience:

ν(dq) = Z−1ν exp(−βV (q)) dq. (4.2)
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Generator of the dynamics

The generator L associated with (4.1) acts on functions of the variable q. For a smooth function
ϕ ∈ C∞(D),

Lϕ =
1

β
∆ϕ−∇V · ∇ϕ =

eβV

β
div
(
e−βV∇ϕ

)
. (4.3)

The operator L can be considered as an unbounded operator for instance on the Banach
space C0(D) with domain C2(D); or on the Hilbert space L2(ν) with domain H2(ν) under ap-
propriate growth conditions on the potential energy function when the configuration space D is
unbounded. For instance, when ϕ ∈ H2(ν), the function ∇V T∇ϕ ∈ L2(ν) provided there exist
C > 0 such that

∀q ∈ D,
∣∣∇2V (q)

∣∣ 6 C (1 + |∇V (q)|) ,

see [274, Lemma A.24]. This condition on V is satisfied for instance for potentials which grow
polynomially at infinity. In fact, we can rewrite the generator when considered on L2(ν) as

L = − 1

β

D∑
i=1

∂∗qi∂qi , (4.4)

where adjoints are taken on L2(ν). More precisely, for any smooth and compactly supported
functions φ, ϕ and a closed operator A,

ˆ
D
(A∗ϕ)φdν =

ˆ
D
ϕ(Aφ) dν.

A simple computation shows that ∂∗qi = −∂qi + β∂qiV , which leads to (4.4) in view of (4.3).

Evolution of time averages

A first important property of the generator L is that it encodes the time evolution through the
semigroup etL (which will be given a rigorous meaning in Section 4.3). This semigroup is formally
defined as (

etLϕ
)
(q0) = Eq0 [ϕ(qt)] . (4.5)

To prove this equality, we consider a fixed time t > 0 and a C∞ function ϕ with compact support,
and introduce the solution to the following parabolic equation:

∂tΦ = LΦ, Φ(0) = ϕ.

Note that the solution to this equation can be denoted by Φ(t) = etLϕ using notation from
semigroup theory [216]. Then, using Itô’s formula, it holds, for s ∈ [0, t],formal

compu-
tations,
cf. local
martin-
gales need
estimates
on ∇Φ...

d [Φ(t− s, qs)] = (−∂t + L)Φ(t− s, qs) ds+
 

2

β
∇Φ(t− s, qs) · dWs,

so that, taking expectations,

Eq0(ϕ(qt))− Φ(t, q0) =
 

2

β
Eq0
ñˆ t

0

∇Φ(t− s, qs) · dWs

ô
= 0,

which gives (4.5).
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Evolution of the law of the process

The evolution of the law ψ(t, q) of the process qt is governed by the Fokker–Planck equation

∂tψ = L†ψ, ψ(0, ·) = ψ0, (4.6)

where ψ0 is the distribution of initial conditions, and

L† = 1

β
∆+ div (∇V ·)

is the adjoint of L on L2(D). We write ψ0 for the initial distribution with some abuse of notation,
but we emphasize that this initial condition is in general a probability measure, which is not neces-
sarily absolutely continuous with respect to the Lebesgue measure (think of a Dirac mass centered
at a given position q0). Equation 4.6 should then be understood in the sense of distributions. By
parabolic regularity, the equality (4.6) actually holds in the classical sense for t > 0. For rigorous
results concerning the existence and uniqueness of a solution to (4.6) and the link with stochastic
differential equations, see for example to [98].

To formally derive (4.6), we fix a test function ϕ ∈ C∞(D) with compact support. For h > 0,
and denoting by Eψ0

the expectation taken over all realizations of (4.1) with initial conditions q0
distributed according to ψ0, we obtain from Iô’s calculus on dϕ(qt) that

Eψ0
[ϕ(qt+h)]− Eψ0

[ϕ(qt)]

h
=

1

h

ˆ t+h

t

Eψ0 [(Lϕ)(qs)] ds,

which can be restated as

1

h

Åˆ
D
ϕ(q)ψ(t+ h, q) dq −

ˆ
D
ϕ(q)ψ(t, q) dq

ã
=

1

h

ˆ t+h

t

ˆ
D
(Lϕ)(q)ψ(s, q) dq ds.

This leads, in the limit h→ 0, to the following equation:

d

dt
Eψ0(ϕ(qt)) = Eψ0

[
(Lϕ)(qt)

]
,

or, equivalently,
d

dt

Åˆ
D
ϕ(q)ψ(t, q) dq

ã
=

ˆ
D
(Lϕ)(q)ψ(t, q) dq,

which is indeed the weak formulation (to be understood in the distributional sense) of (4.6).

Reversibility and self-adjointness of L

The process (4.1) is reversible with respect to the canonical probability distribution (4.2). In
probabilistic terms, this means that, for q0 ∼ ν and t > 0, the law of the trajectories (qs)06s6t
is the same as the law of the trajectories (qt−s)06s6t (the arrow of time cannot be read off the
trajectory). From a functional analytical viewpoint, this means that the generator is self-adjoint
on the Hilbert space

L2(ν) =

ß
ϕ measurable

∣∣∣∣ˆ
D
|ϕ|2 dν < +∞

™
,

equipped with the scalar product1

〈ϕ1, ϕ2〉L2(ν) =

ˆ
D
ϕ1 ϕ2 dν.

1 To keep the notation simple, we restrict ourselves to real-valued scalar products, although, for spectral
theory, complex-valued scalar products should be considered. However, the extension to the latter case
is straightforward.
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To prove this statement, note first that the operator L is symmetric. This can be seen from (4.4),
or by a direct proof based on the Dirichlet form associated with L: for any test functions ϕ1 and ϕ2

(for instance C∞ with compact support),

〈Lϕ1, ϕ2〉L2(ν) =

ˆ
D
ϕ1 L(ϕ2)

e−βV

Zν
=

1

βZν

ˆ
D
ϕ1 div

(
e−βV∇ϕ2

)
= − 1

β

ˆ
D
∇ϕT1∇ϕ2

e−βV

Zν
= − 1

β
〈∇ϕ1,∇ϕ2〉L2(ν) .

(4.7)

The latter expression is obviously symmetric in ϕ1, ϕ2. In order to conclude that L is self-adjoint
on L2(ν), domain issues have to be considered; see e.g. [20].

A consequence of reversibility is that the canonical measure is invariant: the choice ϕ1 = 1
indeed in the previous equality leads indeed to

ˆ
D
Lϕdν = 0 (4.8)

for all smooth functions ϕ with compact support. In particular, L†ν = 0, which proves that the
canonical measure ν recalled in (4.2) is invariant.

4.1.2 Extension of simple overdamped Langevin dynamics

We first present how to formulate overdamped Langevin dynamics in the case of multiplicative
noise, and then how to incorporate non gradient forces provided these forces have some vanishing
divergence. Of course, it is possible to combine both extensions.

Dynamics with multiplicative noise

In some situations, it is relevant to consider the case when the Brownian motion in (4.1) is
multiplied by some diffusion matrix B ∈ RD×D, taken to be symmetric. In this case, the drift
has to be modified accordingly in order to ensure the invariance of the canonical measure. More
precisely, introduce

A(q) = B(q)B(q)T ,

and consider

dqt =

Å
−A(qt)∇V (qt) +

1

β
divA(qt)

ã
dt+

 
2

β
B(qt) dWt. (4.9)

The divergence of the matrix valued function A is the vector field with components divAi =∑D
j=1 ∂qjAij , where Ai is the ith line of the matrix A (or column, which is the same since A is

symmetric). The generator of the dynamics (4.9) acts on smooth functions ϕ as

Lϕ =

Å
−A∇V +

1

β
divA

ãT
∇ϕ+

1

β
A : ∇2ϕ = − 1

β
∇∗A∇ϕ = − 1

β

D∑
i,j=1

∂∗qjAij∂qiϕ, (4.10)

where adjoints are still considered on L2(ν), and the contraction of two matrices M, M̃ ∈ RD×D

is defined as

M : M̃ = Tr
Ä
MT M̃

ä
=

D∑
i,j=1

Mi,jM̃i,j .

The latter rewriting immediately implies that the generator is symmetric on L2(ν), and that ν is
an invariant probability measure, by the same reasoning as the one leading to (4.8).
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Dynamics with non gradient drifts preserving the canonical measure

It is possible to add to (4.1) an extra drift F with values in RD, assumed to be smooth for
simplicity:

dqt = (−∇V (qt) + F (qt)) dt+

 
2

β
dWt. (4.11)

The generator of this dynamics is L+A, where L is defined in (4.3), and A = FT∇q. In order to
ensure that ν defined in (4.2) remains an invariant probability measure for the dynamics (4.11),
we further assume that

div
(
F e−βV

)
= 0. (4.12)

A simple computation indeed shows that the generator associated with the extra drift term is
antisymmetric:

A∗ = −A.

Recalling that L is symmetric, we therefore obtain that, for any smooth and compactly supported
test function ϕ, ˆ

D
(L+A)ϕdν =

ˆ
D
ϕ(L −A)1 dν = 0,

which characterizes the invariance of ν by (4.11).
Examples of force fields satisfying (4.12) are for instance

F (q) = A(q)∇V (q), A(q)T = −A(q) ∈ RD×D, div(A)T∇V = 0.

In particular, constant antisymmetric matrices A can be considered. In order to check that the
above condition is a sufficient one, we compute

div
(
F e−βV

)
= e−βV

[
div(A∇V )− β∇V TA∇V

]
= e−βV div(A)T∇V = 0,

where we used successively that ∇V TA∇V = 0 and A : ∇2 = 0 by antisymmetry of A.

4.2 Convergence of trajectory averages

We discuss in this section the convergence of practical estimators of averages with respect to the
target measure ν in (4.2), using the following estimator for some observable of interest ϕ:

ϕ̂t =
1

t

ˆ t

0

ϕ(qs) ds, (4.13)

where, for simplicity of exposition, (qs)s>0 follows the overdamped Langevin dynamics (4.1) (ex-
tensions to the dynamics discussed in Section 4.1.2 are of course possible). We first give in Sec-
tion 4.2.1 sufficient conditions to guarantee the almost sure convergence of ϕ̂t to Eν(ϕ), which
provides some form of Law of Large Numbers for SDEs; and then discuss in Section 4.2.2 the
asymptotic quantification of statistical errors on ϕ̂t − Eν(ϕ) through a Central Limit Theorem.
The results we present here are similar in spirit (and also from a technical viewpoint) to the re-
sults given for Markov chains, see in particular Section 3.1.3 for the almost sure convergence of
trajectory averages, and Section 3.4 for a Central Limit Theorem.

4.2.1 Almost sure convergence of trajectory averages

It would be possible to use a result by Kliemann [149] (discussed more precisely in Section 5.3)
to directly obtain the almost sure convergence of ϕ̂t to Eν(ϕ) for any initial condition q0. For
pedagogical purposes, we will consider here a more constructive proof where we obtain the pathwise
ergodicity of the overdamped process (4.1) by proving that the process is irreducible with respect
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to the Lebesgue measure (a notion made precise below) and recalling that the canonical measure is
by construction an invariant probability measure. The more constructive proof discussed here will
also be useful to obtain the almost sure convergence of trajectory averages in situations where the
expression of the invariant probability measure is not known, as for the nonequilibrium systems
considered in Lecture 8.

Irreducibility corresponds here to the following property (denoting by B(D) the Borel sets
of D): for any S ∈ B(D) with positive Lebesgue measure, any initial condition q0 ∈ D and any
time t > 0, it holds Pq0(qt ∈ S) > 0. The proof is conducted in two steps: first, a controllability
argument shows that Pq0(qt ∈ S) > 0 when t > 0 and S is an open set; second, this property is
extended to general measurable ensembles using the continuity of the transition kernel. The proof
of these statements are simpler than for dynamics with degenerate noise (see Section 5.3).discuss

some-
where
Gaussian
bounds de
Menozzi,
Malliavin
approach
by Par-
doux

Let us first make precise the controllability argument. Fix t > 0, q0 ∈ D and an open set S ⊂ D,
and consider q∗ ∈ S. We denote by Q(t) = (1−t)q0+tq∗ the path interpolating between q0 and q∗,
and by u(t) the control defined as u(0) = 0 and

u(t) =

…
β

2

ˆ t

0

Q̇(s) +∇V (Q(s)) ds =

…
β

2

ñ
t (q∗ − q0) +

ˆ t

0

∇V (Q(s)) ds

ô
.

By construction,
dQ

dt
= −∇V (Q(t)) +

 
2

β
u̇(t).

This shows that there exists a (very specific) realization of the Brownian motion which allows to
go from q0 to q∗ in time t > 0. In addition, for any ε > 0, it holds (see [258, Theorem 4.20])

P

Ç
sup

06t61
|Wt − u(t)| 6 ε

å
> 0.

To prove this statement, one first reduces the problem to u = 0 by a Girsanov transform, in
which case the result is easily proved by martingale inequalities. By continuity of the solution
with respect to the realizations of the Brownian motion, Pq0(qt ∈ S) > 0. The precise argument
relies on the Stroock–Varadhan support theorem, as reviewed in [228, Section 6].

To prove that Pq0(qt ∈ S) > 0 for any measurable set of positive measure (and not just open
sets), the idea is to rely on the regularity of the transition kernel. By standard results of parabolic
regularity [87, Section 7.1], the integral kernel Pt(q, dq′) of etL has a density p(t, q, q′), which isprevious

result on
existence
of the ker-
nel

C∞ in all its arguments on (0,+∞)×D2:(
etLϕ

)
(q) =

ˆ
D
p(t, q, q′)ϕ(q′) dq′.

Indeed, p satisfies the following family of Fokker-Planck equations, indexed respectively by q and q′
(see [228, Section 7]):other ref-

erences?
∂tp(t, q, ·) = Lp(t, q, ·), ∂tp(t, ·, q′) = L†p(t, ·, q′). (4.14)

These equations have to be understood in the sense of distributions. The second one is obtained
by writing

d

dt

Åˆ
D
Pt(q, dq

′)ϕ(q′)

ã
=

d

dt

(
etLϕ

)
(q) =

(
etLLϕ

)
(q) =

ˆ
D
Pt(q, dq

′)(Lq′ϕ)(q′),

where the subscript q′ in Lq′ indicates that the differential operator acts on functions of q′ (q being
a parameter in the previous equation); while the first one is obtained by duality, letting etL

†
act

on probability distributions. The evolution equations (4.14) on the density of the transition kernel
allow to show that (t, q, q′) 7→ p(t, q, q′) is C∞. With this regularity result at hand, we can finally
prove that the irreducibility using the following lemma, which states that open set irreducibility
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implies irreducibility when the transition kernel has some continuity property (known as strong
Feller).2

Lemma 4.1. Consider a transition kernel Pt(q, dq′) which leaves invariant a probability mea-
sure ν, namely

∀S ∈ B(D), ∀t > 0,

ˆ
D
Pt(q, S) ν(dq) = ν(S). (4.15)

Assume that

(i) ν has a positive density with respect to the Lebesgue measure;
(ii) for any set S ∈ B(D) and any t > 0, the function q 7→ Pt(q, S) is continuous;
(iii) for any open set O ⊂ D and any t > 0, it holds Pt(q,O) > 0.

Then, for any q ∈ D, t > 0 and any measurable set S with positive Lebesgue measure, it
holds Pt(q, S) > 0.

Proof. Fix a measurable set S with positive measure and t > 0. Note first that ν(S) > 0, so (4.15)
implies that there exists q∗ ∈ D such that Pt/2(q∗, S) > 0. Moreover, there exists r > 0 such that
Pt/2(q

′, S) > P (q∗, S)/2 for q′ ∈ B(q∗, r). Consider next q ∈ D. Then,

Pt(q, S) =

ˆ
q′∈D

Pt/2(q, dq
′)Pt/2(q

′, S) >
ˆ
B(q∗,r)

Pt/2(q, dq
′)Pt/2(q

′, S)

>
Pt/2(q

∗, S)

2
Pt/2(q,B(q∗, r)) > 0,

since the last factor is positive by the asssumed open set irreducibility. ut

Remark 4.1. The previous arguments extend immediately to dynamics with non gradient drifts (4.11)
since we did not use the fact that the drift has a gradient structure. They can also be extended to
dynamics with multiplicative noise (4.9) provided A > aIdD with a > 0 (in the sense of symmetric
matrices).

4.2.2 Asymptotic variance and central limit theorem

Convergence rates on ϕ̂t−Eν(ϕ) can be obtained provided a Central Limit Theorem holds. A first
step is to show that the asymptotic variance is well defined. To this end, introduce the following
projector:

Πϕ = ϕ−
ˆ
D
ϕdν. (4.16)

The asymptotic variance of the trajectorial average formally is

σ2
ϕ = lim

t→+∞
tE
(Ä
Π̂ϕt
ä2)

= 2

ˆ +∞

0

E(Πϕ(qt)Πϕ(q0)) dt = −2
〈
Πϕ,L−1Πϕ

〉
L2(ν)

. (4.17)

The proof of the latter equalities is very similar to the proof of Proposition 3.5. For simplicity, we
assume that q0 ∼ ν, and denote by Eν expectations with respect to initial conditions q0 ∼ ν and
realizations of (4.1). In particular, by invariance of ν, it holds Eν [ϕ(qt)ϕ(qs)] = Eν [ϕ(q|t−s|)ϕ(q0)].
Then,

tE
(Ä
Π̂ϕt
ä2)

=
1

t

ˆ t

0

ˆ t

0

Eν [Πϕ(qs)Πϕ(qr)] dr ds = 2

ˆ t

0

Å
1− θ

t

ã
Eν [Πϕ(qθ)Πϕ(q0)] dθ

= 2

ˆ t

0

Å
1− θ

t

ã (
eθLΠϕ

)
Πϕdν dθ. (4.18)

2 We thank Boris Nectoux and Liming Wu for teaching us this argument.
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The conclusion then follows from a dominated convergence argument, provided we have good decay
estimates on the semigroup etL, in appropriate functional spaces E of functions with average 0
with respect to ν. In particular, the invertibility of the generator, and bounds on this inverse in
B(E), can be deduced from decay estimates on the semigroup, as made precise in the following
result.

Proposition 4.1. Consider a Banach space E of measurable functions with average 0 with respect
to ν, and assume that there exist C ∈ R+ and λ > 0 such that

∀t > 0, ‖etL‖B(E) 6 Ce−λt. (4.19)

Then the operator L is invertible on E, with

L−1 = −
ˆ +∞

0

etL dt.

In particular,

‖L−1‖B(E) 6
C

λ
. (4.20)

The aim of the next section is precisely to provide estimates such as (4.19), in various Banach
spaces E.

Proof. Introduce the operator

U = −
ˆ +∞

0

etL dt,

which is well defined and bounded on E, in view of the estimate (4.19). Using semigroup the-
ory [216], a simple computation shows that, for for ϕ ∈ D(L) = {φ ∈ E | Lφ ∈ E},

LUϕ = ULϕ = −
ˆ +∞

0

d

dt
[etLϕ] = ϕ.

These equalities show that L is invertible on E, with U = L−1. From the definition of U , it follows
that

‖U‖B(E) 6
ˆ +∞

0

‖etL‖B(E) dt 6 C

ˆ +∞

0

e−λt dt =
C

λ
,

which proves the resolvent bound (4.20). ut

Note that the manipulations performed here for continuous-in-time dynamics are quite similar
to the ones used for discrete-in-time dynamics; see Corollary 3.1. As motivated in the introduction
of Section 6.1, the expression (4.17) of the asymptotic variance can also be seen as a continuous
limit of the asymptotic variance for Markov chains associated with numerical discretizations of
the dynamics (4.1).

Correlation times

Correlation times can be defined by mimicking the approach used at the end of Section 3.4. We
write the asymptotic variance (4.17) for time averages estimates with ergodic SDEs in terms of
the reference variance σ2

ϕ,iid as
σ2
ϕ = θcorr,ϕσ

2
ϕ,iid, (4.21)

and interpret θcorr,ϕ as some correlation time. What is meant by that is that the mean-square
error of the estimator ϕ̂t asymptotically behaves as σ2

ϕ/t = σ2
ϕ,iidθcorr,ϕ/t, so that in order to have

an estimator of the same quality as the one based on N i.i.d. samples, integration times of order
t = Nθcorr,ϕ should be considered.
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Remark 4.2. Upper bounds on the norm of L−1 on L2
0(ν) lead to upper bounds on the correlation

time in view of the last equality in (4.17). In fact, the following bound holds whatever ϕ ∈ L2(ν):

0 6 θcorr,ϕ 6 2‖L−1‖B(L2
0(ν))

. (4.22)

We refer for instance to (4.31) for a possible upper bound on ‖L−1‖B(L2
0(ν))

. Of course, it may well
be the case that θcorr,ϕ is much smaller than 2‖L−1‖B(L2

0(ν))
, due to anticorrelations in the auto-

correlation function t 7→
´
D(e

tLΠϕ)Πϕdν which is integrated in time in order to obtain (4.17).
Typically the bound (4.22) is saturated when L is selfadjoint with compact resolvent, and ϕ is an
eigenvector of −L associated with the smallest non zero eigenvalue.

Central Limit Theorems

The asymptotic variance can be defined without any reference to the evolution semigroup etL, by
directly considering the last equality in (4.17):

σ2
ϕ = 2

ˆ
D
(−L−1Πϕ)Πϕdν.

The integral on the right hand side is well defined once the solution Φ of the Poisson equation

−LΦ = Πϕ (4.23)

belongs to a functional space E ⊂ L2(ν) and ϕ ∈ L2(ν). This is the case when ϕ ∈ E and L−1
is a bounded operator on E. There are however more general frameworks to define solutions of
Poisson equations, see for instance [213] and references therein.

Remark 4.3. Note that a necessary condition for (4.23) to have a solution is that the right hand
side of this equation has average 0 with respect to ν, since this is the case for the left hand side
by (4.8). This further motivates the projection operator Π on the right hand side.

In fact, it was proved by [30] that a Central Limit Theorem holds once the Poisson equa-
tion (4.23) has a solution in L2(ν) and the initial conditions are distributed according to ν. In this
case, √

t (ϕ̂t − Eν(ϕ))
law−−−−→

t→+∞
N (0, σ2

ϕ).

This result can be extended to cover the case when the initial conditions are not distributed
according to the invariant measure; see also [30]. The bottom line of the proof, which we write
here in the general case (4.9), is to use Itô calculus to rewrite

√
t (ϕ̂t − Eν(ϕ)) as

√
t (ϕ̂t − Eν(ϕ)) =

Φ(q0)− Φ(qt)√
t

+Mt, Mt =
1√
t

ˆ t

0

∇Φ(qs)TB(qs)dWs.

The first term converges to 0 in law as t → +∞, while a Central Limit Theorem for martingales
can be applied to obtain the asymptotic behavior of the second term (see for instance [151] or [83]):
Mt converges in law to a Gaussian distribution with variance

σ̃2 = lim
t→+∞

E

Ç
1

t

ˆ t

0

∇Φ(qs)TA(qs)∇Φ(qs) ds
å
.

By ergodicity of the dynamics,

σ̃2 =

ˆ
D
∇ΦTA∇Φdν.

Now, recalling the expression (4.10) for the generator, a simple computation shows that

L(Φ2)− 2ΦLΦ = A : ∇2(Φ2)− 2ΦA : ∇2Φ = ∇ΦTA∇Φ.

The invariance of ν then leads to

σ̃2 =

ˆ
D
∇ΦTA∇Φdν = −2

ˆ
D
ΦLΦdν = σ2

ϕ,

which allows to conclude.
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4.3 Convergence of the law

Since the canonical measure is invariant for the overdamped Langevin dynamics presented in
Section 4.1, it is relevant to ask whether the law ψ(t, q) of the process at time t converges to ν,
and, when this is the case, at which rate. Another question, closely related, is to prove convergence
rates for the semigroup etL (such as (4.19)), in order for the asymptotic variance to be well defined.

We discuss in this section three ways to measure the convergence, and prove that convergenceajouter
un mot
sur les ap-
proches
par cou-
plage ?

happens at an exponential rate under appropriate assumptions on the potential energy function V .
After presenting two reformulations of the Fokker–Planck equation (4.6) in Section 4.3.1, we start
by the converence in L2(ν) in Section 4.3.2, where the fundamental functional inequality is the
Poincaré inequality. We then turn in Section 4.3.3 to convergence in relative entropy and total
variation, relying on logarithmic Sobolev inequalities. The convergence in L2(ν) and in relative
entropy is discussed for the law of the process, but the computations in these sections can be
easily adapted to measure the convergence of the semigroup etL (even for non reversible dynamics
such as (4.11)). We finally turn in Section 4.3.4 to the convergence of the semigroup etL in spaces
of measurables functions growing at most like some reference Lyapunov function W , using a
Lyapunov condition of the form LW 6 −aW + b as a fundamental ingredient.

4.3.1 Two reformulations of the Fokker–Planck equation

We give in this section two useful reformulations of the Fokker–Planck equation (4.6). First, a
simple computation shows that the function g = ψ eβV/2 satisfies the Schrödinger-type equation

∂tg =
1

β
∆g − wg, w =

1

2

Å
β

2
|∇V |2 −∆V

ã
, (4.24)

together with the normalization condition

∀t > 0,

ˆ
D
g(t) e−βV/2 = 1.

Equation (4.24) is not strictly a Schrödinger equation since a factor i is missing on the left hand
side. Nonetheless, the operator arising on the right hand side is the opposite of a Schrödinger
Hamiltonian −β−1∆+w with some effective potential w. The interest of the reformulation (4.24)
is that many results of the mathematical literature on quantum physics [226] can be used to
obtain detailed information on the Schrödinger Hamiltonian −β−1∆ + w, from which the long
time behavior of (4.24) follows.

Second, the function f = ψ eβV satisfies

∂tf = Lf,
ˆ
D
f e−βV = 1. (4.25)

In fact, the same equation is satisfied by the Radon–Nikodym derivative of ψ with respect to ν,
i.e. the function f such that ψ = f ν. This shows that, at least formally, ψ(t) = (etLf0)ν, where
ψ(0) = f0 ν. Therefore, the operator to study to obtain the longtime convergence of the law is the
same as the one determining the convergence of time averages (4.5). In this setting, the functional
space to consider is the Hilbert space L2(ν) in order to have a self-adjoint generator, as discussed
around (4.7).

4.3.2 Convergence in L2(ν)

We start by considering the Fokker-Planck equation reformulated as (4.25), for an initial condition
f0 = ψ0/ν belonging to L2(ν). Note that this condition is more stringent than the conditions

f0 > 0,

ˆ
D
f0 dν = 1,
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which characterize the fact that ψ0 = f0 ν is a probability measure. It is possible to consider less
demanding moment conditions, upon changing the functional framework, see the discussion before
Proposition 4.5 below.

The simplest setting to consider is when a so-called Poincaré inequality holds; see for in-
stance [20, Chapter 4] for a very nice introduction to these inequalities. In this case, f(t) = etLf0
converges exponentially fast in L2(ν) to the constant function 1. This can be rephrased as the
exponential convergence to 0 of etL(f0 − 1) in L2(ν).

In order to state the convergence result, we introduce the following definition.

Definition 4.1 (Poincaré inequality). Consider the functional spaces

L2
0(ν) =

ß
ϕ ∈ L2(ν)

∣∣∣∣ ˆ
D
ϕdν = 0

™
,

and
H1(ν) =

{
ϕ ∈ L2(ν)

∣∣∇ϕ ∈ (L2(ν))D
}
.

The measure ν is said to satisfy a Poincaré inequality with constant R > 0 when

∀ϕ ∈ H1(ν) ∩ L2
0(ν), ‖ϕ‖2L2(ν) 6

1

R
‖∇ϕ‖2L2(ν). (4.26)

The constant R > 0 depends on the potential V , the inverse temperature β and the domain D.
We discuss below various sufficient conditions for ν to satisfy a Poincaré inequality. We will also
repeatedly use below that functions ϕ with average 0 with respect to ν are still of average 0 when
evolved according to (4.25) since, at least formally,

d

dt

Åˆ
D
etLϕ

ã
=

ˆ
D
L
(
etLϕ

)
dν = 0, (4.27)

by (4.8). This property is the counterpart in L2
0(ν) of the fact that the Fokker–Planck equation (4.6)

preserves the total mass (as can be seen by a direct integration over D).
The inequality (4.26) implies (and in fact is equivalent to) the exponential convergence to 0 of

the semigroup etL considered as an operator on L2
0(ν).

Proposition 4.2. The measure ν satisfies a Poincaré inequality with constant R > 0 if and only
if ∥∥etL∥∥B(L2

0(ν))
6 e−Rt/β . (4.28)

Proof. Let us first assume that the measure ν satisfies a Poincaré inequality with constant R > 0.
In view of (4.7), we obtain, for ϕ ∈ D(L) ∩ L2

0(ν),

−〈Lϕ,ϕ〉L2(ν) =
1

β
‖∇ϕ‖2L2(ν) >

R

β
‖ϕ‖2L2(ν). (4.29)

Since 0 is an eigenvalue of the operator L (whose associated eigenvectors are constant functions),
this inequality shows that the spectral gap of the self-adjoint operator −L on L2(ν) is larger than
or equal to R/β (using a Raylegh–Ritz principle). The inequality (4.29) also gives the exponential
decrease of the semigroup on L2

0(ν) since, using (4.27),

d

dt

Å
1

2

∥∥etLϕ∥∥2
L2(ν)

ã
=
〈
etLϕ,L etLϕ

〉
L2(ν)

6 −R
β

∥∥etLϕ∥∥2
L2(ν)

. (4.30)

By a Gronwall inequality, it follows that

∀ϕ ∈ L2
0(ν),

∥∥etLϕ∥∥
L2

0(ν)
6 e−Rt/β‖ϕ‖L2

0(ν)
.

We can finally extend the bound to all functions in L2
0(ν) by density.
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Assume now that ‖etL‖B(L2
0(ν))

6 e−Rt/β . Then, for a given ϕ ∈ L2
0(ν) and any t > 0,∥∥etLϕ∥∥2

L2
0(ν)
− ‖ϕ‖2L2

0(ν)

t
6 ‖ϕ‖2L2

0(ν)

e−2Rt/β − 1

t
.

We next pass to the limit t → 0, using the equalities in (4.29) and (4.30), and restrict ourselves
to a C∞ function with compact support:

− 2

β
‖∇ϕ‖2L2(ν) 6 −

2R

β
‖ϕ‖2L2

0(ν)
.

The Poincaré inequality (4.26) finally follows by a density argument. ut

Remark 4.4. The following observation is made in [230]: for the non reversible dynamics (4.11),
when a Poincaré inequality holds for ν,

d

dt

Å
1

2

∥∥∥et(L+A)ϕ
∥∥∥2
L2(ν)

ã
=
¨
et(L+A)ϕ,L et(L+A)ϕ

∂
L2(ν)

6 −R
β

∥∥∥et(L+A)ϕ
∥∥∥2
L2(ν)

,

so that the law of (4.11) converges at least as fast towards the stationary state ν as the law of the
law of (4.1).

In application of Proposition 4.1, a useful corollary of the decay estimates on the semigroup is
the following result. Alternatively, the invertibility of the operator L could be directly obtained
from the coercivity inequality (4.29).3

Corollary 4.1. Assume that ν satisfies a Poincaré inequality with constant R. Then the operator L
is invertible on L2

0(ν), and the following equality holds in B(L2
0(ν)):

L−1 = −
ˆ +∞

0

etL dt.

Moreover,

‖L−1‖B(L2
0(ν))

6
β

R
. (4.31)

In fact, by a proof similar to the proof of Proposition 4.1, the decay estimate (4.28) implies
that, for any z ∈ C with Re(z) < R/β, the following equalities holds on B(L2

0(ν)):

(z + L)−1 =

ˆ +∞

0

etzetL dt

is a well defined and bounded operator. Therefore, σ(L)\{0} ⊂ {z ∈ C |Re(z) > R/β}, and the
spectral gap of the dynamics is at least R/β.

Obtaining Poincaré inequalities

Poincaré inequalities are easily obtained for probability measures equivalent to the Lebesgue mea-
sure, on bounded connected domains, as a consequence of the standard Poincaré–Wirtinger in-
equality. This is the case for instance when D = (LT)d. Indeed, consider a measure with density
ρ(q) with respect to the Lebesgue measure, and such that there exist two positive constants ρmin

and ρmax with 0 < ρmin 6 ρ(q) 6 ρmax for all q ∈ D. First, note that
3 The injectivity is clear, while the surjectivity is a consequence of the fact that the image is dense (in
view of Ran(L) = Ker(L)⊥) and closed. For the latter point, the inequality (4.29) shows that, for any
Cauchy sequence (ψn) = (Lϕn) of the image converging to ψ, the sequence of preimages (ϕn) is also a
Cauchy sequence, hence converges to some element ϕ. The closedness of the operator allows to conclude
that ϕ ∈ D(L) and ψ = Lϕ is in the image.
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min
c∈R

ˆ
D
(ϕ− c)2dρ =

ˆ
D
(ϕ− Eρ(ϕ))

2dρ, ∀ϕ ∈ L2(ρ).

The proof of this assertion is easily obtained by writing c = Eρ(f) + c̃ and expanding (f − c)2.
Therefore,

min
c∈R

ˆ
D
(ϕ− c)2dρ 6 ρmax min

c∈R

ˆ
D
(ϕ− c)2 6

ρmax

RPW

ˆ
D
|∇ϕ|2 6

ρmax

RPWρmin

ˆ
D
|∇ϕ|2dρ,

where RPW is the constant of the standard Poincaré–Wirtinger inequality on the bounded con-
nected domain D. This shows that the canonical measure ν defined in (4.2) satisfies a Poincaré
inequality when the domain D is bounded and connected, with the following upper bound for the
Poincaré constant Rν :

Rν 6 RPW e−β(Vmax−Vmin),

where
Vmax = max

q∈D
V (q), Vmin = min

q∈D
V (q).

In fact, this argument can be made more general to show that Poincaré inequalities satisfy some
stability property under bounded perturbations of the measure, similar to the result obtained in
Theorem 4.4 below for logarithmic Sobolev inequalities.

On unbounded domains, some growth conditions on the potential V are required. For example,
a Poincaré inequality holds when V is uniformly convex (i.e., ∇2V > R Id with R > 0), similar
to the result stated in Theorem 4.3 below for logarithmic Sobolev inequalities. Another result is
based on the growth at infinity of the potential, see [18, Corollary 1.6].

Theorem 4.1. Consider V ∈ C2(RD). If there exists a ∈ (0, 1), c > 0 and M > 0 such that

∀q ∈ Rdsuch that |q| >M, aβ|∇V (q)|2 −∆V (q) > c. (4.32)

then ν satisfies a Poincaré inequality.

The above condition is satisfied, for instance, for potentials of the form

V (q) = K|q|n + ‹V (q),

where n > 1 and ‹V ∈ C∞(D) is such that

lim
|q|→+∞

|‹V (q)|
|q|n

= 0, lim
|q|→+∞

|∇‹V |2 + |∆‹V |
|q|2(n−1)

= 0.

The first condition implies that e−βV is integrable, while the second one ensures that (4.32) holds.
The reader may wonder what are examples of probability measures which do not satisfy Poincaré
inequalities. A necessary condition to this end is that the probability measure has an exponential
moment, see [20, Proposition 4.4.2]. This is not the case for potential which grow less than linearly
at infinity.

For the sake of completeness, we provide the complete proof of a result weaker than Theo-
rem 4.1, quoted from [274, Appendix A.19] – the proof being based on an argument by Deuschel
and Stroock [67].

Theorem 4.2. Consider V ∈ C2(RD) such that

w(q) =
β

2
|∇V (q)|2 −∆V (q) −−−−−→

|q|→+∞
+∞. (4.33)

Then ν satisfies a Poincaré inequality.
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Note that the condition (4.33) of course implies (4.32). Note also that the function in (4.33)
is the potential w in (4.24). Standard results in the theory of Schrödinger operators (see for
instance [226, Theorem XIII.67]) show that −β−1∆ + w + 1 −minRD w has a compact resolvent
on L2(RD), which immediately gives the compactness of the resolvent of L on L2(ν) (since these
operators are unitarily related, see the discussion around (4.24)), and hence the existence of a
spectral gap.

Proof. Fix h ∈ C1(RD) with compact support. We already have a control of the L2(ν) norm of h
on bounded domains. To control the L2(ν) norm of h at infinity, the key observation is that

ˆ
RD

w h2 dν 6
2

β

ˆ
RD
|∇h|2dν. (4.34)

To derive this inequality, we note that

0 6
ˆ

RD

∣∣∣∣∇h− βh

2
∇V

∣∣∣∣2 e−βV =

ˆ
RD
|∇h|2 e−βV −β

2

ˆ
RD
∇
(
h2
)
·∇V e−βV +

β2

4

ˆ
RD
|∇V |2h2 e−βV .

Therefore,
ˆ

RD
|∇h|2e−βV >

β

2

ˆ
RD
∇
(
h2
)
· ∇V e−βV − β2

4

ˆ
RD
|∇V |2h2 e−βV

= −β
2

ˆ
RD

h2div
(
∇V e−βV

)
− β2

4

ˆ
RD
|∇V |2h2 e−βV

=

ˆ
RD

Å
β2

4
|∇V |2 − β

2
∆V

ã
h2 e−βV =

β

2

ˆ
RD

w h2 e−βV .

Consider next M > 0 such that w(q) > 1 for |q| >M , and define

ε(M) =
1

min
|q|>M

w
6 1, w− = min

q∈RD
w(q) > −∞.

Note that ε(M)→ 0 as M → +∞. The inequality (4.34) implies that

w−

ˆ
|q|6M

h2 dν +
1

ε(M)

ˆ
|q|>M

h2 dν 6
2

β

ˆ
RD
|∇h|2dν,

which can be rewritten as
ˆ
|q|>M

h2 dν 6 ε(M)

Ç
2

β

ˆ
RD
|∇h|2dν − w−

ˆ
|q|6M

h2 dν

å
. (4.35)

We next control the L2(ν) norm the bounded set BM = {|q| 6 M}. The probability measure
νM = Z−1M 1BM ν satisfies a Poincaré inequality with constant CM > 0, so that

ˆ
BM

h2 dνM 6 CM

ˆ
BM

|∇h|2 dνM +

Åˆ
BM

h dνM

ã2
.

Note that ZM > 1 and ZM → 1 as M → +∞, so that, upon increasing M in order to have
ZM > 1/2, ˆ

BM

h2 dν 6 CM

ˆ
BM

|∇h|2 dν + 2

Åˆ
BM

h dν

ã2
. (4.36)

Assume now that ˆ
RD

h dν = 0.
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Then, by a Cauchy–Schwarz inequality,Åˆ
BM

h dν

ã2
=

Çˆ
|q|>M

h dν

å2

6 ν
(
RD\BM

) ˆ
|q|>M

h2 dν 6
ˆ
|q|>M

h2 dν.

We therefore obtain from (4.36) the following control on the L2(ν) norm of h on BM :ˆ
BM

h2 dν 6 CM

ˆ
BM

|∇h|2 dν + 2

ˆ
|q|>M

h2 dν. (4.37)

We finally add (4.35) multiplied by 3 and (4.37) to obtainˆ
RD

h2 dν 6
Å
CM +

6ε(M)

β

ãˆ
RD
|∇h|2 dν − 3ε(M)w−

ˆ
|q|6M

h2 dν.

In conclusion, provided M > 0 is sufficiently large so that 3ε(M)w− < 1/2 (a condition to be
satisfied only when w− < 0 in fact),ˆ

RD
h2 dν 6

1

min (1, 1 + 3ε(M)w−)

Å
CM +

6ε(M)

β

ã ˆ
RD
|∇h|2 dν,

which gives the desired estimate. ut

A useful result which we use in the sequel is that it is possible to deduce Poincaré inequalities
by tensorization.

Proposition 4.3. If a probability measure is a product of d probability measures satisfying
Poincaré inequalities with constants Ri, then the product measure satisfies a Poincaré inequal-
ity with constant min(R1, . . . , Rd).

Proof. To simplify the notation, we prove the result in the case d = 2, for a probability measure
ρ(dq1 dq2) = ρ1(dq1) ρ2(dq2), defined on D = D1 × D2. Consider a C∞ function ϕ with compact
support, and average 0 with respect to ρ. We first introduce the partial average

ϕ(q2) =

ˆ
D1

ϕ(q′1, q2) ρ1(dq
′
1).

Since ρ1 satisfies a Poincaré inequality with constant R1, and using the fact that the function
q1 7→ ϕ(q1, q2)− ϕ(q2) has average 0 with respect to ρ1(dq1) for any value of q2, it holdsˆ

D1

|ϕ(q1, q2)− ϕ(q2)|2 ρ1(dq1) 6
1

R1

ˆ
D1

|∇q1ϕ(q1, q2)|
2
ρ1(dq1).

This inequality can be rewritten asˆ
D1

|ϕ(q1, q2)|2 ρ1(dq1) 6 |ϕ(q2)|2 +
1

R1

ˆ
D1

|∇q1ϕ(q1, q2)|
2
ρ1(dq1). (4.38)

Now, since ϕ has average 0 with respect to ρ2 because ϕ has average 0 with respect to ρ,ˆ
D2

|ϕ(q2)|2 ρ2(dq2) 6
1

R2

ˆ
D2

|∇q2ϕ(q2)|
2
ρ2(dq2)

6
1

R2

ˆ
D
|∇q2ϕ(q1, q2)|

2
ρ1(dq1) ρ2(dq2),

where we used a Cauchy–Schwarz inequality in the last step. An integration of (4.38) with respect
to ρ2(dq2) finally leads toˆ

D
|ϕ(q1, q2)|2 ρ(dq) 6

1

R1

ˆ
D
|∇q1ϕ(q1, q2)|

2
ρ(dq) +

1

R2

ˆ
D
|∇q2ϕ(q1, q2)|

2
ρ(dq)

6
1

min(R1, R2)

ˆ
D
|∇qϕ|2 dρ,

from which we deduce that ρ satisfies a Poincaré inequality with constant R = min(R1, R2). ut
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Finally, anticipating later discussion, we will see in Proposition 4.5 that a probability measure
satisfying a logarithmic Sobolev inequality also satisfies a Poincaré inequality.

4.3.3 Convergence in relative entropy and total variation

The aim of this section is to give some background on entropy techniques with a focus on loga-
rithmic Sobolev inequalities, which can be used to show the convergence to the equilibrium state.
More material can be read in the review papers by Guionnet and Zegarlinski [112], Ledoux [163],
Arnold, Markowich, Toscani and Unterreiter [14] and in [20, Section 5]. The latter two works have
a PDE approach which may help readers more accustomed to analytical frameworks. Other useful
introductory references include [10, 273].

The relative entropy and the Fisher information between two measures are defined as follows.

Definition 4.2 (entropy and Fisher information). For two probability measures π1 and π2
defined on a space D, and such that π1 is absolutely continuous with respect to π2 (denoted by π1 �
π2 in the following), the entropy of π1 with respect to π2 is

H(π1 | π2) =
ˆ
D
ln

Å
dπ1
dπ2

ã
dπ1. (4.39)

The Fisher information of π1 with respect to π2 is

I(π1 | π2) =
ˆ
D

∣∣∣∣∇ ln

Å
dπ1
dπ2

ã∣∣∣∣2 dπ1. (4.40)

Note that the relative entropy is not a distance because it is not symmetric in its arguments.
Moreover, using the strict convexity of x 7→ x lnx and the fact that x lnx−x+1 > 0 (with equality
if and only if x = 1), it is easy to check that the entropy is non-negative:

H(π1 | π2) =
ˆ
D

dπ1
dπ2

ln

Å
dπ1
dπ2

ã
dπ2 >

ˆ
D

Å
dπ1
dπ2
− 1

ã
dπ2 = 0.

Moreover, the above computation shows that it is zero if and only if the two probability measures
are identical. This is also true for the Fisher information.

Remark 4.5 (On the choice of the entropy function). There are many possible definitions
of the entropy besides the relative entropy H defined in (4.39). Some mathematical motivations for
the use of the relative entropy H can be found in [187], see also [54] for a historical perspective.
This particular entropy may be of interest for the following extensivity property. The relative
entropy of the distribution of D independent variables (or, in less probabilistic terms, the entropy
of a tensorized measure) is the sum of the relative entropies of the distributions of each random
variable. This suggests that the rate of convergence to equilibrium estimated with relative entropies
for weakly dependent variables may remain stable when the number of variables becomes large (see
for instance the paragraph on Kac’s spectral problem in [272, Chapter 5]). This extensivity is a
consequence of the extensivity of the logarithm function involved in definition (4.39) (by which
we mean that ln(f1f2) = ln(f1) + ln(f2)). This extensivity property makes the logarithmic Sobolev
inequality and entropy approaches much more convenient to study some nonlinear Fokker-Planck
equations, as in [177] for instance.

The total variation between two measures, which reduces to the L1-norm of the difference
between the two densities when the two measures are absolutely continuous with respect to the
Lebesgue measure, can be bounded by the relative entropy. This is the Csiszár–Kullback inequality
(see for example [10, 241]): recalling the total variation norm already considered in Remark 3.7,
namely

‖π1 − π2‖TV = sup
‖ϕ‖B∞61

ˆ
D
ϕ(dπ1 − dπ2), (4.41)
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it holds
‖π1 − π2‖TV 6

»
2H(π1 | π2). (4.42)

In other words, an upper bound for the entropy between π1 and π2 yields an upper bound for a
distance between π1 and π2 (even though the relative entropy is not a distance itself).

We now present a way to obtain an estimate of the rate of convergence to zero of the entropy
H(ψ(t, ·) | ν) for the solutions of the Fokker–Planck equation (4.6). To this end we introduce the
following functional inequality.

Definition 4.3 (logarithmic Sobolev inequality). A probability measure π2 satisfies a loga-
rithmic Sobolev inequality with constant R > 0 (LSI(R) for short) if, for all probability measures π1
such that π1 � π2,

H(π1 | π2) 6
1

2R
I(π1 | π2). (4.43)

Remark 4.6. Proposition 4.5 below motivates the factor 1/(2R) on the right hand side of (4.43),
compared to the factor 1/R considered for Poincaré inequalities (4.26).

The exponential decay of H(ψ(t, ·) | ν) to 0 can then be shown provided ν satisfies a so-called
logarithmic Sobolev inequality (LSI). In fact, there is some equivalence between the two notions,
as made precise in the following result (which is the equivalent of Proposition 4.2 where a similar
result is obtained for Poincaré inequalities and exponential decay in L2(ν)).

Proposition 4.4. The measure ν satisfies LSI(R) if and only if, for any initial condition ψ0 > 0
with integral 1 and finite relative entropy with respect to ν ( i.e. H(ψ0 | ν) < +∞), the solution ψ(t)
of the Fokker–Planck equation (4.6) satisfies

∀t > 0, H(ψ(t) | ν) 6 H(ψ0 | ν) exp(−2β−1Rt). (4.44)

From the Csiszár–Kullback inequality (4.42), it is then possible to deduce the exponential
convergence to zero with rate β−1R of the norm ‖ψ(t, ·)− ν‖L1 .

Proof. Note first that the Fokker-Planck equation (4.6) can be rewritten as

∂tψ = L†ψ =
1

β
div

Å
ν∇
Å
ψ

ν

ãã
.

A straightforward computation shows that

d

dt
(H(ψ(t, ·) | ν)) =

ˆ
D
∂tψ

Å
ln

Å
ψ

ν

ã
+ 1

ã
=

ˆ
D
∂tψ ln

Å
ψ

ν

ã
,

since ˆ
D
ψ(t) = 1,

so that the integral of ∂tψ over D vanishes. Therefore,

d

dt
(H(ψ(t, ·) | ν)) =

ˆ
D
(L†ψ) ln

Å
ψ

ν

ã
= − 1

β

ˆ
D
∇
Å
ψ

ν

ã
· ∇
ï
ln

Å
ψ

ν

ãò
dν,

which can be summarized as

d

dt
(H(ψ(t, ·) | ν)) = − 1

β
I(ψ(t, ·) | ν). (4.45)

If ν satisfies an LSI(R), then the estimate (4.44) directly follows from (4.45) and a Gronwall
inequality.

Assume conversely that (4.44) holds for any initial condition ψ0 with finite relative entropy
with respect to ν. Then,
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H(ψ(t) | ν)−H(ψ0 | ν)
t

6 H(ψ0 | ν)
exp(−2β−1Rt)− 1

t
.

In the limit t→ 0, one obtains, with (4.45),

− 1

β
I(ψ0 | ν) 6 −

2R

β
H(ψ0 | ν),

which indeed leads to (4.43). ut

Obtaining LSI

We now present several ways to obtain LSIs for measures of the form (4.2).

(1) When the potential V satisfies a strict convexity condition of the form Hess(V ) > R IdD with
R > 0, then ν satisfies an LSI with constant βR, as first shown in [19] (see Theorem 4.3 below).

(2) When ρ =
∏d
i=1 ρ

i and each measure ρi(q) dq satisfies an LSI with constant Ri, then ρ satisfies
an LSI with constant R = min{R1, . . . , Rd} (see [109]). This is the equivalent of Proposition 4.3
for LSI.

(3) When an LSI with constant R is satisfied by ν(dq) = Z−1V e−V (q)dq, then the modified measure

Z−1
V+‹V e−(V (q)+‹V (q)) dq

with ‹V bounded satisfies an LSI with constant R̃ = R einf
‹V−sup ‹V . This property expresses

some stability with respect to bounded perturbations (see [129] and Theorem 4.4 below).

(4) There are also results on an LSI for the measure when a marginal law and the corresponding
conditional laws satisfy an LSI (see [32]), or when all the conditional laws satisfy an LSI
under some weak coupling assumption (see [210]). Such results can be extended to the non-
linear setting, i.e. in the case when the marginal distribution is obtained for some variable
z = ξ(q) ∈ Rm (with m < D): see [172].

Let us now state more precisely, and prove, two fundamental results ensuring that an LSI holds
for canonical measures of the form (4.2).

Theorem 4.3 (Bakry–Emery criterion). Assume that D = RD and ∇2V > R IdD for some
constant R > 0. Then ν satisfies LSI(βR).

Let us mention that the criterion on the Hessian is only a sufficient criterion, which can be
seen as a specific case of the more general condition writen in [19].

Proof. The idea is to differentiate the Fisher information with respect to time, in order to prove
its exponential convergence to 0, and then to insert it in (4.45). We present the formal argument,
and refer to [14, 13] for discussions on how to make the proof below fully rigorous.

Introduce f(t) = ψ(t)/ν for an arbitrary initial condition f0 = ψ0/ν. In view of (4.25), this
function evolves according to ∂tf = Lf , so that

d

dt
[I(ψ(t) | ν)] = d

dt

Åˆ
D
|∇ ln f(t)|2f(t) dν

ã
= 2

ˆ
D
∇
Å
∂tf(t)

f(t)

ã
· ∇f(t) dν +

ˆ
D
|∇ ln f(t)|2∂tf(t) dν

= 2

ˆ
D
∇
ÅLf(t)
f(t)

ã
· ∇f(t) dν +

ˆ
D
|∇ ln f(t)|2Lf(t) dν.

Since
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L(ln f) = Lf
f
− |∇f |

2

βf2
=
Lf
f
− 1

β
|∇(ln f)|2,

we obtain, after some algebraic calculations,

1

2

d

dt
[I(ψ(t) | ν)] =

ˆ
D
∇[L(ln f(t))] · ∇[ln f(t)] f(t) dν −

ˆ
D
L
ï
1

2
|∇(ln f(t))|2

ò
f(t) dν.

Now, using

∇
Å
1

2
|∇h|2

ã
= ∇2h · ∇h, ∆

Å
1

2
|∇h|2

ã
= ∇2h : ∇2h+∇(∆h) · ∇h,

it follows that

L
Å
1

2
|∇h|2

ã
=

1

β

(
∇2h : ∇2h+∇(∆h) · ∇h

)
− (∇V )T (∇2h)∇h

> ∇(Lh) · ∇h+ (∇h)T (∇2V )∇h
> ∇(Lh) · ∇h+R|∇h|2,

where we have used ∇2h : ∇2h > 0 in the second line, and the assumption on ∇2V in the third
one. We next replace h with ln f(t) and obtain

1

2

d

dt
[I(ψ(t) | ν)] 6 −R

ˆ
D
|∇(ln f(t))|2 f(t)dν = −R I(ψ(t) | ν).

This shows that the Fisher information converges exponentially fast to zero:

I(ψ(t) | ν) 6 e−2RtI(ψ(0) | ν). (4.46)

The next step is to prove that H(ψ(t, ·) | ν) converges to 0 as t → +∞. To this end, we use
the argument provided in [14]. Note first that the inequality

∀x > 0, 0 6 x lnx− x+ 1 6 (x− 1)2

implies the following bound

H(ψ(t) | ν) 6 1

2

∥∥∥∥ψ(t)ν − 1

∥∥∥∥2
L2(ν)

= ‖f(t)− 1‖2L2(ν) . (4.47)

Since the operator −L is self-adjoint on L2(ν) and positive by (4.29), its spectral measure Pλ is
supported by [0,+∞) (see [225] and [59] for the definition of the spectral measure). In addition,
(4.29) also shows that 0 is a non-degenerate eigenvalue whose associated eigenvectors are constant
functions. Therefore,

f(t) = etLf0 = P0f0 +

ˆ
(0,+∞)

e−tλ d (Pλf0) .

In fact, P0 is the projector onto the eigenspace associated with the eigenvalue 0, so that P0f0 =´
D f0dν = 1. Moreover,

‖f(t)− 1‖2L2(ν) =

ˆ
(0,+∞)

e−2tλmf0(dλ), mf0(dλ) = d
Ä
‖Pλf0‖2L2(ν)

ä
.

By dominated convergence, the integral on the right-hand side of the above equality converges
to 0 as t→ +∞.

The conclusion now follows by a time integration of (4.45) together with the decay esti-
mate (4.46), which leads to
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H(ψ0 | ν)−H(ψ(t, ·) | ν) =
1

β

ˆ t

0

I(ψ(s) | ν) ds 6 1

2βR
I(ψ0 | ν).

In the limit t→ +∞, this inequality becomes

H(ψ0 | ν) 6
1

2βR
I(ψ0 | ν),

which gives the claimed LSI since ψ0 is arbitrary. ut

Remark 4.7. It is possible to prove that certain non gradient drifts lead to a faster convergence
to ν for solutions of (4.11) compared to the reversible dynamics (4.1), which allows to obtain better
estimates on the LSI constant; see [13], where the computations of the proof of Theorem 4.3 are
generalized to dynamics with multiplicative noise and non gradient drifts. In particular, the spectral
argument based on the selfadjointness of the generator has to be modified, see [13, Theorem 2.5]
whose proof relies on Vitali’s convergence theorem.

Theorem 4.4 (Holley–Stroock). If ν satisfies LSI(R) and if ‹V : D → R is a bounded function,
then ν̃ = Z̃−1 e−

‹V ν satisfies LSI(R̃) with R̃ = R einf
‹V−sup ‹V .

Proof. Introduce φ(x) = x lnx− 1 + x. Consider any function f > 0 such that
ˆ
D
fdν̃ = 1, (4.48)

and denote by f the average of f with respect to ν:

f =

ˆ
D
fdν. (4.49)

Then

H(fν̃ | ν̃) =
ˆ
D
f ln f dν̃ =

ˆ
D
φ(f)dν̃

6
ˆ
D

[
φ(f)− (φ(f) + φ′(f)(1− f))

]
dν̃ =

ˆ
D

[
φ(f)− φ(f) + φ′(f)(f − f)

]
dν̃,

since the convexity of φ implies that φ(1) = 0 > φ(f)+φ′(f)(1−f), and where we have used (4.48)
to obtain the last line. Note that φ(f(q))−φ(f) +φ′(f)(f − f(q)) > 0, still by the convexity of φ.
Since the integrand is non-negative, we can therefore reintroduce ν as follows:

H(fν̃ | ν̃) 6 Z

Z̃
e− inf ‹V ˆ

D

[
φ(f)− φ(f) + φ′(f)(f − f)

]
dν =

Z

Z̃
e− inf ‹V Åˆ

D
φ(f) dν − φ(f)

ã
,

in view of (4.49). On the other hand,
ˆ
D
φ(f) dν − φ(f) =

ˆ
D
f ln f dν − f ln f = f

ˆ
D

f

f
ln
f

f
dν = f

ˆ
D
φ

Å
f

f

ã
dν.

Since ν satisfies LSI(R), and f/f has integral 1 with respect to ν,
ˆ
D
φ

Å
f

f

ã
dν 6

1

2R

ˆ
D

∣∣∣∣∇ ln

Å
f

f

ã∣∣∣∣2 Åff ã dν =
1

2Rf

ˆ
D
|∇(ln f)|2fdν.

In conclusion,

H(fν̃ | ν̃) 6 Z

2RZ̃
e− inf ‹V ˆ

D
|∇(ln f)|2f dν 6

1

2R
esup

‹V−inf ‹V ˆ
D
|∇(ln f)|2fdν̃,

which gives the claimed statement. ut
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LSI and metastability

Theorem 4.4 gives lower bounds on the LSI constants. It suggests that the LSI constant, hence
the rate of convergence to equilibrium of the overdamped Langevin dynamics, decreases exponen-
tially as the temperature decreases and/or energetic barriers increase. Consider for instance the
low-temperature regime β → +∞, for a reference convex potential V0(q) = a|q|2/2 with a > 0,
perturbed by a bounded potential ‹V , for instance ‹V (q) = b exp(−|q|2) with b > 0. In this case,
Theorem 4.3 shows that the canonical measure associated with V , at inverse temperature β, satis-
fies LSI(βa), while the canonical measure associated with V +‹V , at inverse temperature β, satisfies
LSI(βa e−βb) by Theorem 4.4. The LSI constants obtained by the Holley–Stroock perturbative ar-
gument are of course lower bounds, but it is indeed expected that the optimal constant decreases
exponentially fast as the temperature decreases when the potential exhibits energetic barriers.
This can be rigorously proven in one dimensional systems for example, see [193, Section 2.4].

Relationship with Poincaré inequalities

Initial conditions ψ0 belonging to L2(ν) also have a finite relative entropy with respect to ν in
view of (4.47) (with ψ(t) replaced by ψ0). This shows that LSI allow to cover a larger set of
initial conditions than Poincaré inequalities. Unsurprisingly, the following result shows that LSIs
are stronger than Poincaré inequalities.

Proposition 4.5 (LSI implies Poincaré inequality). If a measure ν satisfies an LSI with
constant R > 0, then it satisfies a Poincaré inequality with the same constant.

Probability measures associated with potentials growing as |q|α at infinity for some α > 1
satisfy Poincaré inequalities by Theorem 4.1. On the other hand, they satisfy LSI only for α > 2,
since it can be shown that probability measures satisfying a LSI necessarily integrate functions of
the form exp(a|q|2) for some a > 0 (see [20, Proposition 5.4.1]).

Proof. The idea of the proof is that the Poincaré inequality can be seen as a linearization of the
logarithmic Sobolev inequality. Fix a function φ ∈ C∞(D) with compact support, with nonnegative
values and average 1 with respect to ν, and start from the LSI

ˆ
D
φ lnφdν 6

1

2R

ˆ
D

|∇φ|2

φ
dν.

The function φ can be chosen of the form φ = 1+εϕ where ϕ ∈ C∞(D) has average 0 with respect
to ν. For 0 < ε 6 1/(2 supD |ϕ|),

ˆ
D
(1 + εϕ) ln(1 + εϕ) dν 6

ε2

2R

ˆ
D

|∇ϕ|2

1 + εϕ
dν =

ε2

2R

Åˆ
D
|∇ϕ|2 dν +O(ε)

ã
. (4.50)

Since
(1 + εϕ) ln(1 + εϕ) = εϕ+

1

2
(εϕ)2 +O(ε3),

and using the fact that ϕ has average 0 with respect to ν, it follows that
ˆ
D
(1 + εϕ) ln(1 + εϕ) dν =

ε2

2

Åˆ
D
ϕ2 dν +O(ε)

ã
.

By dividing both sides of (4.50) by ε2/2 and taking the limit ε → 0, we obtain the following
inequality for bounded functions ϕ with average 0 with respect to ν:

ˆ
D
ϕ2 dν 6

1

R

ˆ
D
|∇ϕ|2 dν.

The Poincaré inequality (4.26) can finally be deduced by a density argument. ut
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4.3.4 Convergence in weighted B∞ spaces

We discuss in this section the convergence of the semigroup etL, which describes how average
properties converge to their stationary values. Convergence results in weighted B∞ spaces very
similar to the ones obtained for Markov chains (see Theorem 3.1) can be stated for diffusion
processes. We will therefore be very brief, and mention only the required adpations with respect
to the setting introduced in Section 3.3.1.

Let us start by emphasizing that the convergence results provided here are for the semi-
group etL, which describes how average properties converge to their stationary values. Similar
convergence results can then be deduced on the Fokker–Planck semigroup etL

†
. This semigroup

is defined in a space of probability measures integrating the inverse of the weight function used
to define the weighted B∞ spaces. In some cases, as for the overdamped Langevin dynamics, the
adjoints L∗ of the generator on L2 spaces weighted by the canonical measure is similar to L (equal
here), which allows to easily extend convergence results stated for etL to etL

∗
and therefore to etL

†
.

To state the result, we consider a Lyapunov function W : D → [1,+∞) (let us emphasize that
the Lyapunov function has values larger than 1 here, in contrast to the setting of Section 3.3.1),
and introduce the space B∞W (D) of measurable functions ϕ such that

‖ϕ‖B∞W =
∥∥∥ ϕ

W

∥∥∥
B∞

< +∞. (4.51)

We denote by B∞W ,0(D) the subspace of B∞W (D) of functions with average 0 with respect to ν.the nota-
tion does
not refer
to ν... is
this an
issue?

Theorem 4.5. Assume that D is bounded or that there are A > 0 and B ∈ R such that

q · ∇V (q) > A|q|2 −B. (4.52)

Then, for any n > 2, there exist Cn, κn > 0 such that the following decay estimate holds for the
Lyapunov function Wn(q) = 1 + |q|n:

∀ϕ ∈ B∞Wn
(D),

∥∥∥∥etLϕ− ˆ
D
ϕdν

∥∥∥∥
B∞Wn

6 Cne
−κnt‖ϕ‖B∞Wn . (4.53)

ajouter fct Lyapunov expo, cf. conditions moins fortes sur V ! calculs faits pex dans
/home/gabriel/travail/NonequilibriumMD/general_refs/Presentation_ReyBellet.pdf

The condition (4.52) is satisfied for potentials V (q) behaving at infinity as |q|k with k > 2.
Note that, for simplicity, we state the result for the dynamics (4.1) with a force −∇V (q) which
is a gradient field. The results obtained below can however easily be extended to more general
force fields b(q), upon replacing (4.52) by q · b(q) 6 −A|q|2 + B. This is one of the main interest
of weighted B∞ estimates: they do not require structural assumptions on the type of dynamics
considered. This is in sharp constrast with the analysis developed in Sections 4.3.3 and 4.3.2, and
will prove useful in Lecture 8 in particular.

The key element in the proof is to define an appropriate transition kernel P (q, dq′) to apply the
analysis of Section 3.3.1. A natural way to define a transition kernel for the overdamped Langevin
dynamics (4.1) is the following, for a given time t0 > 0: for any measurable set S,

P (q, S) = Eq(1S(qt0)). (4.54)

Here Eq is the expectation over the realizations of (4.1) starting from q0 = q, and 1S is the
indicator function of the set S. The operator associated with the integral kernel (4.54) is therefore
P = et0L.

Proof. We first discuss how to establish the Lyapunov condition (Assumption 3.1 in Section 3.3.1).
Let us start by recalling that it is trivial to satisfy a Lyapunov condition when the state space
is compact, by choosing W = 1. This situation is encountered for overdamped Langevin dynam-
ics when D is compact. For overdamped Langevin dynamics in unbounded position spaces, the
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Lyapunov condition can be established on the basis of a differential Lyapunov condition stated in
terms of the generator of the dynamics. Indeed, assume that the following inequality is true for
some a1 > 0 and a2 > 0, and a given Lyapunov function W > 1:

LW 6 −a1W + a2. (4.55)

Then,
d

dt

(
etLW

)
= etLLW 6 −a1etLW + a2,

so that, by a Gronwall inequality,

etLW 6 e−a1tW +
a2
a1

(1− e−a1t) 6 e−a1tW +
a2
a1
. (4.56)

In particular, for t = t0, we obtain

PW 6 e−a1t0W +
a2
a1
, (4.57)

which is the condition of Assumption 3.1 with γ = e−a1t0 ∈ (0, 1) andK = a2/a1 > 0. We therefore
choose W in order for (4.55) to be satisfied. For overdamped Langevin dynamics in unbounded
spaces, a typical choice is Wn(q) = 1 + |q|n for n > 2. In this case,

LWn(q) = n

Å
−∇V (q) · q + D + n− 2

β

ã
|q|n−2.

With (4.52), the Lyapunov condition (4.55) indeed holds since

LWn(q) 6 −AnWn(q) +
n(D + n− 2)

β
|q|n−2 +Bn,

so that
lim

|q|→+∞

LWn(q)

Wn(q)
6 −An.

This shows that there exist cn ∈ R such that

LWn 6 −An
2

Wn + cn. (4.58)

The minorization condition can be obtained by an argument similar to the one used to prove
Lemma 4.1, see for instance [189, Lemma 2.3]. In this part of the argument, we denote by Pt = etL.
Fix first some q∗ ∈ D, and note that Pt0/2(q

∗, Bη(q
∗)) > 0 for η > 0 by the open set irreducibility.

There exists therefore Q∗ ∈ D and ε > 0 such that p(t0/2, q∗, Q∗) > 2ε. By continuity of the
transition density, there exists r > 0 such that p(t0/2, q′, Q′) > ε for any q′ ∈ Br(q∗) and Q′ ∈
Br(Q

∗). Then, for any S ∈ B(D) and any q′ ∈ Br(q∗),

Pt0/2(q
′, S) =

ˆ
S

p (t0/2, q
′, Q) dQ >

ˆ
S∩Br(Q∗)

p (t0/2, q
′, Q) dQ > ε |S ∩Br(Q∗)| .

We also note that, for any compact set C ⊂ D,

inf
q∈C

Pt0/2(q,Br(q
∗)) > ρ > 0,

by the open set accessibility and the continuity of the mapping q 7→ Pt0/2(q,Br(q
∗)). Therefore

(recalling P = Pt0 with the notation we introduced)

P (q, S) >
ˆ
Br(q∗)

p(t0/2, q, q
′)Pt0/2(q

′, S) dq′ > ε |S ∩Br(Q∗)|
ˆ
Br(q∗)

p(t0/2, q, q
′) dq′

> ρε |S ∩Br(Q∗)| ,
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which indeed provides the condition in Assumption 3.2 with α = ρε |Br(Q∗)| and λ(S) =
|S ∩Br(Q∗)| / |Br(Q∗)| the uniform probability measure on Br(Q∗).

At this stage, we have discussed how to obtain Assumption 3.1 for n > 2 given, as well as
Assumption 3.2. This already implies the decay estimates (3.12) by Theorem 3.1: there exist
Cn ∈ R+ and rn ∈ (0, 1) such that

∀k > 1,
∥∥ekt0Lϕ∥∥

B∞Wn
6 Cnr

k
n‖ϕ‖B∞Wn

These bounds correspond to evolutions observed at integer multiples of the reference time t0.
Let us now finally show how to deduce an exponential convergence result at all times t > 0. We
decompose to this end the time t as t = kt0 + θ with θ ∈ [0, t0). Then, for any ϕ ∈ B∞W ,0(D), we
obtain ∥∥etLϕ∥∥

B∞Wn
6 Cnr

k
n

∥∥eθLϕ∥∥
B∞Wn

6 Cnr
k
n sup

06s6t0

∥∥esLϕ∥∥
B∞Wn

. (4.59)

Now, the inequality
∀q ∈ D, |ϕ(q)| 6 ‖ϕ‖B∞WnWn(q),

leads to ∥∥esLϕ∥∥
B∞Wn

6 ‖ϕ‖B∞Wn

∥∥∥∥esLWn

Wn

∥∥∥∥
B∞

.

In view of the inequalities (4.56) and (4.58), it holds, for any s > 0,∥∥∥∥esLWn

Wn

∥∥∥∥
B∞

6 e−Ans/2 +
2cn
An

∥∥∥∥ 1

Wn

∥∥∥∥
B∞

6 1 +
2cn
An

.

Upon introducing κn = − log(rn)/t0 > 0, (4.59) implies

∥∥etLϕ∥∥
B∞W

6 Cn

Å
1 +

2cn
An

ã
e−κnkt0‖ϕ‖B∞W 6 ‹Cne−κnt‖ϕ‖B∞Wn ,

with ‹C = C

Å
1 +

2cn
An

ã
eκnt0 .

This allows to conclude (4.53). ut

Remark 4.8 (Compactness of the evolution operator). As made precise in [228, Theo-
rem 8.9], the evolution operator et0L can be shown to be compact when the constant a in (4.55)
can be chosen arbitrary large. Typical Lyapunov functions to this end areWθ(q) = eθV (q) for θ < β.
Indeed,

LWθ

Wθ
= −θ

ïÅ
1− θ

β

ã
|∇V |2 − 1

β
∆V

ò
,

which converges to −∞ as |q| → +∞ when V (q) behaves asymptotically as |q|n with n > 1. This
the counterpart in weighted B∞ spaces of Sobolev inequalities which guarantee the compactness ofmal dit...

a garder ? the evolution operator (or of the resolvent) in a L2(ν) setting (see [20, Chapter 6]).

Remark 4.9 (sub-exponential convergence rates). It is possible to weaken the Lyapunov
condition (4.55) for instance as LW 6 −φ(W ) + b, where φ is a non-negative, non-decreasing,
concave function such that φ(x)/x → 0 as x → +∞. In this case, algebraic rates of decay are
typically obtained instead of exponential ones; see [73, 52] for further details.

The exponential convergence result (4.53) leads to the following bounds on the resolvent, by a
direct application of Proposition 4.1.
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Corollary 4.2. Consider one of the following situations: the position space is compact, in which
case W = 1; or (4.52) holds, in which case Wn(q) = 1 + |q|n for some n > 2. Then the operator
L is invertible on B∞Wn,0

(D), and the following equality holds in B(B∞Wn,0
):

L−1 = −
ˆ +∞

0

etL dt.

Moreover,

‖L−1‖B(B∞Wn,0) 6
Cn
κn

, (4.60)

where Cn, κn are the same constants as in Theorem 4.5.

Although it is possible to keep track of the values of the various constants until (4.53), the final
rate of convergence in weighted B∞ spaces is often not very sharp. The difficult point is in general
to obtain a good control on the constant α in the minorization condition of Assumption 3.2.
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4.4 Complements
pas relu

4.4.1 Convergence of general entropy functions

We present in this section convergence results in the metric formally defined by the generalized
entropy

eu(π1, π2) =

ˆ
D
u

Å
dπ1
dπ2

ã
dπ2.

The choice u(x) = (x − 1)2, π2 = ν and π1 = fπ2 with f ∈ L2(ν) corresponds to the framework
considered in Section 4.3.2, while the choice u(x) = x lnx − x + 1, π2 = ν and π1 = fπ2 with
f ln f ∈ L1(ν) corresponds to the framework of Section 4.3.3. We consider here the following
general entropy functions.

Assumption 4.1. The function u belongs to C0([0,+∞)) ∩ C4((0,+∞)), is convex with u′′ > 0
on (0,+∞), and satisfies the following inequality:

∀x > 0, u′′(x)u(4)(x)− 2
Ä
u(3)(x)

ä2
> 0.

Typical examples are the Tsallis relative entropies

up(x) =
xp − px
p− 1

+ 1, 1 < p 6 2.

Most of the computations presented in this section are formal, but can be given a precise meaning
as in [14, 13]. We follow the presentation in [19].

The evolution we consider is only more general than the overdamped Langevin dynamics. It is
characterized by its generator L, which defines the following differential forms (which prove useful
to simplify the computations):

Γ (f, g) =
1

2
(L(fg)− fLg − gLf) ,

Γ2(f, g) =
1

2

(
L [Γ (f, g)]− Γ (Lf, g)− Γ (f,Lg)

)
.

For the SDE dqt = b(qt) dt + B(qt) dWt, it holds Γ (f, g) = ∇fTA∇g with A = BBT . The
expression of Γ2 is more complicated (see [19, Proposition 3]). For B =

√
2Id, one finds

Γ2(f, f) = ∇2f : ∇2f − 1

2
∇fT (∇b+∇bT )∇f.

As will be made clear in the computations below, the expression of the drift b can be more general
than in (4.9), as long as the dynamics preserves the invariant measure. This freedom was used
in [13] for generalize the approach of [19].

Consider now f(t) = etLf0 for some given initial condition f0. Note that, in contrast to the
approach of Section 4.3.3 (but consistently with the approach of Section 4.3.2), we work here with
the evolution operator etL and not the semigroup associated with the Fokker–Planck equation.
Since L [u(f(t))] = u′(f(t))Lf(t) + u′′(f(t))Γ (f(t), f(t)) and ν is invariant by L, it holds

d

dt

[
eu(f(t)ν, ν)

]
=

ˆ
D
u′(f(t))Lf(t) dν = −Iu(f(t)ν, ν), (4.61)

where the entropy dissipation reads

Iu(π2, π2) =

ˆ
D
u′′
Å
dπ1
dπ2

ã
Γ

Å
dπ1
dπ2

,
dπ1
dπ2

ã
dπ2.
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Following the strategy of proof of Theorem 4.3, we derive the entropy dissipation in time:

d

dt

[
Iu(f(t)ν, ν)

]
=

d

dt

Åˆ
D
u′′(f(t))Γ (f(t), f(t)) dν

ã
= −Ru(f(t)ν, ν),

with

Ru(π1, π2) =

ˆ
D
u(3)
Å
dπ1
dπ2

ã
Γ

Å
dπ1
dπ2

,
dπ1
dπ2

ã
L
Å
dπ1
dπ2

ã
dπ2 + 2

ˆ
D
u′′
Å
dπ1
dπ2

ã
Γ

ï
L
Å
dπ1
dπ2

ã
,
dπ1
dπ2

ò
dν.

At this stage, some assumption is needed in order to obtain the decay of the entropy dissipation.

Assumption 4.2. There exist ρ > 0 and m ∈ [0, 1) such that, for all smooth and compactly
supported functions g, it holds

Γ2(g, g) > ρΓ (g, g) +m(Lg)2.

For B =
√
2Id, the above condition reduces to

∇2g : ∇2g − 1

2
∇gT (∇b+∇bT )∇g > ρ|∇g|2 +m(Lg)2.

When b = −β∇V (which ensures that the canonical measure ν is indeed invariant), a sufficient
condition for this inequality to hold with m = 0 is that ∇2V > ρ/β, which coincides with the
assumption in Theorem 4.3.

Assumption 4.2 ensures that the following key coercivity property holds.

Proposition 4.6. Under Assumption 4.2, it holds, for any smooth and compactly supported func-
tion g,

Ru(gν, ν) >
2ρ

1−m
Iu(gν, ν).

A Gronwall inequality then shows that Iu(f(t)ν, ν) 6 Iu(f0ν, ν) e
−2ρt/(1−m). We next integrate

in time (4.61), and conclude as in the proof of Theorem 4.3 to the exponential decay of the
entropy, and hence to the validity of some functional inequality such as a log-Sobolev inequality
or a Poincaré inequality (depending on the choice of u). To prove that the entropy goes to zero
(without making precise the rate), the spectral approach used in the proof of Theorem 4.3 no
longer works. It was shown in [13, Theorem 2.5] how to circumvent this difficulty relying on
Vitali’s convergence theorem.

In order to write the proof of Proposition 4.6, we first need a technical result.

Lemma 4.2. Assumption 4.2 implies that, for smooth and compactly supported functions v, g,

v′(g)2Γ2(g, g) + v′(g)v′′(g)Γ
(
g, Γ (g, g)

)
+ v′′(g)2Γ (g, g)2

> ρv′(g)2Γ (g, g) +m [v′(g)Lg + v′′(g)Γ (g, g)]
2
.

Proof (of Lemma 4.2). The changes on the right-hand side of the inequality to prove are obtained
by straightforward computations. For the left-hand side, we note that

2Γ2(v(g), v(g)) = L [Γ (v(g), v(g))]− 2Γ (Lv(g), v(g)). (4.62)

Now, Γ (v(g), v(g)) = v′(g)2Γ (g, g) so that

L [Γ (v(g), v(g))] = v′(g)2LΓ (g, g) + Γ (g, g)L
(
v′(g)2

)
+ 2Γ

(
v′(g)2, Γ (g, g)

)
= v′(g)2LΓ (g, g) + 2Γ (g, g) [Γ (v′(g), v′(g)) + v′(g)L (v′(g))] + 2Γ

(
v′(g)2, Γ (g, g)

)
= v′(g)2LΓ (g, g) + 2Γ (g, g)

î
v′′(g)2Γ (g, g) + v′(g)v′′(g)Lg + 2v′(g)v(3)(g)Γ (g, g)

ó
+ 4v′(g)v′′(g)Γ (g, Γ (g, g)) .
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Moreover,

Γ (Lv(g), v(g)) = Γ (v′(g)Lg, v(g)) + Γ
(
v′′(g)Γ (g, g), v(g)

)
= v′(g)v′′(g)Γ (g, g)Lg + v′(g)2Γ (Lg, g) + v′(g)v′′(g)Γ

(
g, Γ (g, g)

)
+ v′(g)v(3)(g)Γ (g, g)2.

The conclusion then follows by gathering the various terms in (4.62). ut

Proof (of Proposition 4.6). We use the following equality for the first term on the right-hand side
of Ru(gν, ν) (with v = u′′ and g = f(t)):

ˆ
D
v′(g)Γ (g, g)Lg dν =

ˆ
D
Γ
(
g, v′(g)Γ (g, g)

)
dν

= −
ˆ
D
v′(g)Γ

(
g, Γ (g, g)

)
dν −

ˆ
D
v′′(g)Γ (g, g)2 dν, (4.63)

and the following one for the second term (obtained from the definition of Γ2):
ˆ
D
v(g)Γ (g,Lg) dν = −

ˆ
D
v(g)Γ2(g, g) dν −

1

2

ˆ
D
v(g)L [Γ (g, g)] dν

= −
ˆ
D
v(g)Γ2(g, g) dν −

1

2

ˆ
D
v′(g)Γ

(
g, Γ (g, g)

)
dν, (4.64)

Then,

Ru(gν, ν) =

ˆ
D
u(4)(g)Γ (g, g)2 dν + 2

ˆ
D
u(3)(g)Γ

(
g, Γ (g, g

)
dν + 2

ˆ
D
u′′(g)Γ2(g, g) dν.

We now use Assumption 4.2 to obtain some positiviy, relying on the change of unknown function
based on Lemma 4.2 in order to account for the fact that factors u(k)(g) appear.

More precisely, consider the statement of Lemma 4.2 for quadratic functions v. The numbers
a = v′(g(x)) and b = v′′(g(x)) can take arbitrary values, so that the non-negativity property can
be rephrased as

∀(a, b) ∈ R2,

Å
a
b

ãT
X

Å
a
b

ã
> 0,

where the matrix X ∈ R2×2 has entries

X1,1 = Γ2(g, g)− ρΓ (g, g)−m(Lg)2,

X1,2 = X2,1 =
1

2
Γ
(
g, Γ (g, g)

)
−mΓ (g, g)Lg,

X2,2 = (1−m)Γ (g, g)2.

This shows that X is symmetric non-negative. Since (4.1) implies that, for a given ξ ∈ R and any
z ∈ (0,+∞), the matrix

Yξ(z) =

Ñ
u′′(z) ξu(3)(z)

ξu(3)(z)
ξ2

2
u(4)(z)

é
is also symmetric non-negative, we deduce that Fξ(z) = Tr(XYξ(z)) > 0. An integration of Fξ
with respect to ν leads to
ˆ
D
u′′(g)

(
Γ2(g, g)− ρΓ (g, g)

)
dν + ξ

ˆ
D
u(3)(g)Γ

(
g, Γ (g, g)

)
dν

+
ξ2(1−m)

2

ˆ
D
u(4)(g)Γ (g, g)2 dν −m

ˆ
D
u′′(g)(Lg)2 dν − 2ξm

ˆ
D
u(3)(g)Γ (g, g)Lg dν > 0.



4.4 Complements 95

For the fourth integral on the left-hand side, we use
ˆ
D
v(g)(Lg)2 dν = −

ˆ
D
Γ (g, v(g)Lg) dν = −

ˆ
D
v(g)Γ (g,Lg) dν −

ˆ
D
v′(g)Γ (g, g)Lg dν,

together with (4.63); and (4.64) for the fifth term. This gives

(1−m)

ˆ
D
u′′(g)Γ2(g, g) dν +

Å
ξ − 3m

2
+ 2ξm

ãˆ
D
u(3)(g)Γ

(
g, Γ (g, g)

)
dν

+

Å
ξ2(1−m)

2
+m(2ξ − 1)

ã ˆ
D
u(4)(g)Γ (g, g)2 dν > ρ

ˆ
D
u′′(g)Γ (g, g) dν.

The choice ξm = (1 +m/2)/(1 + 2m) allows to simplify the factor in front of the second integral
on the left-hand side asˆ

D
u′′(g)Γ2(g, g) dν +

ˆ
D
u(3)(g)Γ

(
g, Γ (g, g)

)
dν

+

Å
ξ2m
2

+
m(2ξm − 1)

1−m

ãˆ
D
u(4)(g)Γ (g, g)2 dν >

ρ

1−m

ˆ
D
u′′(g)Γ (g, g) dν.

Since (using m 6 1)

ξm(1 +m) =
1

1 + 2m

Å
1 +

3m

2
+
m2

2

ã
6 1,

the prefactor in front of the last integral on the left-hand satisfies

ξ2m
2

+
m(2ξm − 1)

1−m
=

1

2(1−m)

(
ξ2m +mξm −m

)
6

1

2
.

It remains to note that u(4) > 0 by Assumption 4.1, as well as Γ (g, g) > 0, which gives the claimed
result since the left-hand side of the above inequality is Ru(gν, ν)/2. ut
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The Langevin dynamics, presented in Section 1.4.2, can be seen as some stochastic perturbation
of the Hamiltonian dynamics. From a mathematical viewpoint, it is a stochastic dynamics with
degenerate noise, so that the associated generator is not elliptic. This raises several serious issues
compared to the overdamped Langevin dynamics studied in Lecture 4. We start by presenting
Langevin dynamics in its general form in Section 5.1, where we also relate it precisely to two
limiting dynamics, namely Hamiltonian dynamics (studied in Lecture 2) and overdamped Langevin
dynamics (which is the focus of Lecture 4). We next make precise some mathematical properties of
Langevin dynamics in Section 5.2. We finally discuss the convergence of Langevin dynamics: first
through the convergence of trajectory averages in Section 5.3, and next through the convergence
of the law of the process in Section 5.4. Some key concepts used in the latter two sections are
hypoellipticity and hypocoercivity. Let us also emphasize that we try as much as possible to obtain
convergence estimates which allow to cover the limiting regimes of both Hamiltonian dynamics
and overdamped Langevin dynamics.

5.1 Description of the Langevin dynamics

We first present Langevin dynamics in a general framework in Section 5.1.1, before considering two
limiting regimes: the Hamiltonian limit (Section 5.1.2) and the overdamped limit (Section 5.1.3).
We make precise the timescales involved in these limits, which proves crucial to determine the
scaling of the convergence rates obtained in Section 5.4 with respect to the parameters of the
dynamics.
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5.1.1 General structure of the dynamics

The Langevin dynamics reads, for a general (possibly non separable) Hamiltonian H(q, p),®
dqt = ∇pH(qt, pt) dt,

dpt = −∇qH(qt, pt) dt− γ(qt)∇pH(qt, pt) dt+ σ(qt) dWt,
(5.1)

where t 7→Wt is a D-dimensional standard Brownian motion, and σ and γ are (possibly position
dependent)D×D real matrices. Note that (5.1) can be seen as the superposition of the Hamiltonian
dynamics (2.1) and some overdamped Langevin dynamics in the momenta, where the positions
enter as parameters. Let us already emphasize that the noise driving (5.1) is degenerate since it
acts on momenta only. The analytical translation of this fact is that the generator of the Langevin
dynamics is not elliptic (see Section 5.2.1 below).

We will typically consider separable Hamiltonians with quadratic kinetic energies (although
some generalizations, such as the use of non-quadratic kinetic energies, may prove benefitial to
improve the sampling properties of the method, see for instance [257]). In this case,

H(q, p) =
1

2
pTM−1p+ V (q),

so that the evolution equations (5.1) simplify as®
dqt =M−1pt dt,

dpt = −∇V (qt) dt− γ(qt)M−1pt dt+ σ(qt) dWt.
(5.2)

The term σ(qt) dWt is a fluctuation term bringing energy into the system, this energy being
dissipated through the viscous friction term −γ(qt)M−1pt dt. These two terms are related through
the following fluctuation-dissipation relation, which ensures that the canonical measure (1.18)

µ(dq dp) = Z−1µ exp(−βH(q, p)) dq dp (5.3)

at the correct temperature is sampled:

σσT =
2γ

β
. (5.4)

The proof of this statement is provided in Section 5.2.2. Let however remark that it is a quite
natural statement since the Hamiltonian part of (5.2) preserves any probability measure which
is a function of H, while the Ornstein–Uhlenbeck part of the dynamics forces the marginal in p
of the invariant measure to be Gaussian. The combination of these two informations suggests
that the canonical measure (5.3) is the only invariant probability measure, and motivates that
the fluctuation dissipation relation (5.4) determines the strength of the noise in order to have a
Gaussian distribution with the desired variance.

Notice (5.4) implies that γ is a symmetric matrix. Often, γ and σ are proportional to the
identity matrix, or γ is proportional to the mass matrix M . It may be interesting to choose
position-dependent matrices σ, γ to restrict the action of the thermostat to the boundaries only,
therefore sticking to the physical Hamiltonian dynamics in the core regions of the system. In most
applications, σ and γ are constant and proportional to the identity matrix. For simplicity, we will
restrict ourselves to this case in the sequel, in which case Langevin dynamics further simplify as

dqt =M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+
 

2γ

β
dWt,

(5.5)

where γ > 0 is a real number to be determined.
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5.1.2 Hamiltonian limit γ → 0

Hamiltonian dynamics are recovered by setting γ = 0 in (5.1). The Hamiltonian limit therefore
corresponds to an underdamped limit, where the friction γ vanishes. In order to make this argument
more precise, and determine the timescales involved in the limiting procedure, we consider (5.5).
Note that, by Itô calculus,

dH(qt, pt) = −γ
Å
pTt M

−2pt −
1

β
Tr(M−1)

ã
dt+

 
2γ

β
pTt M

−1dWt.

This suggests that the dynamics takes times of order 1/γ to change energy levels. This is made
precise in [95], where the authors prove that the process Eγt = H(qt/γ , pt/γ) converges as γ → 0 to
some effective diffusion on an energy graph. The convergence rates on the law of the process, as first
provided in [119], also confirm that the typical timescale to consider is 1/γ in the underdamped
limit.

5.1.3 Overdamped limit of Langevin dynamics

The overdamped Langevin dynamics (4.1) can be seen as a limit of Langevin dynamics when
either the mass of the particles goes to 0, or the friction is taken to infinity with an appropriate
time-rescaling, see the presentation in [178, Section 2.2.4]. For simplicity, we set M = mId in this
section for some scalar mass m > 0, and consider the simple Langevin dynamics (5.5). Note first
that the second equation in (5.5) can be rewritten as

dpt = −∇V (qt) dt− γdqt +
 

2γ

β
dWt,

so that, by an integration in time,1

qt − q0 =
p0 − pt
γ

− 1

γ

ˆ t

0

∇V (qs) ds+

 
2

γβ
Wt. (5.6)

This solution should be considered to the solution of the overdamped Langevin dynamics driven
by the same Brownian motion, namely dQt = −∇V (Qt) dt+

√
2β−1 dBt, for which

Qt −Q0 = −
ˆ t

0

∇V (Qs) ds+

 
2

β
Bt.

The comparison of the latter equation with (5.6) suggests to introduce the process (qγt, pγt), which
corresponds to considering (5.6) over times γt, and consider the Brownian motion Wt =

√
γBt/γ

in (5.5):

qγt − q0 =
p0 − pγt

γ
− 1

γ

ˆ γt

0

∇V (qs) ds+

 
2

γβ
Wγt

=
p0 − pγt

γ
−
ˆ t

0

∇V (qγs) ds+

 
2

β
Bt.

When Q0 = q0, we therefore obtain

qγt −Qt =
p0 − pγt

γ
−
ˆ t

0

[∇V (qγs)−∇V (Qs)] ds.

Assuming that ∇V is K-Lipschitz and using a Gronwall inequality, the following bound follows
from the latter inequality:
1 We thank Stefano Olla for this perspective on the overdamped Langevin limit.
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|qγt −Qt| 6
ˆ t

0

eK(t−s)
∣∣∣∣p0 − pγtγ

∣∣∣∣ ds.
To conclude to the convergence of qγt to Qt as either m → 0 or γ → +∞, it suffices to

control |pγt|, and make precise how initial conditions p0 are chosen. The latter point depends on
the limit which is taken:

• If m is fixed and γ → +∞, the marginal distribution in p of the canonical measure is the same
for all values of γ, and it is reasonable to either fix the initial condition or consider some given
initial distribution of momenta.

• When γ is fixed and m → 0, the invariant probability measure of the Langevin dynamics
changes in the momentum variables. More precisely, momenta are distribution in the stationary
state according to a Gaussian distribution with variance m/β. The choice of initial conditions
depends on whether one wants to fix the initial kinetic energy, velocity or momentum, for
instance.

To control |pγt|, we rely on the fact that

pt = e−γt/mp0 −
ˆ t

0

e−γ(t−s)/m∇V (qs) ds+

 
2γ

β

ˆ t

0

e−γ(t−s)/m dWs,

so that

pγt
γ

= e−γt/m
p0
γ
− 1

γ

ˆ γt

0

e−γ(t−s)/m∇V (qs) ds+

 
2

γβ

ˆ γt

0

e−γ(t−s)/m dWs.

Bounds on the various terms on the right hand side can then be obtained as either m → 0 or
γ → +∞, possibly using martingale inequalities for the last term, and moment bounds together
with some growth assumption on ∇V for the second term; see for instance [178, Section 2.2.4] for
a result on the pathwise convergence of qγt to Qt, and [240] for a result on the convergence of the
law of the trajectories.Write

more pre-
cise con-
vergence
results ?

In any case, the appropriate timescale to consider for the convergence to the overdamped limit
is either of order 1 when γ > 0 is fixed and m→ 0, or of order γ when m > 0 is fixed and γ → +∞.
The need for observing the system over longer times in the latter situation is related to the fact
that momenta can be considered to be constantly resampled according to a Gaussian distribution
so that no average drift on the positions results on integration times of order 1.

5.2 Mathematical properties of the Langevin dynamics

We make precise in this section some properties of the Langevin dynamics (5.5), in particular for
its generator (see Section 5.2.1). We also prove that the canonical measure (5.3) is indeed the
unique invariant probability measure of the process in Section 5.2.2.

5.2.1 Some properties of the generator of the Langevin dynamics

The generator of the Langevin dynamics reads

L = Lham + γLFD, (5.7)

where
Lham = pTM−1∇q −∇V T∇p

is the generator of the Langevin dynamics (see Section 2.1.3), while the fluctuation-dissipation
part of the dynamics is encoded by

LFD = −pTM−1∇p +
1

β
∆p,
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which is the generator of a Gaussian process on momenta (known as the Ornstein–Uhlenbeck
process). Let us immediately emphasize that the generator of Langevin dynamics is not an elliptic
operator since second derivatives in the position variable q are missing. This is the analytical
counterpart of the fact that the noise is degenerate in SDEs such as (5.1).

As for (4.4), it is useful to rewrite the generator using elementary operators and their adjoints
on L2(µ). Recall that the adjoint T ∗ of an unbounded operator T with domain dense in L2(µ) is
characterized by the following property: for any C∞ and compactly supported functions ϕ, φ,ˆ

E
(Tϕ)φdµ =

ˆ
E
ϕ(T ∗φ) dµ. (5.8)

For instance, the adjoint of ∂pi for 1 6 i 6 D can be found by integrations by parts as follows:ˆ
E
(∂piϕ)φdµ = − 1

Zµ

ˆ
E
ϕ
î
∂pi
Ä
φ e−βp

TM−1p/2
äó

e−βV dq dp

= −
ˆ
E
ϕ
[
∂piφ− β

(
M−1p

)
i
φ
]
dµ,

which shows that ∂∗pi = −∂pi + β
(
M−1p

)
i
. Simple computations then show that

LFD = − 1

β

D∑
i=1

∂∗pi∂pi

is a symmetric operator, while

Lham =
1

β

D∑
i=1

∂∗pi∂qi − ∂
∗
qi∂pi

is antisymmetric. This is an important structural property of the generators of Langevin dynamics:
they are the sum of an antisymmetric Hamiltonian part, and a symmetric dissipation operator,
which is however degenerate. In particular,

L∗ = −Lham + γLFD (5.9)

has a structure very similar to the structure of generators of Langevin dynamics, although L 6= L∗
in contrast to the generators of overdamped Langevin dynamics considered in Section 4.1. Note
that the generator L and its adjoint are both dissipative since, for any ϕ ∈ C∞c (E),

〈Lϕ,ϕ〉L2(µ) = 〈L∗ϕ,ϕ〉L2(µ) = −
γ

β
‖∇pϕ‖2L2(µ) 6 0, (5.10)

Remark 5.1. It can in fact be proved that −L and −L∗ are maximal accretive on L2(µ)
when V ∈ C∞(D) (see [123, Chapter 5]). This implies in particular that the associated evolu-
tion semigroups etL

∗
and etL are contraction semigroups on L2(µ) (see for instance [60]).

The kernel of the generator considered as an operator on L2(µ) (or the kernel of its ajoint) can
in fact be readily made precise in view of their specific structures. Consider ϕ ∈ D(L) such that
Lϕ = 0. Then,

〈ϕ,Lϕ〉L2(µ) = −
γ

β
‖∇pϕ‖L2(µ) = 0,

which shows that ϕ is a function of q only. With this information at hand, Lϕ = Lhamϕ =
pTM−1∇qϕ(q) = 0, which shows that ∇qϕ = 0 and allows to conclude that ϕ is constant. In
conclusion, Ker(L) = Ker(L∗) = R1.

The following result generalizes the manipulations we made to a broader class of generators
(which is useful for dynamics which are even more degenerate than Langevin dynamics, such as
the generalized Langevin dynamics presented in Section 1.4.2). To state it, we recall that the
commutator of two operators T1, T2 is formally defined (i.e. ignoring domain issues) as

[T1, T2] = T1T2 − T2T1.
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Proposition 5.1 (Proposition 15 in [274]). Consider an operator

A = A0 +

J∑
j=1

A∗jAj (5.11)

on a Hilbert space H, with A∗0 = −A0. Then,

KerA ⊂

Ñ ⋂
06j6J

KerAj

é
∩

Ñ⋂
n>1

⋂
16j6J

KerCn,j

é
,

where C0,j = Aj and Cn,j = [Cn−1,j , A0].

Proof. Note first that KerA ⊂ KerA0 ∩KerA1 · · · ∩KerAJ . Indeed, when ϕ ∈ KerA,

〈ϕ,Aϕ〉H =
J∑
j=1

‖Ajϕ‖2H ,

so that ϕ ∈ KerAj for any j = 1, . . . , J . Next, Aϕ = A0ϕ = 0, which implies ϕ ∈ KerA0.
We then proceed by induction and assume that ϕ ∈ KerA belongs to KerC0,j ∩ · · · ∩KerCn,j

for all 1 6 j 6 J . First, since ϕ ∈ KerA, it holds

A0ϕ = −
J∑
j=1

A∗jAjϕ,

so that (recalling Akϕ = 0 for any 1 6 k 6 J)

Cn+1,jϕ = Cn,jA0ϕ−A0Cn,jϕ = −Cn,j
J∑
k=1

A∗kAkϕ = 0.

This gives the desired result. ut

The opposite of the generator of Langevin dynamics can be written as (5.11) with

Aj =
√
γβ−1∂pj , A0 = −Lham. (5.12)

Note that KerA1 ∩ · · · ∩KerAJ is the space of functions which do not depend on p, i.e. functions
of q only. Now, for diagonal mass matrices (in order to simplify the notation),

C1,j = [Aj , A0] = −
1

mj

…
γ

β
∂qj . (5.13)

Therefore,KerC1,1∩· · ·∩KerC1,J is the space of functions which do not depend on q. In conclusion,
KerL = R1. Similarly, KerL∗ = R1.

Remark 5.2 (Spectrum of generators of Langevin dynamics). It is possible to obtain de-
tailed information on the spectrum of Fokker–Planck operator using subelliptic estimates [80, 128,
123]. In particular, it is possible to make precise conditions on V to ensure that L has a compact
resolvent on the orthogonal of the kernel, with eigenvalues located in cusp region. Let us also men-
tion that the spectrum of Langevin operators is analytically known for systems with zero potential
on a torus [157], in which case there are only real eigenvalues, or for quadratic potential energy
functions, in which case the spectrum has some ladder structure (see [194, 214]).
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5.2.2 Invariance of the canonical measure

The aim of this section is to prove that (5.4) ensures the invariance of the canonical measure (5.3).
The bottom line is that the Hamiltonian part of the evolution preserves any measure which is a
function of the energy, while the fluctuation/dissipation part forces the conditional distribution
of the momenta to be (2π/β)−D/2det(M)−1/2e−βp

TM−1p/2 dp. In fact, this forces the invariant
measure to be of the form (5.3). However, we postpone the discussion on the uniqueness of the
invariant measure and the ergodicity of the dynamics to Section 5.3.

Given the insights used to obtain (5.9), the proof of the invariance of µ is now straightfoward.
Indeed, the invariance of this probability measure can be reformulated as follows: for any smooth
test function ϕ with compact support,

ˆ
E
Lϕdµ = 0,

or equivalently L∗1 = 0. The result then immediately follows from (5.9). The stationarity of the
canonical distribution in fact holds for the more general Langevin dynamics (5.1) associated with
a non separable Hamiltonian function.

Remark 5.3 (Detailed balance up to momentum reversal). The fluctuation-dissipation re-
lation (5.4) ensures that the canonical measure is a stationary measure of the Langevin process,
and that the detailed balance condition with respect to the canonical distribution holds up to mo-
menta reversal for the dynamics (5.2). We mean by this that, when (q0, p0) ∼ µ, the law of the
trajectory (qt, pt)06t6T is the same as the law of the trajectory (qT−t,−pT−t)06t6T , which, from
a functional analytic viewpoint, corresponds to the equality RLR = L∗ with R the momentum
reversal operator acting as (Rϕ)(q, p) = ϕ(q,−p) (see [178, Sections 2.2 and 4.2] for some in-
depth discussion of these aspects). Let us emphasize that time-reversibility properties depend on
the Hamiltonian at hand: they are not true for kinetic energies which are not even functions of p
and do not hold either for non separable Hamiltonians in general.

5.3 Convergence of trajectory averages

In order to estimate Eµ(ϕ) for a given observable ϕ ∈ L1(µ), we consider similarly to Section 4.2
the following trajectorial average:

ϕ̂t =
1

t

ˆ t

0

ϕ(qs, ps) ds. (5.14)

We first provide in Section 5.3.1 results on the almost sure convergence of ϕ̂t to Eµ(ϕ). We next dis-
cuss in Section 5.3.2 the Central Limit Theorem associated with this almost sure convergence, and
provide some bounds on the associated asymptotic variance. For these two sections, we crucially
rely on the techniques and approaches used in Sections 4.2.1 and 4.2.2 for non degenerate stochas-
tic dynamics, and merely point out the necessary modifications/extensions needed to accomodate
the degeneracy of the noise.

5.3.1 Almost sure convergence of trajectory averages

The almost sure convergence of ϕ̂t towards Eµ(ϕ) can be deduced from a general result by Klie-
mann [149].

Theorem 5.1. Consider a diffusion process (xt)t>0 in a d-dimensional space X , which admits an
invariant probability measure π(dx) with a positive density with respect to the Lebesgue measure,
and whose generator can be written as
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A = A0 +
1

2

J∑
j=1

A2
j , Aj =

d∑
i=1

Aj,i(x)∂xi , (5.15)

where the vector fields A0, . . . , AJ have smooth coefficients Aj,i. Assume that the Lie algebra
spanned by

{Aj}j=0,...,J , {[Aj , Ak]}j,k=0,...,J , {[[Aj , Ak], A`]}j,k,`=0,...,J , . . .

has maximal rank d at every point x ∈ X . Then, the invariant probability measure is unique and,
for a given observable φ ∈ L1(π) and any initial condition x0 ∈ D,

lim
t→+∞

1

t

ˆ t

0

φ(xs) ds =

ˆ
E
ϕdµ a.s.

It is possible to use this result for the Langevin dynamics (5.5) since the invariant probability
measure (5.3) indeed has a positive density with respect to the Lebesgue measure dq dp, and, in
view of (5.13) and (5.12) the maximal rank in the Lie algebra is attained already by considering
only A1, . . . , AJ and the commutators [A0, A1], . . . , [A0, AJ ] (note however that the definition of
the operators A0, . . . , AJ has to be modified compared to (5.12) in order to fit (5.15)).

Remark 5.4. Let us insist that such convergence results provide no information on the conver-
gence of the law of the process. This can be understood on the simple one-dimensional example
dxt = dt on D = T. The Lebesgue measure is an invariant probability measure which admits a
smooth density, and one can indeed check that the generator L = A0 = ∂x has full rank at every
point x ∈ D. Trajectory averages are also easily seen to converge, with rate 1/t. On the other hand,
the law of the process at time t simply is a translation of the law at time 0, so that no convergence
can occur for this quantity.

Instead of using the general result by Kliemann, it is possible to provide more constructive
elements for the proof by showing that the process (qt, pt) is irreducible with respect to the
Lebesgue measure. The proof of the irreductibility is not trivial since the noise acts only in the
momentum variable. It is conducted in two steps, as done in Section 4.2.1: first, a controllability
argument shows that P(q0,p0)((qt, pt) ∈ O) > 0 for any t > 0 and open set O; second, this property
is extended to general measurable ensembles using the continuity of the transition kernel, obtained
by the hypoellipticity.

The proof of the controllability argument is performed as for the overdamped Langevin dy-
namics. Fix an initial condition (q, p), a time t > 0 and an open set O. Consider (q∗, p∗) ∈ O,
and introduce a polynomial interpolation Q(s) on [0, t] such that Q(0) = q, Q̇(0) =M−1p as well
as Q(t) = q∗, Q̇(t) = M−1p∗. It is then possible to construct a control u : [0, t] → RD such that
u(0) = 0 and

MQ̈(s) = −∇V (Q(s))− γQ̇(s) +

 
2γ

β
u̇(s).

More precisely,

u(s) =

 
β

2γ

ˆ s

0

MQ̈(θ) +∇V (Q(θ)) + γQ̇(θ) dθ

=

 
β

2γ

Å
MQ̇(s)− p+ γ(Q(s)− q) +

ˆ s

0

∇V (Q(θ)) dθ

ã
.

By continuity of the solutions of the SDE with respect to the realizations of the Brownian motion,
we can conclude that P(q0,p0)((qt, pt) ∈ O) > 0 (see [189, Lemma 3.4] for details).

To obtain the regularity of the transition density p(t, (q, p), (q′, p′)), we apply Hörmander’s
theorem [130, 131], which involves the commutator between two operators defined in (2.32). We
formulate the result on a space Y (compared to the space X of Theorem 5.1) because we will
consider the case when Y = (0,+∞)×X involves space and time variables. We however keep the
notation A for the operator which, as we will see below, can for instance be L or ∂t − L.
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Theorem 5.2. Consider C∞ vector fields on the d-dimensional space Y

Aj =

d∑
i=1

Aj,i(y)∂yi ,

and introduce the operator

A = f +A0 +

J∑
j=1

A†jAj ,

where f is a smooth function and A†j is the (formal) adjoint of Aj on L2(Y). Assume that the Lie
algebra spanned by

{Aj}j=0,...,J , {[Aj , Ak]}j,k=0,...,J , {[[Aj , Ak], A`]}j,k,`=0,...,J , . . .

has maximal rank d at every point y ∈ Y. Then A is hypoelliptic, namely there exists ε > 0 such
that Aϕ ∈ Hs

loc(Y) implies ϕ ∈ Hs+ε
loc (Y).

In particular, solutions ϕ of the equation Aϕ = 0 are C∞. A simple but very useful corollary
of Hörmander’s sufficient criterion for hypoellipticity is the following.

Corollary 5.1. For the Langevin dynamics, with generator (5.7), the operators L, L†, ∂t−L and
∂t − L† are hypoelliptic. Therefore, the densities p(t, (q, p), (q′, p′)) of the transition kernel, which
satisfy

∂tp
(
t, (q, p), ·

)
= Lp

(
t, (q, p), ·

)
, ∂tp

(
t, ·, (q′, p′)

)
= L†p

(
t, ·, (q′, p′)

)
,

in the sense of distributions, are C∞ functions.

Proof. We prove that ∂t − L is hypoelliptic, the proofs for the other operators being similar and
therefore omitted. We use to this end Theorem 5.2 with Y = (0,+∞) × E and d = 2D + 1, and
prove that the Lie algebra based on −∂t + L is of dimension 2D + 1 at each state (q, p) ∈ E and
for any time t. First,

Aj =

…
γ

β
∂pj , A0 = ∂t − pTM−1∇q +∇V T∇p + γpTM−1∇p,

so that

∂t − L = A0 +

D∑
j=1

A†jAj .

For notational simplicity, we assume that M is diagonal with entries mj (although the computa-
tions can be extended to account for general positive definite matrices). Since

[A0, Aj ] =
1

mj

…
γ

β

(
∂qj − γ∂pj

)
,

we immediately deduce that the Lie algebra spanned by {Aj}j=1,...,D, {[Aj , Ak]}j,k=1,...,D has
rank 2D and spans all derivatives in q and p. Adding A0, the derivative in time is recovered. This
allows to conclude. ut

Remark 5.5 (Hypoellipticity does not imply uniqueness of the invariant measure). Let
us insist that hypoellipticity is local property, which deals with the regularity of the objects at hand.
It does not say anything about global properties such as controllability. The main difference with
the uniqueness result provided by Theorem 5.1 is that the latter result requires an invariant proba-
bility measure which a positive density. The example discussed in this remark, adapted from [139,
Section 5], considers a situation when invariant probability measures vanish at some points. More
precisely, consider the SDE
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dxt = cos(πxt)
[
1 +

π

2
sin(πxt)

]
dt+ sin(πxt) dWt,

on the space X = 3T. Its generator can be written as

L = A0 −
1

2
A†1A1, A0 = cos(πx)

[
1− π

2
sin(πx)

] d

dx
, A1 = sin(πx)

d

dx
.

Note that the Lie algebra spanned by A1 andcheck al-
gebra

[A0, A1] = π
(
1− π

2
sin(πx)3

) d

dx

has full rank at every point, so that L and ∂t−L are hypoelliptic. On the other hand, there are two
distinct invariant measures, one supported in [0, 1] and the same measure translated by 2 (hence
supported in [2, 3]). Indeed, from a dynamical viewpoint, the drift at x = 0 (where the diffusion
vanishes) is positive while the drift at x = 1 (where the diffusion also vanishes) is negative. This
shows that the dynamics started in (0, 1) remains in (0, 1).

5.3.2 Central Limit Theorem and bounds on the asymptotic variance

Consider some observable ϕ ∈ L2(µ), and introduce, similarly to (4.16), the following projection
operator on L2(µ):

Πϕ = ϕ−
ˆ
E
ϕdµ. (5.16)

As discussed in Section 4.2.2, the results of [30] show that a Central Limit Theorem holds once
the Poisson equation

−LΦ = Πϕ (5.17)

has a solution in L2(µ). More precisely,

√
t (ϕ̂t − Eµ(ϕ))

law−−−−→
t→+∞

N (0, σ2
ϕ),

with
σ2
ϕ = 2 〈−LΦ,Φ〉L2(µ) =

2γ

β
‖∇pΦ‖2L2(µ) = 2

〈
Πϕ, (−L)−1Πϕ

〉
L2(µ)

. (5.18)

Denoting by

L2
0(µ) = ΠL2

0(µ) =

ß
ϕ ∈ L2(µ)

∣∣∣∣ˆ
E
ϕdµ = 0

™
,

the asymptotic variance can be bounded as

0 6 σ2
ϕ 6

∥∥L−1∥∥B(L2
0(µ))

‖Πϕ‖2L2
0(µ)

.

In order to prove that (5.16) is well posed and to obtain bounds on
∥∥L−1∥∥B(L2

0(µ))
hence

on σ2
ϕ, there are essentially two paths. The first one is to rely on decay estimates of the evolution

semigroup etL and resort to Proposition 4.1. Approaches to obtaining decay estimates on etL are
discussed at length in Section 5.4. One of their drawbacks, however, is that the bounds which
are deduced on the norm of L−1 are usually not completely quantitative, because of the need for
changing the scalar product on L2(µ) for the proofs. An alternative approach, which provides more
quantitative bounds on the norm of L−1, is to directly work out an expression of the inverse of L,
as recently done in [27]. The latter approach leads for instance to the following explicit bounds
(stated for simplicity in the case when the mass matrix is a multiple of the identity matrix).add the

proof at
the end
of the
lecture?
rather
short in
the end...
although
quite
(too?)
recent...

Theorem 5.3 (Corollary 1 and Proposition 1 in [27]). Suppose thatM = mIdD and that V ∈
C∞(D) satisfies the following assumptions:
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(1) the probability measure ν(dq) = Z−1ν e−βV (q) dq satisfies the Poincaré inequality (4.26) with a
constant Rν > 0;

(2) there exist c1 > 0, c2 ∈ [0, 1] and c3 > 0 such that

∆V 6 c1D +
c2β

2
|∇V |2,

∣∣∇2V
∣∣2 =

D∑
i,j=1

∣∣∂qi∂qjV ∣∣2 6 c23
(
D + |∇V |2

)
. (5.19)

Then, the operator L is invertible on L2
0(µ) and the following bound holds:∥∥L−1∥∥B(L2

0(µ))
6

2βγ

Rν
+

8m

γ

Å
3

8
+ C +

C ′

Rν

ã
, (5.20)

where C and C
′
can be chosen as:

(i) If V is convex, then C = 1 and C
′
= 0;

(ii) If ∇2
qV > −KId for some K > 0, then C = 1 and C

′
= K;

(iii) In the general case, C = 2 and C ′ = 2c3

ñ√
D + 2max

Ç
8c3
β2

,

 
c1D

β

åô
.

The estimate (5.20) can be seen as the counterpart of the simple resolvent estimate (4.31) for
overdamped Langevin dynamics. The interest of the upper bound (5.20) is that it is fully explicit
in terms of the parameters of the dynamics (in particular the friction γ and the mass m) and of the
dimension D of the system, except for the dependence of the Poincaré constant on the dimension
and on the potential V . Note in particular that

∥∥L−1∥∥B(L2
0(µ))

scales as max(γ, γ−1) as γ → 0 and
γ → +∞ when m > 0 is fixed. This is related to the discussion in Sections 5.1.2 and 5.1.3, which
suggest that the convergence rates of the dynamics scales as min(γ, γ−1), which indeed leads to
an upper bound on the operator norm of L−1 scaling as max(γ, γ−1) by Proposition 4.1.

Remark 5.6 (Sharpness in γ of the resolvent bounds). It is easy to see that the resolvent
should indeed scale as max(γ, γ−1) as γ → 0 or γ → +∞. For the overdamped limit γ → +∞, we
consider the following example:

L
(
pT∇V + γ(V − v)

)
= pTM−1

(
∇2V

)
p− |∇V |2,

where v is a constant chosen such that pT∇V + γ(V − v) has a vanishing average with respect
to µ. It is clear that the right hand side is of order 1, while the left-hand side is of order γ when
V is not constant. For the limit γ → 0, we use the same argument as in [119, Proposition 6.3],
and consider a function ϕ = φ ◦H, for which the following equality holds:

1

γ
Lϕ = LFDϕ.

Here again, the right hand side is of order 1, while the solution to the Poisson equation is
of order γ−1. These two examples show that there exists C > 0 such that

∥∥L−1∥∥B(L2
0(µ))

>

Cmax(γ, γ−1). In fact, it can be shown that L−1 is at dominant order equal to γLovd in the
overdamped limit γ → +∞ (see [169, Theorem 2.5]).

The scaling with respect to the dimension D of the constants in the bounds (5.19) is motivated
by the case of separable potentials for which V (q) = v(q1) + · · · + v(qd) for some smooth one
dimensional function v, which corresponds to tensorized probability measures. The bounds (5.19)
then follow from the inequalities

v′′ 6 c1 +
c2β

2
(v′)2, |v′′|2 6 c23

Ä
1 + |v′|2

ä
.

These bounds generally hold if v has polynomial growth for example. The scaling of the constants
should be similar for particles on a lattice (such as one dimensional atom chains) with finite
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interaction ranges, or systems for which correlations between degrees of freedom are bounded with
respect to the dimension, in the sense that each column/line of the matrix ∇2V has a finite number
of nonzero entries.

Note finally that the condition (2) in Theorem 5.3 does not necessarily imply the Poincaré in-
equality (it does not imply (4.32) because of the sign of c1; a typical example is a potential behaving
as
√
|q| at infinity, which satisfies (5.19) but not (4.32)) (see the discussion after Theorem 4.1).

5.4 Convergence of the law

We study in this section the evolution of the law ψ(t) of the Langevin dynamics, which satisfies
the Fokker–Planck equation

∂tψ = L†ψ, (5.21)

with L† the adjoint on L2(E) of the generator L defined in (5.7). Results on the existence and
uniqueness of solutions to this equation are discussed for instance in [274, Section 2.4]. Alternatively
and somewhat equivalently, we study the convergence of averages at time t, namely (etLϕ)(q0, p0) =
E(q0,p0)(ϕ(qt, pt)), towards the limiting value Eµ(ϕ) as t → +∞. Throughout this section, we
assume at various places for notational simplicity that the mass matrix M is a multiple of the
identity, namely

M = m IdD, m > 0. (5.22)

When the notation M is kept, this means that the computations are performed with a general
symmetric definite positive mass matrix.

The main difficulty encountered in the study of the generator L and its adjoint is the fact
that dissipation appears only in the momentum variable. Some dissipation can be transferred
to the position variable through the Hamiltonian part of the dynamics. This abstract idea has
to be fleshed out differently depending on the functional setting, as we show in the following
subsections. We first consider in Section 5.4.1 Lyapunov type approaches, which is a flexible
technique that can be used even for Langevin dynamics with non gradient forcings. We next
turn to convergence in L2(µ), explaining first in Section 5.4.2 the difficulty arising from the lack
of coercivity of L in the canonical scalar product on L2(µ). We then present instances of so-
called hypocoercive techniques (the denomination is motivated at the end of Section 5.4.2). More
precisely, we outline in Section 5.4.3 the approach suggested in [126, 71, 72], and present entropic
estimates in Section 5.4.4.

Remark 5.7. Let us emphasize that we present a biased and limited, but hopefully still useful, per-
spective on hypocoercive methods. In particular, we do not review hypocoercive approaches based
on H1(µ) norms, as abstracted in [274], nor hypoelliptic regularization results allowing to trans-
fer H1(µ) convergence to L2(µ) (see [127]). A short account on these aspects for generators of
Langevin dynamics can be read in [180, Sections 2.3.3 and 2.3.4]. These approaches to hypocoer-
civity are still useful since certain dynamics, such as the generalized Langevin dynamics presented
in Section 1.4.2, cannot be tackled with the L2 hypocoercive method presented in Section 5.4.3,
while they can be studied with H1 hypocoercivity [215].

We do not mention either probabilistic approaches based on coupling strategies which lead to
convergences measured in Wasserstein distance, in particular [78] which, very interestingly, can be
used for forcings which are not gradient; nor the new approach suggested in [12, 49] (see also [27,
Appendix A]), which is based on space-time Poincaré inequalities and avoids changing the scalar
product.

5.4.1 Convergence in weighted B∞ spaces

We consider the same setting as for overdamped Langevin dynamics in Section 4.3.4. We prove in
this section the following convergence result.
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Theorem 5.4. Assume that D is bounded, or that the potential energy function V (q) is bounded
from below by V− > −∞ and there exist A,B > 0 and C ∈ R such that

qTM−1∇V (q) > A [V (q)− V−] +BqTM−1q + C. (5.23)

Then, for any n > 2, there exist Cn, κn > 0 such that the following decay estimate holds for the
Lyapunov function Wn(q, p) defined in Lemma 5.1 below:

∀ϕ ∈ B∞Wn
(E),

∥∥∥∥etLϕ− ˆ
E
ϕdµ

∥∥∥∥
B∞Wn

6 Cne
−κnt‖ϕ‖B∞Wn .

Similarly to condition (4.52), the condition (5.23) is satisfied for potentials growing at infinity
like |q|2m (with m > 1).

In order to prove Theorem 5.4, we rely on the same strategy as for the proof of Theorem 4.5.
The minorization condition is a direct consequence of the controllability and the smoothness of
the density of the transition kernel, and the proof of this condition follows exactly the same lines
as the proof of the corresponding minorization condition in the proof of Theorem 4.5. We therefore
only need to check the Lyapunov conditions. We state such conditions in their differential form
(see Section 4.3.4). As usual, two cases should be distinguished, depending on whether the position
space is compact or not. In the latter case, some control on q is required, see (5.23). We quote for
instance the result in [189], although other suitable Lyapunov were already proposed in [280], and
also in [260].

Lemma 5.1. For compact position spaces D, consider the Lyapunov functions Wn(q, p) = 1+ |p|2n
for n > 1. When the position space is not compact, assume that V > V− > −∞ and (5.23) holds,
and introduce

Wn(q, p) =

Å
1 +H(q, p)− V− +

γ

2
pTM−1q +

γ2

4
qTM−1q

ãn
.

Then for, any n > 1, it holds Wn(q, p) > 1 and Wn(q, p)→ +∞ as |(q, p)| → +∞. Moreover, there
exists a > 0 such that, for any n > 1, there is bn ∈ R for which

LWn 6 −naWn + bn. (5.24)

Since dissipation happens only in the momentum variable, some coupling term between q and p
should be introduced in the Lyapunov function, as first proposed in [280, 189, 260]. This is done
here through some component pTM−1q which allows us to retrieve some dissipation in the q-
direction from the dissipation in the momenta. This is a key insight in treating the convergence of
Langevin dynamics, and can be thought of twisting the Euclidean scalar product for vectors (q, p) ∈
R2D – in the same way scalar products are twisted in hypocoercive approaches.

Proof. We introduce m+,m− > 0 such that m−Id 6 M 6 m+Id in the sense of symmetric
matrices, and fix n > 2. Let us start with compact position spaces. Since

∆
(
|p|2n

)
= 2ndiv

Ä
p|p|2(n−1)

ä
= 2n(2n− 2 +D)|p|2(n−1),

we find, for Wn(q, p) = 1 + |p|2n,

LWn(q, p) = −2n|p|2(n−1)∇V (q)T p+ 2γn

Å
−pTM−1p+ D + 2n− 2

β

ã
|p|2(n−1)

6 −2γn

m+
|p|2n + 2n‖∇V ‖B∞ |p|2n−1 +

2γn(2n+D − 2)

β
|p|2(n−1).

Therefore,

lim
|p|→+∞

LWn(q, p)

Wn(q, p)
6 −2γn

m+
,
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so that the inequality (5.24) holds with a = γ/m+ for instance.
Consider now the case of position spaces which are not compact. We first consider the case

n = 1. A simple computation shows that

LW1(q, p) =
γ

2
Lham

[
qTM−1

(
p+

γ

2
q
)]

+ γLFD

ï
1

2
pTM−1(p+ γq)

ò
=
γ

2

(
pTM−2p− qTM−1∇V (q) + γpTM−2q

)
+ γ

Å
−pTM−2p+ Tr(M)

β

ã
− γ2

2
pTM−2q

= −γ
2

(
pTM−2p+ qTM−1∇V (q)

)
+
γTr(M)

β
.

On the other hand, a Cauchy–Schwarz inequality and (5.23) show that

W1(q, p) 6 1 +
1

2

(
1 +

γ

2

)
pTM−1p+ V (q)− V− +

γ(1 + γ)

4
qTM−1q

6 1 +
m+

2

(
1 +

γ

2

)
pTM−2p+max

Å
1

A
,
γ(1 + γ)

4B

ã [
qTM−1∇V (q)− C

]
.

Since the function LW1/W1 converges to a negative constant as |(q, p)| → +∞, we obtain as before
the existence of a1 > 0 and b1 ∈ R such that LW1 6 −a1W1 + b1. For the general case n > 2, a
simple computation gives

LWn = n(LW1)W
n−1
1 +

n(n− 1)γ

β
|∇pW1|2W n−2

1

6 n (−a1W1 + b1)W n−1
1 +

n(n− 1)γ

β

(
p+

γ

2
q
)T

M−2
(
p+

γ

2
q
)

W n−2
1

6 n

ï
−a1Wn + b1W

n−1
1 +

2(n− 1)γ

βm−

Å
pTM−1p+

γ2

4
qTM−1q

ã
W n−2

1

ò
.

We finally use the upper bound∣∣∣γ
2
pTM−1q

∣∣∣ 6 η

2
pTM−1p+

γ2

8η
qTM−1q,

to deduce, with η = 3/4,

W1(q, p) > 1 +
1

8
pTM−1p+

γ2

12
qTM−1q. (5.25)

Then,

LWn 6 n

ï
−a1Wn + b1W

n−1
1 +

16(n− 1)γ

βm−
(W1 − 1)W n−2

1

ò
.

Since W1(q, p)→ +∞ as |(q, p)| → +∞ in view of (5.25), we deduce that

lim
|(q,p)|→+∞

LWn(q, p)

Wn(q, p)
6 −na1 < 0.

This shows that (5.24) holds and concludes the proof. ut

5.4.2 Lack of coercivity in L2(µ) with canonical scalar product

In order to consider convergence in a L2(µ) setting, which allows to use tools and techniques for
Hilbert spaces, we first proceed as in Section 4.3.1, and rewrite ψ(t), the law at time t, as ψ(t) =
f(t)µ. The Fokker–Planck equation (5.21) can then be reformulated in terms of the operator L∗
made precise in (5.9) as
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∂tf = L∗f, (5.26)

where the initial condition f(0) = f0 = ψ0/µ satisfies

f0 > 0,

ˆ
E
f0 dµ = 1. (5.27)

Note that there is a slight inconsistency in this rewriting: the initial condition f0 should be consid-
ered in L1(µ), whereas the functional framework considered here requires the stronger integrability
condition f0 ∈ L2(µ). This situation can be improved by using relative entropies; see Section 5.4.4
below. The well posedness of (5.26) for f0 ∈ L2(µ) is ensured by the fact that L∗ is maximal
dissipative, see Remark 5.1.

In any case, etL
∗
= (etL)∗, so decay estimates obtained for the bounded operator etL immedi-

ately transfer to its adjoint. For simplicity of notation, some convergence results (as in Theorem 5.5)
are stated for the semigroup etL, but the reader should bear in mind that the results equally apply
to the semigroup etL

∗
, which then yields results on the long-time behaviour of the Fokker–Planck

equation by (5.26).
Note also that solutions to the Fokker–Planck equation (5.26) are expected to converge to

the constant function 1. Upon subtracting this constant function from the initial condition f0,
the convergence of the law amounts to the convergence to 0 of etL

∗
(f0 − 1). This motivates the

introduction of the following functional space:

L2
0(µ) =

ß
ϕ ∈ L2(µ)

∣∣∣∣ ˆ
E
ϕdµ = 0

™
.

The same functional space is considered when studying the convergence of etLϕ towards its limiting
value Eµ(ϕ), since etLϕ − Eµ(ϕ) = etLΠϕ (with Π the projector defined in (5.16)), so that it is
sufficient to prove that etLϕ converges to 0 for functions ϕ ∈ L2

0(µ).
The important remark which motivates the title of this section is that the generator L of

Langevin dynamics, defined in (5.7), fails to be coercive on L2
0(µ) since second derivatives in q are

missing. In fact, for C∞ and compactly supported test functions ϕ, we obtain from (5.10) that

−〈Lϕ,ϕ〉L2(µ) =
γ

β
‖∇pϕ‖2L2(µ), (5.28)

which should be compared to (4.29) for overdamped Langevin dynamics. The key idea of hypoco-
ercivity is to introduce some mixed derivatives in q and p in a modified scalar product in order to
retrieve some dissipation in q through some commutator identities. This idea was already present
in the computations performed in [260, Section 3], and was later generalized in [274]. This mo-
tivates the name for the technique in view of the analogy with hypoellipticity, since some (more
or less explicit) commutator identities allow to recover some form of coercivity for operators with
degenerate diffusion parts, in the same way commutators identities (as given by Theorem 5.2) im-
ply hypoellipticity and therefore allow to recover regularity results for operators with degenerate
diffusion parts similar to the regularity results for elliptic operators.

5.4.3 Hypocoercivity in a L2(µ) setting

We present in this section a way to prove the exponential decay of the semigroup etL in L2(µ), by
modifying the scalar product with some operator involving the generator of the Hamiltonian part
of the dynamics. This approach was first proposed in [126] and then extended in [71, 72]. It is more
direct than first proving a decay estimate in H1(µ) and then to transfer this decay to L2(µ) by
hypoelliptic regularization (see [274, 127] as well as the review of these approaches in [180]), or by
some spectral argument (using the bounded self-adjoint operators Qt = etL

∗
etL, as done in [63] by

resorting to [120, Lemma 2.9]). It also turns out to be more robust to perturbations, since it can be
used for nonequilibrium systems in a perturbative framework [40, 137] or for spectral discretization
of the Langevin dynamics [238]. It also allows to quantify more easily the convergence rate in terms
of the parameters of the dynamics, in particular the friction rate [70, 110].
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Statement of the convergence result

As mentioned above, for notational simplicity, we study the convergence to 0 of etLϕ for ϕ ∈ L2
0(µ)

rather than the convergence to 0 of etL
∗
(f0 − 1) for f0 ∈ L2(µ) (see Remark 5.8 below).

Theorem 5.5 (Hypocoercivity in L2(µ)). Suppose that V ∈ C∞(D) satisfies (5.19) and that
ν(dq) = Z−1ν e−βV (q) dq satisfies the Poincaré inequality (4.26) with a constant Rν > 0. Then
there exist C > 1 and λγ > 0 (which are explicitly computable in terms of the parameters of the
dynamics, C being independent of γ > 0) such that, for any ϕ ∈ L2

0(µ),

∀t > 0,
∥∥etLϕ∥∥

L2(µ)
6 Ce−λγt‖ϕ‖L2(µ). (5.29)

Moreover, the convergence rate is of order min(γ, γ−1): there exists λ > 0 such that

λγ > λmin(γ, γ−1).

This result calls for several comments. The first one is that some prefactor C > 1 appears
in (5.29), compared to similar estimates for overdamped Langevin dynamics (see (4.28)). It is not
possible to choose C = 1, otherwise, by the argument used to prove Proposition 4.2, this would
mean that −L is coercive on L2

0(µ) for the canonical scalar product on L2(µ), which is not the
case as discussed in Section 5.4.2.

Let us next comment on the scaling of the lower bound for the exponential convergence rate.
Since the Langevin dynamics becomes singular in the limit γ → 0 (where it reduces to the Hamil-
tonian dynamics, which is not ergodic with respect to the canonical measure) and in the limit
γ → +∞ (where it converges to the overdamped Langevin dynamics after rescaling in time, see
the discussion in Section 5.1.3), it is expected that the convergence rate to equilibrium of the
Langevin dynamics degrades as γ → 0 or γ → +∞. In both cases, the decay is apparent only at
long time scales, of order t/γ as γ → 0 (the fluctuation/dissipation is so small that energy diffusion
is only observed at long times; see Section 5.1.2) and γt as γ → +∞ (the fluctuation/dissipation is
so large that the momenta are continuously randomized, which leads to some effective Brownian
motion on the positions over long times).

Finally, we mention that the convergence result of Theorem 5.5 can be extended to more
general Hamiltonian functions, in particular separable Hamiltonians H(q, p) = V (q)+U(p) under
appropriate assumptions on U , namely some moment conditions for derivatives of U and a Poincaré
inequality for the probability measure with density proportional to e−βU ; see [257] for precise
statements. Let us emphasize that we do not need the generator to be hypoelliptic, though, and
can allow for instance for kinetic energy functions which vanish on open sets. In fact, Theorem 5.5
can be extended to certain Piecewise Deterministic Markov Processes, see [71, 72, 9].

Remark 5.8. Theorem 5.5 admits a dual version in terms of probability measures. Consider an
initial condition f0 ∈ L2(µ), which represents the density with respect to µ of a probability measure
ψ0 = f0µ. In particular, conditions (5.27) are satisfied. Then the time-evolved probability measure
ψt = ftµ with ft = etL

∗
f0 converges exponentially fast to µ in the following sense:

∀t > 0, ‖ft − 1‖L2(µ) 6 Ce−λγt‖f0 − 1‖L2(µ).

The proof of this convergence result can be obtained either by duality from (5.29), or by mimicking
the proof of Theorem 5.5 upon changing the sign of the Hamiltonian part in the modified scalar
product (which amounts to changing the sign of the second term in (5.31) below).

General structure of the proof of Theorem 5.5

We give here the roadmap for the proof of Theorem 5.5, proving the results we need along the
way later on in this section. We consider for simplicity of notation that the mass matrix is of the
form (5.22), although the proof can easily be extended to account for more general cases.
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The first key point in the proof is to use a modified squared norm equivalent to the L2(µ)
squared norm. To introduce it, we need to define the orthogonal projector in L2

0(µ) onto the
subspace of functions depending only on positions:

∀ϕ ∈ L2(µ), (Pϕ) (q) =

ˆ
RD

ϕ(q, p)κ(dp), (5.30)

where we recall that κ(dp) is the marginal of the canonical measure (5.3) in the p variables.

Definition 5.1 (Entropy functional). Fix ε ∈ (−1, 1). For any smooth function ϕ with compact
support,

H[ϕ] = 1

2
‖ϕ‖2L2(µ) − ε 〈Aϕ,ϕ〉L2(µ) , A =

(
1 + (LhamP)∗(LhamP)

)−1
(LhamP)∗. (5.31)

A more explicit expression of the operator A is provided in (5.45). Some of the properties of A
are gathered in the following lemma.

Lemma 5.2. It holds A = PA(1−P). Moreover, for any ϕ ∈ L2(µ),

‖Aϕ‖L2(µ) 6
1

2
‖(1−P)ϕ‖L2(µ), ‖LhamAϕ‖L2(µ) 6 ‖(1−P)ϕ‖L2(µ).

In particular, the operator A is in fact bounded in L2(µ) with operator norm smaller than 1,
so that

√
H is a norm equivalent to the canonical norm of L2(µ) for −1 < ε < 1:

1− ε
2
‖ϕ‖2L2(µ) 6 H[ϕ] 6

1 + ε

2
‖ϕ‖2L2(µ). (5.32)

The second key element is the coercivity of −L in the scalar product 〈〈·, ·〉〉 associated by
polarization with H, namely

〈〈ϕ1, ϕ2〉〉 = 〈ϕ1, ϕ2〉L2(µ) − ε 〈Aϕ1, ϕ2〉L2(µ) − ε 〈ϕ1, Aϕ2〉L2(µ) .

Proposition 5.2. There exists ε ∈ (0, 1) and λ > 0, such that, by considering ε = εmin(γ, γ−1)
in (5.31),

∀ϕ ∈ C∞c (E) ∩ L2
0(µ), D [ϕ] := 〈〈−Lϕ,ϕ〉〉 > λ̃γ‖ϕ‖2L2(µ), (5.33)

with λ̃γ > λmin(γ, γ−1).

The coercivity property (5.33) and a Gronwall inequality then allow to conclude to the expo-
nential convergence to 0 of H[etLϕ], from which (5.29) follows by the norm equivalence of

√
H

and ‖ · ‖L2(µ). Let us make these arguments more precise. Consider ϕ0 ∈ Dom(L) ∩ L2
0(µ) (which

contains H2(µ) ∩ L2
0(µ)) and introduce H (t) = H[ϕ(t)], where ϕ(t) = etLϕ0 ∈ Dom(L) for any

t > 0. Then,
H ′(t) = −D [ϕ(t)] 6 −λ̃γ‖ϕ(t)‖2L2(µ).

Using the norm equivalence (5.32) and the choice (5.43) for ε < 1, it follows that

H ′(t) 6 − 2λ̃γ
1 + εmin(γ, γ−1)

H (t),

so that, by a Gronwall estimate,

H (t) 6 e−2λγtH (0), λγ =
λ̃γ

1 + εmin(γ, γ−1)
.

Using again the norm equivalence (5.32), it holds

‖ϕ(t)‖2L2(µ) 6
1 + ε

1− ε
e−2λγt‖ϕ(0)‖2L2(µ),

from which the estimate (5.29) finally follows by density of Dom(L) in L2(µ).
The remainder of this section is devoted to the proof of Proposition 5.2 and of some technical

estimates – Lemma 5.2 but also other technical estimates used in the proof of Proposition 5.2.
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Proof of Proposition 5.2

The key element to prove Proposition 5.2 are the following coercivity estimates, respectively called
“microscopic” and “macroscopic” coercivity in [71, 72].

Proposition 5.3 (Coercivity properties). The operators LFD and LhamP satisfy the following
coercivity properties:

∀ϕ ∈ C∞c (E), −〈LFDϕ,ϕ〉L2(µ) >
1

m
‖(1−P)ϕ‖2L2(µ), (5.34)

∀ϕ ∈ C∞c (E) ∩ L2
0(µ), ‖LhamPϕ‖2L2(µ) >

DRν
βm
‖Pϕ‖2L2(µ). (5.35)

As a corollary, the following inequality holds in the sense of symmetric operators on L2
0(µ):

ALhamP > λhamP, λham = 1−
Å
1 +

DRν
βm

ã−1
> 0. (5.36)

Proof. The inequality (5.34) directly results from the fact that the Gaussian measure κ satisfies
a Poincaré inequality with constant Rκ = β/m (in view of Theorem 4.3 and Proposition 4.5), the
position q being seen as a parameter. Indeed, for a given ϕ ∈ C∞c (E),

∀q ∈ D,
ˆ

RD
|∇pϕ(q, p)|2 κ(dp) >

β

m

ˆ
RD
|(1−P)ϕ(q, p)|2 κ(dp). (5.37)

Integrating against ν and noting that −〈LFDϕ,ϕ〉L2(µ) = β−1‖∇pϕ‖2L2(µ) leads to the desired
inequality.

To prove (5.35), we note that

LhamP =
1

β
∇q∇∗pP =

( p
m

)T
∇qP, (5.38)

which leads to

‖LhamPϕ‖2L2(µ) =
1

m2
‖∇qPϕ‖2L2(ν) ‖p‖

2
L2(κ) =

D

βm
‖∇qPϕ‖2L2(ν). (5.39)

The conclusion then follows from the Poincaré inequality (4.26) satisfied by ν, since, for ϕ ∈
C∞c (E)∩L2

0(µ), the function Pϕ has average 0 with respect to ν (namely, Eν [Pϕ] = Eµ[ϕ] = 0).
The macroscopic coercivity (5.35) allows to write the following inequality in the sense of sym-

metric operators on L2
0(µ):

(LhamP)∗(LhamP) >
DRν
βm

P.

Moreover,
ALhamP = [1 + (LhamP)∗(LhamP)]

−1
(LhamP)∗(LhamP).

Since (LhamP)∗(LhamP) is self-adjoint and the function x 7→ x/(1 + x) = 1 − 1/(1 + x) is
increasing, the inequality (5.36) follows by spectral calculus. ut

Another technical argument is the boundedness of certain operators, which appear in the proof
of Proposition 5.2.

Proposition 5.4 (Boundedness of auxiliary operators). There exist Kham > 0 such that

∀ϕ ∈ C∞c (E),
‖ALham(1−P)ϕ‖L2(µ) 6 Kham‖(1−P)ϕ‖L2(µ),

‖ALFDϕ‖L2(µ) 6
1

2m
‖(1−P)ϕ‖L2(µ).

(5.40)
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We can now proceed with the proof of Proposition 5.2.

Proof (of Proposition 5.2). Note first that, for a given ϕ ∈ C∞c (E), the entropy dissipation D [ϕ]
can be explicitly written as

D [ϕ] = 〈−γLFDϕ,ϕ〉L2(µ) + ε 〈ALhamPϕ,ϕ〉L2(µ) + ε 〈ALham(1−P)ϕ,ϕ〉L2(µ)

+ εγ 〈ALFDϕ,ϕ〉L2(µ) − ε 〈LhamAϕ,ϕ〉L2(µ) ,
(5.41)

since LFDA = LFDPA = 0. Using respectively the properties (5.34), (5.36), (5.40) and Lemma 5.2,
it follows

D [ϕ] >
γ

m
‖(1−P)ϕ‖2L2(µ) + ελham‖Pϕ‖2L2(µ) − ε

(
Kham +

γ

2m

)
‖(1−P)ϕ‖L2(µ) ‖Pϕ‖L2(µ)

− ε 〈LhamAϕ,ϕ〉L2(µ) .

(5.42)
Since, by Lemma 5.2,

〈LhamAϕ,ϕ〉L2(µ) = 〈(1−P)LhamPA(1−P)ϕ,ϕ〉L2(µ) 6 ‖(1−P)ϕ‖2L2(µ),

it holds D [ϕ] > XTSX, where

X =

Å
‖Pϕ‖L2(µ)

‖(1−P)ϕ‖L2(µ)

ã
, S =

Å
S−− S−+/2
S−+/2 S++

ã
,

with
S−− = ελham, S−+ = −ε

(
Kham +

γ

2m

)
, S++ =

γ

m
− ε.

The smallest eigenvalue of S is

Λ(γ, ε) =
S−− + S++

2
− 1

2

»
(S−− − S++)2 + (S−+)2.

In the limit γ → 0, the parameter ε should be chosen of order γ in order for Λ(γ, ε) to be positive
(in particular for S++ to remain positive). When γ → +∞, the parameter ε should be chosen of
order 1/γ in order for the determinant of S to remain positive. We therefore consider the choice

ε = εmin(γ, γ−1). (5.43)

It is then easy to check that there exists ε > 0 sufficiently small such that Λ(γ, εmin(γ, γ−1)) > 0
for all γ > 0. Moreover, it can be proved that Λ(γ, εmin(γ, γ−1))/γ converges to a positive value
as γ → 0, while γΛ(γ, εmin(γ, γ−1)) converges to a positive value as γ → +∞. This gives the
claimed result with λ̃γ = Λ(γ, εmin(γ, γ−1)). ut

Proofs of technical estimates

We gather here the proofs of two technical estimates, namely Lemma 5.2 and Proposition 5.4.

Proof (Proof of Lemma 5.2). Consider ϕ ∈ C∞c (E). In view of (5.38), the function LhamPϕ
has average 0 with respect to κ(dp) for any q ∈ D. Therefore, PLhamP = 0, which implies
A = A(1−P).

By definition of the operator A, it also holds

Aϕ+ (LhamP)∗(LhamP)Aϕ = (LhamP)∗ϕ.

This identity immediately implies that PA = A. Taking the scalar product with Aϕ, we obtain,
using LhamA = LhamPA = (1−P)LhamA:
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‖Aϕ‖2L2(µ) + ‖LhamAϕ‖2L2(µ) = 〈LhamAϕ,ϕ〉L2(µ) = 〈LhamAϕ, (1−P)ϕ〉L2(µ)

6 ‖(1−P)ϕ‖L2(µ) ‖LhamAϕ‖L2(µ)

6
1

4
‖(1−P)ϕ‖2L2(µ) + ‖LhamAϕ‖2L2(µ).

(5.44)

The last inequality gives ‖Aϕ‖L2(µ) 6 ‖(1 − P)ϕ‖L2(µ)/2, while the second one implies that
‖LhamAϕ‖L2(µ) 6 ‖(1 − P)ϕ‖L2(µ). The conclusion is finally obtained by density of C∞c (E)
in L2(µ). ut

Proof (of Proposition 5.4). The first task is to give a more explicit expression of the operator A. In
the following we use frequently the fact that operators acting only on the variables q (such as ∇q
and ∇∗q) commute with operators acting only on variables p (such as ∇p, ∇∗p and P). Moreover
the relations ∂piP = 0, P∂∗pi = 0 and P∂pi∂

∗
pj = ∂pi∂

∗
pjP = β

mPδij allow to simplify the action
of (LhamP)∗(LhamP) as follows:

(LhamP)∗(LhamP) = − 1

β2

D∑
i,j=1

P(∂∗pi∂qi − ∂
∗
qi∂pi)(∂

∗
pj∂qj − ∂

∗
qj∂pj )P

=
1

β2

D∑
i,j=1

P∂∗qi∂pi∂
∗
pj∂qjP = − 1

m
LovdP,

where

Lovd =
1

β

D∑
i=1

∂∗qi∂qi

is the generator (4.4) of the overdamped Langevin dynamics. The operator A can therefore be
reformulated as

A =
1

β

Å
1− 1

m
Lovd

ã−1
P

D∑
i=1

∂∗qi∂pi . (5.45)

To obtain bounds on the operator ALham(1−P), we next consider its adjoint:

−(1−P)LhamA
∗ = − 1

β2
(1−P)

D∑
i,j=1

(∂∗pi∂qi − ∂
∗
qi∂pi)∂qj∂

∗
pjP

Å
1− 1

m
Lovd

ã−1
= − 1

β2
(1−P)

 D∑
i,j=1

∂∗pi∂
∗
pjP∂qi∂qj −

β

m

D∑
i=1

∂∗qi∂qiP

Å1− 1

m
Lovd

ã−1
= − 1

β2
(1−P)

D∑
i,j=1

∂∗pi∂
∗
pjP∂qi∂qj

Å
1− 1

m
Lovd

ã−1
,

where we used (1−P)∂∗qi∂qiP = 0 in the last line. In order to bound the operator appearing on
the right hand side of the previous equality, we proceed as follows:

• first, for any 1 6 i, j 6 D, the operators ∂∗pi∂
∗
pjP∂qi∂qj are bounded from H2(ν) to L2(µ)

since the operators ∂∗pi∂
∗
pjP are bounded on L2(µ). To prove the latter statement, we prove

in fact that the adjoint operators P∂pi∂pj are bounded. Consider to this end ϕ ∈ C∞c (E), and
note that ∣∣(P∂pi∂pjϕ

)
(q)
∣∣ = ∣∣∣∣ˆ

RD
(∂pi∂pjϕ)(q, ·) dκ

∣∣∣∣ = ∣∣∣∣ˆ
RD

ϕ(q, ·)(∂∗pj∂
∗
pi1) dκ

∣∣∣∣
6 ‖ϕ(q, ·)‖L2(κ)

∥∥∥∂∗pj∂∗pi1∥∥∥
L2(κ)

.
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By taking the square of the previous inequality, and integrating with respect to ν, we finally
obtain

∀ϕ ∈ C∞c (E),
∥∥P∂pi∂pjϕ

∥∥
L2(µ)

6
∥∥∥∂∗pj∂∗pi1∥∥∥

L2(κ)
‖ϕ‖L2(µ),

which indeed establishes that P∂pi∂pj is bounded on L2(µ).
• second as proved in [72, Proposition 5] (see also [49, Lemma 2.3] and [27, Lemma 1] for more

precise estimates, based on Bochner’s formula), the conditions (5.19) ensure that the operator
P(1−m−1Lovd)

−1 is bounded from L2(µ) to H2(ν).

In conclusion, −(1−P)LhamA
∗ is bounded on L2(µ), and so is ALham(1−P).

The boundedness of the operator ALFD comes from the fact that

PLhamLFD = − 1

β2

D∑
i,j=1

P(∂∗pi∂qi − ∂
∗
qi∂pi)∂pj∂

∗
pj =

1

β2

D∑
i,j=1

P∂∗qi∂pi∂pj∂
∗
pj

=
1

βm

D∑
i=1

P∂∗qi∂pi = −
1

m
PLham.

Alternatively, it is possible to compute the action of LFDLhamP, since (LhamPϕ)(q, p) =
pTM−1(∇qPϕ)(q) and use the fact that LFD(M

−1p) = −p/m2 when (5.22) holds (as assumed
for simplicity in this proof). In any case, ALFD = −A/m, which gives the claimed result in view
of Lemma 5.2. ut

Exercise 5.1. Theorem 5.5 can be extended to the linear Boltzmann and Andersen dynamics, i.e.
the piecewise deterministic Markov process with generators (1.31) and (1.30) (see Section 1.4.3).
The only part of the proof that needs to be modified is the proof of Proposition 5.2. Prove that (5.33)
holds when the generator is given by (1.31) or (1.30). For the latter operator, the key point is to
check that a coercivity property such as (5.34) still holds. Note to this end that

‖(P1 . . . PD − 1)ϕ‖2L2(µ) = ‖P1(P2 . . . PD − 1)ϕ‖2L2(µ) + ‖(P1 − 1)ϕ‖2L2(µ)

6 ‖(P2 . . . PD − 1)ϕ‖2L2(µ) + ‖(P1 − 1)ϕ‖2L2(µ),

and proceed by induction.

5.4.4 Hypocoercivity in the entropic sense

We show in this section how to adapt the convergence estimates in relative entropy discussed
for overdamped Langevin dynamics in Section 4.3.3. The interest of this approach is that initial
conditions (5.27) can be considered in a functional space larger than L2(µ) (although still not for
the whole space L1(µ) as one would like). Logarithmic Sobolev inequalities are still a key tool, but
the entropy functional needs to be modified.

Entropic estimates for Fokker–Planck operators were initiated in [66] and abstracted in [274,
Section 6], however under conditions stronger than those for other hypocoercive frameworks, re-
quiring in particular that the Hessian of the potential is bounded. The approach can be generalized
to various entropies besides logarithmic ones [2], under the same assumption about the bounded-
ness of the Hessian of V . It was recently shown in [53] how to remove the latter assumption and
allow∇2V to grow at infinity as V η for some power η > 0, provided a weighted log-Sobolev inequal-
ity holds. Let us also mention that the computations in [274] can be simplified for Langevin-type
dynamics; see [209, Appendix D].

We state here convergence results in the case when the law ψ(t) of the process at time t can be
written as as f(t)µ. This is the case when the initial law is f0µ, with f0 > 0 and

´
E f0dµ = 1. In this

case, the function f(t) evolves according to the Fokker–Planck equation (5.26), i.e., f(t) = etL
∗
f0.

It is expected that f(t) converges to the constant function 1.
To quantify the convergence rate, we introduce the entropy functional
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E (f) =

ˆ
E
f ln f dµ+

ˆ
E

∇fTS∇f
f

dµ, (5.46)

where S ∈ R2d×2d is a nonnegative symmetric matrix which is not assumed to be positive definite
at this stage. Note that the functional E mixes the relative entropy and a generalization of the
Fisher information introduced in Definition 4.2. It is sufficient for our purposes to restrict ourselves
to the case when S is constant (but see [274, Remark 29] for a context where a dependence on the
position q may be useful). In fact, we will consider the choice made in [209, Appendix D], namely

S = a

Å
IdD IdD
IdD IdD

ã
∈ R2D×2D

for some parameter a > 0. The associated entropy function is denoted by Ea:

Ea(f) =

ˆ
E
f ln f dµ+ a

ˆ
E

|∇qf +∇pf |2

f
dµ.

Note that Ea(1) = 0, so that the entropy is expected to converge to 0 as t→ +∞.

Theorem 5.6. Assume that ∇2V is bounded:

K = sup
q∈D

∥∥∇2V (q)
∥∥
B(`2) < +∞,

∥∥∇2V (q)
∥∥
B(`2) = sup

ξ∈RD

∣∣∇2V (q)ξ
∣∣

|ξ|
, (5.47)

where | · | is the standard Euclidean norm in RD. Then, there exists a > 0 and α > 0 such that,
for the choice

a(γ) = amin

Å
γ,

1

γ

ã
, (5.48)

it holds

∀γ > 0, ∀t > 0,
d

dt

[
Ea(γ)(f(t))

]
6 −αmin

Å
γ,

1

γ

ãˆ
E

|∇f(t)|2

f(t)
dµ. (5.49)

If in addition ν(dq) satisfies a logarithmic Sobolev inequality (4.43) with constant Rν , then there
exists λ > 0 such that

∀γ > 0, ∀t > 0,
d

dt

[
Ea(γ)(f(t))

]
6 −λmin

Å
γ,

1

γ

ã
Ea(γ)(f(t)). (5.50)

In particular, 0 6 Ea(γ)(f(t)) 6 Ea(γ)(f0) e
−λmin(γ,γ−1)t for any t > 0 and any γ > 0.

Note that we recover a convergence rate of order min(γ, γ−1), as in Theorem 5.5. A careful
inspection of the proof shows that final decay rate λ can be made quite explicit in terms of the
various parameters in the model (LSI constant Rν , bounds on ∇2V , etc).

Proof. For simplicity, we write the proof in the simple case (5.22) when the mass matrix is isotropic.
One of the main ideas in the proof is to rewrite the time derivative of the second term in the
expression of Ea as a sum of terms similar to the ones appearing in the proof of H1 coercivity [274].
To this end, consider g(t) =

√
f(t), so that

ˆ
E

∇f(t)TS∇f(t)
f(t)

dµ = 4

ˆ
E
∇g(t)TS∇g(t) dµ. (5.51)

In order to determine the time evolution of this quantity, we first write the time evolution for g(t),
obtained from the equality

∂tf(t) = ∂t
(
g(t)2

)
= L∗

(
g(t)2

)
= 2g(t)L∗g(t) + 2γ

β
|∇pg(t)|2 ,
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so that

∂tg(t) = L∗g(t) +
γ

β

|∇pg(t)|2

g(t)
. (5.52)

We next compute the time derivatives of the various terms in Ea(f(t)). First,

d

dt

Åˆ
E
f(t) ln f(t) dµ

ã
=

ˆ
E
(1 + ln f(t))L∗f(t) dµ

=

ˆ
E
Lham(1 + ln f(t))f(t) dµ− γ

β

ˆ
E
∇pf(t) · ∇p(ln f(t)) dµ

=

ˆ
E
Lhamf(t) dµ−

γ

β

ˆ
E

|∇pf(t)|2

f(t)
dµ = −4γ

β

ˆ
E
|∇pg(t)|2 dµ,

in view of the invariance of µ by Lham. To compute the various terms in the time derivative of
the Fisher information, we rely on the reformulation (5.51), and use the following commutator
identities:

[∂pi ,L∗]ϕ = −
[
∂pi ,

pi
m
∂qi

]
ϕ− γ

β

[
∂pi , ∂

∗
pi∂pi

]
ϕ = − 1

m
(∂qi + γ∂pi)ϕ,

[∂qi ,L∗]ϕ = [∂qi ,∇V T∇p]ϕ = ∇ (∂qiV )
T ∇pϕ.

(5.53)

Then, by (5.52),

d

dt

Åˆ
E
|∂pig(t)|2 dµ

ã
= 2

ˆ
E
∂pig(t) ∂pi(L∗g(t)) dµ+

2γ

β

ˆ
E
∂pig(t) ∂pi

Å |∇pg(t)|2
g(t)

ã
dµ

= 2

ˆ
E
∂pig(t)L∗(∂pig(t)) dµ−

2

m

ˆ
E
∂pig(t) (∂qi + γ∂pi)g(t) dµ

+
2γ

β

ˆ
E
∂pig(t)

Å
2∇p(∂pig(t)) · ∇pg(t)

g(t)
− |∇pg(t)|

2

g(t)2
∂pig(t)

ã
dµ

= − 2

m

ˆ
E
∂pig(t) (∂qi + γ∂pi)g(t) dµ

− 2γ

β

ˆ
E
|∇p∂pig(t)|2 − 2∇p(∂pig(t)) ·

(∂pig(t))∇pg(t)
g(t)

+
|∇pg(t)|2(∂pig(t))2

g(t)2
dµ,

where we have used
ˆ
E
∂pig(t)L∗(∂pig(t)) dµ = −

ˆ
E
∂pig(t)Lham(∂pig(t))dµ−

γ

β

D∑
j=1

ˆ
E
∂pig(t) ∂

∗
pj∂pj (∂pig(t)) dµ,

the first integral on the right-hand side vanishing since Lham is antisymmetric. Therefore,

d

dt

Åˆ
E
|∂pig(t)|2 dµ

ã
= − 2

m

ˆ
E
∂pig(t) (∂qi + γ∂pi)g(t) dµ−

2γ

β

ˆ
E

∣∣∣∣∇p∂pig(t)− (∂pig(t))∇pg(t)
g(t)

∣∣∣∣2 dµ.
Similar computations give

d

dt

Åˆ
E
|∂qig(t)|2 dµ

ã
= 2

ˆ
E
∂qig(t) (∇∂qiV ) · ∇pg(t) dµ

− 2γ

β

ˆ
E

∣∣∣∣∇p∂qig(t)− (∂qig(t))∇pg(t)
g(t)

∣∣∣∣2 dµ,
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and

d

dt

Åˆ
E
∂pig(t) ∂qig(t) dµ

ã
=

ˆ
E
∂pig(t) (∇∂qiV ) · ∇pg(t) dµ−

1

m

ˆ
E
∂qig(t) (∂qi + γ∂pi)g(t) dµ

− 2γ

β

ˆ
E

Å
∇p∂qig(t)−

(∂qig(t))∇pg(t)
g(t)

ã
·
Å
∇p∂pig(t)−

(∂pig(t))∇pg(t)
g(t)

ã
dµ.

Let us emphasize that, among the various terms produced by the last time derivative, there
is in particular a term of the form −m−1 ‖∂qig(t)‖

2
L2(µ), which allows to retrieve some missing

dissipation in the direction qi.
By gathering all time derivatives, it follows that

d

dt

[
Ea(γ)(f(t))

]
= −4γ

β

ˆ
E
|∇pg(t)|2 dµ

+ 8a(γ)

D∑
i=1

(ˆ
E
(∂qi + ∂pi)g(t) (∇∂qiV ) · ∇pg(t) dµ−

1

m

D∑
i=1

ˆ
E
(∂qi + ∂pi)g(t) (∂qi + γ∂pi)g(t) dµ

)

− 8γa(γ)

β

D∑
i=1

ˆ
E

∣∣∣∣∇p(∂qi + ∂pi)g(t)−
[(∂qi + ∂pi)g(t)]∇pg(t)

g(t)

∣∣∣∣2 dµ.
Therefore, recalling the definition of the constant K in (5.47),

d

dt

[
Ea(γ)(f(t))

]
6 −4γ

β
‖∇pg(t)‖2L2(µ) dµ+ 8Ka(γ) ‖(∇p +∇q)g(t)‖L2(µ) ‖∇pg(t)‖L2(µ)

− 8a(γ)

m

î
‖∇qg(t)‖2L2(µ) + γ ‖∇pg(t)‖2L2(µ) − (γ + 1) ‖∇qg(t)‖L2(µ) ‖∇pg(t)‖L2(µ)

ó
.

The right hand side of the previous inequality can be bounded as

d

dt

[
Ea(γ)(f(t))

]
6 −8X(t)TMX(t), X(t) =

Å
‖∇pg(t)‖L2(µ)

‖∇qg(t)‖L2(µ)

ã
∈ R2,

whereM∈ R2×2 has entries

M11 = γ

Å
1

2β
+
a(γ)

m

ã
−Ka(γ), M21 =M12 = −a(γ)

2

Å
γ + 1

m
+K

ã
, M22 =

a(γ)

m
.

Necessary and sufficient conditions for M to be positive definite are that M11,M22 > 0 and
detM > 0. The conditionM11 > 0 implies that a(γ) has to be of order at most γ when γ → 0,
while the determinant condition requires γa(γ) not to be too large as γ → +∞. This motivates
the choice (5.48), for some value a > 0 chosen small enough so thatM11,M22 > 0 and detM > 0
for any γ > 0. With such a choice, the smallest eigenvalue Λ(γ) ofM is positive. In fact,

Λ(γ) =
M11 +M22

2
− 1

2

»
(M11 −M22)

2
+ 4M2

12 =
2
(
M11M22 −M2

12

)
M11 +M22 +

»
(M11 −M22)

2
+ 4M2

12

.

Given that all the entries ofM are of order γ as γ → 0, it is easily seen that there exists λ0 > 0
such that Λ(γ) > λ0γ for all γ 6 1. For γ large,M11 is of order γ,M12 is of order 1, whileM22

is of order 1/γ. A simple inspection of the formula for Λ(γ) shows that there exists λ∞ > 0 such
that Λ(γ) > λ∞/γ for all γ > 1. Upon setting λ = min(λ0, λ∞), and noting that

|X(t)|2 = ‖∇pg(t)‖2L2(µ) + ‖∇qg(t)‖
2
L2(µ) =

1

4

ˆ
E

|∇f(t)|2

f(t)
dµ,

we obtain (5.49).



5.4 Convergence of the law 121

To deduce (5.50), we note that, by tensorization of LSI, the following inequality holds for any
C∞ function h > 0 with integral 1 with respect to µ:

ˆ
E
h lnh dµ 6

1

2min(Rν , β/m)

ˆ
E

|∇ph|2 + |∇qh|2

h
dµ.

Then,

Ea(γ)(h) 6
Å

1

2min(Rν , β/m)
+ 2a(γ)

ãˆ
E

|∇ph|2 + |∇qh|2

h
dµ.

In view of (5.49), we therefore obtain

d

dt
(Ea(γ)(f(t))) 6 −αmin

Å
γ,

1

γ

ãÅ
1

2min(Rν , β/m)
+ 2a(γ)

ã−1
Ea(γ)(f(t))

which indeed leads to (5.50). The exponential decay follows by a Gronwall inequality. ut

Remark 5.9. The computations performed in the proof of Theorem 5.6 are very close to the ones
performed to prove H1(µ) coercivity. This is not a suprise, since convergence in H1(µ) can be
seen as working with an entropy function (x − 1)2 instead of x lnx − x + 1. More precisely, the
functional (5.46) is replaced by

E (f) =

ˆ
E
(f − 1)2 dµ+

ˆ
E
∇fTS∇f dµ.

Note that the second term in this functional is some generalization of the dissipative term which
arises in (4.30) for overdamped Langevin dynamics – similarly to the fact that the second term
in (5.46) is some Fisher information, which corresponds to the dissipation of entropy for over-
damped Langevin dynamics (see (4.45)). The H1(µ) framework however more easily allows for
less stringent conditions on V to obtain the convergence – for instance a bound of the form
|∇2V (q)| 6 ρ(1 + |∇V (q)|) for some ρ ∈ R+ (see [274] as well as the presentation in [180]
which is dedicated to Langevin dynamics).
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5.5 Complements
TO DIS-
CARD

5.5.1 Hypocoercivity and convergence in H1(µ)

A first setting to retrieve coercivity is to consider the Hilbert space H1(µ) ∩ L2
0(µ), where

H1(µ) =
{
ϕ ∈ L2(µ)

∣∣∣∇pϕ,∇qϕ ∈ (L2(µ)
)D}

is endowed with a scalar product different from the canonical one:

〈ϕ1, ϕ2〉H1(µ) = 〈ϕ1, ϕ2〉L2(µ) + 〈∇qϕ1,∇qϕ2〉L2(µ) + 〈∇pϕ1,∇pϕ2〉L2(µ).

It is then possible to resort to some Gronwall estimates and deduce the longtime convergence
of f(t) when a Poincaré inequality holds for µ (as in the proof of Proposition 4.2).

Although hypocoercivity eventually provides decay estimates in H1(µ), it turns out to be
convenient, for the proof, to work with a specific scalar product equivalent to the canonical scalar
product on H1(µ). We introduce the following scalar product:

〈〈u, v〉〉 = 〈u, v〉+ a〈∇pu,∇pv〉 − b〈∇pu,∇qv〉 − b〈∇qu,∇pv〉+ c〈∇qu,∇qv〉, (5.54)

where, for simplicity of notation, we denote by 〈·, ·〉 the standard scalar product on L2(µ). In order
for the above scalar product to be equivalent to the canonical scalar product on H1(µ), we assume
in the remainder of this section that

a, c > 0, and ac− b2 > 0. (5.55)

Lemma 5.3. Assume that (5.55) holds. Then the bilinear form (u, v) 7→ 〈〈u, v〉〉 induces a scalar
product equivalent to the canonical scalar product on H1(µ).

Proof. Of course,
|〈〈u, u〉〉| 6 max(1, a+ |b|, c+ |b|)‖u‖2H1(µ).

It therefore remains to prove that ‖u‖2H1(µ) can be controlled by 〈〈u, u〉〉. Note first that, by a
Cauchy-Schwarz inequality,

a〈∇pu,∇pu〉 − b〈∇pu,∇qu〉 − b〈∇qu,∇pu〉+ c〈∇qu,∇qu〉

>
Å
‖∇pu‖L2(µ)

‖∇qu‖L2(µ)

ãT Å
a −|b|
−|b| c

ãÅ
‖∇pu‖L2(µ)

‖∇qu‖L2(µ)

ã
> α
Ä
‖∇pu‖2L2(µ) + ‖∇qu‖

2
L2(µ)

ä
,

where

α =
1

2

(
a+ c−

»
(a− c)2 + 4b2

)
=

2(ac− b2)
a+ c+

√
(a− c)2 + 4b2

> 0. (5.56)

This shows that
〈〈u, u〉〉 > min (1, α) ‖u‖2H1(µ),

which allows us to conclude the proof. ut

As mentioned above, for notational simplicity, we study the convergence to 0 of etLϕ for
ϕ ∈ L2

0(µ) rather than the convergence to 0 of etL
∗
(f0 − 1) for f0 ∈ L2(µ). The results of this

section can however be straightforwardly extended to the latter case by changing the sign of the
antisymmetric part of the operator (which is handled by changing the sign of b in the definition
of the scalar product 〈〈·, ·〉〉). The following result can then be stated.
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Theorem 5.7 (hypocoercivity). Fix γ > 0, and assume either that the domain D is bounded,
or that there exists ρ > 0 such that

∀q ∈ D, |∇2V (q)| 6 ρ(1 + |∇V (q)|), (5.57)

when D is not bounded. Then there exist a, b, c ∈ R satisfying (5.55) and K > 0 such that, for any
ϕ ∈ H1(µ) ∩ L2

0(µ) and any t > 0,

d

dt

[
〈〈etLϕ, etLϕ〉〉

]
6 −K

Ä
‖∇petLϕ‖2L2(µ) + ‖∇qe

tLϕ‖2L2(µ)

ä
. (5.58)

If in addition a Poincaré inequality holds for the measure ν(dq) = Z−1ν e−βV (q) dq, then there exists
κ > 0 such that, for any t > 0,

∀ϕ ∈ H1(µ) ∩ L2
0(µ), 〈〈etLϕ, etLϕ〉〉 6 e−2κt〈〈ϕ,ϕ〉〉. (5.59)

As a consequence, there exists C > 1 such that

∀t > 0, ‖etL‖B(H1(µ)∩L2
0(µ))

6 C e−κt. (5.60)

In the last inequality, H1(µ) is endowed with the canonical scalar product. The operator
bound (5.60) is obtained from (5.59) by taking the supremum over functions ϕ ∈ H1(µ) ∩ L2

0(µ)
and using the equivalence of norms provided by Lemma 5.3. Note that this implies that C > 1.

An immediate consequence of the above convergence result is the following corollary.

Corollary 5.2. Under the same assumptions as in Theorem 5.7, the operator L is invertible
on H1(µ) ∩ L2

0(µ), and the following equality holds in B(H1(µ) ∩ L2
0(µ)):

L−1 = −
ˆ +∞

0

etLdt.

Moreover,

‖L−1‖B(H1(µ)∩L2
0(µ))

6
C

κ
, (5.61)

where C and κ are the same constants as in (5.60).

Let us now present the proof of Theorem 5.7.

Proof. Note that, formally,

d

dt

Å
1

2
〈〈etLϕ, etLϕ〉〉

ã
= 〈〈etLϕ,L etLϕ〉〉.

Our aim is to find nonnegative constants a, b, c such that (5.55) holds and, for all C∞ functions
with compact support,

〈〈ϕ,Lϕ〉〉 6 −κ〈〈ϕ,ϕ〉〉.

This allows us to obtain (5.58) and thus the desired exponential decrease, using the Poincaré
inequality and a Gronwall argument, together with some density argument in order to extend
inequalities from smooth functions with compact support to all elements of H1(µ) ∩ L2

0(µ). The
idea of hypocoercivity is thus to find a scalar product equivalent to the canonical H1(µ) scalar
product and such that −L is coercive with respect to this scalar product (while it fails to be
coercive with respect to the canonical H1(µ) scalar product, see (5.28)).

Let us first compute the various terms in 〈〈ϕ,Lϕ〉〉. It is useful to first establish some commu-
tator identities:

[∂pi ,L]ϕ =

ï
∂pi ,

pi
mi

∂qi

ò
ϕ− γ

β

[
∂pi , ∂

∗
pi∂pi

]
ϕ =

1

mi
(∂qi − γ∂pi)ϕ,

[∂qi ,L]ϕ = −[∂qi ,∇V T∇p]ϕ = −∇ (∂qiV )
T ∇pϕ.

(5.62)
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First,
〈ϕ,Lϕ〉 = −γ

β
‖∇pϕ‖2L2(µ).

Now, using (5.62),

〈∂piϕ, ∂piLϕ〉 = 〈∂piϕ,L∂piϕ〉+
1

mi
〈∂piϕ, (∂qi − γ∂pi)ϕ〉

= −γ
β
‖∇p(∂piϕ)‖2L2(µ) −

γ

mi
‖∂piϕ‖2L2(µ) +

1

mi
〈∂piϕ, ∂qiϕ〉 .

Moreover,
〈∂qiϕ, ∂qiLϕ〉 = 〈∂qiϕ,L∂qiϕ〉 −

〈
∂qiϕ,∇(∂qiV )T∇pϕ

〉
= −γ

β
‖∇p(∂qiϕ)‖2L2(µ) −

〈
∂qiϕ,∇(∂qiV )T∇pϕ

〉
.

In addition,

〈∂piϕ, ∂qiLϕ〉 = 〈∂piϕ,L∂qiϕ〉 −
〈
∂piϕ,∇(∂qiV )T∇pϕ

〉
= 〈∂piϕ,Lham∂qiϕ〉 −

γ

β
〈∇p (∂piϕ) ,∇p (∂qiϕ)〉 −

〈
∂piϕ,∇(∂qiV )T∇pϕ

〉
.

Finally, the last term provides some dissipation in q since

〈∂qiϕ, ∂piLϕ〉 = 〈∂qiϕ,L∂piϕ〉+
1

mi
〈∂qiϕ, (∂qi − γ∂pi)ϕ〉

= 〈∂qiϕ,Lham∂piϕ〉 −
γ

β
〈∇p(∂qiϕ),∇p(∂piϕ)〉+

1

mi
‖∂qiϕ‖2L2(µ) −

γ

mi
〈∂qiϕ, ∂piϕ〉 .

Note that

〈∂piϕ,Lham∂qiϕ〉 = 〈∂piϕ,Lham∂qiϕ〉+ 〈Lham∂qiϕ, ∂piϕ〉 = 〈∂piϕ,Lham∂qiϕ〉 − 〈∂qiϕ,Lham∂piϕ〉 .

which implies that
〈∂piϕ,Lham∂qiϕ〉+ 〈∂qiϕ,Lham∂piϕ〉 = 0,

Gathering all terms, we obtain Some straightforward computations then show that

〈〈ϕ,Lϕ〉〉 = −γ
β
‖∇pϕ‖2L2(µ)

+ a

D∑
i=1

Å
−γ
β
‖∇p(∂piϕ)‖2L2(µ) −

γ

mi
‖∂piϕ‖2L2(µ) +

1

mi
〈∂piϕ, ∂qiϕ〉

ã
+ c

D∑
i=1

Å
−γ
β
‖∇p(∂qiϕ)‖2L2(µ) − 〈∂qiϕ,∇(∂qiV )T∇pϕ〉

ã
− b

D∑
i=1

Å
−γ
β
〈∇p(∂piϕ),∇p(∂qiϕ)〉 − 〈∂piϕ,∇(∂qiV )T∇pϕ〉

ã
− b

D∑
i=1

Å
−γ
β
〈∇p(∂qiϕ),∇p(∂piϕ)〉+

1

mi
‖∂qiϕ‖2L2(µ) −

γ

mi
〈∂qiϕ, ∂piϕ〉

ã
.

Note in particular that dissipation terms ‖∂qiϕ‖2L2(µ) appear in the last line. This motivates choos-
ing the parameter b positive.2 The next step is to bound the right-hand side of the previous equality
from above using Cauchy-Schwarz inequalities (recall that we assume b > 0), by

2 When working with L∗ instead of L, the parameter b should be negative.
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〈〈ϕ,Lϕ〉〉 6 −γ
Å
1

β
+

a

m+

ã
‖∇pϕ‖2L2(µ) −

b

m+
‖∇qϕ‖2L2(µ)

+
a+ bγ

m−
‖∇pϕ‖L2(µ)‖∇qϕ‖L2(µ)

− aγ

β

D∑
i=1

‖∇p(∂piϕ)‖2L2(µ) −
cγ

β

D∑
i=1

‖∇p(∂qiϕ)‖2L2(µ)

+
2bγ

β

D∑
i=1

‖∇p(∂piϕ)‖L2(µ)‖∇p(∂qiϕ)‖L2(µ)

+ 〈(b∇p − c∇q)ϕ, (∇2V )∇pϕ〉,

where
m+ = max(m1, . . . ,md), m− = min(m1, . . . ,md). (5.63)

Condition (5.55) shows that (by a computation similar to the one performed in the proof of
Lemma 5.3)

a‖∇p(∂piϕ)‖2L2(µ) + c‖∇p(∂qiϕ)‖2L2(µ) − 2b‖∇p(∂piϕ)‖L2(µ)‖∇p(∂qiϕ)‖L2(µ)

> α(‖∇p(∂piϕ)‖2L2(µ) + ‖∇p(∂qiϕ)‖
2
L2(µ)), (5.64)

with α > 0 defined in (5.56). Therefore, the upper bound on 〈〈ϕ,Lϕ〉〉 simplifies as

〈〈ϕ,Lϕ〉〉 6 −γ
Å
1

β
+

a

m+

ã
‖∇pϕ‖2L2(µ) −

b

m+
‖∇qϕ‖2L2(µ)

+
a+ bγ

m−
‖∇pϕ‖L2(µ)‖∇qϕ‖L2(µ)

− αγ

β

D∑
i=1

(‖∇p(∂piϕ)‖2L2(µ) + ‖∇p(∂qiϕ)‖
2
L2(µ)) (5.65)

+ 〈(b∇p − c∇q)ϕ, (∇2V )∇pϕ〉.

In order to control the term 〈(b∇p − c∇q)ϕ, (∇2V )∇pϕ〉, two cases have to be distinguished.

(i) The position space D is compact. Here ∇2V is uniformly bounded, and there exists a constant
CV > 0 such that

|〈(b∇p − c∇q)ϕ, (∇2V )∇pϕ〉| 6 CV ‖∇pϕ‖L2(µ)‖(b∇p − c∇q)ϕ‖L2(µ)

6 bCV ‖∇pϕ‖2L2(µ) + cCV ‖∇pϕ‖L2(µ)‖∇qϕ‖L2(µ).

(ii) The position space is not compact. Conditions must be imposed on the potential energy
function in order to control the growth of the Hessian at infinity. One possible condition is
that ∇2V (considered as a multiplication operator acting on vectors) is relatively bounded
by ∇q on L2(µ), i.e., there exist AV , BV > 0 such that

∀φ ∈ H1(µ), ‖φ∇2V ‖L2(µ) 6 AV ‖φ‖L2(µ) +BV ‖∇qφ‖L2(µ).

This condition is satisfied when (5.57) holds (see [274, Lemma A.24]). In this case,

|〈(b∇p − c∇q)ϕ, (∇2V )∇pϕ〉|
6 (AV ‖∇pϕ‖L2(µ) +BV ‖∇p∇qϕ‖L2(µ))‖(b∇p − c∇q)ϕ‖L2(µ).

The term involving derivatives in both q and p can be controlled by the dissipative terms
−αγβ ‖∂pj∂qiϕ‖

2
L2(µ) in (5.65).
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For simplicity, we consider the case when D is compact. Then,

〈〈ϕ,Lϕ〉〉 6
ï
bCV − γ

Å
1

β
+

a

m+

ãò
‖∇pϕ‖2L2(µ) −

b

m+
‖∇qϕ‖2L2(µ)

+

Å
a+ bγ

m−
+ cCV

ã
‖∇pϕ‖L2(µ)‖∇qϕ‖L2(µ)

= −XTMX,

where
X =

Å
‖∇pϕ‖L2(µ)

‖∇qϕ‖L2(µ)

ã
, M =

Å
A C/2
C/2 B

ã
.

with
A = γ

Å
1

β
+

a

m+

ã
− bCV , B =

b

m+
, C =

a+ bγ

m−
+ cCV .

In addition to (5.55), the values of a, b, c should be such that

4AB > C2, (5.66)

in order for M to be positive definite. If this is the case, (5.58) follows. The condition (5.66) is
satisfied for instance when

a = c = ε, b = ε1+δ, δ ∈ (0, 1), (5.67)

for ε > 0 sufficiently small. Note also that this choice is compatible with (5.55) as soon as ε < 1.
Let us now discuss how to obtain (5.59) from (5.58), assuming that ν satisfies a Poincaré

inequality. This requires us to retrieve some control on the L2(µ)-norm of ϕ from the norms of the
gradient. We use to this end the fact that, by the tensorization argument stated in Proposition 4.3,
the canonical measure µ satisfies a Poincaré inequality, whose constant we denote by R. Therefore,
XTSX > 〈〈ϕ,ϕ〉〉 with

S =

Å
a+ 1/(2R) −b
−b c+ 1/(2R)

ã
.

We finally define κ as the largest positive constant such that XTMX > κXTSX. In fact, κ is
the smallest eigenvalue of S−1/2MS−1/2 (or equivalently ofMS−1). Since S is symmetric definite
positive, this shows that κ > 0 sinceM is also definite positive thanks to (5.55). This concludes
the proof of (5.59). ut

Remark 5.10 (Degenerate scalar product). The standard hypocoercive approach relies on
estimates in H1(µ), obtained under the non-degeneracy condition (5.55). However, in the situation
when ∇2V is bounded, it is possible with a slight modification of the above argument to state an
exponential convergence in the degenerate case a = b = c, for which the associated squared norm
is ‖f‖2L2(µ) + a‖(∇p −∇q)f‖2L2(µ); see [137] for the complete argument.

One interest of the hypocoercive approach is that the constants κ and C in (5.60) can be made
quite explicit in terms of the various factors (related to the potential such as the bound on the
Hessian CV and the Poincaré constant R, or to the masses). We discuss this in Section 5.5.1 for
the limits where γ → 0 and γ → +∞, and in Remark 5.11 for the small temperature limit.

Remark 5.11 (Small temperature limit). Consider the limit where β → +∞. The constant R
typically decreases exponentially with the temperature, with a lower bound scaling as eβ(inf ‹V−sup ‹V )

when V = Vconvex+‹V . In this decomposition, the potential is separated into a strongly convex part
Vconvex whose Hessian is uniformly lower bounded by a positive constant, while ‹V is some bounded
perturbation. On the other hand, upon rescaling the values a, b, c in the definition of the scalar
product by a factor 1/β (which amounts to considering a = a/β, etc.), it can be shown that the
smallest eigenvalue α ofM is of order 1/β. Therefore, the smallest eigenvalue κ of S−1/2MS−1/2

admits a lower bound which decreases exponentially with β.
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Convergence in L2(µ)

The passage from bounds in H1(µ) to bounds in L2(µ) follows from hypoelliptic regularization
results. Such results are presented in [274, Theorem A.8] or [119, Section 6.1], and are based on
the idea of F. Hérau [127]. We follow the latter approach, which is more straightforward, although other

motiva-
tion: in-
tegration
Langevin
with zero
forces,
and ob-
tain some
heat
kernel
with t3
for posi-
tions...

the so-obtained results are not as strong as the results presented in [274].

Theorem 5.8 (hypoelliptic regularization). Assume that ∇2V ∈ L∞(D) or that (5.57) holds.
Then there exists K > 0 such that, for any ϕ ∈ L2(µ),

∀0 < t 6 1, ‖∇petLϕ‖L2(µ) + ‖∇qetLϕ‖L2(µ) 6
K

t3/2
‖ϕ‖L2(µ).

Combining this inequality with t = 1 and Theorem 5.7, we can conclude that, for t > 1 and
ϕ ∈ L2

0(µ),

‖etLϕ‖2L2(µ) 6 〈〈e
tLϕ, etLϕ〉〉 6 e−2κ(t−1)〈〈eLϕ, eLϕ〉〉 6 ‹C e−2κt‖ϕ‖2L2(µ),

which gives an exponential decay in L2(µ). For completeness, let us recall the proof of Theorem 5.8,
as presented in [119].

Proof. As at the end of the proof of Theorem 5.7, we consider for simplicity the case when ∇2V
is bounded. We denote etLϕ by ϕ(t) in this proof. Define

Nϕ(t) =
1

2

î
‖ϕ(t)‖2L2(µ) + c1t‖∇pϕ(t)‖2L2(µ) − c2t

2〈∇qϕ(t),∇pϕ(t)〉L2(µ) + c3t
3‖∇qϕ(t)‖2L2(µ)

ó
,

(5.68)
for some positive constants c1, c2, c3 to be determined later on. Note that 2Nϕ(t) corresponds
to the norm induced by the scalar product (5.54) for time dependent coefficients a(t) = c1t,
2b(t) = c2t

2 and c(t) = c3t
3. This choice is motivated in Remark 5.12 below. The time derivative

of this quantity reads

dNϕ(t)

dt
= 〈ϕ(t),Lϕ(t)〉+ c1

2
‖∇pϕ(t)‖2L2(µ) + c1t

D∑
i=1

〈∂piϕ(t), ∂piLϕ(t)〉

− c2t〈∇qϕ(t),∇pϕ(t)〉 −
c2t

2

2

D∑
i=1

[〈∂qiϕ(t), ∂piLϕ(t)〉+ 〈∂piϕ(t), ∂qiLϕ(t)〉]

+
3c3t

2

2
‖∇qϕ(t)‖2L2(µ) + c3t

3
D∑
i=1

〈∂qiϕ(t), ∂qiLϕ(t)〉.

Using computations similar to those in the proof of Theorem 5.7, we obtain

dNϕ(t)

dt
= −

Å
γ

β
− c1

2

ã
‖∇pϕ(t)‖2L2(µ)

− c1t
D∑
i=1

ï
γ

β
‖∇p(∂piϕ(t))‖2L2(µ) +

γ

mi
‖∂piϕ(t)‖2L2(µ)

ò
+

D∑
i=1

ï
t

Å
c1
mi
− c2
ã
+
γc2t

2

2mi

ò
〈∂piϕ(t), ∂qiϕ(t)〉

+
c2t

2

2

D∑
i=1

2γ

β
〈∇p(∂piϕ(t)),∇p(∂qiϕ(t))〉+ 〈∂piϕ(t),∇(∂qiV )T∇pϕ(t)〉

+ t2
D∑
i=1

Å
3c3
2
− c2
mi

ã
‖∂qiϕ(t)‖2L2(µ)

− c3t3
D∑
i=1

ï
γ

β
‖∇p(∂qiϕ(t))‖2L2(µ) + 〈∂qiϕ(t),∇(∂qiV )T∇pϕ(t)〉

ò
.

(5.69)
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We now choose c1, c2, c3 such that dNϕ/dt 6 0. First, we restrict ourselves to coefficients such that

∀(x, y) ∈ R2, c2t
2xy 6 c1tx

2 + c3t
3y2.

which is satisfied once
c1, c3 > 0, 4c1c3 > c22. (5.70)

Note that we keep a strict inequality in the second condition in order to have some norm equivalence
between Nϕ(t) and ‖ϕ(t)‖2H1(µ), which is crucial to conclure the proof. Then,

−c1t
D∑
i=1

γ

β
‖∇p(∂piϕ(t))‖2L2(µ) +

c2t
2

2

D∑
i=1

2γ

β
〈∇p(∂piϕ(t)),∇p(∂qiϕ(t))〉

−c3t3
D∑
i=1

γ

β
‖∇p(∂qiϕ(t))‖2L2(µ) 6 0,

so that, with CV = ‖∇2V ‖L∞ , NEED TO CHECK FACTORS HERE (REMARQUE
JULIEN)

dNϕ(t)

dt
6 −

Å
γ

β
+
γc1t

m+
− c1

2
− CV

c2t
2

2

ã
‖∇pϕ(t)‖2L2(µ)

− t2
Å
c2
m+
− 3c3

2

ã
‖∇qϕ(t)‖2L2(µ)

+

ï
t

Å
c1
m−

+ c2

ã
+
γc2t

2

2m−
+ CV c3t

3

ò
‖∇pϕ(t)‖L2(µ)‖∇qϕ(t)‖L2(µ).

On the time interval [0, 1], we finally obtain the following upper bound:

dNϕ(t)

dt
6 −

Å
γ

β
− c1

2
− CV

c2
2

ã
‖∇pϕ(t)‖2L2(µ) − t

2

Å
c2
m+
− 3c3

2

ã
‖∇qϕ(t)‖2L2(µ)

+ t

ï
c1
m−

+
γc2
2m−

+ CV c3

ò
‖∇pϕ(t)‖L2(µ)‖∇qϕ(t)‖L2(µ).

We next consider coefficients c1, c2, c3 all of order ε for ε > 0 sufficiently small, satisfying (5.70)
and c2/m+ − 3c3/2 > 0. For instance, c1 = ε, c2 = c2ε and c3 = c3ε, with c2, c3 sufficiently small
so that c2 > 3m+c3/2 and 4c3 > c22. We can then deduce that dNϕ(t)/dt 6 0, which implies
Nϕ(t) 6 Nϕ(0) = ‖ϕ‖2L2(µ)/2. The desired conclusion immediately follows. ut

Remark 5.12. Let us now motivate more precisely the definition (5.68). As discussed after this
equation, the choice (5.68) corresponds to the scalar product (5.54) with time dependent coefficients
a(t), b(t), c(t). First, in order to only have the L2(µ)-norm of ϕ at time t = 0, it is necessary
that a(0) = b(0) = c(0) = 0. Second, when generalizing the computations leading to (5.69), the
prefactors of the third and fifth terms on the right-hand side of (E) now read a(t)/mi − b′(t) +
γb(t)/(2mi) instead of t(c1/mi − c2) + γc2t

2/(2mi) and c′(t)/2 − 2b(t)/mi instead of t2(3c3/2 −
c2/mi). This suggests that a(t) and b′(t) should be of the same order of magnitude, as well as b(t)
and c′(t). When a(t) is linear in t, this implies that b(t) is quadratic and c(t) cubic.

Hamiltonian and overdamped limits

The results stated in Theorem 5.7 are obtained for a given value of γ. Hypocoercivity allows to
quantify the degradation of the convergence rate. Let κγ denote the exponential decay rate given
by Theorem 5.7 for a given value of γ. By tracking the dependency of all estimates on γ in the
proofs of Theorems 5.7 and 5.8, it is possible to show the following result.
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Proposition 5.5. Under the same assumptions as for Theorem 5.7, there exist C, κ > 0 such that,
for all γ > 0, ∥∥etL∥∥B(H1(µ)∩L2

0(µ))
6 Ce−κmin(γ,γ−1)t.

As a consequence, ∥∥L−1∥∥B(L2
0(µ))

6
C

κ
max

Å
γ,

1

γ

ã
. (5.71)

On the other hand, the Langevin dynamics becomes singular in the limit γ → 0, where it re-
duces to the Hamiltonian dynamics (which is not ergodic with respect to the canonical measure);
and in the limit γ → +∞, where it converges to the overdamped Langevin dynamics (see the
discussion after (5.1)). It is therefore expected that the convergence rate to equilibrium of the
Langevin dynamics degrades as γ → 0 or γ → +∞. The decay rate therefore becomes singular
both in the Hamiltonian and overdamped limits. In both cases, the decay is apparent only at
long time scales, of order t/γ as γ → 0 (the fluctuation/dissipation is so small that energy dif-
fusion is only observed at long times: see [119] for a precise statement) and γt as γ → +∞ (the
fluctuation/dissipation is so large that the momenta are continuously randomized, which leads
to some effective Brownian motion on the positions over long times). Proposition 5.5 shows that
in the limiting regimes of very low or very large frictions, time should be renormalized in order
to observe some macroscopic diffusion. Note also that the resolvents bounds are sharp, see [119,
Proposition 6.3] for the Hamiltonian limit. For the overdamped limit, consider the following ex-
ample:

L
(
pT∇V + γ(V − v)

)
= pTM−1

(
∇2V

)
p− |∇V |2,

where v is a constant chosen such that pT∇V + γ(V − v) has a vanishing average with respect
to µ. It is clear that the right hand side is of order 1, while the left-hand side is of order γ when V
is not constant. In fact, it can be shown that L−1 is at dominant order equal to γLovd (see [169,
Theorem 2.5] and Theorem ??for precise statements). This results relies on the fact that the norm
of L−1 can be uniformly controlled for functions whose conditional averages with respect to the
momentum distribution vanish for all possible configurations q.

Proof (of Proposition 5.5). We study separately the Hamiltonian and the overdamped limits.

• Hamiltonian limit. When γ → 0, it is no longer possible to choose a, b, c in (5.54) of order 1
since the condition (5.66) cannot be verified. This motivates choosing a, b, c of order γ by
writing a = γa, etc. In this case, the smallest eigenvalue of M transforms into α = γα with

α =
1

2
· 4AB − C2

A+B +
»

(A−B)2 + C
2
,

and

A =
1

β
+

a

m+
− bCV , B =

b

m+
, C =

a+ bγ

m−
+ CV c.

On the other hand, S−1 is close to a diagonal matrix with 2m+/β and R−1V on the diagonal.
This shows that there exists κ > 0 such that, for any 0 < γ 6 1,〈〈

etLϕ, etLϕ
〉〉
γ
6 e−2γκt 〈〈ϕ,ϕ〉〉γ , (5.72)

where the subscript γ in 〈〈·, ·〉〉γ emphasizes the dependence on γ of the bilinear form. In
particular, ∥∥etLϕ∥∥2

L2(µ)
6 e−2γκt 〈〈ϕ,ϕ〉〉γ .

We next choose ci = γci in (5.68). We can then find C > 0 (independent of the friction γ) such
that, for any 0 < γ 6 1, ∥∥etLϕ∥∥

L2(µ)
6 Ce−γκt ‖ϕ‖L2(µ) .
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• Overdamped limit. As in the Hamiltonian case, it is no longer possible to choose a, b, c of order 1
when γ → +∞ since the condition (5.66) cannot be verified. In order to temper the increase of
the off-diagonal coefficient of the matrix M , we choose a, b, c of order 1/γ by writing a = a/γ,
etc. In this scaling, α becomes of order γ−1. We next choose ci = ci/γ in (5.68). By a reasoning
similar to the one performed for the Hamiltonian limit, we obtain the existence of C,α > 0
such that, for any γ > 1, ∥∥etLϕ∥∥

L2(µ)
6 Ce−κt/γ ‖ϕ‖L2(µ) .

This allows to conclude the proof of Proposition 5.5. ut

Remark 5.13. A result similar to Proposition 5.5 cannot be stated in a H1(µ) setting since the
constant C appearing in (5.60) becomes singular since the prefactor arising from the norm equiv-
alence scales as max(γ, γ−1).

Going from H1(µ) to L2(µ) without hypoelliptic regularization

Instead of using Theorem 5.8 (which however has the benefit of providing explicit regulariza-
tion estimates), we can in fact infer the exponential convergence in L2

0(µ) directly from the one
in H1(µ) ∩ L2

0(µ), by considering the family of bounded self-adjoint operators Qt = etL
∗
etL. The

argument below is taken from [63].
We rely to this end on (5.72) and its analogue in the overdamped limit, which can be rephrased

as follows: there exists κ > 0 such that, for any γ > 0,

∀ϕ ∈ H1(µ) ∩ L2
0(µ), ∀t > 0,

〈〈
etLϕ, etLϕ

〉〉
γ
6 e−2κmin(γ,γ−1)t 〈〈ϕ,ϕ〉〉γ .

A similar inequality holds for etL
∗
, with the same rate but with a scalar product ((·, ·))γ for which

the cross term involving ∇q and ∇p term has the same coefficient with an opposite sign:

∀ϕ ∈ H1(µ) ∩ L2
0(µ), ∀t > 0,

ÄÄ
etL
∗
ϕ, etL

∗
ϕ
ää
γ
6 e−2κmin(γ,γ−1)t ((ϕ,ϕ))γ .

From the asymptotic choices for the coefficients of ((·, ·))γ and 〈〈·, ·〉〉γ discussed above, there exists
C > 0 (independent of γ) such that

∀γ > 0, ∀ϕ ∈ H1(µ),
1

C
〈〈ϕ,ϕ〉〉γ 6 ((ϕ,ϕ))γ 6 C 〈〈ϕ,ϕ〉〉γ .

Then, for any t > 0,

((Qtϕ,Qtϕ))γ 6 e−2κmin(γ,γ−1)t ((Ptϕ, Ptϕ))γ 6 Ce−2κmin(γ,γ−1)t 〈〈Ptϕ, Ptϕ〉〉γ
6 Ce−4κmin(γ,γ−1)t 〈〈ϕ,ϕ〉〉γ 6 C2e−4κmin(γ,γ−1)t ((ϕ,ϕ))γ .

Fix now t > (lnC)/(2κmin(γ, γ−1)) and define ργ,t = Ce−2κmin(γ,γ−1)t < 1. The above inequality
implies that, for ϕ ∈ H1(µ) ∩ L2

0(µ),

∀n > 0, ‖Qnt ϕ‖2L2(µ) 6 ((Qnt ϕ,Q
n
t ϕ))γ 6 ρ2nγ,t ((ϕ,ϕ))γ .

From [120, Lemma 2.9], we deduce that we have in fact

‖Qtϕ‖L2(µ) 6 ργ,t‖ϕ‖L2(µ).

Since ‖Pt‖2B(L2
0(µ))

6 ‖Qt‖B(L2
0(µ))

, we finally obtain, by density of H1(µ) in L2(µ), that

‖Pt‖B(L2
0(µ))

6 ργ,t = Ce−2κmin(γ,γ−1)t.

This property was proved for any t > (lnC)/(2κmin(γ, γ−1)), but can be extended to all times t >
0 in view of the trivial bound ‖Pt‖B(L2

0(µ))
6 1.
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We discuss in this lecture how to discretize the (overdamped) Langevin dynamics studied in
Lectures 4 and 5. We start in Section 6.1 by a general presentation of time discretization issues
in the context of computational statistical physics, focusing in particular on the approximation
of trajectory averages by numerical methods operating with a finite timestep but integrated over
long times (very much in the spirit of numerical methods discussed in Lecture 2 to integrate the
Hamiltonian dynamics). We next focus in Section 6.2 on the systematic error which persists in
the regime of infinitely long simulations, namely the bias on the invariant probability measure
sampled by the Markov chains discretizing the underlying continuous dynamics. We conclude in
Section 6.3 by a discussion on the statistical error of trajectory averages of discretizations of
continuous stochastic dynamics, and mention some options to reduce it.

6.1 Time discretization of ergodic stochastic dynamics

In order to approximate time averages such as (4.13) or (5.14), the continuous stochastic dynam-
ics (4.1) and (5.5) are discretized in time using a numerical scheme. We present in this section
elements on discretizations of SDEs more general than the latter ones, and come back to these
specific dynamics in Sections 6.2.3 and 6.2.4 respectively. More precisely, we consider the following
continous dynamics, with values in some space X , to be discretized:

dxt = b(xt) dt+ σ(xt) dWt. (6.1)

We assume in the sequel that this dynamics admits a unique invariant probability measure π(dx).
Overdamped Langevin dynamics correspond to x = q and X = D with π given by (4.2); while x =
(q, p) and X = E for Langevin dynamics, with π given by (5.3). The simplest choice to discretize
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it is to resort to an Euler–Maruyama discretization with a fixed time step ∆t > 0. In this case
xn∆t is approximated by xn, constructed iteratively from a given initial condition x0 = x0 as

xn+1 = xn + b(xn)∆t+ σ(xn)
√
∆tGn, (6.2)

where Gn is a sequence of i.i.d. Gaussian random variables with covariance matrix IdD. We denote
in the sequel by P∆t the evolution operator (also called transition operator) associated with a
general one-step numerical scheme:

(P∆tϕ) (x) = E
(
ϕ(xn+1)

∣∣xn = x
)
. (6.3)

It is the discrete equivalent of the semigroup e∆tL, with L the generator of (6.1). The transition
operator P∆t describes how the values of a given function evolve in average over one time step.

We discuss in this section the various types of errors arising from the discretization. We first
recall in Section 6.1.1 the standard measures of error on finite time intervals (weak vs. strong
errors). We then turn to our main concern, error estimates on long time averages. After providing
conditions under which long time averages converge (see Section 6.1.2), we discuss in Section 6.1.3
how to decompose the error, for sufficiently long times, into

(i) a systematic part, related to errors on the invariant measure due to the time discretization;
(ii) a statistical error dictated by a Central Limit Theorem, with an asymptotic variance close

to the one of the underlying continuous process.

The quality of the numerical schemes for ergodic dynamics is therefore mainly determined by the
size of the systematic errors, as well as their stability.

6.1.1 Standard numerical analysis of SDEs

There are many good review articles and textbooks on the numerical analysis of SDEs, such
as [150, 221, 198]. Two types of errors are considered for discretizations of SDEs, as follows.

(1) Weak error estimates. There exists α > 0 such that, for any C∞ test function ϕ with compact
support and finite time horizon T > 0, there are C > 0 and ∆t∗ > 0 (the latter two constants
depending on ϕ and T a priori) such that, for any ∆t ∈ (0, ∆t∗],

sup
06n6T/∆t

|E[ϕ(xn)]− E[ϕ(xn∆t)]| 6 C∆tα. (6.4)

In fact, when the numerical method is stable (which is the case when b and σ are globally
Lipschitz), such error estimates can be deduced from the error over one time step, as stated
in [198, Theorem 2.1]. In essence, the order α is determined by the formal equality

P∆t = e∆tL +O(∆tα+1).

To make the functional setting more precise, this equally can for instance be understood
as P∆tϕ = e∆tLϕ + ∆tα+1rϕ,∆t for a function ϕ growing at most polynomially and whose
derivatives of order at most 2α + 2 grow at most polynomially, and with a remainder term
rϕ,∆t such that there exists a ∈ N for which ‖rϕ,∆t/(1 + |x|a)‖B∞ 6 K for ∆t sufficiently
small.

(2) Strong error estimates in Lr-norm for r > 1. There exists α ∈ R+ such that, for any time
horizon T , there is C > 0 and ∆t∗ > 0 (the latter two constants depending on T a priori)
such that, for any 0 6 ∆t 6 ∆t∗,

sup
06n6T/∆t

(E|xn − xn∆t|r)1/r 6 C∆tα. (6.5)

In this case the Gaussian increments used in a numerical scheme such as (6.2) must be induced
by the Brownian motion for the continuous dynamics (6.1), i.e.,

Gn =
W(n+1)∆t −Wn∆t√

∆t
.
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Typically, the constant C in (6.4) and (6.5) are obtained via some (discrete) Gronwall estimate,
as in the standard numerical analysis of ordinary differential equations, and hence increase expo-
nentially with time.

As an example, let us mention that, when the functions b and σ in (6.1) are globally Lipschitz,
the weak and strong errors of the Euler–Maruyama scheme (6.2) are respectively 1 and 1/2.

Note that it is also possible to reduce errors due to the time discretization by resorting to
extrapolation methods as in [161] or multilevel Monte Carlo methods [104, 105].

6.1.2 Convergence of time averages

The error estimates (6.4) and (6.5) are not relevant to long-time convergence since the prefactor C
is not uniformly controlled in time. Therefore, additional techniques should be introduced to
control the quality of the approximation of average properties presented by the time averages
traditionally considered in molecular simulation:

ϕ̂Niter,∆t =
1

Niter

Niter−1∑
n=0

ϕ(xn). (6.6)

We discuss here the long time convergence of ϕ̂Niter,∆t to some limit. We first resort to Proposi-
tion 3.1 to conclude to the almost sure convergence of the trajectory averages. This requires first
checking whether the Markov chain induced by the numerical scheme indeed admits an invariant
probability measure. We next discuss sufficient conditions for a Central Limit Theorem to hold.

Existence and uniquess of an invariant probability measure

A first issue is to prove that the Markov chain induced by the numerical scheme is indeed ergodic
with respect to some probability measure, which depends in general on the time step ∆t. Even if
the associated continuous dynamics is ergodic, the ergodicity of the discretized dynamics cannot be
guaranteed in general. A common obstruction is the presence of non-globally Lipschitz drifts which
induce a transient behaviour of the Markov chain. A typical case is reported in [189, Section 6.3]
for x ∈ R with b(x) = −x3 and σ(x) = 1. Note first that the associated continuous dynamics

dxt = −(xt)3dt+ dWt

admits the probability measure Z−1e−x
4/2 dx as a unique invariant measure (by the results of

Lecture 4). The Euler–Maruyama scheme for this dynamics reads

xn+1 = xn −∆t (xn)3 +
√
∆tGn.

It can be shown that
P
Å
|xn| > 2n√

∆t
∀n > 1

ã
= α > 0. (6.7)

Assume that the Markov chain has an invariant measure µ∆t. There exists R > 0 such that
µ∆t([−R,R]) > 3/4. Consider next ϕ(x) = 1|x|>R. In view of (6.7), there exists Niter such that

1

Niter

Niter∑
n=1

ϕ(xn)

is larger than 1/2 with probability α; while, on the other hand, this quantity would converge
almost surely to Eµ∆t(ϕ) 6 1/4 by Proposition 3.1. The contradiction shows that there cannot be
an invariant probability measure.

In order to prove the existence of an invariant probability measure π∆t for the numerical scheme,
it is standard to resort to results such as Theorem 3.1. Proving that a minorization condition holds
on any compact set (see Assumption 3.2) is usually not too difficult, thanks to the presence of
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Gaussian increments; see for instance Lemma ?? below for an Euler–Maruyama discretization of update ref
the overdamped Langevin dynamics. It can also often be shown that the measure π∆t is absolutely
continuous with respect to the Lebesgue measure since the transition kernel has a smooth density
with respect to the Lesbesgue measure.

Some assumptions on the drift, on the other hand, are usually required to state a Lyapunov
condition such as Assumption 3.1; see [189]. When these conditions are met, the convergence of
the law of xn to the invariant measure is exponentially fast (with respect to the iteration index,
the time step ∆t being fixed, as stated in Theorem 3.1).

Ergodicity of time averages

The next step is to prove that the numerical scheme is aperiodically irreducible, and in fact
that (3.3) holds. For discretizations of SDEs, the latter property is usually easy to prove, taking
the Lebesgue measure as a reference measure. It holds for instance with n = 1 for the Euler–
Maruyama scheme (6.2) when σ has full rank d at each point x ∈ X since

G1 = σ(x0)−1
Å
x1 − x0 −∆t b(x0)√

∆t

ã
:= G∆t,x0(x1),

so that
P∆t(x

0, S) = P
Ä
G1 ∈ G−1∆t,x0

(S)
ä
> 0.

When σ is degenerate, several iterates may be necessary; see for instance [36] where it is proved that
P 2
∆t(x

0, S) > 0 for some discretization of Langevin dynamics. Once the existence of an invariantadd a ref-
erence to
later on

probability measure and the irreducibility of the scheme are proved, the almost-sure convergence
of long-time averages over one realization already follows by Proposition 3.1.

Asymptotic variance and Central Limit Theorem

As in the continuous case, when decay estimates on the evolution operator P∆t hold as in Theo-
rem 3.1, it can easily be shown that the asymptotic variance is well defined provided W ∈ L2(π∆t)
and ϕ ∈ B∞W (X ); and that a Central Limit Theorem holds in fact. The discussion follows the
same lines the presentation in Section 3.4, upon replacing ν(dq) by the invariant probability mea-
sure π∆t(dx) for the Markov chain under consideration, and Π by the projection operator Π∆t

defined as
Π∆tϕ = ϕ−

ˆ
X
ϕdπ∆t.

A way to prove that W ∈ L2(π∆t) is check whether the assumptions of Theorem 3.1 are satisfied
for the Lyapunov function W 2 instead of W , so that the integrability condition follows from (3.11).
In practice, it can be convenient to establish minorization conditions on arbitrary compact sets,
and to obtain Lyapunov conditions for the family of functions Wn(x) = 1 + |x|n (for integers
n > n0 sufficiently large). Note that W 2

n = W2n + 2(Wn − 1), so that the L2(π∆t) integrability of
Wn follows as soon as Lyapunov estimates hold for W2n.

The expression of the asymptotic variance suggests a definition of a correlation time, as for
continuous dynamics. By the same reasoning as the one leading to (3.23),

σ2
ϕ,∆t = Ncorr,∆t,ϕσ

2
ϕ,iid,∆t, where σ2

ϕ,iid,∆t =

ˆ
X
(Π∆tϕ)

2 dπ∆t.

As discussed below, the correlation time θcorr,ϕ is related to the number of correlation steps
Ncorr,∆t,ϕ for the discrete dynamics as θcorr,ϕ ' Ncorr,∆t,ϕ∆t since θcorr,ϕ ' Ncorr,∆t,ϕ∆t in the
limit of small timesteps ∆t.
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6.1.3 Error analysis on time averages: general decomposition

Let us now discuss the topic of main interest for this section, namely error estimates for the compu-
tation of thermodynamic averages Eπ(ϕ) =

´
X ϕdπ with (6.6), for a given one step discretization

of the continuous dynamics (6.1) ergodic with respect to π. We decompose the error as the sum
of two contributions:

ϕ̂Niter,∆t − Eπ(ϕ) =
(
ϕ̂Niter,∆t − Eπ∆t(ϕ)

)
+
(

Eπ∆t(ϕ)− Eπ(ϕ)
)
. (6.8)

The first term is a statistical error arising from the finiteness of the number of time steps Niter,
while the second term is a systematic error (or bias), which persists in the limit Niter → +∞, and
is due to the use of finite time steps ∆t > 0. Let us discuss each term more precisely.

Statistical error

According to the Central Limit Theorem for Markov chains (which holds when the Poisson equation
(3.21) can be solved in L2(π∆t), see the discussion after Proposition 3.5), the statistical error
behaves in the limit Niter → +∞ as a Gaussian random variable with asymptotic variance given
by (3.22). In practice, this asymptotic regime is attained when Niter � Ncorr,∆t,ϕ. However,
Ncorr,∆t,ϕ is often very large because of the metastability of the underlying continuous dynamics
(so that θcorr,ϕ is large), which makes it difficult in practice to ensure that the Central Limit
Theorem actually holds for the values of Niter which can be achieved with computer simulations.

When the asymptotic regime can be considered to be reached, ϕ̂Niter,∆t − Eπ∆t(ϕ) is of order

σϕ,∆t√
Niter

=
σϕ,∆t

√
∆t√

T
.

This reformulation highlights the fact that the statistical error is of the order of the inverse of the
square root of the ‘physical’ simulation time T = Niter∆t. Indeed, weakly consistent discretizations
of SDEs are such that

Id− P∆t
∆t

ϕ = −Lϕ+O(∆t),

In addition, the variance σ2
ϕ,∆t can be rewritten as

∆tσ2
ϕ,∆t = 2

ˆ
X
(Π∆tϕ)

Å
Id− P∆t

∆t

ã−1
Π∆tϕdπ∆t +O(∆t). (6.9)

In view of the expression σ2
ϕ of the asymptotic variance of the continuous dynamics, namely (the

proof being the same as for (4.17))

σ2
ϕ = 2

ˆ
X
(Πϕ) (−LΠϕ)−1 dπ, (6.10)

where Π is the projection associated with the invariant probability measure π of the reference
dynamics with generator L, this suggests the following convergence result:

∆tσ2
ϕ,∆t −−−−→

∆t→0
σ2
ϕ. (6.11)

A rigorous proof of this convergence is provided by Theorem 8.2. In fact, it typically holds that
θcorr = Ncorr,∆t∆t+O(∆t).

The interpretation of (6.11) is that the asymptotic variance of time averages computed using
numerical methods is, to first order in ∆t, related to the asymptotic variance of the time averages
computed with the continuous process. This motivates to directly study the asymptotic variances
of the continuous processes, such as (4.17) or (5.18), rather than their discrete counterparts, which
we therefore do in Section 6.3.
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Systematic error

The second term in (6.8) is a systematic error (or bias) related to the fact that the invariant
measure of the numerical scheme π∆t is different from the canonical measure π. Although this is
not obvious, the expression of the formal correction function h∆t defined as π∆t = h∆tπ is encoded
in the asymptotic expansion of the one-step evolution operator P∆t, provided some ergodicity
conditions are met. A typical result is that h∆t = 1+O(∆ta) for some integer a. In fact, it is often
possible to make precise the leading term in the bias as follows (see Theorem 6.1 below):

ˆ
X
ϕdπ∆t =

ˆ
X
ϕdπ +∆ta

ˆ
X
ϕf dπ +O(∆ta+1)

for some function f solving a PDE. As made clear in Theorem 6.1, a > α, where α is the weak
order of the method (in the sense that P∆t = e∆tL + O(∆tα+1)). In some cases, it even holds
a > α+ 1.

An important remark is that the bias becomes noticeable only for sufficiently long integration
times T = Niter∆t, namely when σϕ/

√
T ∼ ∆ta. More precisely,

Niter ∼
σ2
ϕ

∆t2a+1 .

The small denominator on the right hand side of the previous equality motivates Niter is often
too small for the bias to be of the same order of magnitude, or even larger, than the statistical
error, so that the statistical error often dominates in actual simulations. However, it is desirable
to have biases as small as possible in order to use larger time steps (while still satisfying stability
constraints). We now analyse the bias in the next section.

Remark 6.1. In practice, a more relevant way to determine the time step may be to minimize the
mean square error

C1∆t
2a + C2

σ2
ϕ

Niter∆t

for Niter fixed. A simple computation shows that the two errors should be equilibrated to this end,
with ∆t scaling as

(
σ2
ϕ/Niter

)1/(2a+1) – subject to upper bounds on the time step related to stability
issues, of course.

6.2 Error estimates on the invariant measure

We present in this section how to analyse the bias, i.e. the second term on the right-hand side
of (6.8). We first describe in Section 6.2.1 a general framework to quantify the bias on the invariant
measure for discretizations of ergodic SDEs; see in particular the error expansion provided by
Theorem 6.1. We next discuss in Section 6.2.2 how to rely on the error expansion to reduce the
bias. We then turn to applications to overdamped Langevin dynamics in Section 6.2.3 and Langevin
dynamics in Section 6.2.4. Some schemes for Langevin dynamics are preferred since they behave
well in the limit of large frictions γ where they reduce to consistent schemes for the overdamped
Langevin dynamics, in accordance with the overdamped limit at the continuous level discussed in
Section 5.1.3.

6.2.1 A general result

Assume that the continuous dynamics, with generator L, admits a unique invariant probability
measure π. Consider next a given numerical scheme, described in terms of its discrete evolution
operator P∆t defined in (6.3), and admitting an invariant measure π∆t (we do not make any
uniqueness assumption on π∆t at this stage).
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Assume that, for a C∞ function ϕ and a given integer α, the evolution operator can be expanded
as

P∆tϕ = ϕ+∆tA1ϕ+∆t2A2ϕ+ · · ·+∆tα+1Aα+1ϕ+∆tα+2rϕ,∆t, (6.12)

for some remainder term rϕ,∆t (which depends on α, although we henceforth omit this dependence).
The operators Ak are identified in practice by Taylor expansions of ϕ(xn+1) around ϕ(xn), with
a remainder term typically expressed as an integral remainder. Note that, by consistency of the
discretization, it typically holds that

A1 = L,

although in principle it is possible to construct numerical schemes approximating π for which this
is not the case. More generally, the method is of weak order α when Ak = Lk/k! for 1 6 k 6 α.
However, there may be discrete dynamics for which Ak = akLk with a prefactor ak 6= 1/k! for
some 1 6 k 6 p. In this case the dynamics is not of weak order α, but the invariant measure may
nonetheless be correct up to error terms of order∆tα+1. Moreover, as made precise in Theorem 6.1,
there are situations in which the operators Ak are different from Lk but the invariant measure π∆t
is still close to π; see for instance [1] in the context of Langevin dynamics.

We next need some functional estimates on the operator A1 appearing in (6.12). We introduce
to this end the following set of C∞ functions.

Definition 6.1 (Smooth functions). Consider scale functions Wn : X → [1,+∞) such that, for
any n > 0, there exists Cn ∈ R+ such that

Wn 6 CnWn+1.

The space S is composed of all functions ϕ ∈ C∞(X ) for which, for any k ∈ Nd, there exists
m ∈ N such that ∂kϕ ∈ B∞Wm

(X ).

In the simple case when X is bounded, it is possible to choose Wn = 1 for all n > 0, in
which case S = C∞(X ). For unbounded spaces, a typical choice is Wn(x) = 1 + |x|n. In this case,
the above definition means that the functions in S, as well as all their derivatives, grow at most
polynomially. The set S can then be shown to dense in L2(π) when π has moments of all orders,
so that all the operators arising in the error estimations can be considered as operators on L2(π),
defined on the core S.

In order to state the regularity result we rely on, we restrict the space of smooth functions to
those with average 0 with respect to the invariant measure π of the continuous process, namely

S0 = ΠS =

ß
ϕ ∈ S

∣∣∣∣ ˆ
X
ϕdπ = 0

™
, (6.13)

where Π is the counterpart of the projection operator defined in (4.16):

Πϕ = ϕ−
ˆ
X
ϕdπ. (6.14)

We next consider the following assumption on the generator of the continuous dynamics. Recall
that operators are considered on L2(π) and that adjoints are taken with respect to the correspond-
ing scalar product.

Assumption 6.1 (Stability of smooth functions by inverse operators). The space S is
dense in L2(π) (in particular Wn ∈ L2(π) for any n > 0) and the operators A−11 and (A∗1)−1
leave S0 invariant.

Here A∗1 denotes the adjoint of A1 with respect to the scalar product in L2(π). Typically
A1 = L. The invariance of S0 by an operator T −1 has to be understood in the following sense:
when ϕ ∈ S0, the unique solution Φ of the equation T Φ = ϕ belongs to S0.

Error estimates on averages of smooth functions can finally be stated as follows.
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Theorem 6.1 (Error estimates on the invariant measure). Suppose that Assumption 6.1 is
satisfied, and that an expansion such as (6.12) holds for any ϕ ∈ S and a given α ∈ N, with a
remainder rϕ,∆t for which there exist K > 0, m ∈ N and ∆t∗ > 0 (all depending on ϕ and α)
such that

∀∆t 6 ∆t∗, ‖rϕ,∆t‖B∞Wm 6 K.

Assume in addition that the operators Ak leave S invariant for any k > 1, that

∀k ∈ {1, . . . , α}, ∀ϕ ∈ S,
ˆ
X
Akϕdπ = 0, (6.15)

and that gα+1 = A∗α+11 ∈ S0. Finally, assume that the numerical scheme admits an invariant
measure π∆t which integrates all scale functions:

∀n > 0,

ˆ
X

Wn dπ∆t < +∞.

Then, there exists L > 0 such that, for any ∆t ∈ (0, ∆t∗],
ˆ
X
ϕdπ∆t =

ˆ
X
ϕdπ +∆tα

ˆ
X
ϕfα+1 dπ +∆tα+1Rϕ,∆t, (6.16)

with |Rϕ,∆t| 6 L and where
fα+1 = − (A∗1)

−1
gα+1 ∈ S0. (6.17)

Let us first comment the assumptions of the theorem. The condition that the operators Ak
leave S invariant is usually very easy to check since these operators typically are differential
operators with C∞ coefficients when b and σ in (6.1) are C∞. Moreover, in order to obtain the
expression of gα+1 = A∗α+11, it is convenient to resort to integrations by parts to determine the
function gα+1 such that, for any test function ϕ ∈ S,

ˆ
X
Aα+1ϕdπ =

ˆ
X
gα+1ϕdπ. (6.18)

It can usually be checked by direct inspection that gα+1 ∈ S. In addition, by considering ϕ = 1
in (6.18), it follows that gα+1 automatically has average 0 with respect to π when Aα+11 = 0,
which is the case for differential operators. Finally, let us emphasize once again that the important
condition which determines the order of the error is (6.15). This condition holds when Ak is
proportional to Lk, but can be satisfied for more general operators.

The interpretation of Theorem 6.1 is as follows. First, averages with respect to π∆t are correct
up to errors of order∆tα. Second, we can give an explicit expression of the leading-order term in the
error, which can then be eliminated either by Romberg extrapolation or by a numerical estimate
(see (6.24) below). Let us finally mention that it is possible to obtain bounds on Rϕ,∆t in terms
of weighted B∞ norms of ϕ and a given number of its derivatives when more precise estimates
for L−1 are available. There are also results extending the error expansion (6.16) to non-smooth
functions, in particular indicator functions, using techniques from Malliavin calculus [22].

Proof. The proof is obtained by a generalization of the proof of [169, Theorem 2.13]. Similar results
are provided in [1, 61]. Note first that, since fα+1 has average 0 with respect to π, it is sufficient
to establish (6.16) for functions with average 0 with respect to π, upon considering ϕ− Eπ(ϕ).

The first step of the proof is to prove (6.16) for functions ϕ ∈ (P∆t− Id)S. This step motivates
the expression for the correction function fα+1. Consider φ ∈ S. The invariance of π∆t by the
discretized dynamics implies that

ˆ
X

ïÅ
P∆t − Id

∆t

ã
φ

ò
dπ∆t = 0. (6.19)

On the other hand, (6.12) and (6.15) give



6.2 Error estimates on the invariant measure 139
ˆ
X

ïÅ
P∆t − Id

∆t

ã
φ

ò
dπ = ∆tα

ˆ
X
Aα+1φdπ +∆tα+1

ˆ
X
rφ,∆t dπ,

while, for a given function f ∈ S,
ˆ
X

ïÅ
P∆t − Id

∆t

ã
φ

ò
f dπ =

ˆ
X
(A1φ)f dπ +∆t

ˆ
X

ï
P∆t − Id−∆tA1

∆t2
φ

ò
f dπ,

so that
ˆ
X

ïÅ
P∆t − Id

∆t

ã
φ

ò
(1 +∆tαf) dπ

= ∆tα
ˆ
X
(Aα+1φ+ (A1φ)f) dπ +∆tα+1

ˆ
X

Å
rφ,∆t +

ï
P∆t − Id−∆tA1

∆t2
φ

ò
f

ã
dπ.

The second term on the right-hand side of the previous equality is indeed of order ∆tα+1 since
the integrand of the corresponding integral is bounded in some weighted B∞ space. In order to
choose f so that the first term on the right-hand side vanishes for all test functions φ ∈ S, we
rewrite it as ˆ

X
(Aα+1φ+ (A1φ)f) dπ =

ˆ
X
(gα+1 +A∗1f)φdπ.

This suggests choosing f = fα+1 = −(A∗1)−1gα+1, which is well defined by our assumptions on A1

since gα+1 ∈ S0. With this choice,
ˆ
X

ïÅ
P∆t − Id

∆t

ã
φ

ò
(1 +∆tαfα+1) dπ = ∆tα+1

ˆ
X

Å
rφ,∆t +

ï
P∆t − Id−∆tA1

∆t2
φ

ò
fα+1

ã
dπ,

(6.20)
so that (6.16) holds for ϕ = (Id− P∆t)φ/∆t.

The second step of the proof is to extend (6.16) to all functions in S0. Of course, we would like
to replace φ with ∆t(Id−P∆t)−1ϕ in the previous estimates. There are however two obstructions
to this approach: (i) the inverse ∆t(Id − P∆t)−1 is well defined only on spaces of functions with
average 0 with respect to π∆t, and (ii), when this is the case, we typically do not have any
control on the derivatives of ∆t(Id− P∆t)−1ϕ, but only on the function itself (by results such as
Corollary 3.1). Our strategy is to construct an operator Q∆t which leaves S0 invariant and is an
approximate inverse of (Id−P∆t)/∆t on S0. Since (Id−P∆t)ϕ/∆t = A1ϕ+O(∆t), we expect the
inverse operator to be A−11 at dominant order in ∆t.

The first task is to restrict Id− P∆t to S0 as Π(Id− P∆t)Π using the projection operator Π
defined in (6.14). The equality (6.19) implies, for φ ∈ S0 (so that Πφ = φ),

ˆ
X

ï
Π

Å
P∆t − Id

∆t

ã
Πφ

ò
dπ∆t = −

1

∆t

ˆ
X
(P∆tφ) dπ, (6.21)

while, using the fact that fα+1 is of average 0 with respect to π, (6.20) leads to
ˆ
X

ï
Π

Å
P∆t − Id

∆t

ã
Πφ

ò
(1 +∆tαfα+1) dπ = − 1

∆t

ˆ
X
(P∆tφ) dπ

+∆tα+1

ˆ
X

Å
rφ,∆t +

ï
P∆t − Id−∆tA1

∆t2
φ

ò
fα+1

ã
dπ. (6.22)

This shows that, for any φ ∈ S0,
ˆ
X

ï
Π

Å
P∆t − Id

∆t

ã
Πφ

ò
dπ∆t =

ˆ
X

ï
Π

Å
P∆t − Id

∆t

ã
Πφ

ò
(1 +∆tαfα+1) dπ

−∆tα+1

ˆ
X

Å
rφ,∆t +

ï
P∆t − Id−∆tA1

∆t2
φ

ò
fα+1

ã
dπ.
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We next consider an approximate inverse operator Q∆t which leaves S0 invariant, and is such
that

∀ϕ ∈ S0, Π

Å
P∆t − Id

∆t

ã
ΠQ∆tϕ = ϕ+∆tα+1r̃ϕ,∆t. (6.23)

with ‖r̃ϕ,∆t‖B∞Wm uniformly bounded with respect to ∆t for some integer m. Such operators are
constructed as follows. The fundamental idea is to truncate the formal series expansion of the
inverse of the operator A+∆tB = A(Id +∆tA−1B) in powers of A−1B:

A−1 −∆tA−1BA−1 +∆t2A−1BA−1BA−1 + · · · .

In the present situation, we set A = ΠA1Π and B = ΠA2Π + · · · +∆tα−1ΠAα+1Π. Note that
perturbative arguments cannot be used to make sense of the formal infinite series since B usually
involves differential operators of higher order than A, so that B cannot be controlled by A (in
contrast to the situation we will encounter later on in Theorem 8.1). Introducing ‹Ak = ΠAkΠ for
notational simplicity, we consider‹Q∆t = ‹A−11

α∑
n=0

(−1)n∆tn (B ‹A−11 )n.

We next remove operators with powers of ∆t larger than or equal to α+1 (arising from the higher-
order terms in the expression of B ‹A−11 ) in order to write down an expression for Q∆t involving
only powers of ∆t smaller than or equal to α. Finally, the so-constructed operator,

Q∆t = ‹A−11 −∆t‹A−11
‹A2
‹A−11 +∆t2

Ä ‹A−11
‹A2
‹A−11
‹A2
‹A−11 − ‹A−11

‹A3
‹A−11

ä
+∆t3Q3 + · · ·+∆tαQα,

is a well defined operator which leaves S0 invariant (since its action is given by the application of
at most α operations of the form ‹Ak ‹A−11 , and a final application of ‹A−11 ) and is such that (6.23)
holds true.

In order to conclude, it remains to replace φ with Q∆tϕ, and gather all the higher-order terms
in Rϕ,∆t. This gives the desired equality (6.16) for functions in S0.

We postpone a numerical illustration of the results of Theorem 6.1 to Figure 8.1 in Section 8.4.
Indeed, as explained in Section 6.2.2, the leading order correction term can be computed as some
integrated correlation function, for which we provide elements of numerical analysis later on, in
Section 8.4.1.

6.2.2 Removing or reducing the systematic error

We discuss in this section two ways of decreasing the bias corresponding to the second term in (6.8):
first by leveraging the a priori error estimate (6.16), and second by resorting to a Metropolis
procedure.

Reducing the systematic error

The estimate (6.16) not only allows us to estimate the order of magnitude of the error on average
properties arising from the discretization of the dynamics, but also provides an expression of the
leading-order term in the difference as

ˆ
X
ϕdπ∆t −

ˆ
X
ϕdπ = ∆tα

ˆ
X
ϕfα+1 dπ +O(∆tα+1).

There are two principal strategies for reducing/removing the leading order term on the right-hand
side of the above equality.
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(1) Using Romberg extrapolation as already suggested in [261], by performing simulations with
two different time steps, in order to eliminate the leading-order error term by an appropriate
linear combination of the associated estimators.

(2) Directly estimating the correction term by reformulating it as an integrated correlation func-
tion when A1 = L (which corresponds to scheme of weak order at least one). Indeed, the
expression (6.17) for fα+1 leads to

ˆ
X
ϕfα+1 dπ =

ˆ
X
Πϕfα+1 dπ = −

ˆ
X
(L−1Πϕ)gα+1 dπ

=

ˆ +∞

0

ˆ
X

(
etLΠϕ

)
gα+1 dπ dt =

ˆ +∞

0

Eπ[ϕ(xt)gα+1(x0)] dt, (6.24)

where we have implicitly assumed that decay estimates hold for the semigroup etL (which
allows us to rewrite the resolvent −L−1 as a time integral of the semigroup), and where the
expectation Eπ is over all initial conditions x0 ∼ π and for all realizations of the dynamics
with generator L. Recall that the expression of the function gα+1 is usually not too difficult
to obtain once the expansion (6.12) has been worked out, see the discussion after (6.18). The
integrated correlation on the right-hand side is then approximated as described in Section 8.4.1
(see Theorem 8.2). This strategy has been tested on a simple case in [169]: see Figure 8.1.

An issue with both approaches is that the statistical error on the estimated properties has to be
sufficiently small, otherwise the linear combination mentioned in the first item, or the addition of
the integration correlation (6.24), increase the statistical error of the final estimate of Eπ(ϕ) and
degrade the overall error.

Removing the bias by a Metropolis procedure

An alternative strategy consists in using a Metropolis–Hastings algorithm with the numerical
scheme as a proposal, in order to completely remove the systematic error due to the time dis-
cretization. This is straightforward for reversible dynamics such as overdamped Langevin dy-
namics. When an Euler–Maruyama scheme is used, one obtains the so-called Metropolis-adjusted
Langevin algorithm (MALA) in the statistics literature, known as smart MC in the chemistry
literature [237, 235]. This corresponds in fact to the proposal function associated with (3.8). It is
however possible to use more accurate schemes at no extra cost, as made precise in [92, Section 3].
Another advantage of superimposing a Metropolis–Hastings procedure upon a discretization of
overdamped Langevin dynamics is that it stabilizes the numerical scheme even for non-globally
Lipschitz forces ∇V : an invariant probability measure exists by construction, which ensures the
recurrence of the Markov chain. In contrast, numerical discretizations which are not stabilized by
a Metropolis–Hastings procedure may be transient, as discussed in Section 6.1.2.

For Langevin dynamics, some care has to be taken since the transition kernel associated with
the Hamiltonian dynamics is irregular (because the noise acts only on momenta), which raises some
difficulties in the definition of the Metropolis–Hastings ratio. It is nonetheless possible to use a
Metropolis–Hastings procedure for schemes based on a splitting between the Ornstein–Uhlenbeck
process on the momenta and a reversible discretization of the Hamiltonian part, upon reverting
momenta when rejecting proposed moves; see [178, Section 2.2.3.2] for a precise discussion, as well
as Section ?? below. add refer-

enceHowever, it is not always possible or desirable to use any Metropolis correction. First, the
average acceptance probability in the Metropolis step for MALA or related algorithms in general
decreases exponentially with the dimension of the system for a fixed time step. In fact, the time
step should be reduced as some inverse power of the system size in order to maintain a constant
acceptance rate (see [234, 235]). There are ways to limit the decrease of the acceptance probability:

(i) Change the dynamics or the measure used to compute the Metropolis ratio. For the
Metropolization of the Hamiltonian dynamics, see the works [141, 3] where the Hamiltonian
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H in the canonical measure is changed to H+∆t2‹H, with ‹H the first order correction arising
from backward error analysis. For the Metropolization of overdamped Langevin dynamics,
see [92].

(ii) Evolve only subparts of the system as advocated by [39].

However, the latter strategy may complicate the implementation of parallel algorithms for the
simulation of very large systems, especially if long-range potentials are used (as acknowledged
in [39, Remark 2.5]). Second, the variance of the computed averages may increase since rejections
occur, and the samples along the numerical trajectory are therefore more correlated in general than
for rejection-free dynamics. Lastly, the Metropolis procedure requires that the invariant probability
measure π of the continuous dynamics is known. This is the case for Langevin and overdamped
Langevin dynamics with forces −∇V (q). However, for non-reversible systems subjected to external
forcings such as a temperature gradient or a non-gradient force (see Lecture 8), the invariant
measure of the continuous dynamics is not known.

6.2.3 Application to overdamped Langevin dynamics

For overdamped Langevin dynamics, we consider for simplicity the case of a simple Euler–
Maruyama discretization:

qn+1 = qn −∆t∇V (qn) +

 
2∆t

β
Gn, (6.25)

where (Gn)n>0 is a sequence of i.i.d. D-dimensional standard Gaussian random variables. The
results below can be easily generalized to other discretization schemes.

The first task is to find an expansion of the transition operator P∆t defined in (6.3) in powers
of ∆t, see (6.12). We next apply Theorem 6.1 with p = 1. There are three types of assumptions
to be checked:

(1) assumptions on the generator L = A1 = −∇V T∇+ β−1∆ of the continuous dynamics;

(2) assumptions on the operator A2, whose action is given by (6.28);

(3) assumptions on the invariant measure of the numerical scheme.

Let us successively consider all these items in the remainder of this section.

Expansion of the transition operator

We consider a C∞ function ϕ. We rewrite the numerical scheme as qn+1 = Φ∆t(q
n, Gn). A Taylor

expansion shows that

ϕ(q + δ) = ϕ(q) + δT∇ϕ(q) + 1

2
δT∇2ϕ(q)δ +

1

6
D3ϕ(q) : δ⊗3 +

1

24
D4ϕ(q) : δ⊗4 +

1

120
D5ϕ(q) : δ⊗5

+
1

120

ˆ 1

0

(1− θ)5D6ϕ(q + θδ) : δ⊗6 dθ,

where we use the short-hand notation

Dnϕ(q) : (x1 ⊗ · · · ⊗ xn) =
D∑

i1,...,in=1

∂ni1,...,inϕ(q)x1,i1 . . . xn,in .

Replacing δ with Φ∆t(q,G) − q =
√
2∆tβ−1G − ∆t∇V (q) and gathering terms according to

powers of ∆t, we obtain



6.2 Error estimates on the invariant measure 143

ϕ (Φ∆t(q,G)) = ϕ(q) +

 
2∆t

β
GT∇ϕ(q) +∆t

Å
1

β
GT
(
∇2ϕ(q)

)
G−∇V (q)T∇ϕ(q)

ã
+∆t3/2

Ç √
2

3β3/2
D3ϕ(q) : G⊗3 −

 
2

β
GT∇2ϕ(q)∇V (q)

å
+∆t2

Å
1

6β2
D4ϕ(q) : G⊗4 − 1

β
D3ϕ(q) :

(
G⊗2 ⊗∇V (q)

)
+

1

2
∇V (q)T∇2ϕ(q)∇V (q)

ã
+∆t5/2ξ5/2(q,G) +∆t3ξ̃∆t(q,G).

Note that we have an expansion with fractional powers of ∆t. However, the terms corresponding
to non-integer powers of ∆t (such as ξ5/2(q,G)) contain an odd number of occurences of G, so
that their expectations with respect to G vanish. Since (P∆tϕ) (q) = EG [ϕ (Φ∆t(q,G))], a simple
computation shows that

P∆tϕ = ϕ+∆tLϕ+∆t2A2ϕ+∆t3rϕ,∆t (6.26)

where
A2 =

1

2

Å
1

β2
∆2 − 2

β
∇V (q)T∇(∆ϕ) +∇V (q)T∇2ϕ(q)∇V (q)

ã
,

and rϕ,∆t(q) = EG
î
ξ̃∆t(q,G)

ó
is such that ‖rϕ,∆t‖B∞ 6 K for ∆t sufficiently small. It can be

checked that A2 6= 1
2L

2. Indeed,

L2ϕ =
1

β2
∆2ϕ− 2

β
∇V · ∇(∆ϕ) +

Å
∇V ⊗∇V − 2

β
∇2V

ã
: ∇2ϕ+

Å
∇2V∇V − 1

β
∇(∆V )

ã
· ∇ϕ,

(6.27)
so that

A2 =
1

2

(
L2 +R2

)
, (6.28)

with
R2ϕ =

2

β
∇2V : ∇2ϕ+

1

β
∇(∆V ) · ∇ϕ−∇V T (∇2V )∇ϕ.

Assumptions on the generator L

First, recall that, as discussed after Definition 6.1, Wn(q) = 1 for all n > 0 when D is bounded, so
that S = C∞(D). Standard results of elliptic regularity (see e.g. [87, Section 6.3]) then show that
L−1 is a well-defined operator from

S0 =

ß
f ∈ C∞(D)

∣∣∣∣ ˆ
D
f dν = 0

™
to itself. For dynamics in the full space D = Rd, additional assumptions on the potential are
needed to obtain the stability of S with the choice Wn(q) = 1+ |q|n, and the proof of this stability
result are much more involved; see [156].

Expression of the correction function

Thanks to (6.28), it can be easily checked that g2 is well defined and belongs to S (recall that,
as discussed after Theorem 6.1, it automatically has average 0 with respect to π). To obtain the
precise expression for g2, we use integration by parts to compute

ˆ
D
R2ϕdν = − 1

β

ˆ
D
∇
Å
∆V − β

2
|∇V |2

ã
· ∇ϕdν =

ˆ
D
L
Å
∆V − β

2
|∇V |2

ã
ϕdν.

Using that, for all ϕ ∈ S,
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ˆ
D
A2ϕdν =

1

2

ˆ
D
R2ϕdν =

ˆ
D
g2ϕdν,

one obtains
g2 =

1

2
L
Å
∆V − β

2
|∇V |2

ã
.

Since A1 = L = L∗ on L2(ν), we in fact obtain the analytical expression of the correction
function f2 defined in (6.17):

f2 = −1

2

Å
∆V − β

2
|∇V |2 − aβ,V

2

ã
,

where
aβ,V =

ˆ
D
∆V dν = β

ˆ
D
|∇V |2 dν

is a constant ensuring that f2 has average 0 with respect to ν.

Existence of an invariant probability measure for the numerical scheme

To prove that an invariant probability measure π∆t exists for the numerical scheme, we rely on
Theorem 3.1, and distinguish two cases:

(i) For compact position spaces, the Lyapunov condition of Assumption 3.1 is trivially satisfied.
Therefore, the only property to prove is the minorization condition of Assumption 3.2. Since
the space is bounded, it readily follows from (6.25) that, for any Borel subset S ⊂ D,

P(q1 ∈ S | q0 = q) > P

Ç 
2∆t

β
G1 ∈ S − q +∆t∇V (q)

å
> inf
|Q|6|D|+‖∇V ‖B∞

P

Ç 
2∆t

β
G1 ∈ S −Q

å
=

Å
β

4π∆t

ãd/2
inf

|Q|6|D|+‖∇V ‖B∞

ˆ
S−Q

exp

Å
−β|g|

2

4∆t

ã
dg, (6.29)

where the first inequality is due to the fact that the contributions associated with periodic
images of q are not taken into account. The minorization condition then follows by defining
the measure

λ̃∆t(S) = inf
|Q|6|D|+‖∇V ‖B∞

ˆ
S−Q

exp

Å
−β|g|

2

4∆t

ã
dg,

normalizing it as λ∆t(S) = λ̃∆t(S)/λ̃∆t(D), and introducing η∆t = (4π∆t/β)−d/2λ̃∆t(D).
(ii) For unbounded spaces, the Euler–Maruyama scheme is typically transient for non-globally

Lipschitz forces, as discussed in Section 6.1.2. Implicit schemes should then be considered, see
for instance [189]. Lyapunov functions for the numerical schemes can be inherited from the
Lyapunov function of the continuous dynamics. Minorization measures for initial positions q0
in a compact set can still be constructed as above.

The minorization conditions sketched here for discretizations of SDEs on unbounded spaces
are not uniform with respect to the time step ∆t, and hence the exponential convergence to the
invariant measure happens exponentially for each ∆t, but with a rate which itself depends on the
time step. Some more work however allows to recover some uniformity in the convergence, for
specific numerical schemes and up to small error terms [156]; and even to obtain a convergence
rate uniform with respect to the time step (see Section ??).reference

to add
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6.2.4 Application to Langevin dynamics

Many numerical schemes have been proposed for Langevin dynamics. The first ones, such as the
BBK scheme proposed in [41], were often obtained by modifications of numerical schemes for
deterministic Hamiltonian dynamics. Various other schemes have been proposed since then; see
for instance [253, 190, 42, 265, 165] for recent suggestions.

One systematic way to derive numerical schemes of arbitrary order is to resort to splitting
schemes to integrate the various parts of the dynamics analytically; see [36, 165, 169]. However,
proving rigorous ergodicity results on the corresponding numerical schemes has so far been done
only for compact position spaces [169]. For unbounded position spaces, implicit schemes should be
considered (see [189, 155]), in which case some geometric convergence can be achieved. Alterna-
tively, it is possible, as discussed at the end of this section, to superimpose a Metropolis–Hastings
step upon the discretization under consideration in order to stabilize the numerical method and
ensure the existence of an invariant measure.

Description of the numerical schemes

In order to describe more conveniently splitting schemes, it is useful to introduce the elementary
dynamics with generators

A = pTM−1∇q, B = −∇V (q)T∇p, C = −pTM−1∇p +
1

β
∆p. (6.30)

The generator L of the equilibrium Langevin dynamics (5.5), defined on the core S, is the sum of
the generators of the elementary dynamics:

L = A+B + γC,

where Lham = A+B is the generator associated with the Hamiltonian part of the dynamics. The
motivation for the splitting (6.30) is that all elementary evolutions are analytically integrable. By
computing d(eγM

−1tpt), it is easily seen that the elementary dynamics associated with γC, namely

dpt = −γM−1pt +
 

2γ

β
dWt,

can be integrated as

pt = e−γM
−1tp0 +

 
2γ

β

ˆ t

0

e−γM
−1(t−s) dWs,

which is a Gaussian random variable with mean e−γM
−1tp0 and variance

2γ

β

ˆ t

0

e−2γM
−1(t−s) ds =

1− e−2γM
−1t

β
.

First-order splitting schemes

First-order schemes are obtained by a Lie–Trotter splitting of the elementary evolutions generated
by A,B, γC (see Section 2.2.2 for a discussion of Lie–Trotter splittings). There are 6 possible
schemes, whose evolution operators (defined on the core S) are of the general form

PZ,Y,X∆t = e∆tZe∆tY e∆tX ,

with all possible permutations (Z, Y,X) of (A,B, γC). For instance, the numerical scheme associ-
ated with PB,A,γC∆t is
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p̃n+1 = pn −∆t∇V (qn),

qn+1 = qn +∆tM−1p̃n+1,

pn+1 = α∆tp̃
n+1 +

 
1− α2

∆t

β
M Gn,

(6.31)

where α∆t = exp(−γM−1∆t), and (Gn) are independent and identically distributed Gaussian
random vectors with identity covariance. Let us recall that, as already mentioned in Section 2.2.2,
the order of the operations performed on the configuration of the system is the inverse of the order
of the operations mentioned in the superscript of the evolution operator PB,A,γC∆t when read from
right to left.

Remark 6.2. The simulation of the dynamics with generator C is very simple when the mass
matrix M is diagonal since α∆t is a diagonal matrix. In the case when M is not diagonal, which
may happen for instance when molecular constraints are considered, the analytic integration of the
Ornstein–Uhlenbeck process should be replaced by an approximate integration, such as a mid-point
scheme; see the discussion in [179, 178].

The iterations of the three schemes associated with P γC,B,A∆t , PB,A,γC∆t , PA,γC,B∆t share a common
sequence of update operations, as for P γC,A,B∆t , PA,B,γC∆t , PB,γC,A∆t . More precisely, we mean that
equalities of the following form hold:Ä

PA,B,γC∆t

än
= T∆t

Ä
P γC,A,B∆t

än−1
Uγ,∆t, Uγ,∆t = eγ∆tC , T∆t = e∆tAe∆tB . (6.32)

It is therefore not surprising that the invariant measures of the schemes with operators composed
in the same order have very similar properties, as can be made precise using Lemma 6.1 below.

Second-order schemes

Second-order schemes are obtained by a Strang splitting of the elementary evolutions generated
by A,B, γC. There are also 6 possible schemes, which are of the general form

PZ,Y,X,Y,Z∆t = e∆tZ/2e∆tY/2e∆tXe∆tY/2e∆tZ/2,

with the same possible orderings as for first-order schemes. Again, these schemes can be clas-
sified into three groups depending on the ordering of the operators once the elementary one-
step evolution is iterated: (i) P γC,B,A,B,γC∆t , PA,B,γC,B,A∆t , (ii) P γC,A,B,A,γC∆t , PB,A,γC,A,B∆t , and
(iii) PB,γC,A,γC,B∆t , PA,γC,B,γC,A∆t . We discard the latter category since the invariant measures of
the associated numerical schemes are not consistent with ν in the overdamped limit (see below).

Geometric Langevin Algorithms

In fact, as proved in [36, 169], a second-order accuracy on the invariant measure can be obtained by
resorting to a first-order splitting between the Hamiltonian and the Ornstein–Uhlenbeck parts, and
discretizing the Hamiltonian part with a second-order scheme. This corresponds to the following
evolution operators of Geometric Langevin Algorithm (GLA) type:

P γC,A,B,A∆t = eγ∆tCe∆tA/2e∆tBe∆tA/2, P γC,B,A,B∆t = eγ∆tCe∆tB/2e∆tAe∆tB/2,

PA,B,A,γC∆t = e∆tA/2e∆tBe∆tA/2eγ∆tC , PB,A,B,γC∆t = e∆tB/2e∆tAe∆tB/2eγ∆tC ,
(6.33)

which amounts to composing a Verlet-like scheme for the Hamiltonian part, preceded or followed
by an integration of the Ornstein–Uhlenbeck part.
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Error estimates on the invariant measure

Among all the splitting schemes introduced for Langevin dynamics, some lead to smaller errors
on the invariant measure; see [169] for more precise statements. The key tool in this analysis is, as
for overdamped Langevin dynamics, Theorem 6.1, and in particular the error estimate (6.16) on
the invariant measure. If only the order of magnitude of the correction is of interest, and not the
expression of the leading order error term, no regularity on the derivatives is required (see [36]),
in contrast to situations where such corrections are explicitly considered, as in [260] for instance.

In order to apply Theorem 6.1, we consider α = 1 for first-order splitting schemes or α = 2 for
second-order splitting schemes and GLA, and the hierarchy of scale functions Wn(q, p) = 1+ |p|2n
when the position space is compact. There are three types of assumptions to be checked.

(i) Assumptions on the generator A1 = L of the continuous dynamics. The stability of the
space of smooth functions S0 under L−1 and its adjoint is a highly non trivial statement,
which follows from a careful analysis of the proof presented in [260], as provided in [155,
Appendix A] for unbounded position spaces under some conditions on the potential energy
function V . The adaption to compact position spaces allows to simplify some arguments.

(ii) Assumptions on the invariant measure µ∆t of the numerical scheme. In order to prove that
splitting schemes admit a unique invariant probability measure, a first step is to prove
that Wn are Lyapunov functions for splitting schemes in compact position spaces (see [169,
Lemma 2.7]). Let us mention that the existence of Lyapunov functions for splitting schemes
in unbounded position spaces is an open issue, to our knowledge. For such spaces, implicit
schemes should be considered, in which case a slight modification of the Lyapunov func-
tion introduced in Lemma 5.1 for the continuous dynamics is a Lyapunov function for the
numerical scheme (see [189, Lemma 8.1] for precise statements).
The second step is to prove that a minorization condition similar to (6.29) holds. However,
there are many schemes for which the operator C appears only once (all first order and GLA
schemes, and also certain second order schemes), so that there is only one D-dimensional
noise per time step. This prevents from controlling both positions and momenta. Therefore,
the argument leading to (6.29) has to be modified by considering the transition kernel P 2

∆t

corresponding to an evolution over two time steps, as done in [189, 36] for instance.
(iii) Assumptions on the differential operators arising in the expansion in powers of ∆t of the

evolution operator P∆t. The expressions of these operators are conveniently obtained for
splitting schemes with the Baker–Campbell–Hausdorff formula already encountered in Sec-
tion 2.2.2; see for instance the presentation in [114, Section III.4.2]. Such computations are
reported in [165, 169].

Remark 6.3 (Stability). Stability is a necessary condition for the existence of an invariant mea-
sure µ∆t for the numerical scheme under consideration. This property is guaranteed by the existence
of a Lyapunov function W for the transition operator P∆t, which typically requires the time step
∆t to be sufficiently small. For discretizations of Langevin dynamics, the stability conditions are
similar to the ones obtained for discretizations of the Hamiltonian dynamics, which correspond
to γ = 0; see [166, 167]. Note indeed that all the splitting schemes introduced above reduce to a
symplectic discretization of the Hamiltonian dynamics when γ = 0.

Relating invariant measures of two numerical schemes

We classified the numerical schemes according to the order of appearance of the elementary opera-
tors. More precisely, we considered schemes to be similar when the global ordering of the operators
is the same but the operations are started and ended differently, as in (6.32) above (see also (6.34)
below for an abstract definition). This choice of classification is motivated by the following lemma
which demonstrates how we may straightforwardly obtain the expression of the invariant measure
of one scheme when the expression for another one is given.

We state the result in an abstract fashion for two schemes P∆t = U∆tT∆t and Q∆t = T∆tU∆t
(which implies the condition (6.34) below). See (6.32) for a concrete example.
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Lemma 6.1 (Here and elsewhere: TU lemma). Consider two numerical schemes with asso-
ciated evolution operators P∆t, Q∆t bounded on B∞(E), for which there exist bounded operators
U∆t, T∆t on B∞(E) such that, for all n > 1,

Qn∆t = T∆tP
n−1
∆t U∆t. (6.34)

We also assume that both schemes are ergodic with associated invariant measures denoted respec-
tively by µP,∆t, µQ,∆t: For any ϕ ∈ B∞(E) and almost all (q, p) ∈ E,

lim
n→+∞

(Pn∆tϕ) (q, p) =

ˆ
E
ϕdµP,∆t, lim

n→+∞
(Qn∆tϕ) (q, p) =

ˆ
E
ϕdµQ,∆t. (6.35)

Then, for all ϕ ∈ B∞(E), ˆ
E
ϕdµQ,∆t =

ˆ
E
(U∆tϕ) dµP,∆t. (6.36)

Proof. The proof of this result relies on the simple observation that, for a given initial measure ρ
with a smooth density with respect to the Lebesgue measure, the ergodicity assumption ensures
that, for a bounded measurable function ϕ,

ˆ
E
ϕdµQ,∆t = lim

n→+∞

ˆ
E
Qn∆tϕdρ = lim

n→+∞

ˆ
E
T∆tP

n−1
∆t (U∆tϕ) dρ.

Now, we use the ergodicity property (6.35) with f replaced by U∆tϕ to obtain the following
convergence for almost all (q, p) ∈ E :

lim
n→+∞

Pn−1∆t (U∆tϕ) (q, p) =

ˆ
E
U∆tϕdµP,∆t = a∆t.

Since T∆t preserves constant functions, there holds
ˆ
E
T∆t(a∆t1) dρ = a∆t

ˆ
E
1 dρ = a∆t,

which finally gives (6.36). ut

Overdamped limit of the numerical schemes

We discuss in this section the behavior of the splitting schemes in the overdamped limit γ. Recall
that, under some time rescaling, solutions to the Langevin dynamics converge to solutions of over-
damped Langevin dynamics (see Section 5.1.3). It would therefore be desirable that the invariant
measure of the numerical schemes for Langevin dynamics converges to some approximation of the
canonical measure in position ν(dq) given by (4.2).

The only part of the numerical schemes where the friction enters is the Ornstein–Uhlenbeck
process on momenta. The limit γ → +∞ for ∆t > 0 fixed amounts to resampling momenta
according to the Gaussian distribution κ(dp) at all timesteps. For instance, the numerical scheme
associated with the evolution operator P γC,B,A,B,γC∆t reduces to

qn+1 = qn − ∆t2

2
∇V (qn) +

∆t√
β
Gn,

where (Gn) are independent and identically distributed Gaussian random vectors with identity
covariance. This is indeed a consistent discretization of the overdamped process (4.1) with an
effective timestep h = ∆t2/2, and the invariant measure of this numerical scheme is close to ν.
Other schemes may have non-trivial large friction limits and invariant measures close to ν. This is
the case for the scheme associated with the evolution operator PB,A,γC,A,B∆t , for which the limiting
discrete dynamics reads (see [165])
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q1 = q0 − ∆t2

4
∇V (q0) +

∆t

2
√
β
(G0 +G1),

qn+1 = qn − ∆t2

2
∇V (qn) +

∆t

2
√
β
(Gn +Gn+1), for n > 0.

Note that (qn) is not a Markov chain due to the correlations in the random noises. Nonetheless,
and somewhat suprisingly, this schemes turns out to have an invariant measure correct at second
order in the effective time step; see [169, Section 2.6] for precise statements.

On the other hand, the limits of the invariant measures associated with certain schemes are
not consistent with the canonical measure ν. This is the case for the first-order schemes, as well
as the second order splittings listed in item (iii) in Section 6.2.4. For instance, the limit of the
scheme associated with P γC,A,B∆t reads

qn+1 = qn +
∆t√
β
Gn.

The invariant measure of this Markov chain is the uniform measure on D, and is therefore very
different from the invariant measure ν of the continuous dynamics (4.1) (it amounts to setting
V = 0). As another example, consider the limit of the scheme associated with P γC,B,A∆t :

qn+1 = qn −∆t2∇V (qn) +
∆t√
β
Gn.

This is the Euler-Maruyama discretization of (4.1) with an effective timestep h = ∆t2 but an
inverse temperature 2β rather than β.

Generalized Hybrid Monte Carlo schemes

We discuss in this section how to superimpose a Metropolis acceptance/rejection procedure to
certain splitting schemes for Langevin dynamics, which allows to guarantee the existence of an
invariant probability measure by construction, and also removes the bias on the invariant measure
sampled by the algorithm. The method is a version of Hybrid Monte Carlo (HMC) schemes, ini-
tially proposed in [74], which can be understood as Metropolis–Hastings algorithms with proposal
moves computed using one or several steps of Hamiltonian dynamics. These algorithms have been
analyzed from a mathematical viewpoint in various works, including [247, 47, 184, 77]. HMC is
now a popular method in computational statistics [203], where it was introduced early on, and
where it is known as Hamiltonian Monte Carlo. We refer to [37] for some overview of HMC and
its many current extensions.

We focus our attention here on the so-called one-step HMC method, where only one step of
the integrator for the Hamiltonian dynamics is performed, together with some partial refreshment
of momenta, as in generalized HMC [132]. This allows to construct consistent discretizations of
Langevin dynamics [38] and of various extensions of the standard Langevin dynamics, includ-
ing constrained dynamics restricted to submanifolds (see [179, 168] and [178, Section 3.3.5.4]),
Langevin dynamics with even non-quadratic kinetic energies [257], etc.

We present for simplicity the simplest one step HMC scheme based on first partially resampling
momenta, for instance by an analytic integration of the dynamics of generator C, as done in the last
step of (6.31); then performing one step of the Verlet scheme; and finally reverting the momentum
upon rejection. This is made precise in Algorithm 6.1 below. Various extensions are possible, for
instance by symmetrizing the evolution and adding another update of the momentum at the end
in order to have a method which is weakly second order consistent. See also [178, Section 2.1.4]
for a more abstract presentation of generalized HMC methods.

Algorithm 6.1 (Metropolis correction to splitting schemes for Langevin dynamics).
Fix γ > 0, ∆t > 0 and introduce α∆t = exp(−γM−1∆t), as a well as families of i.i.d. standard D-
dimensional Gaussian random variables (Gn)n>0 and uniform random variables (Un)n>0 on [0, 1].
Consider an initial configuration (q0, p0) and iterate on n > 0,
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(1) Update the momentum as pn+1/2 = α∆tp
n +
»
β−1(1− α2

∆t)M Gn;
(2) Compute (q̃n+1, p̃n+1) = Φ∆t(q

n, pn+1/2) where Φ∆t corresponds to the Verlet scheme (2.28);
(3) If Un 6 exp

Ä
−β
î
H(q̃n+1, p̃n+1)−H(qn, pn+1/2)

óä
, set (qn+1, pn+1) = (q̃n+1, p̃n+1); other-

wise set (qn+1, pn+1) = (qn,−pn+1/2).

Since the Verlet scheme is second order accurate, the energy difference H(q̃n+1, p̃n+1) −
H(qn, pn+1/2) is of order ∆t3, and so the rejection rate itself scales as ∆t3; see for instance [257,
Lemma 3.1] for precise statements.

Exercise 6.1. Prove that Algorithm 6.1 reduces to MALA with an effective timestep ∆t2/2
when γ = +∞ ( i.e. α∆t = 1).

Let us emphasize that momenta need to be reverted when the proposal is rejected. In order
to understand this point, and in fact to prove that the Markov chain induced by Algorithm 6.1
preserves the canonical measure (5.3), we write the numerical method as the composition of three
steps: (i) updating the momenta; (ii) performing a Verlet step and reverting the momentum, before
performing an acceptance/rejection according to the Metropolis rule given in the algorithm; (iii)
reverting the momenta. Note that if the proposal is accepted in Step (ii), momenta are reverted
twice, so that the final configuration is indeed the one obtained by one step of the Verlet scheme.

It is clear that Steps (i) and (iii) preserve the canonical measure, so it suffices to check that
Step (ii) does too. The motivation for composing the Verlet step with some momentum reversal is
that this provides some built-in reversibility for this (deterministic) proposal. To make this point
precise, we introduce Ψ∆t(q, p) = (S ◦Φ∆t)(q, p) where S(q, p) = (q,−p) is the momentum reveral
already considered in Section 2.1.2. Note that, crucially, Ψ∆t is an involution:

Ψ∆t ◦ Ψ∆t = Id,

which moreover preserves the Lebesgue measure dq dp (since Φ∆t preserves it as a consequence of
symplecticity, while S also obviously preserves this measure). With this notation, Step (ii) outputs
a configuration (q′, p′) from (q, p) as

(q′, p′) = (q, p) + 1U6r∆t(q,p) [Ψ∆t(q, p)− (q, p)] , r∆t(q, p) = min
¶
1, e−β[(H◦Ψ∆t)(q,p)−H(q,p)]

©
.

The associated transition kernel reads

P∆t((q, p), dq
′ dp′) = r∆t(q, p)δΨ∆t(q,p)(dq

′ dp′) + (1− r∆t(q, p))δ(q,p)(dq′ dp′). (6.37)

The proof that the Markov chain induced by Algorithm 6.1 preserves the canonical measure is
then a consequence of the following result.

Lemma 6.2. The Markov chain with transition kernel (6.37) leaves the canonical measure (5.3)
invariant.

Proof. Consider a bounded measurable function ϕ : E → R. For simplicity of notation, we write
x = (q, p). Note first thatˆ

E
ϕ(x′)P∆t(x, dx

′)µ(dx) =

ˆ
E
r∆t(x) [ϕ(Ψ∆t(x))− ϕ(x)]µ(dx) +

ˆ
E
ϕ(x)µ(dx),

so it suffices to prove that the first integral vanishes. To this end, we use successively the changes
of variables y = Φ∆t(x) and z = Sy (which both have Jacobian 1) to writeˆ

E
r∆t(x)ϕ(Ψ∆t(x))µ(dx) =

ˆ
E
r∆t(x)ϕ(Ψ∆t(x))

e−βH(x)

Zµ
dx

=

ˆ
E
r∆t(Φ

−1
∆t(y))ϕ(S(y))

e−β(H◦Φ
−1
∆t)(y)

Zµ
dy

=

ˆ
E
r∆t

[
(Φ−1∆t ◦ S)(z)

]
ϕ(z)

e−β(H◦Φ
−1
∆t◦S)(z)

Zµ
dz

=

ˆ
E
r∆t [Ψ∆t(z)]ϕ(z)

e−β(H◦Ψ∆t)(z)

Zµ
dz,
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where we used that Φ−1∆t ◦ S = Ψ−1∆t = Ψ∆t in the last step. A simple computation shows that

r∆t(Ψ∆t(x))e
−β(H◦Ψ∆t)(x) = min

Ä
e−βH(x), e−β(H◦Ψ∆t)(x)

ä
= r∆t(x)e

−βH(x),

which leads to the desired conclusion. ut

In fact, the Markov chain induced by Algorithm 6.1 enjoys better reversibility properties, as
made precise in [178, Section 2.1.4] and [181, Section 2.2.4]. A building block is provided by the
following statement.

Exercise 6.2. Prove that the transition kernel is reversible by mimicking the proof of Lemma 3.1.

6.3 Variance reduction

As already mentioned in (6.11), the variance of trajectory averages computed with discretizations
of SDEs are consistent with the variance of trajectory averages computed with the continuous
dynamics they approximate. In this section we discuss standard ways to reduce this variance in
order to decrease the statistical error in the estimated averages (6.6).

A first important distinction should be made between target-oriented variance reduction, which
corresponds to reducing the asymptotic variance σ2

ϕ defined in (6.10) for a given observable ϕ; and
a general purpose reduction, for which the aim is to decrease

sup
ϕ∈L2(π)

σ2
ϕ

‖ϕ‖L2(π)2
= sup
‖ϕ‖L2(π)61

2

ˆ
X
Πϕ(−L−1Πϕ) dπ. (6.38)

We choose ϕ ∈ L2(π) for simplicity, but the same question may be raised for specific subsets
of L2(π).

For Markov chains or Markov processes, the fact that the variance is large is due to the fact
that the correlation time of the dynamics is large (see the discussion after (4.21)), which itself
is due to the metastability of the process. The idea is therefore to modify the dynamics in order
to remove, or at least reduce the metastability, while still being able to reconstruct canonical
averages.

We present in this section standard variance reduction techniques for Markov processes. These
techniques are extensions of methods used for i.i.d. sequences, for which reviews are for instance
provided in [43] and [242, Chapter 5]. The most famous techniques are antithetic variables, strati-
fication, control variate methods and importance sampling. We present flavours of the latter three
approaches in this section. harmoniser

avec pre-
miere
partie
livre

6.3.1 Stratification

Stratification is a way of decomposing a difficult sampling problem into several easier ones. Ideally,
the phase space should be decomposed into the collection of all metastable states, corresponding to
local minima of the potential energy function, and these regions should be independently sampled.
The local averages in each region should then be reweighted according to the canonical weight of
the region itself. This method is therefore a general purpose variance reduction technique.

There are two major ways to make this idea practical, depending on whether the considered
regions overlap.

(1) When there is some overlap between the regions, bridge sampling methods such as MBAR [252]
can be used. The method is based on several works in statistics [101, 192, 154, 262].

(2) Non-overlapping regions can also be constructed as the level sets of some real-valued function
of the configuration of the system. In this case, the sampling is performed by constraining
the dynamics on the iso-surfaces corresponding to various values of the level-set function, and
varying the values of the constraint in order to sample the full phase space. This method is
known as thermodynamic integration, with a reconstruction performed by computing the free
energy; see Section 7.2.1, as well as [178, Chapter 3] and references therein.
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6.3.2 Control variate

The control variate method is a classical technique for variance reduction, although it is not so often
used in molecular simulation. Consider the case when thermodynamic averages are estimated by
ergodic averages of a stochastic dynamics with generator L. Recall that we denote the invariant
measure by π and the configuration of the system by x ∈ X , so that thermodynamic averages
read Eπ(ϕ).

Let us first explain the general principle of control variates on a simple example. Consider a
given observable ϕ, and introduce an observable φ such that Eπ(φ) = 0. Then,

Eπ(ϕ) = Eπ(ϕ− φ).

The idea now is to choose φ such that Varπ(ϕ− φ) is much smaller than Varπ(ϕ). Of course, the
optimal choice is φ = ϕ − Eπ(ϕ), in which case Varπ(ϕ − φ) = 0. Note however that the optimal
control variate depends on the quantity of interest, Eπ(ϕ), which is not available.

A systematic way of constructing admissible control variates (i.e., functions with average 0
with respect to π) is to choose them in the image of the generator L. Indeed, the invariance of the
measure π, formulated as (compare with (4.8))

ˆ
X
Lϕdπ = 0,

leads to the following equality: for any C∞ and compactly supported test function Φ,

Eπ(ϕ) = Eπ(ϕ− LΦ) =
ˆ
X
(ϕ− LΦ) dπ. (6.39)

The optimal choice corresponds to Φ solution of the Poisson equation

LΦ = ϕ− Eπ(ϕ). (6.40)

The solvability of this equation is ensured by results such as Corollaries 4.1 and 4.2, depending
on the properties of the potential V and the integrability properties of the observable ϕ. By
construction, the estimator based on (6.39)-(6.40), namely

1

t

ˆ t

0

(ϕ(xs)− LΦ(xs)) ds,

has a variance equal to 0 since ϕ(x) − LΦ(x) = Eπ(ϕ) for any value of x ∈ X . Such approaches
were first suggested for Markov chains in the computational statistics literature [8, 124], with
more recent contributions such as [200, 64, 201, 208, 25]. There are also related propositions in
the statistical physics literature [16], where they are known as the ‘zero-variance principle’. The
approach can in fact be extended to any operator which leaves π invariant, such as ∂∗xi , which
already appears in Stein’s test for approximate normality [256] and also in works on control variates
for MCMC schemes in the computational statistics literature [208, 25].

In practice, it is generally impossible to solve the Poisson equation (6.40) exactly. However,
it is possible to approximate the ideal function Φ in (6.40) on a basis of trial functions, given by
the image of linear and quadratic functions under ∂∗xi or L (see respectively [25] and [201]), or the
image of kernel functions in [208]. Alternatively, it is also possible to obtain a control variate as
the solution of an approximate Poisson equation, as done in [239].

6.3.3 Importance sampling

The basic idea of importance sampling is to change the measure which is sampled into a measure
which is easier to sample. In the context of molecular simulation, this is most commonly done by
changing the potential energy function V in the dynamics to a modified potential V + ‹V . The
modified overdamped Langevin dynamics associated with the potential V + ‹V , namely
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dqt = −∇
Ä
V + ‹V ä (qt) dt+  2

β
dWt, (6.41)

is then ergodic for the modified probability measure ν‹V = Z−1‹V e−β
‹V ν. Likewise, the modified

Langevin dynamics 
dq̃t =M−1p̃t dt,

dp̃t = −∇
Ä
V + ‹V ä (q̃t) dt− γM−1p̃t dt+ 2γ

β
dWt

is ergodic for the modified canonical probability measure µ‹V = Z−1‹V e−β
‹V µ. The fundamental

observation to retrieve averages with respect to ν or µ with realizations of the modified dynamics
is that

ˆ
D
ϕ(q) ν(dq) =

ˆ
E
ϕ(q)µ(dq dp) =

ˆ
D
ϕ eβ

‹V dν‹Vˆ
D

eβ
‹V dν‹V =

ˆ
E
ϕ eβ

‹V dµ‹Vˆ
E
eβ
‹V dµ‹V . (6.42)

Therefore, the following estimator is considered:

ϕ̂
‹V
t =

ˆ t

0

ϕ(q̃s) e
β‹V (q̃s) ds

ˆ t

0

eβ
‹V (q̃s) ds

. (6.43)

After discretization in time, the estimator ϕ̂‹Vt is approximated by

ϕ̂
‹V
Niter,∆t =

Niter∑
n=0

ϕ(q̃n) eβ
‹V (q̃n)

Niter∑
n=0

eβ
‹V (q̃n)

,

where q̃n is an approximation of q̃n∆t.
In order for importance sampling to be efficient, the weights eβ

‹V (qn) should not be too de-
generate. This can be quantified in various ways, for instance through the so-called efficiency
factor (

Niter∑
n=0

eβ
‹V (qn)

)2

Niter

Niter∑
n=0

e2β
‹V (qn)

∈ [0, 1].

The fact that this number is indeed between 0 and 1 can be seen via the Cauchy–Schwarz inequality.
The efficiency factor counts the fraction of significant values on average. It should be as close as
possible to 1, which is indeed the case if the weights are of similar magnitudes. In the statistics
literature, the efficiency factor corresponds to the effective sample size of [153] divided by the
number of sampled values.

When the observable ϕ under consideration is fixed (target-oriented variance reduction), it is
possible to optimize the importance sampling procedure in order to minimize the variance of the
estimator. We illustrate this fact for samples q̃n independently and identically distributed from a
measure with density e−β(V (q)+‹V (q)), whose normalization constant fortunately does not need to
be known. Consider the estimator
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ϕ̂iid,‹V
Niter

=

Niter∑
n=0

ϕ(q̃n) eβ
‹V (q̃n)

Niter∑
n=0

eβ
‹V (q̃n)

, q̃n ∼ ν‹V i.i.d.

A simple computation based on the equality1 ν‹V /ν = e−β
‹V Z0/Z‹V shows that

√
Niter(ϕ̂

iid,‹V
Niter

− Eν(ϕ)) =

√
Niter

(
1

Niter

Niter∑
n=0

[ϕ(q̃n)− Eν(ϕ)]
ν

ν‹V (q̃n)

)
1

Niter

Niter∑
n=0

ν

ν‹V (q̃n)

.

By the law of large numbers, the denominator almost surely converges to 1 as Niter → +∞, while,
by the central limit theorem, the numerator converges in law to a Gaussian distribution with
variance

σ2‹V (ϕ) = ˆD (Πϕ)2ν2

ν‹V ,

where we introduced Πϕ = ϕ− Eν(ϕ). By Slutsky’s theorem, the random variable√
Niter

(
ϕ̂iid,‹V
Niter

− Eν(ϕ)
)

therefore converges in law to a Gaussian distribution with variance σ2‹V (ϕ). The Cauchy–Schwarz
inequality on L2(ν‹V ) now shows that

σ2‹V (ϕ) > ÇˆD |Πϕ|νν‹V ν‹Vå2

=

Åˆ
D
|Πϕ| dν

ã2
,

with equality if and only if |Πϕ|ν/ν‹V ∝ 1. The optimal biased measure for i.i.d. sampling is thus

ν‹V (dq) = |Πϕ(q)| ν(dq)´
D |Πϕ|dν

which formally corresponds to the potential‹V (q) = − 1

β
log |Πϕ(q)|.

The latter expression is singular at configurations q such that Πϕ(q) = 0. More importantly, the
expression of ‹V depends on Eν(ϕ), and is therefore not available as such.

Remark 6.4. Such importance sampling approaches can be extended to averages over the path
space, and the optimal bias can also be approximated in this context. See [180, Section 6.2] and
references therein.

Let us finally discuss general purpose variance reduction in the context of importance sampling.
In view of the definition (6.38), a reduction of the variance for any observable ϕ amounts to a
decrease of the operator norm of the symmetric part of L−1. Note indeed that only the symmetric
part of of L−1 matters in the right-hand side of (6.38). For overdamped Langevin dynamics, the
generator is self-adjoint: L = L∗ when these operators are considered on L2(ν). General variance

1 With some abuse of notation, we denote the measures ν‹V (dq) and their densities by the same symbol.
The ratio ν‹V /ν is the Radon–Nikodym derivative of ν‹V with respect to ν.
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reduction therefore amounts to an increase of the spectral gap of the operator by the Rayleigh–
Ritz principle. This can be done by choosing ‹V to erase local minima in V which degrade the
Poincaré/LSI constants (see Section 4.3.2). Good choices of ‹V to overcome such metastability issues
are based on the free energy associated with a suitable reaction coordinate [178]; see Section 7.1.3.
When the generator L is not self-adjoint, there are a priori no simple relationships between the
symmetric and antisymmetric parts of L and its inverse. Some results can however be obtained
for specific dynamics, such as overdamped Langevin dynamics perturbed by a divergence free non
reversible drift, see [75, 230].
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Uniform estimates on P∆t in the overdamped case

We state below a minorization condition stronger than is needed for Assumption 3.1, but which
will prove useful later on in Section 8.4. We name it a “uniform minorization condition” since,
in contrast to the above computations, the lower bound η and the probability measure λ do not
depend on the time step ∆t provided it is sufficiently small. To obtain such a condition, we have
to consider evolutions over fixed physical times T ' n∆t > 0, which amounts to iterating the
elementary evolution P∆t over dT/∆te time steps (where dxe denotes the smallest integer larger
than x).

Lemma 6.3 (uniform minorization condition). Consider the evolution operator P∆t associ-
ated with the Euler–Maruyama discretization (6.25) on the position space D = (LT)D, and a given
integration time T > 0. There exist ∆t∗, η > 0 and a probability measure λ such that, for any
bounded, measurable non-negative function f , for any ∆t ∈ (0, ∆t∗] and for any q ∈ D,

(P
dT/∆te
∆t f)(q) > η

ˆ
D
f dλ.

Such estimates were obtained in [35] in unbounded spaces D for a class of Metropolis–Hastings
schemes whose proposition kernel is (6.25). See also [91, 92] for related results on bounded spaces,
as well as [169, 224] for discretizations of Langevin dynamics. The proof of Lemma 6.3 shows
that the measure λ has a positive density with respect to the Lebesgue measure. Application of
Theorem 3.1, together with an argument similar to that used to obtain (4.53) from the decay at
multiples of a given time, gives the following exponential convergence.

Corollary 6.1 (ergodicity of Euler–Maruyama for compact spaces). There exists ∆t∗ > 0
such that, for any ∆t ∈ (0, ∆t∗], the Markov chain associated with P∆t has a unique invariant
probability measure ν∆t. This measure admits a density with respect to the Lebesgue measure.
Moreover, there exist C, κ > 0 such that, for all functions f ∈ B∞(D),

∀n ∈ N,

∥∥∥∥Pn∆tf − ˆ
D
f dν∆t

∥∥∥∥
B∞

6 C e−κn∆t ‖f‖B∞ . (6.44)

The fact ν∆t admits a density with respect to the Lebesgue measure dq follows from the
minorization condition stated in Lemma 6.3, which ensures that the Markov chain is irreducible
with respect to Lebesgue measure. The proof of Corollary 6.1 relies on the following result (given
on a general state space with a general Lyapunov function) for the choice W = 1.

Lemma 6.4. Consider a Lyapunov function W : X → [1,+∞) and assume that there exists N > 1
and K,λ > 0 such that

∀m ∈ N,
∥∥PNm∥∥B(B∞W ,0)

6 Ke−λm,

where π is the unique invariant measure of PN and

B∞W ,0 =

ß
ϕ ∈ B∞W (X )

∣∣∣∣ˆ
X
ϕdπ = 0

™
.

Then, the following estimate holds at any time:

∀n ∈ N, ‖Pn‖B(B∞W ,0)
6

Ç
K eλ sup

06k6N−1

∥∥∥∥P kWW

∥∥∥∥
B∞

å
e−λn/N
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Note that this result in particular shows that π is the unique invariant measure of P . A sufficient
condition for

sup
k>0

∥∥∥∥P kWW

∥∥∥∥
B∞

< +∞

is that PW 6 aW + b with 0 6 a < 1, i.e. a Lyapunov condition holds over one step. In this case,
the supremum is smaller than a+ b/(1− a) since

0 6 P kW 6 P k−1(aW + b) 6 . . . 6 akW + b(1 + · · ·+ ak−1) 6 akW +
b

1− a
.

When applied to discretization of SDEs, one typically has 1− a = O(∆t) and b = O(∆t), so that
the supremum is finite.

Proof. For a general index n ∈ N, we write

n = mnN + ñ, 0 6 ñ 6 N − 1.

We next use |f | 6 ‖f‖B∞W W , so that |P kf | 6 ‖f‖B∞W P
kW , and finally

‖P kf‖B∞W 6 ‖f‖B∞W

∥∥∥∥P kWW

∥∥∥∥
B∞

.

This shows that

‖P k‖B(B∞W ,0)
6

∥∥∥∥P kWW

∥∥∥∥
B∞

.

Therefore,

‖Pn‖B(B∞W ,0)
6
∥∥(PN )mn

∥∥
B(B∞W ,0)

∥∥P ñ∥∥B(B∞W ,0)
6 Ke−λmn sup

06k6N−1

∥∥∥∥P kWW

∥∥∥∥
B∞

,

which gives the expected result since mn > n/N − 1. ut
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This lecture is an introduction to the computation of free energy differences, see [178] for
an extensive mathematical treatment. Free energy is a central concept in thermodynamics and in
modern studies on biochemical and physical systems. In many applications, the important quantity
is actually the free energy difference between various macroscopic states of the system, rather than
the free energy itself. Free energy differences allow to quantify the relative likelihood of different
states. A related but more numerical motivation is to use the free energy to devise algorithms
which overcome sampling barriers. These ideas are discussed in Section 7.1. We next review in
Section 7.2 the main (classes of) methods to compute free energy differences. We finally focus in
Section 7.3 on the mathematical analysis of one of these methods, for which we prove the longtime
convergence of a nonlinear Fokker–Planck equation.

7.1 Definition of the free energy

After a brief definition of absolute free energies in Section 7.1.1, we turn the definition of free
energy differences in Section 7.1.2. One motivation to computing free energy profiles is to use
the free energy as an importance sampling function, to improve the quality of the sampling, as
discussed in Section 7.1.3.

7.1.1 Absolute free energy

We restrict ourselves in this lecture to the canonical ensemble, though most of the concepts and nu-
merical methods considered can be extended to other thermodynamic ensembles (see Section 1.3.4).
The absolute free energy of a system is defined as
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F = − 1

β
lnZµ, (7.1)

where Zµ is the partition function

Zµ =

ˆ
E
e−βH(q,p) dq dp. (7.2)

Since the potential energy function V (hence the Hamiltonian H) is defined only up to an additive
constant when empirical potential functions are used, so is the absolute free energy. However, this
has no consequence on free energy differences, see Section 7.1.2 below. The motivation for (7.1)
comes from an analogy with macroscopic thermodynamics, see for instance the discussion in [178,
Section 1.3.1.2].

Remark 7.1. The free energy (7.1) is called the Helmholtz free energy. Similar free energies can be
considered for other thermodynamic ensembles. They are also logarithms of the partition functions
multiplied by a factor −β−1. When the isobaric-isothermal ensemble (NPT) is considered, the
associated free energy is called the Gibbs free energy.

For separable Hamiltonians (1.3), the partition function can be rewritten as

Zµ = Zν

Å
2π

β

ã3N/2 N∏
i=1

m
3/2
i , Zν =

ˆ
D
e−βV (q) dq,

and the only difficulty is the computation of the configurational partition function Zν . This par-
tition function cannot be computed as such in general. It however has a simple expression for
some specific systems, such as the ideal gas, or solids at low temperature (resorting to the phonon
spectrum, i.e. assuming that the potential energy can be approximated by a sum of harmonic
interactions), see [97, 233].

7.1.2 Relative free energies

As mentioned above, the quantity of interest in many applications is not the absolute free energy,
but the free energy differences between various states. Typical examples studied by computer
simulations include the solvation free energy (which is the free energy difference between a molecule
in vacuo and its counterpart surrounded by solvent molecules), and the binding free energy of two
molecules (this free energy difference determines whether a new drug can have an efficient action
on a given protein for example). See [55] for other relevant examples in chemistry and biophysics.

In this section, we describe more precisely what we mean by states, and how a transition
between two states can be defined. As already hinted at in the introduction to this section, two
cases should be considered: alchemical transitions and transitions indexed by a reaction coordinate.

Alchemical transitions

The so-called alchemical case considers transitions indexed by an external parameter λ, indepen-
dent of the microscopic phase space configuration (q, p). Typical examples are the intensity of
an applied magnetic field for a spin system, or the constants used in the empirical force fields
(such as the energy ε or the length σ in the Lennard-Jones potential (1.6)). See for instance [55,
Section 2.8] for more examples. The name “alchemical” refers to the fact that the nature of the
particles at hand can be modified in the computer simulation by changing the parameters of the
potential describing the molecular interactions.

For a given value of λ, the system is described by a Hamiltonian Hλ. A state is then the collec-
tion of all possible microscopic configurations E , distributed according to the canonical measure

µλ(dq dp) =
1

Zλ
e−βHλ(q,p) dq dp, Zλ =

ˆ
D
e−βHλ(q,p) dq dp. (7.3)
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An alchemical transition transforms the state λ = 0 into the state λ = 1. The corresponding free
energy difference is

F (1)− F (0) = − 1

β
ln

Üˆ
E
e−βH1(q,p) dq dp

ˆ
E
e−βH0(q,p) dq dp

ê
. (7.4)

It is often the case that Hλ depends on λ only through the potential energy Vλ. In this case, the
free energy difference simplifies as

F (1)− F (0) = − 1

β
ln

Üˆ
D
e−βV1(q) dq

ˆ
D
e−βV0(q) dq

ê
. (7.5)

Transitions indexed by a reaction coordinate

In the reaction coordinate case, the Hamiltonian of the system is kept fixed. A state is a measure
on a submanifold of the phase space. These submanifolds are the level sets of some function, the
so-called reaction coordinate,

ξ : D →M ⊂ Rm,

with m 6 D. Examples of such functions are dihedral angles, or distances between two molecular
subgroups. To ξ is associated a foliation of the phase space into submanifolds Σ(z) = {q ∈
D | ξ(q) = z}, so that

D =
⋃
z∈M

Σ(z).

The free energy difference is related to the relative likelihoods of marginal distributions with
respect to ξ. For the canonical measure (1.18), the marginal distribution is by definition

µξ(dz) =

Ç
1

Zµ

ˆ
Σ(z)×RD

e−βH(q,p) δξ(q)−z(dq) dp

å
dz.

It is the image of the measure µ by ξ. The measure δξ(q)−z(dq) is defined as in (1.14) and (1.15)
through the relation δξ(q)−z(dq) dz = dq, see [178, Section 3.2.1.1] for further precision. In partic-
ular, it can be written as

δξ(q)−z(dq) =
σΣ(z)(dq)

|∇ξ(q)|
, (7.6)

where σΣ(z)(dq) is the area measure induced by the Lebesgue measure on the manifold Σ(z)
when D is equipped with the standard Euclidean scalar product. The free energy is then defined
as the log-density of the marginal distribution:

e−βF (z) dz = µξ(dz).

Thus, exp(−β[F (1)−F (0)]) can be interpreted as the relative likelihood of states in Σ(1) compared
to states in Σ(0). More explicitly,

F (z) = −β−1 ln
Ç

1

Zµ

ˆ
Σ(z)×R3N

e−βH(q,p) δξ(q)−z(dq) dp

å
. (7.7)

The free energy can therefore also be seen as some effective potential associated with ξ. The
function z 7→ F (z) is called potential of mean force. This terminology is motivated by the fact
that F ′(z), called the mean force, is some average force exerted on the system when the reaction
coordinate is kept constant, see [178, Section 3.2.2] for further precision.

The free energy difference between the state Σ(0) and the state Σ(1) is finally defined as
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F (1)− F (0) = −β−1 ln

Üˆ
Σ(1)×RD

e−βH(q,p) δξ(q)−1(dq) dp

ˆ
Σ(0)×RD

e−βH(q,p) δξ(q)(dq) dp

ê
. (7.8)

For separable Hamiltonians, (1.3), the free energy difference can be rewritten as

F (1)− F (0) = −β−1 ln

Üˆ
Σ(1)

e−βV (q) δξ(q)−1(dq)

ˆ
Σ(0)

e−βV (q) δξ(q)(dq)

ê
. (7.9)

Notice that when |∇ξ| is constant, the free energy difference F (1) − F (0) only depends upon ξ
through Σ(1) and Σ(0) in view of (7.6).

Remark 7.2 (Choice of the reaction coordinate). For a given foliation of the configurational
space, the free energy difference depends in general on the choice of the reaction coordinate indexing
this foliation. Indeed, consider another reaction coordinate ξ̃, defining the same level sets, with in
particular ‹Σ(0) =

{
q
∣∣∣ ξ̃(q) = 0

}
=
{
q
∣∣ ξ(q) = 0

}
= Σ(0), (7.10)

and a similar relation for z = 1. For instance, ξ̃ = f(ξ) with any one-to-one increasing function
f : [0, 1]→ [0, 1] has the same level sets as ξ, and satisfies (7.10).

In general, the associated free energy differences F (1) − F (0) and ‹F (1) − ‹F (0) are different.
Indeed, the surface measure σΣ(0)(dq) is somehow intrinsic (it depends only on the submanifold
Σ(0) = ‹Σ(0) and on the ambient scalar product), while the measure δξ(q)−z(dq) depends on the
gradients of the reaction coordinates through the factors |∇ξ(q)|−1, see the right-hand side of (7.6).
It is therefore a modelling choice to decide which reaction coordinate to use, in particular when
comparing results of numerical simulations to experimental measurements. Of course, there are no
such issues in the alchemical case.

Remark 7.3 (Relation with the alchemical setting). Alchemical transitions can be consid-
ered as a special case of transitions indexed by a reaction coordinate, upon introducing the extended
variable Q = (λ, q) and the reaction coordinate ξ(Q) = λ. In this case, the geometry of the sub-
manifolds is very simple since |∇ξ(Q)| = 1. The level sets are Σ(λ) = {λ} × D, and the measure
δξ(Q)−λ(dQ) in the extended space is the Lebesgue measure dq on D.

Besides, the reaction coordinate case is sometimes considered as a limiting case of the alchem-
ical case, using the family of Hamiltonians

Hη
λ(q) = V η(q, λ) +

1

2
pTM−1p, V η(q, λ) = V (q) +

1

2η

(
ξ(q)− λ

)2
,

and letting η → +∞, a procedure justified by the consistency result provided by Exercise 7.1.

Exercise 7.1. Prove that ˆ
D
e−βV

η
λ (q,z) dq

ˆ
M

ˆ
D
e−βV

η
−−−−−→
η→+∞

e−βF (z)ˆ
M

e−βF
,

and deduce that the alchemical free energy associated with Hη
λ converges to the free energy associ-

ated with the reaction coordinate ξ (see [178, Lemma 5.3]).
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7.1.3 Free energy and metastability

As discussed in Section 6.3, standard molecular simulation techniques such as thos often experience
difficulties in sampling metastable potentials. Recall that potentials are called metastable when
the corresponding canonical measure has several regions of high probability separated by low-
probability regions. Typical numerical methods spend a lot of time in one given metastable basin,
and only rarely escape it to visit another basin. These escapes are rare but fast events. The notion
of metastability may be formalized and quantified in several ways, for instance through the LSI or
Poincaré constants (see the discussion in Section 4.3.3). We give below two paradigmatic examples
of metastable potentials, and interpret the origin of metastability from the point of view of free
energy profiles.

We motivate in this section the interest of free energy methods for the sampling of metastable
potentials, using importance sampling as described in Section 6.3.3. Such methods can be used
provided the low- and high-probability regions of the systems are the level sets of some function
ξ(q), which is still called a reaction coordinate. Alternatively, ξ(q) can be seen as some slowly
evolving degrees of freedom encoding some coarse-grained information on the system. The free
energy associated with ξ may then be used as a biasing potential to favor transitions from one
metastable basin to another. Of course the reliability of the method crucially depends on the
choice of the reaction coordinate. This is a very important problem in practice, unfortunately
rather ill-posed.

A simple example of metastable dynamics

Consider the potential energy

V (x, y) =
1

6

[
4(1− x2 − y2)2 + 2(x2 − 2)2 + ((x+ y)2 − 1)2 + ((x− y)2 − 1)2

]
, (7.11)

and a single particle q = (x, y) ∈ R2 evolving according to the overdamped Langevin dynamics:

dqt = −∇V (qt) dt+

 
2

β
dWt.

Figure 7.1 presents the level sets of the potential (7.11) and a typical trajectory obtained by a
Euler–Maruyama discretization. The dynamics projected in the y variable is irrelevant, whereas
the time evolution of the x variable shows that it is a “slow” variable. If the average position Eν(x)
is computed as a time-average along a trajectory, the convergence is very slow (compared to the
convergence of the average Eν(y) for instance). This suggests to choose ξ(x, y) = x.

For later purposes, we compute the free energy profile for the reaction coordinate ξ(x, y) = x:

F (x2)− F (x1) = −
1

β
ln

Ç
ψξ(x2)

ψξ(x1)

å
, (7.12)

where the marginals ψξ of the equilibrium canonical distribution are

ψξ(x) =

ˆ
R
e−βV (x,y) dy.

This profile is illustrated in Figure 7.2, together with

F ′(x) =

ˆ
R
∂xV (x, y) e−βV (x,y) dy
ˆ

R
e−βV (x,y) dy

.

Notice that F ′ is the opposite of the averaged force experienced in the direction of the reaction
coordinate (the so-called mean force). There is a high free energy barrier at x = 0, which corre-
sponds to a small value of ψξ(x). This barrier is at the origin of the metastable behavior since it
separates two regions of high probability.
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Fig. 7.1. Left: Level sets of the potential (7.11). Right: Projected trajectory in the x variable for
∆t = 0.01, β = 6.
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Fig. 7.2. Left: Potential of mean force for the potential plotted in Figure 7.1, using the x coordinate as
a reaction coordinate. From top to bottom: β = 2 (dotted line), β = 3 (dashed line), β = 4 (solid line).
Right: Associated mean forces.

Entropic and energetic barriers

Free energy barriers can have two origins, related to either energetic or entropic bottlenecks.
We give below two toy examples of purely energetic and purely entropic barriers. Of course, in
general, both components are mixed, and it is not so obvious to decide whether the metastability
of the dynamics rather has an energetic or an entropic origin (except in some limiting temperature
regime, see the discussion at the end of this section).

Purely energetic barrier.

Consider q = (q1, . . . , qD) ∈ RD, p ∈ RD, and

H(q, p) =W (q1) + V (q2, . . . , qD) +
1

2
pTM−1p, (7.13)

whereW is a one-dimensional double-well potentialW (q1) = h(q21−1)2 with h large enough. Then,
choosing the first coordinate q1 as a reaction coordinate: ξ(q) = q1, it holds (up to a multiplicative
constant which does not depend on z):

e−βF (z) =

ˆ
R2D−1

e−βH(z,q2,...,qD,p1,...,pD) dq2 . . . dqD dp1 . . . dpD,
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so that
F (z2)− F (z1) =W (z2)−W (z1).

In this case, it is clear that free energy barriers are purely of energetic origin.

Purely entropic barrier.

Entropic barriers are often encountered in complex systems with many degrees of freedom. In this
case, the system typically has enough energy to overcome the energetic barriers it can encounter,
but has not, somehow, got its energy concentrated in the right modes or directions. It is expected
that entropic barriers increase with the dimensionality of the system (think of a random walk in
a high-dimensional space).

A toy model of an entropic barrier is the potential presented in Figure 7.3. The potential is
zero inside the curve, and +∞ outside, so that the system is confined in the bone-shaped region.
Here, q = (x, y) ∈ D = {q ∈ R2 | V (q) = 0}. Denote by d the width of the tunnel between the two
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Fig. 7.3. Left: Potential for which entropic barriers have to be overcome, in the case L1 = 2, L2 = 4 and
L3 = 2. The potential is 0 in the region enclosed by the curve, and +∞ outside. Right: Associated free
energy profile when the x coordinate is the reaction coordinate (β = 1).

metastable regions, by 2L1 its length, by L2 the length of the transition region, and by L3 the
length of the initial and final rectangular domains, which are of heights ∆. We choose ξ(q) = x as
the reaction coordinate. Then,

F (x) =


−β−1 ln d when |x| 6 L1,

−β−1 ln
Å
d+

∆− δ
L2

(|x| − L1)

ã
when L1 6 |x| 6 L1 + L2,

−β−1 ln∆ when L1 + L2 6 |x| 6 L1 + L2 + L3.

(7.14)

There is a free energy barrier in the tunnel region, arising from the contraction of the phase space
volume: Less configurations are accessible, although the energy has not changed. This barrier has
no energy component in it since the average energy for a fixed value of the reaction coordinate is
zero.

Figure 7.4 presents a typical trajectory in the case L1 = L3 = 2, L2 = ∆ = 4, δ = 0.2, for a
Metropolis random walk with proposal moves

q̃n+1 = qn +

 
2τ

β
Gn,

where (Gn)n>0 are independent and identically distributed centered Gaussian random variables
of identity covariance. This simply amounts here to setting qn+1 = q̃n+1 when q̃n+1 ∈ D, and
qn+1 = qn otherwise. The simulation results show that the x coordinate only significantly varies
on long timescales, which is a typical signature of metastability.
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Fig. 7.4. Typical trajectory of the variable x for the potential presented in Figure 7.3, when a Metropolis
dynamics is used, for the parameters τ = 0.1 and β = 1. The time variable is defined as the number of
iterations times the typical time τ .

Temperature dependence of the free energy barrier.

The temperature dependence of the free energy barrier is a good indicator of the nature of the
bottleneck. Indeed, in the case of a purely energetic barrier (7.13), the ratio of the marginal
distributions

e−β(F (z1)−F (z0)) = e−β(W (z1)−W (z0))

varies exponentially as a function of β, whereas, for the example (7.14) of purely entropic bar-
rier, this ratio does not depend on β. In general, it is expected that free energy barriers at low
temperatures (i.e. in the limit β → +∞) are mostly of energetic nature, in accordance with large
deviation principles [96]. On the other hand, at high temperatures (in the limit β → 0),

F (z1)− F (z0) = −
1

β
ln

Üˆ
D
e−βV (q) δξ(q)−z1(dq)ˆ

D
e−βV (q) δξ(q)−z0(dq)

ê
' − 1

β
ln

Üˆ
D
δξ(q)−z1(dq)ˆ

D
δξ(q)−z0(dq)

ê
,

provided the integrals

I(z) =

ˆ
D
δξ(q)−z(dq)

are finite for z0 and z1. In this case the free energy difference is controlled at first order by
the entropic contribution. Indeed, I(z) measures the accessible phase space for the constraint
ξ(q) = z, and some entropy can be defined from this volume according to Boltzmann’s definition
of the entropy as the logarithm of a density of states.

Free energy biased sampling

We make precise here how to use the free energy to bias the dynamics, by considering the modified
potential V (q) − F (ξ(q)). Notice that the free energy associated to the reaction coordinate ξ for
this modified potential is constant:

− 1

β
ln

ˆ
Σ(z)

e−β(V−F◦ξ)(q) δξ(q)−z(dq) =
1

β
lnZµ.

The above formula is a consequence of the definition (7.7) of the free energy F (z), using also the
equality F (ξ(q)) = F (z) on Σ(z). The marginal law of Z−1 e−β(V−F◦ξ)(q) dq along ξ is therefore
the uniform law.
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If ξ completely describes the metastability of the potential V as in the previous examples, the
modified potential V − F ◦ ξ is no longer metastable. An efficient importance sampling method
can then be obtained, especially when F does not vary too much. We now numerically illustrate
this strategy.

Application to the two-dimensional double-well potential.

Consider the system described by the potential (7.11). Figure 7.5 presents the new potential
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Fig. 7.5. Left: Modified potential V −F ◦ ξ. Right: Projected trajectory in the x variable for ∆t = 0.01,
β = 6 for the dynamics associated with the modified potential.

V −F ◦ ξ (where the free energy bias, computed with standard quadrature rules, has been applied
for |x| 6 1.7) and a typical trajectory of the overdamped Langevin dynamics for the potential
V −F ◦ξ, projected on the x coordinate. The comparison with Figure 7.1 shows that the transitions
from the region x < 0 to the region x > 0 are now sufficiently frequent in order to attain good
sampling accuracies.

Application to the entropic barrier problem.

Figure 7.6 presents the results for a Metropolis random-walk dynamics biased by the free en-
ergy (7.14) in the case of the potential presented in Figure 7.3. As in the previous case, the
metastability is removed, and many transitions are observed from one well to the other (compare
with Figure 7.4). The effect of the free energy bias is to increase the likelihood of regions close to
the transition zone, so that many more crossings are attempted.

7.2 Numerical methods to compute free energy differences

We present in this section the key ideas behind the methods currently available to compute free
energy differences. Some of these techniques are suited both for alchemical transitions and transi-
tions indexed by a reaction coordinate, but not all of them. According to the classification proposed
in [178], the currently available techniques fall within the following four classes:

(i) The first technique, dating back to [148], is thermodynamic integration, which mimics the
quasi-static evolution of a system as a succession of equilibrium samplings (this amounts to an
infinitely slow switching between the initial and final states). In practice, it allows to compute
free energy differences by integrating the derivative of the free energy, which happens to be a
canonical average for a fixed value of the reaction coordinate or alchemical parameter. This
technique can be used both for alchemical transitions and transitions indexed by reaction
coordinates;
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Fig. 7.6. Typical trajectory for the potential exhibiting an entropic barrier when the dynamics is biased
by the analytically-known free energy. The numerical parameters are the same as for Figure 7.4.

(ii) The second one is based on straightforward sampling methods. In the alchemical case, the
free energy perturbation method, introduced in [282], recasts free energy differences as usual
canonical averages. In the reaction coordinate case, usual sampling methods can also be
employed, relying on histogram methods (see [178, Section 2.5]);

(iii) A more recent class of methods relies on dynamics with an imposed schedule for the reac-
tion coordinate or the alchemical parameter. These techniques therefore use nonequilibrium
dynamics. Equilibrium properties can however be recovered from the nonequilibrium trajec-
tories with a suitable exponential reweighting, see [143, 142]. This technique can handle both
alchemical transitions and transitions indexed by reaction coordinates. It also has many sim-
ilarities with free-energy perturbation since the corresponding free-energy estimators have
the same mathematical structure (exponential averages);

(iv) Finally, adaptive biasing dynamics may be used in the reaction coordinate case. The switch-
ing schedule is not imposed a priori, but a biasing term in the dynamics forces the transition
by penalizing the regions which have already been visited. This biasing term can be a bi-
asing force as for the Adaptive Biasing Force technique of [58], or a biasing potential as
for the Wang-Landau method [279, 278], nonequilibrium metadynamics [138] or Self-Healing
Umbrella Sampling [188].

We refer to Figure 7.7 for a schematic comparison of the computational methods in the reaction
coordinate case. We next give a flavor of these approaches, in the simple setting where D = DD

(with D = R or T),
ξ(q) = q1, Σ(z) = DD−1,

in order to make the presentation more transparent and limit the technicalities related to the
geometry of the submanifolds associated with the level sets of ξ (see [178] for an extensive treatment
of these aspects). Note that, in view of Remark 7.3, formulas in the alchemical setting are obtained
by a straightforward modification of the equations below.

7.2.1 Thermodynamic integration

Thermodynamic integration consists in remarking that

F (z2)− F (z1) =
ˆ z2

z1

F ′(s) ds, (7.15)

and that the derivative

F ′(z) =

ˆ
DD−1

∂q1V (z, q2, . . . , qD) e
−βV (z,q2,...,qD) dq2 . . . dqDˆ

DD−1

e−βV (z,q2,...,qD) dq2 . . . dqD
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(a) Thermodynamic integration: a projected dy-
namics is used to sample each “slice” of the phase
space.

(b) Histogram method: sample points around the
level sets are generated.

(c) Nonequilibrium dynamics: the switching is
imposed a priori and is the same for all trajec-
tories.

(d) Adaptive dynamics: the system is forced to
leave regions where the sampling is sufficient.

Fig. 7.7. Cartoon comparison of the different techniques to compute free energy differences in the reaction
coordinate case.

is the canonical average of ∂q1V (z, ·) with respect to the canonical measure in the remaining
variables (q2, . . . , qD):

νz(dq2 . . . dqD) = Z−1z e−βV (z,q2,...,qD) dq2 . . . dqD. (7.16)

In practice, F ′(si) is computed using classical sampling techniques targetting the measure νsi
for a sequence of values si ∈ D . The integral on the right-hand side of (7.15) is then integrated
numerically to obtain the free energy difference profile. The extension to transitions indexed by a
reaction coordinate is presented in [178, Chapter 3].

7.2.2 Methods based on straightforward sampling

Free energy perturbation.

Free energy perturbation is a technique which is restricted to the computation of free energy
differences in the alchemical case (see however Remark 7.3 for an extension of the alchemical
setting to the reaction coordinate case). It consists in rewriting the free energy difference as

F (z2)− F (z1) = −
1

β
ln

ˆ
DD−1

e−β[V (z2,·)−V (z1,·)]dνz1 ,
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where νz is defined in (7.16). An approximation of F (z2)− F (z1) is then obtained by generating
configurations (qn2 , . . . , qnD) distributed according to νz1 and computing the empirical average

1

Niter

Niter∑
n=1

e−β[V (z1,q
n
2 ,...,q

n
D)−V (z2,q

n
2 ,...,q

n
D)].

However, the initial and the final distributions νz2 and νz1 often hardly overlap. Intermediate
steps should then be considered, or some importance sampling strategy should be used to improve
the numerical accuracy, see the presentation in [178, Section 2.4.1]. It is also possible to resort
to bridge sampling [26]. In this case, the free energy difference F (z2) − F (z1) is estimated using
sample points from νz2 and νz1 , see [178, Section 2.4.2].

Histogram methods.

A naive algorithm to compute approximate free energy differences would be to sample configu-
rations using a simple dynamics ergodic with respect to the canonical measure, and to compute
approximations of the marginal law in the reaction coordinate. More precisely, this can be done in
practice by discretizing the values of the reaction coordinate into small intervals, and approximat-
ing the free energy by computing the canonical average of the indicator function of these intervals
in the limit when the interval width ∆z goes to 0. Defining

χz,∆z(q) =
1

∆z
1|ξ(q)−z|6∆z/2,

it holds

− 1

β
lnEµ(χz,∆z) = −

1

β
ln

Å
1

Zµ

ˆ
E

1|ξ(q)−z|6∆z/2

∆z
e−βH(q,p) dq dp

ã
−−−−→
∆z→0

F (z) = − 1

β
ln

Å
1

Zµ

ˆ
E
e−βH(q,p) δξ(q)−z(dq) dp

ã
. (7.17)

However, the metastable features of the dynamics used for sampling usually prevent such a simple
strategy from being efficient, see Section 7.1.3. The idea of histogram methods is to sample con-
figurations centered on some level set Σ(z), typically by sampling canonical measures associated
with modified potentials

V (q) +
1

2η

(
ξ(q)− z

)2
,

where η > 0 is a small parameter, and to construct a global sample for the canonical measure
µ(dq dp) by concatenating the sample points with some appropriate weighting factor; see [178,
Section 2.5] for further precision. Once this global sample is obtained, an approximation of the
free energy is obtained with (7.17) (for ∆z small enough).

7.2.3 Nonequilibrium dynamics

Free energy differences F (z2)−F (z1) can be expressed as a nonlinear average over nonequilibrium
trajectories, using the so-called Jarzynski equality [143, 142]. This identity can easily be obtained
for a system governed by Hamiltonian dynamics, with initial conditions at equilibrium (according
to the canonical measure) and subjected to a switching schedule

Z : [0, T ]→ [z1, z2], Z (0) = z1, Z (T ) = z2.

We first derive the identity, and then indicate how to extend it to stochastic dynamics using the
Feynman–Kac formula. We consider in any case initial conditions at time 0 distributed according
to the probability measure µz1 , where

µz(dq2 . . . dqD dp2 . . . dpD) = Z−1z e−βHz(q2,...,qD,p2,...,pD) dq2 . . . dqD dp2 . . . dpD,



7.2 Numerical methods to compute free energy differences 173

with

Hz(q2, . . . , qD, p2, . . . , pD) = V (z, q2, . . . , qD) +

D∑
i=2

p2i
2m

,

where we considered for simplicity that M = mIdD.
When the switching is performed with Hamiltonian dynamics, the configurations are evolved

according to the following non-autonomous ordinary differential equation for 0 6 t 6 T (compare
with (2.6)): 

dqi
dt

(t) =
pi(t)

m
,

dpi
dt

(t) = −∂qiV (Z (t), q2(t), . . . , qD(t)),

2 6 i 6 D. (7.18)

Defining by φZ the flow associated with this dynamics, the work performed on the system starting
from some initial conditions (q02 , . . . , q0D, p

0
2, . . . , p

0
D) is defined as

W
(
q02 , . . . , q

0
D, p

0
2, . . . , p

0
D

)
=

ˆ T

0

∂q1V (Z (t), q2(t), . . . , qD(t)) Ż (t) dt (7.19)

=
(
Hz2 ◦ φZ

T −Hz1

) (
q02 , . . . , q

0
D, p

0
2, . . . , p

0
D

)
,

where we computed the time derivative of t 7→ HZ (t)(q2(t), . . . , qD(t), p2(t), . . . , pD(t)) to obtain
the last equality. Then,

ˆ
E
e−βW(q2,...,qD,p2,...,pD) µz1(dq2 . . . dqD dp2 . . . dpD)

= Z−1z1

ˆ
E
e−β(Hz2◦φ

Z
T )(q2,...,qD,p2,...,pD) dq2 . . . dqD dp2 . . . dpD.

Since φZ
T defines a change of variables of Jacobian 1, the above equality can be restated as

Eµz1
(
e−βW

)
=
Zz2
Zz1

= e−β(F (z2)−F (z1)), (7.20)

where the expectation is taken with respect to initial conditions distributed according to µz1 . This
formula is called the Jarzynski identity. It shows that one can recover an equilibrium quantity,
namely the free energy difference F (Z (T )) − F (Z (0)) = F (z2) − F (z1), from non-equilibrium
(time-inhomogeneous) dynamics started at equilibrium.

As hinted at above, it is possible to extend the identity (7.20) to situations where the dynamics
is stochastic, for instance when (7.18) is replaced by the following Langevin dynamics,

dqi,t =
pi,t
m

dt,

dpi,t = −∂qiV (Z (t), q2,t, . . . , qD,t) dt− γ
pi,t
m

dt+

 
2γ

β
dWi,t,

2 6 i 6 D,

or the following overdamped Langevin dynamics:

dqi,t = −∂qiV (Z (t), q2,t, . . . , qD,t) dt+

 
2

β
dWi,t, 2 6 i 6 D. (7.21)

In the latter case, initial conditions are distributed according to the probability measure νz1 ,
where νz denotes the marginal distribution in the variables (q2, . . . , dD) of µz. For both cases, the
work is still defined as (7.19). For overdamped Langevin dynamics, the work at time t is therefore

Wt (q2,0, . . . , qD,0) =

ˆ t

0

∂q1V (Z (s), q2,s, . . . , qD,s) Ż (s) ds.
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Proposition 7.1. Consider a schedule Z ∈ C1([0, T ]), and assume that (q2,t, . . . , qD,t)06t6T sat-
isfies (7.21) with initial conditions distributed according to the probability measure νZ (0). Then,
for any time t ∈ [0, T ],

E
[
e−βWt

]
= e−β[F (Z (t))−F (Z (0))]. (7.22)

Proof. The proof is based on a Feynman–Kac formula. For a fixed time t ∈ (0, T ], let us consider
a C∞ solution v : [0, t]×DD−1 → R to the backward-in-time partial differential equation

∂sv(s, x) = −Lsv(s, x) + β∂q1V (Z (s), x)Ż (s)v(s, x) for (s, x) ∈ [0, t]×DD−1,

v(t, x) = f(x) for x ∈ DD−1,

where Ls = −∇V (Z (s), ·) · ∇ + β−1∆ is the infinitesimal generator of (7.21), which acts on
functions of (q2, . . . , qD). This is a standard parabolic equation which admits a unique C∞ solution
under standard regularity assumptions on the coefficients, the domain D and the function f . The
Feynman–Kac formula in this context is given by

v(s, x) = Es,x
Ä
f(q2,t, . . . , qD,t) e

−β(Wt−Ws)
ä
, (7.23)

where the superscript s, x indicates that one considers the solution to (7.21) for t > s with initial
condition (q2,s, . . . , qD,s) = x. To prove this equality, we use Itô calculus over the time interval [s, t]
to write

v(t, q2,t, . . . , qD,t) exp

Ç
−β
ˆ t

s

∂q1V (Z (θ), q2,θ, . . . , qD,θ)Ż (θ) dθ

å
= v(t, q2,s, . . . , qD,s) + Ms,t,

with the martingale

Ms,t =

 
2

β

ˆ t

s

exp

Å
−β
ˆ r

s

∂q1V (Z (θ), q2,θ, . . . , qD,θ)Ż (θ) dθ

ã
∇v(r, q2,r, . . . , qD,r) · dWr,

where we have used the partial differential equation satisfied by v to cancel the bounded variation
part in the Itô formula. Equation (7.23) then immediately follows by taking the expectation Es,x.

Now, it is easy to check that for any s ∈ [0, t],

d

ds

Åˆ
DD−1

v(s, x) e−βV (Z (s),x) dx

ã
=

ˆ
DD−1

î
∂sv(s, x)− β∂q1V (Z (s), x)Ż (s)v(s, x)

ó
e−βV (Z (s),x) dx

= −
ˆ

DD−1

Lsv(s, x) e−βV (Z (s),x) dx = 0,

where the last equality is a consequence of the invariance of the canonical measure (see (4.8) for
overdamped Langevin dynamics at s fixed). Therefore,

ˆ
DD−1

v(t, x) e−βV (Z (t),x) dx =

ˆ
DD−1

v(0, x) e−βV (Z (0),x) dx.

Using (7.23), this equality can be rewritten as

ZZ (t)

Zz1

ˆ
DD−1

f(x)
e−βV (Z (t),x)

ZZ (t)
dx =

ˆ
DD−1

E0,x[f(q2,t, . . . , qD,t) exp(−βWt)]
e−βV (Z (0),x)

Zz1
dx.

Taking f = 1, the left-hand side is e−β[F (Z (t))−F (Z (0))], while, by a conditioning argument on
initial conditions, the right-hand side is equal to E(exp(−βWt)), where the weightWt is computed
using the solution to (7.21) with initial conditions distributed according to the probability mea-
sure νZ (0). This concludes the proof of (7.22). ut
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There are many extensions to this identities such as (7.22), in particular generalization to
other dynamics (including discrete-time evolutions) and to reaction coordinates with a nonlinear
structure, and to combinations of forward-in-time and backward-in-time schedules (leading to
the Jarzynski–Crooks identity); see [178, Chapter 4]. In view of the equality (7.20), it is also
already clear that the lowest values of the work dominate the nonlinear average (7.20), and the
distribution of weights e−βW is often degenerate in practice. This prevents in general an accurate
numerical computation of (7.20), and raises issues very similar to the ones encountered with
free-energy perturbation. Refined strategies are therefore needed to use nonequilibrium methods
in practice (see [178, Chapters 4 and 6]). The Jarzynski identity is mainly useful for extracting
free energy differences from experimental measurements, by performing many non-equilibrium
externally driven experiments between two states of interest [134].

7.2.4 Adaptive dynamics

Adaptive dynamics may be seen as some adaptive importance sampling strategy, with a biasing
potential at time t function of the reaction coordinate. The biasing potential converges in the
longtime limit to the free energy by construction of the dynamics. To illustrate this strategy, we
consider the case of the Adaptive Biasing Force (ABF) method [58, 125] in the simple example when
the reaction coordinate ξ(q) = q1 has values in T, while the remaining coordinates (q2, . . . , qD)
belong to RD−1.

Let us assume that we know the free energy F associated with ξ. Then, the overdamped
Langevin dynamics associated with the modified potential V − F ◦ ξ reads

dqt = −
(
∇V (qt)− F ′(q1,t) e1

)
dt+

 
2

β
dWt,

F ′(z) = Eν
(
∂q1V (q)

∣∣∣ ξ(q) = z
)
=

ˆ
RD−1

∂q1V (z, q2, . . . , qD) e
−βV (z,q2,...,qD) dq2 . . . dqDˆ

RD−1

e−βV (z,q2,...,qD) dq2 . . . dqD

,

(7.24)

where e1 = (1, 0, . . . , 0)T is the unit vector in the q1 direction, and ν is the canonical measure (4.2).
Denote by

ν̃(dq) = Z̃−1e−β[V (q)−F (q1)] dq

the stationary measure of the process (7.24). The equilibrium mean force F ′(z) can actually be
rewritten as a canonical average with respect to ν̃, conditionally on q1 = z:

F ′(z) = Eν
(
∂q1V (q)

∣∣∣ ξ(q) = z
)
= Eν̃

(
∂q1V (q)

∣∣∣ ξ(q) = z
)
. (7.25)

Indeed, the bias F (ξ(q)) is constant when ξ(q) is kept constant. Therefore, conditional averages
with respect to ν̃ for ξ(q) = z fixed are equal to conditional averages with respect to the canonical
measure (4.2) since the factor e−βF (ξ(q)) cancels out in the numerator and denominator of the
conditional average.

Now, of course, F is not known in practice. In view of (7.24)-(7.25), it seems natural to replace,
in the dynamics (7.24), the conditional expectation with respect to the stationary measure in the
expression of the equilibrium mean force, by the conditional expectation with respect to the current
law of qt: 

dqt = −
(
∇V (qt)− F ′t (q1,t) e1

)
dt+

 
2

β
dWt,

F ′t (z) = E
(
∂q1V (qt)

∣∣∣ ξ(qt) = z
)
.

(7.26)

Notice that the biasing potential Ft now explicitly depends on the time variable. Denoting
by ψt(q) dq the law of qt at time t (intuitively, the distribution of configurations obtained by
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simulating an infinite number of replicas interacting only through the common bias they are con-
structing), the biasing force F ′(z) can be rewritten in a form closer to the expression in (7.24):

F ′t (z) =

ˆ
RD−1

∂q1V (z, q2, . . . , qD)ψt(z, q2, . . . , qD) dq2 . . . dqDˆ
RD−1

ψt(z, q2, . . . , qD) dq2 . . . dqD

.

We now motivate why the adaptive dynamics (7.26) may be relevant. The distribution of the
variable ξ(qt) = q1,t is given by the marginal law with density

ψξt (z) =

ˆ
RD−1

ψt(z, q2, . . . , qD) dq2 . . . dqD.

A simple computation (see (7.34) below) shows that

∂tψ
ξ
t (z) =

1

β
∂2zψ

ξ
t (z).

The above diffusion equation implies that ψξt converges (exponentially fast) to the uniform dis-
tribution on T. Therefore, the metastable features associated with ξ are suppressed. Heuristically,
the simple diffusion equation in the direction q1 is not too surprising since the biasing force F ′t
aims precisely at counteracting in average the force experienced by the system in the direction q1.

Besides, the dynamics (7.26) in the variables q2, . . . , qD (at fixed z) is an overdamped Langevin
dynamics associated with the potential V (z, q2, . . . , qD). Assuming that the dynamics is at equi-
librium conditionnally on the z variable, the distribution of the variable q2, . . . , qD at fixed z is
the following conditional canonical distribution:

ψt(z, q2, . . . , qD)

ψξt (z)
dq2 . . . dqD = Z−1z e−βV (z,q2,...,qD) dq2 . . . dqD.

Recall also that the marginal law ψξt converges to the uniform law. On the other hand, ν̃(dq) is the
unique probability measure whose marginal distribution in the ξ variable is the uniform law, while
the conditional distributions at fixed values of ξ are equal to the canonical conditional distributions.
This motivates the convergence of ψt(q) dq towards ν̃(dq), and therefore the convergence of Ft
towards F .

The above presentation naturally suggests a parallel implementation of the dynamics through
many replicas constructing a shared biasing potential. This plain parallel implementation can be
enhanced through some selection process on the replicas (see [178, Chapter 6]). There exist also
adaptive dynamics where the biasing potential Ft is updated, in contrast to the method presented
here where the derivative of the biasing potential is updated (see [178, Section 5.1]).

7.3 Convergence of adaptive methods to compute free energies

In this section we present a typical example where the use of PDE techniques, and more precisely
entropy estimates and logarithmic Sobolev inequalities (see Section 4.3.3), appear to be very useful
for understanding the efficiency of a numerical method, namely the adaptive biasing force (ABF)
method. For pedagogical purposes, the convergence result is presented in an even simpler setting
than the one considered in Section 7.2.4, namely D = 2, and (q1, q2) = (x, y) ∈ T × R (which
simply means that V : (x, y) ∈ R2 7→ V (x, y) ∈ R is 1-periodic in the x-variable). Extensions are
discussed at the end of this section.
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7.3.1 The theoretical setting and the convergence result

In the simple setting considered here, the free energy biased dynamics (7.24) further reduces to
dxt = −∂xV (xt, yt)dt+ F ′(xt)dt+

√
2β−1dW x

t ,

dyt = −∂yV (xt, yt)dt+
√
2β−1dW y

t ,

F ′(x) = Eν(∂xV (q) | ξ(q) = x),

while the ABF dynamics (7.26) reads
dxt = −∂xV (xt, yt)dt+ F ′t (xt)dt+

√
2β−1dW x

t ,

dyt = −∂yV (xt, yt)dt+
√
2β−1dW y

t ,

F ′t (x) = E(∂xV (xt, yt)|xt = x).

(7.27)

The key idea of the approach is that if the system were immediately at equilibrium with respect
to the biased potential V (x, y) − Ft(x), then F ′t would be equal to F ′ in view of (7.25). But the
updating strategy is dynamic: Ft always keeps on changing and it is therefore not obvious how the
system behaves in the transient phase of the dynamics (7.27). The objective of the mathematical
analysis is to prove that F ′t indeed converges to F ′, and that, in addition, this convergence typically
occurs on much smaller time scales than the convergence to equilibrium for the original simple
overdamped Langevin dynamics:

dqt = −∇V (qt)dt+
√
2β−1dWt. (7.28)

In order to study the rate of convergence to equilibrium, we will actually analyse the long-time
behaviour of the density1 ψ(t, x, y) of the process (xt, yt) solution to (7.27), namely the Fokker–
Planck equation associated with (7.27):

∂tψ = ∂x[(∂xV − F ′t )ψ] + β−1∂x,xψ + ∂y[(∂yV )ψ] + β−1∂y,yψ, (x, y) ∈ T× R, (7.29)

with

∀x ∈ T, F ′t (x) =

ˆ
R
∂xV (x, y)ψ(t, x, y)dy
ˆ

R
ψ(t, x, y)dy

. (7.30)

Equation (7.30) is obtained using the fact that, for fixed time t and x ∈ T, ψ(t, x, y)dy/
´

R ψ(t, x, y)dy
is indeed the conditional law at time t of (xt, yt) given that xt = x. In the following, we denote
by ψξ the marginal of ψ along ξ (i.e. the density of xt):

ψξ(t, x) =

ˆ
R
ψ(t, x, y) dy.

In contrast to the Fokker–Planck equation for simple overdamped Langevin dynamics (7.28), i.e.,

∂tφ = div(∇V φ) + β−1∆φ

(see (4.6)), the Fokker–Planck equation (7.29)-(7.30) is a non-linear parabolic equation. The non-
linearity comes from the conditional expectation which appears in the drift term of the stochastic
differential equation (7.27). Nonetheless, the following result is obtained as consequence of the
more general convergence results provided in [177].

1 The fact that the process (xt, yt) admits a density comes from the fact that the Brownian terms in
(7.27) imply a smoothing effect on the law of the process.
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Theorem 7.1 (Convergence of ABF). Consider the ABF dynamics (7.27) on the domain T×R,
and assume that there exists ρ > 0 such that

all the conditional measures ν(dq|ξ(q) = x) satisfy LSI(ρ), (7.31)

and that the smooth potential V is such that

‖∂x,yV ‖B∞(T×R) <∞. (7.32)

Assume moreover (without loss of generality) that ρ 6= 4π2, and that ψξ(0, ·) is a positive function
such that2 ˆ

T
|∂x ln(ψξ(0, ·))|2ψξ(0, ·) < +∞.

Then there exists a positive constant C such that

∀t > 0,

 ˆ
T
|F ′t − F ′|2 6 Ce−β

−1 min(ρ,4π2)t. (7.33)

In our specific context, note that the conditional measure ν(dq|ξ(q) = x) is simply the measure

e−βV (x,y) dy´
R e−βV (x,y) dy

.

Notice in addition that if ρ = 4π2 in (7.31), one can use this result by replacing ρ by any ρ̃ < ρ,
so that (7.33) holds in this case for any ρ̃ < 4π2. Finally, we will show below (see (7.34)) that ψξ
satisfies the simple heat equation on T, so that the assumptions on ψξ(0, ·) are not too stringent:
if they are not satisfied by ψξ(0, ·), one simply has to consider the problem on the time interval
[t0,+∞) with initial condition ψξ(t0, ·), for a positive time t0.

Theorem 7.1 deserves various comments. This result first shows that the free energy Ft indeed
converges to F (up to an irrelevant additive constant) at exponential rate β−1 min(ρ, 4π2). As will
be more clear below, the limiting parameter here is ρ, the term 4π2 being only related to the rate
of convergence to equilibrium of a simple diffusion on the torus T. Further, we will actually show
that the law of (xt, yt) (and not only Ft) converges to its equilibrium value at this rate (see (7.48)
and the discussion below). This rate of convergence for ABF has to be compared with (4.44), which
shows that the original simple overdamped Langevin dynamics (7.28) converges to equilibrium with
rate β−1R, where R is the logarithmic Sobolev constant of the measure ν. In summary, by using
ABF, R has been replaced by ρ: the logarithmic Sobolev inequality constant of the measure ν has
been replaced by the logarithmic Sobolev inequality constant of the measures ν(dq | ξ(q) = x). If
ξ(q) = x is indeed a good index of the metastable features of the original dynamics, it is typically
expected that ρ � R. This inequality is actually a way to quantify the somewhat vague ideas
that a good reaction coordinate ξ should be such that “the metastability of the process (qt)t>0 is
along ξ” or that “the directions orthogonal to ξ are fast variables”, so that equilibrium is quickly
reached along those directions. For example, in the two-dimensional examples of Figure 7.1 , the
logarithmic Sobolev constant of the measure ν is typically very small, while, for a fixed value
of ξ(x, y) = x, the conditional measures ν(dq | ξ(q) = x) are gentle unimodal measures with much
larger associated logarithmic Sobolev constants. Unfortunately, logarithmic Sobolev constants are
very delicate to evaluate, and it thus seems very difficult to turn this measure of the quality of ξ
into a numerical procedure to construct good reaction coordinates. This result should thus be seen
as a way to understand theoretically the conditions under which an ABF strategy will be efficient,
the measure of efficiency being the rate of convergence to equilibrium.

2 The quantity
´

T |∂x ln(ψ
ξ(0, ·))|2ψξ(0, ·) is simply I(ψξ(0, ·)|ψξ∞), where ψξ∞ = 1 is the long-time limit

of ψξ(t, ·) and I the Fisher information (see (7.37)).
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7.3.2 Proof of Theorem 7.1

The proof of convergence is based on two ingredients: (i) the observation that ψξ(t, x) (which, we
recall, is the density at time t of xt) satisfies the simple diffusion equation

∂tψ
ξ = β−1∂x,xψ

ξ on T, (7.34)

which is again a manifestation of the fact that, by using ABF, the potential V is “flattened” along
the reaction coordinate ξ; (ii) entropy estimates in the vein of those explained in Section 4.3.3,
and a two-scale decomposition of the entropy in the spirit of [210, 111, 172]. Let us now present
these ideas in detail.

The first ingredient of the proof is based on a simple computation, which consists in looking
at the evolution of the marginal of ψ along ξ, namely,

ψξ(t, x) =

ˆ
R
ψ(t, x, y)dy. (7.35)

By direct integration in y of (7.29)-(7.30), we obtain

∂tψ
ξ(t, x) = ∂x

Åˆ
R
∂xV (x, y)ψ(t, x, y) dy − F ′t (x)ψξ(t, x)

ã
+ β−1∂x,xψ

ξ(t, x),

which yields (7.34) since
ˆ

R
∂xV (x, y)ψ(t, x, y)dy − F ′t (x)ψξ(t, x) = 0,

by the definition of F ′t (x). This means that the law of xt satisfies a simple heat equation on T, as for
a simple Brownian motion on the torus.3 This explains the interest of the ABF method: along ξ,
the time marginal of the process evolves as if the potential V was perfectly flat. The convergence
to equilibrium of ψξ(t, x) is thus very easy to analyse, and in particular we have the following
convergence in terms of Fisher information, which will be useful later (see [177, Lemma 5.29] for
a proof).

Lemma 7.1 (Convergence of ψξ). Let ϕ be the solution of the heat equation on the torus T:

∂tϕ = β−1∂x,xϕ, (7.36)

with initial condition ϕ(0, ·) such that
ˆ

T
ϕ(0, ·) = 1, ϕ(0, ·) > 0, I(ϕ(0, ·)|ϕ∞) < +∞,

where ϕ∞ ≡ 1 is the long-time limit of ϕ. Then,

∀t > 0, I(ϕ(t, ·) | ϕ∞) 6 I(ϕ(0, ·) | ϕ∞) e−β
−18π2t. (7.37)

We recall that

I(ϕ(t, ·) | ϕ∞) =

ˆ
T

∣∣∣∣∂x lnÅϕ(t, x)ϕ∞(x)

ã∣∣∣∣2 ϕ(t, x)dx
is the Fisher information of ϕ(t, x)dx with respect to ϕ∞(x)dx (see (4.40)). The rate of convergence
to equilibrium for ψ(t, x, y) is limited by the rate of convergence to equilibrium for ψξ(t, y). This
explains why there is a 4π2 appearing in the right-hand side of (7.33). The value 4π2 is simply the
first non-zero eigenvalue of the Laplacian on the torus T, which determines the rate of convergence
to equilibrium for the heat equation (7.36) on T.
3 The reader should not be confused here: this does not mean that the law of the process (xt)t>0 (on
C(R+,T)) is the same as the law of the process (Wt)t>0. Only the time marginals agree.
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To understand the convergence to equilibrium, it now remains to understand the convergence
of the conditional measures ψ(t, x, y) dy/ψξ(t, x). We will use entropy techniques to study the
long-time behaviour, as in Section 4.3.3. Here comes the second ingredient of the proof, namely a
decomposition of the entropy in terms of marginal and conditional measures, very much inspired
by [210, 111]. Let us explain this decomposition. We denote by ψ∞ the expected long-time limit
of ψ(t, x, y), defined by

ψ∞(x, y) = Z−1e−β[V (x,y)−F (x)], Z =

ˆ
T2

e−β(V−F◦ξ). (7.38)

The marginal of ψ∞ along ξ is

ψξ∞(x) = Z−1
ˆ

R
e−β[V (x,y)−F (x)] dy = 1,

and the conditional measure of ψ∞(x, y) dx dy given ξ(x, y) = x is

ψ∞(x, y)dy´
R ψ∞(x, y)dy

= ν(· | ξ(q) = x).

Likewise, as explained above, the marginal of ψ along ξ is given by (7.35) and the conditional
measure of ψ(t, x, y) dx dy given that ξ(x, y) = x is ψ(t, x, y) dy/ψξ(t, x). Let us now introduce the
total entropy (see (4.39))

E(t) = H(ψ(t, ·) |ψ∞),

the macroscopic entropy (namely the relative entropy of the marginal laws)

EM(t) = H(ψξ(t, ·) |ψξ∞),

and the microscopic entropy

Em(t) =

ˆ
T
em(t, x)ψ

ξ(t, x) dx, (7.39)

where em(t, x) is the relative entropy associated with the conditional measures:

em(t, x) = H
Ç
ψ(t, x, y) dy

ψξ(t, x)

∣∣∣∣∣ ψ∞(x, y) dy

ψξ∞(x)

å
. (7.40)

It is straightforward to check the following relation.

Lemma 7.2 (Extensivity of entropy). For any t > 0, it holds E(t) = EM(t) + Em(t).

In order to measure the convergence of ψ(t, ·) to ψ∞, we study the rate of convergence to zero
of E. We already know that EM(t) converges exponentially fast to zero, i.e.,

∀t > 0, EM(t) 6 EM(0)e−8β
−1π2t, (7.41)

since the logarithmic Sobolev constant of the uniform law on T is 4π2 (see for example [20,
Proposition 5.7.5]) and it is therefore sufficient to understand the convergence of Em(t) to zero.
The convergence (7.41) can also be seen as a consequence of Lemma 7.1 since

EM(t) = H
(
ψξ(t, ·)

∣∣∣ψξ∞) =
1

β

ˆ ∞
t

I
(
ψξ(t, ·)

∣∣∣ψξ∞) dt 6 1

8π2
I
(
ψξ(t, ·)

∣∣∣ψξ∞) = − β

8π2

dEM

dt
(t).

The proof is then conducted as follows. Starting from Lemma 7.2, we have4

4 Here and in the following, even though ψξ∞ is simply the constant function equal to 1 in our setting, we
keep the notation ψξ∞ in the various expressions we obtain in order to emphasize the homogeneity of
the resulting formulas, which remain the same for more general functions ξ and more general settings.
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dEm

dt
=
dE

dt
− dEM

dt
= −β−1

ˆ
T

ˆ
R

∣∣∣∣∇ ln

Å
ψ

ψ∞

ã∣∣∣∣2 ψ +

ˆ
T

ˆ
R
(F ′t − F ′)∂x ln

Å
ψ

ψ∞

ã
ψ

+ β−1
ˆ

T

∣∣∣∣∣∂x ln
Ç
ψξ

ψξ∞

å∣∣∣∣∣2 ψξ, (7.42)

which is easily obtained after some integration by parts, using the fact that ψ satisfies the following
equation, which is equivalent to (7.29):

∂tψ = β−1div

Å
ψ∞∇

Å
ψ

ψ∞

ãã
+ ∂x((F

′ − F ′t )ψ).

We next rely on a very useful formula for F ′t − F ′.

Lemma 7.3. For all t > 0, it holds

β(F ′t − F ′) =
ˆ

R
∂x ln

Å
ψ

ψ∞

ã
ψ

ψξ
dy − ∂x ln

Ç
ψξ

ψξ∞

å
. (7.43)

Proof. A simple computation gives (using the fact that ψξ∞ = 1)
ˆ

R
∂x ln

Å
ψ

ψ∞

ã
ψ

ψξ
dy − ∂x ln

Ç
ψξ

ψξ∞

å
=

ˆ
R
∂x (lnψ)

ψ

ψξ
dy −

ˆ
R
∂x lnψ∞

ψ

ψξ
dy − ∂x

(
lnψξ

)
=

ˆ
R

∂xψ

ψξ
dy + β

ˆ
R
∂x(V − F )

ψ

ψξ
dy − ∂x

(
lnψξ

)
= β(F ′t − F ′),

where we used in the last line

∂x
(
lnψξ

)
=

1

ψξ
∂x

Åˆ
R
ψ dy

ã
=

ˆ
R

∂xψ

ψξ
dy.

This gives the claimed result. ut

By using (7.43) in (7.42), we obtain

dEm

dt
= −β−1

ˆ
T

ˆ
R

∣∣∣∣∂y lnÅ ψ

ψ∞

ã∣∣∣∣2 ψ
− β−1

ˆ
T

ˆ
R

∣∣∣∣∂x lnÅ ψ

ψ∞

ã∣∣∣∣2 ψ + β−1
ˆ

T

Åˆ
R
∂x ln

Å
ψ

ψ∞

ã
ψ dy

ã2 1

ψξ
dx

− β−1
ˆ

T

ˆ
R
∂x ln

Ç
ψξ

ψξ∞

å
∂x ln

Å
ψ

ψ∞

ã
ψ + β−1

ˆ
T

∣∣∣∣∣∂x ln
Ç
ψξ

ψξ∞

å∣∣∣∣∣2 ψξ.
Note that by the Cauchy–Schwarz inequality, the term on the second line above is non-positive.
Therefore, again using (7.43),

dEm

dt
6 −β−1

ˆ
T

ˆ
R

∣∣∣∣∂y lnÅ ψ

ψ∞

ã∣∣∣∣2 ψ − ˆ
T
∂x ln

Ç
ψξ

ψξ∞

å
ψξ(F ′t − F ′). (7.44)

Besides, using the assumption (7.31), we know that for any positive time t, and for any x ∈ T,

H
Ç
ψ(t, x, ·)
ψξ(t, x)

∣∣∣∣∣ψ∞(x, ·)
ψξ∞(x)

å
6

1

2ρ
I
Ç
ψ(t, x, ·)
ψξ(t, x)

∣∣∣∣∣ψ∞(x, ·)
ψξ∞(x)

å
,

which is given more explicitly by
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em(t, x) 6
1

2ρ

ˆ
R

∣∣∣∣∣∂y ln
Ç

ψ/ψξ

ψ∞/ψ
ξ
∞

å∣∣∣∣∣2 ψ

ψξ
dy =

1

2ρ

ˆ
R

∣∣∣∣∂y lnÅ ψ

ψ∞

ã∣∣∣∣2 ψ

ψξ
dy,

since ψξ and ψξ∞ do not depend on y. Therefore,

Em(t) =

ˆ
T
em(t, x)ψ

ξ(t, x) dx 6
1

2ρ

ˆ
T

ˆ
R

∣∣∣∣∂y lnÅ ψ

ψ∞

ã∣∣∣∣2 ψ.
By using this in (7.44), we thus obtain

dEm

dt
6 −2β−1ρEm −

ˆ
T
∂x ln

Ç
ψξ

ψξ∞

å
ψξ(F ′t − F ′). (7.45)

To continue, we now need an upper bound on F ′t − F ′ in terms of the difference between the
two conditional measures. It seems natural that such an estimate holds since

F ′t (x)− F ′(x) =
ˆ

R
∂xV (x, y)

ψ(t, x, y) dy

ψξ(t, x)
−
ˆ

R
∂xV (x, y)

ψ∞(x, y) dy

ψξ∞(x)

is the “distance” (in some sense) of the averages of the same function ∂xV with respect to the two
conditional measures ψ(t, x, y) dy/ψξ(t, x) and ψ∞(x, y) dy/ψξ∞(x). It is the purpose of the next
lemma (which is probably the most technical part of the proof) to obtain such an estimate, the
“distance” being measured in terms of relative entropy.

Lemma 7.4. Suppose that assumptions (7.31) and (7.32) are satisfied. Then, for all t > 0 and
for all x ∈ T,

|F ′t (x)− F ′(x)| 6 ‖∂x,yV ‖B∞
 

2

ρ
em(t, x), (7.46)

where em is defined in (7.40).

Proof. The proof uses the Talagrand inequality, which relates the Wasserstein distance and the
relative entropy between two probability measures. Let us first recall the Wasserstein distance and
the Talagrand inequality.

Let us introduce the set of coupling measures Π(νt,x, ν∞,x), where, for ease of notation, we
let νt,x(dy) = ψ(t, x, y) dy/ψξ(t, x) and ν∞,x(dy) = ψ∞(x, y) dy/ψξ∞(x), respectively, denote the
conditional measures of ψ(t, x, y) dx dy and ψ∞(x, y) dx dy given that ξ(x, y) = x. By definition of
Π(νt,x, ν∞,x), the measures π ∈ Π(νt,x, ν∞,x) are probability measures over R × R such that, for
any C∞ and compactly supported test function ϕ : R→ R,

ˆ
R×R

ϕ(y1)π(dy1 dy2) =

ˆ
R
ϕ(y1)νt,x(dy1)

and ˆ
R×R

ϕ(y2)π(dy1 dy2) =

ˆ
R
ϕ(y2)ν∞,x(dy2).

In other words, the marginal of π ∈ Π(νt,x, ν∞,x) on the first (resp. the second) variable is νt,x
(resp. ν∞,x). We next define the Wasserstein distance between two probability measures π1 and
π2 on Rd:

W(π1, π2) =

 
inf

π∈Π(π1,π2)

ˆ
R×R
|y1 − y2|2 π(dy1 dy2).

The Wasserstein distance W(νt,x, ν∞,x) between νt,x and ν∞,x appears very naturally when esti-
mating the difference F ′t − F ′. Indeed, for any coupling measure π ∈ Π(νt,x, ν∞,x), we have
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|F ′t (x)− F ′(x)| =
∣∣∣∣ˆ

R×R
(∂xV (x, y)− ∂xV (x, y′))π(dy dy′)

∣∣∣∣
6 ‖∂x,yV ‖B∞

ˆ
R×R
|y − y′|π(dy dy′)

6 ‖∂x,yV ‖B∞
 ˆ

R×R
|y − y′|2 π(dy dy′).

so that, by taking the infimum over all π ∈ Π(νt,x, ν∞,x),

|F ′t (x)− F ′(x)| 6 ‖∂x,yV ‖B∞W (νt,x, ν∞,x). (7.47)

This is where the assumption (7.32) is needed.
Now, in (7.45), it is not the Wasserstein distance between νt,x and ν∞,x which appears, but

the relative entropy (7.40). The Talagrand inequality is exactly what we need since it relates
the Wasserstein distance to the relative entropy between two measures. More precisely, we use
following result, proved in a more general setting in [33, 211].

Lemma 7.5 (Talagrand inequality). Let π2 be a probability measure on Rd which satisfies
LSI(ρ). Then, for all probability measures π1 on Rd,

W(π1, π2) 6

 
2

ρ
H(π1|π2).

Using this result and assumption (7.31), which exactly states that ν∞,x = ν(dq | ξ(q) = x)
satisfies LSI(ρ), we thus have

∀t > 0, W(νt,x, ν∞,x) 6

 
2

ρ
H(νt,x | ν∞,x) =

 
2

ρ
em(t, x).

Combining this inequality with (7.47) leads to (7.46), which concludes the proof of Lemma 7.4. ut

Using (7.46) in (7.45), we obtain, using a Cauchy–Schwarz inequality,

dEm

dt
6 −2β−1ρEm +

 ˆ
T
ψξ|F ′t − F ′|2

Ãˆ
T

∣∣∣∣∣∂x ln
Ç
ψξ

ψξ∞

å∣∣∣∣∣2 ψξ
6 −2β−1ρEm + ‖∂x,yV ‖B∞

 
2

ρ
EmI(ψξ |ψξ∞).

By dividing by 2
√
Em and using the estimate (7.37) on I(ψξ |ψξ∞), we thus obtain

d
√
Em

dt
6 −β−1ρ

√
Em + ‖∂x,yV ‖B∞

 
1

2ρ
I(ψξ(0, ·) |ψξ∞)e−4β

−1π2t.

Using the fact that ρ 6= 4π2, a Gronwall lemma5 then easily shows that there exists a constant C
such that, for all t > 0, »

Em(t) 6 Ce−β
−1 min(ρ,4π2)t. (7.48)

From this result, the extensivity of the entropy provided by Lemma 7.2, and the convergence of
the marginals in x given by (7.41), one immediately deduces that

√
E(t) (and thus ‖ψ(t, ·) −

ψ∞‖L1(T×R) by the Csiszár–Kullback inequality (4.42)) converges exponentially fast to zero with
rate β−1 min(ρ, 4π2).

5 If ρ = 4π2, then one obtains an upper bound of the form (C1 + C2t)e
−4β−1π2t.
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To deduce from these results the convergence (7.33) of ‖F ′t − F ′‖L2(T) exponentially fast with
the same rate, one simply uses the fact that ˆ

T
|F ′t − F ′|2 6 C

 ˆ
T
|F ′t − F ′|2ψξ 6 C

»
Em(t).

The first inequality is a consequence of the fact that ψξ(0, ·) is assumed to be positive and ψξ

satisfies the heat equation on T, so that ψξ is bounded from below by a positive constant. The
second inequality is a consequence of (7.46). This concludes the proof of Theorem 7.1.

7.3.3 Extensions and related works

Let us make a few comments on the specific setting in which we presented the convergence result
of Theorem 7.1. First, we assumed that the x-variable lives in the torus in order for ξ to be with
values in a compact domain, so that the free energy biased Boltzmann–Gibbs measure with density
e−β(V−F◦ξ) can be normalized. The fact that

´
e−β(V−F◦ξ) < ∞ is necessary for the dynamics

to actually have a stationary state. In practice, if ξ does not take values in a compact domain,
the classical technique is to apply the bias only over a compact domain, by using a restraining
potential W ◦ ξ (see [177, 6] for more details). Second, we assumed that ξ is a linear function
of q. Let us consider the case of more general reaction coordinates ξ : Rd → R (we consider
one-dimensional ξ for simplicity). For general reaction coordinates, one in fact has to slightly
modify the ABF dynamics (7.27) by terms which depend on |∇ξ| in order to recover the results
of Theorem 7.1 (see [177, Equation (10)]). These modifications are only necessary for theoretical
purposes: they are not used by practitioners. However, from a theoretical viewpoint, without these
additional terms, only a weaker result can be proved (see [177, Section 2.3]).

Further, Assumption (7.31) can be somewhat weakened. One can for instance consider the
situation when two channels link metastable states, so that the assumption (7.31) is only satisfied
on some bounded sub-interval of the range of ξ. In this situation, it can be shown [174] that,
provided the free energy profiles do not differ too much in each channel, then a similar convergence
result can be obtained. Let us also mention that the convergence of a variant of the ABF method,
where the biasing force is projected onto a gradient field has been established in [6]. Such a
projection makes sense since the expected limit, the mean force, is indeed a gradient.
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We discuss in lecture chapter how to compute transport coefficients such as the mobility, the
thermal conductivity or the shear viscosity. At the macroscopic level, transport coefficients relate
an external forcing acting on the system (electric field, temperature gradient, velocity field, etc)
to an average response expressed through some steady-state flux (of charged particles, energy,
momentum, etc). At the microscopic level, this is modelled by systems in a stationary state,
evolving according to perturbations of equilibrium dynamics.

It is observed that, in general, the response of the system, as encoded by the steady-state
average of the physical observable of interest (such as the velocity, the energy flux, etc), is pro-
portional to the magnitude of the forcing for small values of the forcing. This corresponds to the
so-called linear response regime. By definition, transport coefficients are the proportionality con-
stants relating the response to the forcing. It turns out that this linear response constant can in
fact be rewritten as some integrated correlation function for an equilibrium dynamics, a celebrated
equality known as the Green–Kubo formula.

We start by giving some examples of nonequilibrium dynamics in Section 8.1, before presenting
non-equilibrium dynamics from a more general perspective in Section 8.2, with some emphasis on
perturbations of equilibrium dynamics such as (8.1) or (8.2). We next show in Section 8.3 how first-
order changes in average properties with respect to some forcing parameter can be computed, and
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how these quantities are related to transport coefficients. Error estimates on the computation of
transport coefficients are provided in Section 8.4. Finally, we discuss variance reduction techniques
in Section 8.5.

8.1 Examples of nonequilibrium dynamics

In order to fix ideas, we describe below some dynamics which are considered to be out of equi-
librium (although this notion will be made clear only later on, in Section 8.2). We consider two
paradigmatic situations: cases when the drift of equilibrium dynamics is perturbed by a non-
gradient force (see Section 8.1.1), and cases when the magnitude of the fluctuation terms are
modified (see Section 8.1.2).

8.1.1 Non-gradient drifts

A simple example of Langevin dynamics perturbed by a non-gradient force is provided by the
addition of a constant force term for dynamics in a periodic domain:

dqt =M−1pt dt,

dpt = (−∇V (qt) + ηF ) dt− γM−1pt dt+
 

2γ

β
dWt,

(8.1)

where (qt, pt) ∈ E = TD × RD, F ∈ RD with |F | = 1 a given direction, and V a C∞ periodic
potential. The parameter η ∈ R determines the strength of the external forcing. A non-zero velocity
in the direction F is expected in the steady-state due to the external force F . Let us already
emphasize that F does not derive from the gradient of a periodic function: it indeed holds that
F = −∇WF (q) with WF (q) = −FT q, but the function WF is not periodic. It is precisely because
the perturbation is not of gradient type that some particle flux can appear in the steady-state.

Some qualitative properties of the steady-state of the system (provided it exists, which will be
shown in Section 8.1) can be stated by computing the average with respect to the steady-state
of quantities of the form LηΦ for various obsevables Φ (where Lη denotes the generator of the
dynamics). It is possible for instance to show that the average velocity vη in the system is such
that vη · F > 0; see for instance [137, Section 2.2].

It is of course possible to consider forcings F which genuinely depend on the position q, for
instance to compute shear viscosities using the sinusoidal transverse force method [268, 145] (which
corresponds, in a two-dimensional setting, to a force oriented in one direction, but depending on
the component of the position of the particle in the other direction), and possibly on time as
well [144].

8.1.2 Dynamics with modified fluctuation terms

Another class of perturbation is obtained by modifying the fluctuation magnitude. For Langevin
dynamics, one possible choice is{

dqt =M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+
»
2γTη(q) dWt,

(8.2)

where the temperature Tη : D → R+ is a non-negative C∞ function, of the form

Tη(q) = Tref + ηT̃ (q)

for some C∞ function T̃ and a given reference temperature Tref > 0. In order for Tη to remain non-
negative, the parameter η should be taken sufficiently small. Typically, T̃ is constant and positive
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on a subdomain D+ ⊂ D, and constant and negative on another subdomain D− ⊂ D, with some
C∞ transition between D+ and D−. Some energy flux is expected from the “hot” part D+ of the
system to the “cold” one D−.

The model (8.2) we consider here for pedagogical purposes is a simplification of more realistic
models of thermal transport such as heat transport in one dimensional chains. For a chain of N
atoms of equal masses 1, whose positions and momenta are respectively denoted by q = (q1, . . . , qN )
and p = (p1, . . . , pN ), possible equations of motion read

dqi = pi dt,

dpi =
(
v′(qi+1 − qi)− v′(qi − qi−1)

)
dt, i 6= 1, N,

dp1 =
(
v′(q2 − q1)− v′(q1)

)
dt− γp1 dt+

√
2γTL dW

1
t ,

dpN = −v′(qN − qN−1) dt− γpN dt+
√

2γTR dW
N
t ,

(8.3)

where W 1
t and WN

t are independent standard one-dimensional Brownian motions, and v is a
smooth interaction potential. This evolution corresponds to a Hamiltonian dynamics in the bulk
part of the system (that is, for i ∈ {2, . . . , N − 1}), with associated Hamiltonian

H(q, p) =

N∑
i=1

p2i
2

+ V (q), V (q) = v(q1) +

N−1∑
i=1

v(qi+1 − qi), (8.4)

and superimposed Ornstein-Uhlenbeck processes on the momenta at the two ends of the chain in
order to impose temperatures TL, TR at the boundaries. We choose here to attach the chain to a
wall on the left by setting q0 = 0 and p0 = 0 at all times, while the right end is free. Attaching the
chain on one side is important to remove the translation invariance of the whole system. Other
boundary conditions are possible, for instance fixed positions at both ends or periodic boundary
conditions (with thermostats at sites 1 ≡ N + 1 and N/2 in this case). It is also possible to
consider more general interactions among the particles in the system, in particular next-nearest
neighbor potentials and pinning potentials; and to superimpose other stochastic mechanisms such
as momenta flip, momenta exchanges, Ornstein-Uhlenbeck processes at each site [209], etc. See the
review articles [34, 183, 68, 140] for a more in-depth discussion of microscopic models of thermal
transport, with some emphasis on low (one-) dimensional systems.

8.1.3 Some remarks

The two dynamics (8.1) and (8.2) reduce to the standard Langevin dynamics (5.1) when η = 0.
Most of our analysis is illustrated with the dynamics (8.1), but we will occasionally refer to the
dynamics (8.2) as well.

As discussed more precisely in Section 8.2, dynamics such as (8.1) and (8.2) model non-
equilibrium systems since they are non reversible: the law of forward trajectories is different
from the law of backward trajectories. From a physical point of view, the arrow of time can
be read off the trajectories. We do not make a distinction here between non-reversible and non-
equilibrium systems, although such a distinction is sometimes made in the physical literature (see
for instance [29] and references therein).

Finally, let us make precise the aim of this chapter, namely the computation of transport
coefficients. For (8.1), the velocity of the particle in the direction of F at stationary state is
proportional to η, and the proportionality constant is called the mobility. For (8.2), the energy
flux in the stationary state is proportional to η, and the proportionality constant is called the
thermal conductivity. In actual physical systems such as (8.3), the parameter η is the temperature
difference TL−TR. We chose not to discuss examples related to the computation of shear viscosities,
since the methods to do so are more elaborate; see the reviews in [267, 85, 269, 268].
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8.2 Definition of non-equilibrium dynamics

We provide in this section a more general perspective on non-equilibrium dynamics, by first defining
what we mean by non-equilibrium dynamics in Section 8.2.1. We next discuss some properties of
their invariant probability measures in Section 8.2.2, and finally give an overview of computational
techniques to compute transport coefficients in Section 8.2.3.

8.2.1 Abstract characterization of non-equilibrium dynamics

As in Section 6.1, we consider a general stochastic dynamics with values in some space X :

dxt = b(xt) dt+ σ(xt) dWt.

For overdamped Langevin dynamics, x = q and X = D, while x = (q, p) and X = E for Langevin
dynamics. We assume in the sequel that the dynamics admits a unique invariant probability
measure π(dx). This can be proved using the tools from Section 3.3.1 for instance, as done for
overdamped Langevin dynamics in Section 5.4.1 and for Langevin dynamics in Section 4.3.4 since
the derivations made there can be straightforwardly extended to situations when the drift is not
gradient (see for instance the discussion after Theorem 4.5).

From a mathematical viewpoint, equilibrium dynamics are characterized by the self-adjointness
of the generator L on the weighted Hilbert space L2(π): For any smooth functions ϕ, φ with
compact supports, ˆ

X
(Lϕ)φdπ =

ˆ
X
ϕ(Lφ) dπ. (8.5)

This expresses the reversibility of the dynamics with respect to the invariant measure of the
process. A more probabilistic reformulation of the reversibility is the following: when x0 ∼ π, the
law of the forward paths (xs)06s6t is the same as the law of the backward paths (xt−s)06s6t
(note that xt ∼ π by the invariance of π). Therefore, the arrow of time cannot be read off the
trajectories.

In some cases, the reversibility property holds only up to a one-to-one transformation preserv-
ing the invariant measure. For example, for Langevin dynamics, reversibility is valid only upon
momentum reversal S(q, p) = (q,−p) as a consequence of (5.9):

ˆ
X
(Lϕ)φdπ =

ˆ
X
(ϕ ◦ S)(L(φ ◦ S)) dπ;

see [178, Section 2.2.3.1]. At the level of trajectories, this means that the law of the forward paths
(qs, ps)06s6t is the same as the law of the paths (qt−s,−pt−s)06s6t.

We define here non-equilibrium dynamics to be stochastic evolutions for which reversibility
properties such as (8.5) no longer hold true. The non-reversibility can be quantified by the entropy
production, for which fluctuation theorems hold [99, 160, 162].

8.2.2 Invariant measures

An important property of non-equilibrium systems is that their invariant measures are in general
not analytically known, in contrast to equilibrium dynamics. In addition, the invariant measure
depends non trivially on the details of the dynamics due to long-range correlations which are
generically present in non-equilibrium systems (see for instance [65]).

Let us make the latter statement precise for overdamped Langevin dynamics on the compact
configuration space T = R/Z, for a C∞ periodic potential V and β = 1. For the reversible dynamics

dqt = −V ′(qt) dt+
√
2 dWt, (8.6)

the unique invariant probability measure is Z−1e−V (q) dq, which depends only on the value of V
at the configuration q of interest (apart from a global normalization constant). For the perturbed
dynamics
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dqt = (−V ′(qt) + F ) dt+
√
2 dWt, (8.7)

where F ∈ R is a constant force, it can be shown that there exists a unique invariant probability
measure ψF (q) dq, with density

ψF (q) = Z−1F

ˆ 1

0

eV (q+y)−V (q)−Fy dy, (8.8)

where ZF is chosen such that
´ 1
0
ψF = 1. It is clear from the expression of the invariant measure

that, when F 6= 0, the invariant measure depends on the values of V everywhere. Similar expres-
sions are obtained for overdamped Langevin dynamics with multiplicative noise (4.9), as made
precise in the following result (see [92, Appendix]).

Lemma 8.1. Consider two smooth functions V : T → R+ and A : T → R, a forcing F ∈ R, and
the stochastic dynamics

dqt =

Å
−A(qt)V ′(qt) +

1

β
A′(qt) + F

ã
dt+

 
2A(qt)

β
dWt.

When minT A > 0, the dynamics admits a unique invariant probability measure with a smooth
density ψF with respect to the Lebesgue measure, which explicitly reads

ψF (q) =
1

ZF
e−βV (q)

ˆ 1

0

eβV (q+y)−Fy

A(q + y)
dy,

where ZF is a normalization constant ensuring that ψF integrates to 1 over T.

Proof. Since the configuration space is compact, the existence and uniqueness of a probability
measure follows for instance from the minorization condition of Section 4.3.4 . The fact that it
has a smooth density is provided by regularity results for the stationary Fokker–Planck equation.
To obtain the expression of ψF , we generalize the computations of [227, Section 2.5] (see also the
references quoted in this work), written for constant diffusion coefficients A. The first step is write
the Fokker–Planck equation as

d

dq

Å
A(q)

ï
(βV ′ − F )ψF +

dψF
dq

òã
= 0.

Therefore, there exists a constant a ∈ R such that (βV ′ − F )ψF + ψ′F = a/A(q), so that

d

dq

î
ψF (q)e

βV (q)−Fq
ó
=
aeβV (q)−Fq

A(q)
.

By integrating this equality from q to q+1 and using the periodicity of the function ψF , we obtain

ψF (q)e
βV (q)−Fq (e−F − 1

)
= a

ˆ q+1

q

eβV (Q)−FQ

A(Q)
dQ = a

ˆ 1

0

eβV (q+y)−F (q+y)

A(q + y)
dy.

This leads to the claimed result by adjusting a in order for ψF to have integral 1 over the unit
torus. ut

Let us also show that the dynamics (8.7) is a non-equilibrium dynamics by checking that its
generator is not reversible on L2(ψF ). Since we do not need the precise expression of the invariant
measure, we generalize the dynamics in arbitrary dimension, and consider D = TD. We first
rewrite ψF in exponential form as

ψF (q) = e−UF (q),

and introduce a stochastic dynamics with a general drift b(q):
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dqt = b(qt) dt+
√
2 dWt. (8.9)

The generator Lb of this generalized dynamics reads

Lb = b · ∇+∆ = −∇∗∇+ (b+∇UF )T∇.

A simple computation shows that

L∗b = −∇∗∇− (b+∇UF )T∇+ uF , uF = (b+∇UF )T∇UF − div(b+∇UF ).

When b(q) = −∇V (q) + F , reversibility holds if and only if

F +∇(UF − V ) = 0.

This condition cannot be satisfied since F does not derive from the gradient of a periodic function.
More generally, the above computation shows that dynamics such as (8.9) are reversible if and
only if the drift is the gradient of a potential energy function.

8.2.3 Computation of transport coefficients

A transport coefficient ρ relates the magnitude of the response of the system in its steady state
(an average current) to the magnitude of the external forcing. We present a specific example in
Section 8.3; see in particular (8.13). For the paradigmatic dynamics (8.1) and (8.2), the magnitude
of the external forcing is η.

Before embarking on a more detailed analysis, it is useful to classify the current methods for
computing transport coefficients, as reviewed in [85] and [269] for instance, into three main classes.

(i) Equilibrium techniques based on Green–Kubo formulas, which are integrated correlation
functions of the general form

ρ =

ˆ +∞

0

Eπ(ϕ(xt)φ(x0)) dt,

where ϕ, φ are two observables whose expressions depend on the physical context at hand,
and where the expectation denotes an average with respect to all initial conditions distributed
according to the invariant probability measure π for the reference dynamics (xt)t>0, and for
all realizations of this dynamics.

(ii) Transient methods, where the system is initially locally perturbed, and the relaxation of
this perturbation is monitored as a function of time. The comparison with some assumed
macroscopic evolution equation (for instance the heat equation for thermal transport) allows
us to identify the physical parameters of the macroscopic evolution (such as the thermal
conductivity). See [133], for example, for an application of this technique.

(iii) Non-equilibrium steady-state techniques, where a forcing is permanently applied to the sys-
tem. The latter methods can be decomposed into two subcategories: boundary-driven tech-
niques, where the external forcing is imposed only in boundary regions (think of (8.2) with
a perturbation T̃ localized in two subdomains D−,D+), and bulk-driven dynamics, where
the perturbation is experienced everywhere in the system (think of (8.1)). In both cases a
flux is measured, and the transport coefficient is obtained as the average flux divided by the
magnitude η of the external forcing. The expression of the flux function is again defined by
analogy with macroscopic laws.
Bulk dynamics are often numerically more efficient since the forcing is applied globally

to the system, and therefore the steady state can be reached more rapidly. Further, it is in
general impossible to prove the existence and uniqueness of an invariant probability measure
for boundary-driven dynamics, except in very simple geometries such as one-dimensional
atom chains, or for stochastic lattice gases.
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It should be emphasized that the definition of transport coefficients is based on an analogy with
macroscopic evolution equations, which are (a system of) partial differential equations. This is
clear for transient and steady-state dynamics. It is in fact also the case for equilibrium methods,
since the expression of the transport coefficient as some integrated correlation function is, up to
algebraic manipulations, a straightforward consequence of linear response results for steady-state
non-equilibrium dynamics (see for instance (8.24) below for the specific case treated in Section 8.3).

Note that, in the simplest cases, it is in fact possible to rigorously derive the macroscopic
evolution equations from microscopic dynamics. The corresponding system of PDEs is known as
the hydrodynamic limit, see for instance [147] for a pedagogical introduction.

8.3 Linear response for non-equilibrium dynamics

In this section we sketch the derivation of the expression of transport coefficients, in the paradig-
matic case of the mobility, which is computed with the dynamics (8.1) on the configuration
space E = TD × RD. We denote by Lη = L0 + ηL̃ the generator, where L̃ = F · ∇p, and L0

is given in (5.7):

L0 = pTM−1∇q −∇V T∇p + γ

Å
−pTM−1∇p +

1

β
∆p

ã
.

We start by discussing in Section 8.3.1 the existence and uniqueness of an invariant probability
measure for the model dynamics (8.1). We next make precise in Section 8.3.2 the observables
under consideration for the response of the system, and then provide a more explicit expression of
the density of the invariant probability measure as a series expansion in η, when this parameter
is sufficiently small, which allows to rigorously define the linear response of currents of interest in
Section 8.3.3. The coefficient of linear response is by definition the transport coefficient of interest.
As explained in Section 8.3.4, this coefficient can be reformulated as an integrated correlation
function. We conclude this section by a discussion on how to extend the results obtained for the
model dynamics (8.1) to other dynamics, including (8.2), for which the perturbation L̃ of L0 is
not small from the point of view of spectral theory (see Section 8.3.5).

8.3.1 Existence and uniqueness of the invariant measure

By a simple extension of the results of Section 5.4.1, the dynamics (8.1) admits a unique invariant
probability measure. Upon introducing the Lyapunov functions Wn(q, p) = 1 + |p|n for n > 2,
it is in fact possible to formulate the following convergence result, where some uniformity in the
parameter η holds (see [169] and [144] for related results).

Proposition 8.1. Consider η∗ > 0. For any η ∈ [−η∗, η∗], the dynamics (8.1) admits a unique
invariant probability measure with a C∞ density ψη(q, p) with respect to the Lebesgue measure.
Moreover, for any n > 2, there exist Cn, λn > 0 (depending on η∗) such that, for any η ∈ [−η∗, η∗]
and for any ϕ ∈ L∞Wn

(E),

∀t > 0,

∥∥∥∥etLηϕ− ˆ
E
ϕψη

∥∥∥∥
L∞Wn

6 Cne
−λnt ‖ϕ‖L∞Wn .

The existence and uniqueness of the invariant probability measure is proved by showing that
the minorization condition and the Lyapunov condition can be stated uniformly with respect to
the parameter η ∈ R, as long as this parameter remains in a compact set. This can be obtained
by a straightforward modifications of the arguments used in the proof of Theorem 4.5. For the
absolute continuity and the smoothness of the density, we rely on the stationary Fokker–Planck
equation

L†ηψη = 0,

ˆ
E
ψη = 1,
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where, we recall, L†η denotes the adjoint of Lη on the flat space L2(E). The smoothness of ψη is
then a consequence of the hypoellipticiy of L†η (see Section 5.5.1). For notational consistency, we
set

ψ0(q, p) = Z−1 e−βH(q,p).

Note also that, as corollary of Proposition 8.1, it is possible to define L−1η as a bounded operator
on the subspaces

B∞Wn,η(E) =
ß
ϕ ∈ B∞Wn

(E)
∣∣∣∣ˆ
E
ϕψη = 0

™
.

Remark 8.1. The scheme of proof of Proposition 8.1 can be employed for other dynamics which
are not too degenerate, such as (8.2). For very degenerate dynamics such as (8.3), the controllability
argument and the Lyapunov condition may be much more difficult to prove; and the law of the
dynamics may even not be exponentially converging to its stationary state. More precisely, the
existence and uniqueness of a smooth invariant probability measure for the dynamics (8.3) can be
proved under appropriate assumptions on the interaction potential v, such as some (super)quadratic
growth at infinity. Such results are based either on methods from spectral theory [82, 79] (in which
case some additional pinning potential of the form u(qi), with u growing sufficiently fast at infinity,
is required at each site), or on probabilistic techniques [81, 231, 232, 51]. In all cases, it is shown
that the generator of the dynamics has a compact resolvent in an appropriate Hilbert space. When
TL = TR = T , this invariant probability measure is the Gibbs measure at inverse temperature
β−1 = kBT . When TL 6= TR, there is in general no simple expression of the invariant measure.
Note that there are also situations such as the one studied in [117] where the existence of an
invariant probability measure is not known. The main obstruction is the lack of a spectral gap in
the spectrum of the generator.

Let us conclude this section by proving that averages over a realization of (8.1) almost surely
converge to averages with respect the stationary measure, namely: For a given observable ϕ ∈
L1(ψη), and any (q0, p0) ∈ E ,

1

t

ˆ t

0

ϕ(qs, ps) −−−−→
t→+∞

ˆ
E
ϕψη a.s. (8.10)

We follow the same strategy as in Section 5.3 and apply the results by [149]. The difference is
however that we do not know a priori that the density ψη is positive, so that Lemma 4.1 cannot
be applied as such. In order to guarantee the positivity of ψη, a sufficient condition is that thedouble

check,
complete,
confirm
discussion

transition kernel pη(t, x, x′) (with x = (q, p) the configuration of the system) has a positive density
for all t > 0. Indeed, by invariance of ψη, it holds, for any x′ ∈ E ,

ψη(x
′) =

ˆ
E
pη(t, x, x

′)ψη(x) dx. (8.11)

When pη(t, x, x′) > 0 for all t > 0, the right hand side cannot be equal to 0 (otherwise ψη would
vanish everywhere and would not integrate to 1), and so ψη(x′) > 0 for all x′ ∈ E . There are
various results ensuring the positivity of the transition density, for instance [197, Section 3.3.6.1],
which is based on techniques from Malliavin calculus. In fact, for the above argument to work,voir aussi

argument
W. Zhang
JMP20
dans sa
reponse...

it suffices that, for any final condition x′, the transition density x 7→ pη(t, x, x
′) is positive on

an open set (when this is the case, the fact that ψη(x′) = 0 implies by (8.11) that ψη vanishes
on an open set, which comes in contradiction with open set irreducibility). The local positivity
of x 7→ pη(t, x, x

′) can in turn be obtained from lower bounds on the transition density, following
for instance the approach of [152], as made precise for Langevin dynamics in [176].

8.3.2 Observables of interest

It is expected, from a physical viewpoint, that, for the dynamics (8.1), the application of a non-zero
constant force in a given direction induces a non-zero velocity in this direction. At the macroscopic
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level, the mobility is the proportionality constant between the observed average velocity and the
force F . To rigorously define the mobility for the microscopic dynamics (8.1) under consideration,
we consider the observable

R(q, p) = FTM−1p. (8.12)

The response of interest is the steady-state average Eη(R), where Eη is the expectation with respect
to the invariant measure of the non-equilibrium dynamics (8.1). Note that E0(R) = 0. This allows
us to define the mobility in the direction F as the ratio of the average projected velocity R divided
by η, in the limit of small forcings (provided this limit exists), i.e.,

ρF = lim
η→0

Eη(R)− E0(R)

η
= lim
η→0

Eη(R)
η

. (8.13)

This is the definition of the mobility based on the linear response of non-equilibrium dynamics.
For thermal transport as described by (8.3), a current of energy is expected from the hot to the

cold reservoirs. This can be proved by computing the entropy production in the system [81, 28].
The thermal conductivity is defined as the energy flux divided by the temperature difference
(see (8.30) below). The relevant physical response of the system is the total energy current J
across the system

J(q, p) =

N−1∑
i=1

ji+1,i(q, p), ji+1,i(q, p) = −v′(qi+1 − qi)
pi + pi+1

2
, (8.14)

which is the sum of the local currents ji,i−1 expressing the local conservation of the energy. The
expression of these currents is motivated as follows. Consider an index i = 2, . . . , N − 1. The
energy εi at the i-th site is the sum of the kinetic energy and half of the interaction energies with
the neighboring sites:

εi(q, p) =
p2i
2

+
1

2

(
v(qi+1 − qi) + v(qi − qi−1)

)
, (8.15)

with appropriate modifications at the boundaries:

ε1(q, p) =
p21
2

+ v(q1) +
1

2
v(q2 − q1), εN (q, p) =

p2N
2

+
1

2
v(qN − qN−1).

A simple computation shows that the variation of the local energy in the bulk (2 6 i 6 N − 1) is
given by the following conservation law:

dεi =
(
ji,i−1 − ji+1,i

)
dt.

The quantities ji,i−1 can therefore be interpreted as energy fluxes from the site i− 1 to the site i.

8.3.3 Linear response of the invariant measure

In order to ensure that the limit (8.13) is well defined, and eventually to rewrite ρF as some
integrated correlation function, we need to characterize, to first order in η, the modification of
the density ψη(q, p) of the invariant measure of the dynamics (8.1) with respect to the reference
canonical measure. It is convenient to this end to work on the Hilbert space L2(ψ0). We also
introduce the projection operator

Π0f = f −
ˆ
E
f ψ0,

and the Hilbert space L2
0(ψ0) = Π0L

2(ψ0). Recall also the notation A∗ for the adjoint of a given
operator A on L2(ψ0) (see (5.8)).
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Theorem 8.1 (power expansion of the invariant measure). Consider the dynamics (8.1)
with generator Lη = L0 + ηL̃, where L0 is given in (5.7) and L̃ = F · ∇p. Let r be the spectral
radius of the bounded operator (L̃Π0L−10 Π0)

∗ ∈ B(L2
0(ψ0)):

r = lim
n→+∞

∥∥∥îÄL̃Π0L−10 Π0

ä∗ón∥∥∥1/n .
Then, for |η| < r−1, the unique invariant measure can be written as ψη = fηψ0, where fη ∈ L2(ψ0)
admits the following expansion in powers of η:

fη =
Ä
1 + η(L̃Π0L−10 Π0)

∗
ä−1

1 =

(
1 +

+∞∑
n=1

(−η)n[(L̃Π0L−10 Π0)
∗]n

)
1. (8.16)

The linear term in η in the expression of fη is denoted by

f1 = −(L̃Π0L−10 Π0)
∗1 = −

(
L−10

)∗ L̃∗1. (8.17)

Note that we can omit the projector Π0 in the second equality since L̃∗1 = βFTM−1p is in L2
0(ψ0).

As will become clear in the proof of Theorem 8.1, this result can actually be proven for other
dynamics than (8.1). This will be made precise in Section 8.3.5. As a corollary of Theorem (8.1),
we immediately get a formula for the transport coefficient ρF defined by (8.13), using the fact that´
E Rψ0 = 0:

ρF = lim
η→0

´
E Rfηψ0

η
=

ˆ
E
Rf1ψ0. (8.18)

Note that the measure fηψ0 is a probability measure. In particular, the normalization constant
for ψη does not depend on η. This is due to the fact that fη − 1 ∈ L2

0(ψ0), so that
ˆ
E
ψη =

ˆ
E
ψ0 = 1.

It can also be shown by a direct computation that fη > 0, see Remark 8.2 below.
Before writing the rigorous proof of Theorem 8.1, we present formal computations motivating

the objects introduced in the statement of the theorem. The main idea is to assume that one can
write ψη = fηψ0, with fη = 1 + ηf1 + η2f2 + . . . . The stationary Fokker–Planck equation then
reads Ä

L0 + ηL̃
ä∗
fη =

Ä
L0 + ηL̃

ä∗ (
1+ ηf1 + η2f2 + . . .

)
= 0,

which suggests that
L∗0f1 + L̃∗1 = 0,

and similar equations for higher order terms. This leads indeed to fn+1 = (−L∗0)
−1 L̃∗fn, and hence

to (8.16). The strategy of the proof is to show that the functions fn are well defined, construct fη,
and check that this function satisfies the stationary Fokker–Planck equation which characterizes
the invariant measure. It finally remains to make sure that fηψ0 is indeed a probability measure;
in particular, fη should be nonnegative.

Proof. Let us first show that (L̃Π0L−10 Π0)
∗ is a bounded operator on L2

0(ψ0). To this end, we
show that its adjoint L̃L−10 is bounded from L2

0(ψ0) to L2(ψ0). For C∞ and compactly supported
functions ϕ,

γ

β
‖∇pϕ‖2L2(ψ0)

= −〈L0ϕ,ϕ〉L2(ψ0) 6 ‖L0ϕ‖L2(ψ0)‖ϕ‖L2(ψ0),

so that ∥∥∥L̃ϕ∥∥∥2
L2(ψ0)

6 ‖∇pϕ‖2L2(ψ0)
6
β

γ
‖L0ϕ‖L2(ψ0)‖ϕ‖L2(ψ0).

Since L0 is invertible on L2
0(ψ0) by Theorems 5.3 or 5.5, it follows that, for any ϕ ∈ L2

0(ψ0),
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∥∥∥2
L2(ψ0)

6
β

γ
‖ϕ‖L2(ψ0)‖L

−1
0 ϕ‖L2(ψ0).

The operator L̃L−10 is therefore bounded from L2
0(ψ0) to L2(ψ0), with operator norm bounded

from above by β‖L−10 ‖B(L2
0(ψ0))/γ. It follows that the operator Π0L̃L−10 is bounded on L2

0(ψ0), so
that its adjoint (L̃L−10 )∗Π0 is also bounded on L2

0(ψ0). In fact, (L̃L−10 )∗Π0 = (L̃L−10 )∗ on L2
0(ψ0),

which proves that (L̃L−10 )∗ is bounded on L2
0(ψ0) with operator norm bounded from above by»

β‖L−10 ‖B(L2
0(ψ0))/γ. As a consequence, the spectral radius r satisfies r 6

»
β‖L−10 ‖B(L2

0(ψ0))/γ.
It is then easy to check that (8.16) is a convergent series in L2(ψ0) when |η|r < 1 since the

series
+∞∑
n=1

(−η)n[(L̃Π0L−10 Π0)
∗]n

converges in B(L2
0(ψ0)). Therefore, the function fη defined by (8.16) is well defined in L2(ψ0). We

denote henceforth ψ̃η = fηψ0. Note that
´
E ψ̃η = 1 since fη − 1 ∈ L2

0(ψ0).
Our aim is to prove that ψη = ψ̃η. To this end, we consider the following characterization of

the invariant probability measure: for any C∞ and compactly supported function ϕ,

∀t > 0,

ˆ
E
(etLηϕ)ψη =

ˆ
E
ϕψη. (8.19)

The same equality holds with ψη replaced by ψ̃η. Indeed, a straightforward computation shows
that, by definition of fη,

L∗ηfη = L∗0
Ä
1 + η(L̃Π0L−10 Π0)

∗
ä
fη = L∗01 = 0. (8.20)

Therefore, etL
∗
ηfη = fη for all t > 0. The measure ψ̃η = fηψ0 is therefore such that, for all

ϕ ∈ L2(ψ0) and all t > 0,ˆ
E
(etLηϕ)ψ̃η =

ˆ
E
ϕ (etL

∗
ηfη)ψ0 =

ˆ
E
ϕfηψ0 =

ˆ
E
ϕ ψ̃η.

This equality can be extended to bounded, measurable functions ϕ.
It is however not possible to conclude at this stage that ψη = ψ̃η since (8.19) characterizes

invariant probability measures; whereas it is not clear that ψ̃η is a probability measure (the non-
negativity of the density is not guaranteed; see however Remark 8.2 below, which provides an
alternative way to conclude the proof presented here). To prove the non-negativity, we rely on
the ergodicity of the continuous dynamics: for any bounded measurable function ϕ and any initial
condition (q0, p0) ∈ E , it holds by (8.10)

E(q0,p0)

Ç
1

t

ˆ t

0

ϕ(qs, ps)

å
=

1

t

ˆ t

0

(esLηϕ)(q0, p0) ds −−−−→
t→+∞

ˆ
E
ϕψη,

so that, by integration over E with respect to ψ̃η, and using Fubini’s theorem to justify the first
equality and the dominated convergence theorem for the limit,

1

t

ˆ t

0

Åˆ
E
(esLηϕ) ψ̃η

ã
ds =

ˆ
E

Ç
1

t

ˆ t

0

esLηϕds

å
ψ̃η −−−−→

t→+∞

ˆ
E
ϕψη.

Since, for any t > 0,
1

t

ˆ t

0

Åˆ
E
(esLηϕ) ψ̃η

ã
ds =

ˆ
E
ϕ ψ̃η,

we conclude that ˆ
E
ϕ ψ̃η =

ˆ
E
ϕψη.

This shows that ψ̃η = ψη. In particular, ψ̃η > 0.
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Remark 8.2 (Positivity of the invariant measure). It is possible to directly prove the posi-
tivity of the invariant density fηψ0 by introducing the following Poisson equation:

LηΦη = 1{fη60} −
ˆ
E
1{fη60} ψη,

ˆ
E
Φη ψη = 0, (8.21)

where fη is defined by (8.16). This equation is well posed since Lη is invertible on weighted B∞
spaces of functions with average 0 with respect to ψη (see the discussion after Proposition 8.1).
Now, by (8.20), ˆ

E
(LηΦη)fη ψ0 =

ˆ
E
Φη
(
L∗ηfη

)
ψ0 = 0. (8.22)

On the other hand, by definition of Φη,ˆ
E
(LηΦη)fηψ0 =

ˆ
E
1{fη60}fη ψ0 −

Åˆ
E
1{fη60} ψη

ã ˆ
E
fηψ0

=

ˆ
E
1{fη60}fη ψ0 −

ˆ
E
1{fη60} ψη.

The first integral on the right-hand side of the previous equality is non-positive, while the second
one is non-negative; hence the quantity on the right-hand side is non-positive. Since the right-hand
side is equal to 0 by (8.22), each term must be 0. This allows us to conclude that fη > 0 almost
everywhere (using the first integral, since ψ0 has a positive density with respect to the Lebesgue
measure).

8.3.4 Reformulating the linear response as an integrated correlation

A very useful corollary of (8.17)–(8.18) is the following reformulation of the linear response defini-
tion (8.13) of the transport coefficient through the celebrated Green–Kubo formula. To state it, we
introduce the conjugated response function, formally defined as S = L̃∗1. Its expression is found
in practice by integrations by parts, as follows: for all C∞ and compactly supported function ϕ,ˆ

E
L̃ϕψ0 =

ˆ
E
ϕS ψ0. (8.23)

Note that the expression of S is determined by the applied perturbation L̃, and not by the re-
sponse function R chosen in (8.13). For the non-equilibrium Langevin dynamics (8.1), a simple
computation shows that

S(q, p) = βR(q, p) = βFTM−1p.

Note that it can be directly checked that S ∈ L2
0(ψ0). In fact, (8.23) with the choice ϕ = 1 shows

that S automatically has average 0 with respect to ψ0 as soon as L̃1 = 0.

Proposition 8.2 (Green–Kubo formula). Consider the non-equilibrium Langevin dynam-
ics (8.1) and the definition (8.23) of the conjugate function. For any R ∈ L2

0(ψ0),

lim
η→0

Eη(R)
η

=

ˆ +∞

0

E0(R(qt, pt)S(q0, p0)) dt, (8.24)

where the expectation Eη is with respect to the invariant measure ψη(q, p) dq dp of the non-
equilibrium dynamics (8.1), while the expectation E0 on the right-hand side is taken over all initial
conditions distributed according to the canonical measure ψ0(q, p) dq dp, and over all realizations
of the reference equilibrium dynamics with generator L0.

The Green-Kubo formula thus shows that a non-equilibrium property (namely the transport
coefficient ρF = limη→0

Eη(R)
η in the left-hand side of (8.24)) can be obtained using simulations

at equilibrium, namely for η = 0 (see the right-hand side in (8.24)). This result can easily be
generalized to other dynamics as soon as the perturbation L̃ is such that S ∈ L2(ψ0) and the
linear response result (8.17) holds (see Section 8.3.5 for possible assumptions on L̃).
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Proof. In view of (8.13), (8.17) and (8.18), as well as the equality

−L−10 =

ˆ +∞

0

etL0 dt

as operators on L2
0(ψ0) (as given by Theorem 5.5), we can write, for R ∈ L2

0(ψ0),

lim
η→0

Eη(R)
η

=

ˆ
E
R f1 ψ0 = −

ˆ
E

(
L−10 R

) Ä
L̃∗1
ä
ψ0 =

ˆ +∞

0

E0(R(qt, pt)S(q0, p0)) dt,

which gives the claimed result.

Definition of the mobility

Let us rewrite equation (8.24) more precisely in the context of (8.1). The mobility ρF in the
direction F , defined in (8.13), is equal to β times the integrated velocity autocorrelation:

ρF = lim
η→0

Eη(F ·M−1p)
η

= β

ˆ +∞

0

E0

[
(F ·M−1pt)(F ·M−1p0)

]
dt. (8.25)

In fact, a simple computation also allows to relate the mobility defined by the linear response of
a nonequilibrium dynamics, to the self-diffusion coefficient, which is an equilibrium property. The
latter quantity is defined by the so-called Einstein formula

DF = lim
T→+∞

E0

(
F · (QT −Q0)

)2
2T

,

where

Qt −Q0 =

ˆ t

0

M−1ps ds ∈ RD

is the unperiodized displacement, and where, as in (8.25), the expectation is over all initial condi-
tions distributed according to ψ0(q, p) dq dp, and over all realizations of the reference equilibrium
dynamics (with generator L0 defined in (5.7)).

Remark 8.3. It is in fact possible to prove that the diffusively rescaled process εFT (Qt/ε2 −Q0)
weakly converges on finite time intervals to an effective Brownian motion with covariance DF in
the limit ε→ 0, see [212, 236].

The relation between the mobility and the self-diffusion coefficient is

ρF = βDF .

This equality is based on the identity (obtained similarly to (4.18))

E0

(
F · (QT −Q0)

)2
= 2T

ˆ T

0

E0

(
(F ·M−1pt)(F ·M−1p0)

)Å
1− t

T

ã
dt.

An application of the dominated convergence theorem gives the conclusion when the autocorrela-
tion function is integrable, using the expression (8.25) of the mobility ρF . This is the case when∣∣∣E0

(
(F ·M−1pt)(F ·M−1p0)

)∣∣∣ 6 Ke−λt, see Section 5.4 for techniques to prove such inequalities,
for instance Theorem 5.5.
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8.3.5 Generalization to other dynamics

It is of course possible to extend linear response results and Green–Kubo formulae to other dy-
namics than (8.1), either by generalizing the assumptions ensuring that Theorem 8.1 and Propo-
sition 8.2 hold (as we do below), or by working with different set of assumptions as in [17].

An inspection of the proof of Theorem 8.1 shows that the result can be generalized to other
perturbations, and in fact to other reference equilibrium dynamics (xηt )t>0 with generator Lη =

L0 + ηL̃, under the following conditions.

(1) Existence of a unique invariant measure. For any η ∈ R, the perturbed dynamics admits a
unique invariant measure with C∞ density ψη(x) with respect to the Lebesgue measure dx
on X . Such statements are proved relying on the results of Sections 3.3.1 and 5.3.1 (for the
regularity).

(2) Ergodicity of the perturbed dynamics. The perturbed dynamics is ergodic in the following sense:
for any bounded measurable function ϕ and almost all initial condition x0,

1

t

ˆ t

0

ϕ(xs) ds −−−−→
t→+∞

ˆ
X
ϕψη almost surely.

See Sections 4.2.1 and 5.3 for techniques to obtain such convergence results. Alternatively, as
discussed in Remark 8.2, the ergodicity condition can be replaced by solvability conditions for
the Poisson equation (8.21).

(3) Properties of the equilibrium dynamics. Ker(L∗0) = 1 and L∗0 is invertible on L2
0(ψ0). See

Proposition 4.2 for overdamped Langevin dynamics, and Theorems 5.3 and 5.5 for Langevin
dynamics.

(4) Properties of the perturbation. Ran(L̃∗) ⊂ L2
0(ψ0) and (L̃L−10 )∗ is bounded on L2

0(ψ0). As
discussed after (8.23), the function L̃∗ϕ has average 0 with respect to ψ0 when L̃1 = 0 since

ˆ
X
L̃∗ϕψ0 =

ˆ
X
ϕ L̃1ψ0 = 0.

The last condition, namely that (L̃L−10 )∗ is bounded on L2
0(ψ0), expresses the fact that the per-

turbation L̃ is sufficiently small. A typical way of proving that (L̃L−10 )∗ is bounded on L2
0(ψ0) is,

as at the beginning of the proof of Theorem 8.1, to show that L̃ is L0-bounded, namely that there
exist a, b > 0 such that, for all C∞ and compactly supported functions ϕ,∥∥∥L̃ϕ∥∥∥

L2(ψ0)
6 a‖L0ϕ‖L2(ψ0) + b‖ϕ‖L2(ψ0). (8.26)

Then, for all ϕ ∈ L2
0(ψ0),∥∥∥L̃L−10 ϕ

∥∥∥
L2(ψ0)

6 a‖ϕ‖L2(ψ0) + b
∥∥L−10 ϕ

∥∥
L2(ψ0)

,

so that L̃L−10 , and its adjoint, are bounded operators on L2
0(ψ0) with operator norm bounded by

a+ b‖L−10 ‖B(L2
0(ψ0)).

Stronger perturbations

There are situations for which the condition (8.26) is not satisfied, or may be difficult to prove.
This is the case for instance for generalizations of the dynamics (8.2), for which the perturbation
operator L̃ involves second derivatives of the momenta p. More precisely, consider the dynam-
ics (8.3) with TL = T + ∆T and TR = T − ∆T , and set η = 2∆T . The reference equilibrium
dynamics is the Langevin dynamics (8.3) with the two thermostats at the boundaries at the same
temperature T . Its generator reads
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L0 =

N∑
i=1

pi∂qi − (∂qiV ) ∂pi − γ
(
p1∂p1 + pN∂pN

)
+ γT

(
∂2p1 + ∂2pN

)
, (8.27)

and the invariant probability measure has a density ψ0(q, p) = Z−1e−H(q,p)/T , where H is given
by (8.4). The generator of the perturbation is

L̃ = γ(∂2p1 − ∂
2
pN ). (8.28)

In this case, it is not clear whether it is possible to write an expansion of the invariant measure
as a power series in η. Nonetheless, linear response results on average properties can still be
stated by following the same strategy as in the proof of Theorem 6.1. We assume to this end that
Assumption 6.1 is satisfied for A1 = L0 and A1 = L∗0. First, introduce f1 such that

ˆ
X

î
(L0 + ηL̃)ϕ

ó
(1 + ηf1)ψ0 = O(η2).

A simple computation shows that f1 is formally given by (8.17). In fact, f1 = −(L∗0)−1S where S
is defined in (8.23). We next replace ϕ by Qηϕ where Qη is the approximate inverse

Qη = Π0L−10 Π0 − ηΠ0L−10 Π0L̃Π0L−10 Π0.

The operator Qη is a well-defined operator acting on C∞ functions with zero average with respect
to ψ0. By computations similar to the ones performed in the last part of the proof of Theorem 6.1, it
can therefore be shown that, under moment conditions on the invariant measure (i.e., ψη integrates
all the scale functions appearing in Definition 6.1),

ˆ
X
ϕψη =

ˆ
X
ϕψ0 + η

ˆ
X
ϕ f1 ψ0 + η2rϕ,η, (8.29)

where |rϕ,η| 6 K for |η| sufficiently small.

Definition of the thermal conductivity

Assume that there exists a unique invariant probability measure for the dynamics (8.3) (see Re-
mark 8.1), and denote by E∆T the associated expectation. The thermal conductivity is then defined
by the linear response of the energy current:

κ = lim
∆T→0

E∆T (J)
∆T

= β2γ

ˆ +∞

0

ˆ
E

(
etL0J

)
(p21 − p2N )ψ0 dt, (8.30)

since the conjugate response S = L̃∗1 = γβ2(p21 − p2N ) in view of (8.23) and (8.28). Some (non
trivial) manipulations allow to rewrite the above correlation in terms of the energy current auto-
correlation (see for instance [158, 28]):

κ = 2β2

ˆ +∞

0

E0

(
ji+1,i(qt, pt)J(q0, p0)

)
dt =

2β2

N − 1

ˆ +∞

0

E0

(
J(qt, pt)J(q0, p0)

)
dt, (8.31)

where the equalities hold for any i = 1, . . . , N − 1, and the currents are defined in (8.14).

Exercise 8.1. Prove (8.31) by first taking adjoints in the last integral of (8.30) and resorting to a
time reversal argument, and then using the following identity obtained from Itô calculus to compute
the time integral of the current:

d

Ñ
i∑

j=1

εj −
N∑

j=i+1

εj

é
=
(
− 2ji+1,i − γ(p21 − p2N )

)
dt+ dMt,i,

where Mt,i are martingales.
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8.4 Error estimates on the computation of transport coefficients

The results of the previous section show that there are two main ways to compute transport
coefficients, either by discretizing the integrated correlation function based on the Green–Kubo
formula (8.24), or by approximating the derivative of equilibrium averages with respect to the
magnitude of the external forcing as in (8.13). In this section we provide, for both approaches,
error estimates for these methods, starting with Green–Kubo formulas in Section 8.4.1, and then
turning to linear response methods in Section 8.4.2.

8.4.1 Green–Kubo formulae

We first provide error estimates on linear responses computed using Green–Kubo formulae such
as (8.24). We state the result on a general space X for a dynamics

dxt = b(xt) dt+ σ(xt) dWt, (8.32)

with generator L (instead of the notation L0 used in Section 8.3). We assume that this dynamics
admits a unique invariant probability measure π.

In order to approximate integrated correlation functions as the ones appearing on the right
hand side of (8.24), two numerical parameters have to be introduced:

(i) a finite integration time τ to truncate the time integral;
(ii) a timestep ∆t and a numerical scheme to approximate the continuous dynamics (see Lec-

ture 6).

We successively discuss the approximation incurred by both parameters, adding a discussion on the
statistical error when quantifying the bias arising from the truncation in time. As in Lecture 6, it
turns out that statistical errors can be understood to first order in ∆t at the level of the continuous
dynamics, so that we discuss this issue before quantifying the timestep bias.

Truncation error and statistical error

From a numerical viewpoint, a first task is to truncate time integrals such as the ones appearing
on the right hand side of (8.24) as

ρτ =

ˆ τ

0

E0 [R(xt)S(x0)] dt =

ˆ
X

ïˆ τ

0

etLRdt

ò
S dπ. (8.33)

The reference integrated correlation function is denoted by ρ. Assuming that there exist K > 1
and λ > 0 such that (see Proposition 4.2 for overdamped Langevin dynamics and Theorem 5.5 for
Langevin dynamics) ∥∥etL∥∥B(L2

0(π))
6 Ke−λt,

and that R,S ∈ L2
0(π), a simple computation shows that

|ρ− ρτ | 6 ‖R‖L2(π)‖S‖L2(π)
K

λ
e−λτ .

The bias due to the time truncation is therefore exponentially decreasing, although it may be
difficult in practice to accurately estimate the exponential convergence rate.

The formula (8.33) naturally suggests the following Monte Carlo estimator for ρτ , based
on Nreal independent realizations (xmt )06t6τ of the dynamics (8.32) starting from i.i.d. initial
conditions xm0 and driven by independent Brownian motions Wm

t (with 1 6 m 6 Nreal):

ρ̂τ =
1

Nreal

Nreal∑
m=1

ˆ τ

0

R(xmt )S(xm0 ) dt.
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Formally, by Itô calculus,work in
progress
here, to
discuss

ˆ τ

0

R(xmt ) dt =Mm
τ + Φ(xm0 )− Φ(xmτ ), Mm

τ =

ˆ τ

0

∇Φ(xmt )Tσ(xmt ) dWm
t ,

where Φ satisfies the Poisson equation −LΦ = R. Sufficient conditions for the latter equation to
be well posed and to admit smooth solutions are provided in Lectures 4 and 5. Typically,

Var

[
1

Nreal

Nreal∑
m=1

(Φ(xm0 )− Φ(xmt ))S(xm0 )

]
∼ 1

Nreal
,

while

Var

[
1

Nreal

Nreal∑
m=1

Mm
τ S(x

m
0 )

]
=

E0(S
2)

Nreal

ˆ τ

0

E0

Ä∣∣σT (xt)∇Φ(xt)∣∣2ä dt ∼ τ

Nreal
,

see [222] for precise statements and an extension of the analysis performed here for continuous
dynamics to the case when the dynamics is discretized in time. The main output of this analysis
is that the variance of Green–Kubo estimators ρ̂τ diverges as the truncation time increases. The
mean-square error associated with ρ̂τ − ρ is of the form

a

λ
e−λτ +

bτ

Nreal
,

the optimal time to minimize this error being (when a > b/Nreal)

τ =
1

λ
log
(a
b
Nreal

)
.

For this choice of optimal time, an error of order log(Nreal)/Nreal is achieved for a computational
cost of order Nrealτ ∼ Nreal logNreal.

Time-step bias

We discuss the time step bias arising in Green–Kubo formulas from the discretization of the
continuous dynamics (8.32). This was first studied for Langevin dynamics in [169], and then
abstracted in [180, Theorem 5.6]. Recall also that results on the timestep bias allow to make precise
the statements in Section 6.1.3 relating the asymptotic variance of the continuous dynamics and
its discretization.

As in Sections 6.1 and 6.2.4, we denote by P∆t the transition operator of the underlying
Markov chain induced by the discretization scheme, and denote by π∆t the invariant measure of
the numerical scheme (as in ??). We also introduce the projection operator reference

to change
Π∆tϕ = ϕ−

ˆ
X
ϕdπ∆t,

as well as
B∞Ws,∆t(X ) = Π∆tB

∞
Ws

(X ) =
ß
ϕ ∈ B∞Ws

(X )
∣∣∣∣ ˆ
X
ϕdπ∆t = 0

™
.

The range ofΠ∆t is contained in the set of functions with average zero with respect to the invariant
measure π∆t of the numerical scheme.

The error estimate is formulated for smooth functions in the sense of Definition 6.1. We still
suppose that Assumption 6.1 holds with A1 = L (i.e., the space S introduced in Definition 6.1 is
dense in L2(π) and the operator L−1 : S0 → S0 is well defined, where S0 is defined in (6.13)).

Theorem 8.2 (Error estimates for Green–Kubo formulas). Consider a numerical method
with an invariant measure π∆t which integrates any scale function Wn introduced in Definition 6.1.
Assume that there exists an integer α > 1, such that, for any observable ϕ ∈ S there is K,∆t∗ > 0
for which the following conditions hold:
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(1) Error on the invariant measure:
ˆ
X
ϕdπ∆t =

ˆ
X
ϕdπ +∆tαrϕ,∆t, (8.34)

with |rϕ,∆t| 6 K for 0 < ∆t 6 ∆t∗.
(2) Expansion of P∆t:

− Id− P∆t
∆t

ϕ = Lϕ+∆tS1ϕ+ · · ·+∆tα−1Sα−1ϕ+∆tαR̃α,∆tϕ, (8.35)

where the operators S1, . . . , Sα−1, R̃α,∆t (which are defined independently of ϕ) are well de-
fined on S with values in S; and there exists s0 ∈ N (depending on α and ϕ) such that
‖R̃α,∆tϕ‖B∞Ws0 6 K for 0 < ∆t 6 ∆t∗.

Moreover, we assume that

(3) Uniform-in-∆t exponential convergence of P∆t. For any s > 0, there exist Cs, λs > 0 such
that, for all 0 < ∆t 6 ∆t∗,

∀n ∈ N, ‖Pn∆t‖B(B∞Ws,∆t) 6 Cs e
−λsn∆t. (8.36)

Then, the integrated correlation of two observables φ, ϕ ∈ S0 can be approximated by a Riemann
sum up to an error of order ∆tα: there exists C > 0 such that

ˆ +∞

0

Eπ [φ(xt)ϕ(x0)] dt = ∆t

+∞∑
n=0

Eπ∆t
î
φ̃∆t,α(x

n)ϕ(x0)
ó
+∆tαrφ,ϕ∆t , (8.37)

with |rφ,ϕ∆t | 6 C for 0 < ∆t 6 ∆t∗. In this expression, the expectation Eπ is over all initial
conditions (q0, p0) ∼ π and over all realizations of the continuous dynamics with generator L,
while the expectation Eπ∆t is over all initial conditions (q0, p0) ∼ π∆t and over all realizations
of the Markov chain induced by P∆t. Moreover, the modified observable φ̃∆t,α ∈ S is defined as
φ̃∆t,α = Π∆tφ∆t,α with

φ∆t,α = (Id +∆tS1L−1 + · · ·+∆tα−1Sα−1L−1)φ. (8.38)

This result deserves several comments, both on the three main assumptions (8.34), (8.35)
and (8.36), as well as on the error estimate (8.37) itself. The proof is presented after this discussion.

Let us start by discussing the assumptions of Theorem 8.2. Equation (8.34) can be proved by
following the general strategy presented in Theorem 6.1. Note that the remainder term in (8.34)
can vanish, for example when a Metropolis procedure is superimposed on the numerical scheme. In
this case, α is determined by (8.35). Condition (8.35) has already been encountered when proving
error estimates on the invariant measure (see (6.12)). On the other hand, proving the uniform-in-∆t
convergence (8.36) requires more work. The typical way to proceed is to obtain (i) uniform-in-∆t
Lyapunov conditions (see [169, Lemma 2.7] for Langevin dynamics on compact position spaces),
which is usually not too difficult when weakly consistent discretization schemes are considered; and
(ii) uniform-in-∆t minorization conditions. Such estimates can be obtained from the results of [22],
by comparing discrete dynamics with continuous ones [35], or by careful computations allowing to
write the evolution over short times as a perturbation of a driftless stochastic dynamics [76].work in

progress Let us now comment on the error estimate (8.37). First, the result shows that the error is of
order ∆tα, upon modifying the observable φ as φ̃∆t,α. Therefore, a first limitation to the reduction
of the error in Green–Kubo formulae arises from the error on the invariant measure itself. However,
in practice, especially when α is large, the error is actually determined by the approximation of the
corrected observable φ̃∆t,α. When the operators Sk are powers of L, the correction terms SkL−1
in (8.38) can be easily computed. Let us denote by k0 the last index for which SkL−1φ can be
evaluated. For example (see the discussion after (6.12)), if the discretization method is of weak
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order k0, then Sk = Lk/k! for all k = 1, . . . , k0, so that SkL−1φ is easy to evaluate up to k = k0.
If k0 < α, the error estimate which can be used in practice is

ˆ +∞

0

Eπ [φ(xt)ϕ(x0)] dt = ∆t

+∞∑
n=0

Eπ∆t
î
φ̃∆t,k0(x

n)ϕ(x0)
ó
+∆tk0+1rφ,ϕ∆t .

However, even if φ∆t,k0 can be actually evaluated, it still remains to approximate φ̃∆t,k0 =
Π∆tφ∆t,k0 , typically by approximating the average of φ∆t,k0 with respect to π∆t by trajectory
averages.

Let us again emphasize a very interesting application of Theorem 8.2: the approximation of
the variance of discretizations of SDEs. This allows to prove formulas such as (6.9), and/or to
modify quadature rules in the integral in time of the correlation in order to lower the bias (see
Remark 8.5 below).

Remark 8.4 (Error estimates for Metropolis–Hastings dynamics). For discretizations of
the continuous dynamics stabilized by a Metropolis-Hastings procedure, as MALA for overdamped
Langevin, the invariant measure of the numerical scheme is exact by construction. However, since
the quantity S1L−1φ cannot be evaluated in general, the resulting approximation of the integrated
correlation is based on φ̃∆t,0 = Π∆tφ, which leads to an approximation of order ∆t of the Green–
Kubo integral. An error estimate of order ∆t3/2 can nevertheless be obtained by modifying the
Metropolis–Hastings proposal. It is even possible to obtain errors of order ∆t2 by modifying the
Metropolis acceptance rule. See [91] and [92] for further precisions.

Let us now present the proof of Theorem 8.2.

Proof. Fix two observables ϕ, φ ∈ S0. Note that
ˆ +∞

0

Eπ [φ(xt)ϕ(x0)] dt =
ˆ
X
(−L−1φ)ϕdπ.

In order to introduce the correlation functions of the numerical scheme, we would like, in view
of (8.35), to replace the measure π by π∆t and the operator −L−1 byÅ

Id− P∆t
∆t

ã−1
= ∆t

+∞∑
n=0

Pn∆t.

However this is not possible as such for two reasons. First, as indicated in (8.36), the above sum
is only convergent when the operators under consideration are restricted to subspaces of functions
with average 0 with respect to π∆t. We therefore need to introduce the projections operators Π∆t

to restrict L−1 to the range of Π∆t. Second, it is not possible to directly consider the inverse of the
right-hand side of (8.35), so we will introduce (Id− P∆t)−1(Id− P∆t) instead in order to retrieve
some operator L at dominant order in ∆t in order to cancel the inverse operator L−1.

Let us first introduce the projection operators Π∆t and the invariant measure π∆t of the
numerical scheme, using the fact that −L−1φ has zero average with respect to π:

ˆ
X
(−L−1φ)ϕdπ =

ˆ
X
(−L−1φ)Π∆tϕdπ

=

ˆ
X
(−L−1φ)Π∆tϕdπ∆t +∆tαr̃ϕL−1φ,∆t,

=

ˆ
X
Π∆t(−L−1φ)Π∆tϕdπ∆t +∆tαr̃ϕL−1φ,∆t, (8.39)

where |r̃ϕL−1φ,∆t| 6 K/2 for 0 < ∆t 6 ∆t∗ by (8.34) (possibly upon increasing the value of K
and decreasing ∆t∗).
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The next step is to approximate Π∆t(−L−1φ) in terms of powers of P∆t. We use the fact that
Π∆tP∆t = P∆tΠ∆t, and that

Π∆t = Π∆t

Å
Id− P∆t

∆t

ã−1 Å Id− P∆t
∆t

ã
= Π∆t

(
∆t

+∞∑
n=0

Pn∆t

)Å
Id− P∆t

∆t

ã
.

Note that the above sum is convergent in B(B∞Ws,∆t
) in view of (8.36). Relying on (8.35),

−Π∆tL−1φ = −Π∆t

(
∆t

+∞∑
n=0

Pn∆t

)Å
Id− P∆t

∆t

ã
L−1φ

= ∆t

(
+∞∑
n=0

Pn∆t

)
Π∆t

Ä
L+ · · ·+∆tα−1Sα−1 +∆tαR̃α,∆t

ä
L−1φ,

= ∆t
+∞∑
n=0

Pn∆tφ̃∆t,α +∆tα
Å
Id− P∆t

∆t

ã−1
Π∆tR̃α,∆tL−1φ.

Note that the sums on the right-hand side is well defined in view of the decay estimates (8.36).
Plugging the above equality in (8.39) leads to

ˆ
X
(−L−1φ)ϕdπ = ∆t

+∞∑
n=0

ˆ
X
Pn∆tφ̃∆t,α(Π∆tϕ) dπ∆t

+∆tα
ˆ
X

ñÅ
Id− P∆t

∆t

ã−1
Π∆tR̃α,∆tL−1φ

ô
Π∆tϕdπ∆t +∆tαr̃ϕL−1φ,∆t.

To conclude the proof, we use the fact that, for a given smooth function f and upon increasingK
and decreasing ∆t∗, there exist an integer s and a constant ‹K > 0 (depending on f) such that
‖R̃α,∆tf‖B∞Ws 6 ‹K for any 0 < ∆t 6 ∆t∗. In addition, the following resolvent bound is directly
obtained from (8.36): ∥∥∥∥∥

Å
Id− P∆t

∆t

ã−1∥∥∥∥∥
B(B∞Ws,∆t)

6
Cs
λs
.

Finally, π∆t integrates all scale functions Wn by assumption. Therefore, upon increasing the value
of K, the following inequality holds for any 0 < ∆t 6 ∆t∗:∣∣∣∣∣

ˆ
X

ñÅ
Id− P∆t

∆t

ã−1
Π∆tR̃α,∆tL−1φ

ô
Π∆tϕdπ∆t

∣∣∣∣∣ 6 K

2
.

Since

+∞∑
n=0

ˆ
X
Pn∆tφ̃∆t,α(Π∆tϕ) dπ∆t =

+∞∑
n=0

ˆ
X

Ä
Pn∆tφ̃∆t,α

ä
ϕdπ∆t =

+∞∑
n=0

Eπ∆t
î
φ̃∆t,α(x

n)ϕ(x0)
ó
,

equation (8.37) finally follows.

Remark 8.5 (Green–Kubo formulae for second-order schemes). In the particular case
when α = 2 in (8.34), which is very relevant in practice ( e.g. for second-order splittings of Langevin
dynamics, or Geometric Langevin algorithms discussed in Section 6.2.4), it is possible to not modify
the observable φ when S1 is proportional to L2, by appropriately changing the quadrature rule. For
schemes of weak order 2, for which S1 = L2/2, this amounts to discretizing the time integral with
a trapezoidal rule instead of a Riemann sum. See [169, Corollary 2.20] and [92, Theorem 6] for
further details.
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Fig. 8.1. (a) Error in the mobility as a function of the time step ∆t when the integrated velocity
autocorrelation function is computed using a Riemann sum or with the corrected formula (8.37) in the
case α = 2. The result from computing the integral using the trapezoidal rule is also shown. (b) Error in
the computed average of total energy, with the correction term computed using the same step size by a
discretization of (6.24) with the discrete Green–Kubo formula (8.37). Averages obtained with a reference
correction computed more accurately at a smaller time step in a separate simulation are labelled as the
‘exact correction’. In both cases, ’order α’ means that the error scales as C∆tα.

To illustrate Theorem 8.2, we consider a simple two-dimensional system with position q =
(x, y) ∈M = (2πT)2, a potential energy function V (q) = 2 cos(2x)+cos(y), an inverse temperature
β = 1, a friction γ = 1 and an identity mass matrix. Figure 8.1 displays simulation results obtained
for the scheme associated with P γC,B,A,B,γC∆t (see the discussion after (6.31) and [169] for the full
expression of the numerical scheme) when approximating the mobility

ρ = β

ˆ +∞

0

Eµ(pt · p0) dt.

For this second-order scheme, an approximation of the time integral based on a simple Riemann
sum leads to errors of order ∆t, while a second-order convergence is obtained upon modifying the
observables according to (8.38) or using a trapezoidal rule. In addition, we show how to improve
the computation of the average value of the Hamiltonian H(q, p) = V (q) + |p|2/2 based on an
estimation of the correction term (6.24) reformulated as some integrated correlation function. In
the case of the total energy, the corresponding correction is proportional to the mobility ρ. As
predicted by theoretical results similar to Theorem 6.1, errors in average properties can be reduced
from ∆t2 to ∆t3 when the correction term is properly estimated; in fact, the errors can be shown
to reduced to order ∆t4 (see [169, Theorem 2.16]).

8.4.2 Linear response approaches

In this part, we discuss how to approximate a transport coefficient by estimating numerically the
derivative of steady state averages with respect to the forcing parameter, as given by (8.13) or the
left hand side of (8.24). This requires expansions of the invariant measures of numerical approx-
imations of non-equilibrium dynamics with respect to two small parameters: the magnitude η of
the forcing and the time step ∆t. To be more concrete, we illustrate the approach on the compu-
tation of the mobility with the perturbed Langevin dynamics (8.1). As in Section 8.4.1, we first
discuss the statistical error at the level of the continuous dynamics, as well as the bias arising
from the use of finite forcings magnitudes. We then present numerical schemes for the dynamics
and state error estimates on the computation of average properties and linear responses, which
allow to make precise the bias on transport coefficients due to the time discretization (following
the presentation of [169, Section 3], to which we refer for further details).
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Finite magnitude bias and statistical error

From a numerical viewpoint, the limit η → 0 of the ratio in (8.13) is approximated by a finite
difference using some finite value η? > 0:

ρF,η? =
Eη?(R)
η?

. (8.40)

In view of the expansion (8.16) (or more generally (8.29)), there exists K > 0 such that

|ρF − ρF,η? | 6 Kη?,

so that the bias is of order one in η.
The formula (8.40) naturally suggests the following estimator ρF , based on longtime averages

of the perturbed Langevin dynamics (8.1):

ρ̂F,η? =
1

η?t

ˆ t

0

R(qs, ps) ds,

which converges almost surely to Eη?(R)/η? as t → +∞ by (8.10). The asymptotic variance
associated with the time average η?ρ̂F,η? is (by manipulations similar to the ones leading to (8.29))

σ2
F,η? = 2

ˆ
E

[
−
Ä
L0 + η?L̃

ä−1
Πη?R

]
Πη?Rψη = σ2

F,0 +O(η∗).

Overall, the mean square error associated with the estimator ρ̂F,η? of ρF is therefore at dominant
order of the form

aη2? +
σ2
F,0

η2?t
.

In particular, the integration time t should be taken of order η−2? in order for the statistical error
not to be too large. Since η? should on the other hand be chosen small enough in order to limit the
bias arising from the nonlinear response, this means that integration times should be quite long.
More precisely, if one sets a tolerance ε2 > 0 for the mean square error, then η? ∼ ε and t ∼ ε−4.
The balance between the bias and the possibly huge statistical error is a challenge in linear response
approaches.

Remark 8.6. In practice, quite large forcings have to be used in order to measure the reponse of
the system – in fact, the forcings are orders of magnitude larger than experimental forcings. To give
an example, consider the computation of thermal transport in carbon nanotubes, for which tem-
perature differences of 40-100K over distances of 1 µm are considered [48, 245]. Such temperature
differences are needed to induce a sufficiently large response of the material that can emerge out
of the statistical noise in a reasonable simulation time (integration times of the order of nanosec-
onds in physical times; for systems of 5 µm in [48], this corresponds to 5 days of computation on
a cluster of 120 cores). However, when converting to macroscopic units, one realizes that these
temperature gradients are absolutely enormous since they correspond to a temperature variation of
the order of 4× 107− 108 K over a distance of 1m! It is remarkable that linear response still holds
at the microscopic level with such high gradients...

Timestep bias

To integrate (8.1), we consider splitting schemes which reduce to the schemes presented in Sec-
tion 6.2.4 when η = 0. Recall that L0 = A+B + γC, where the elementary operators A,B,C are
introduced in (6.30):

A = pM−1∇q, B = −∇V (q)T∇p, C = −pTM−1∇p +
1

β
∆p.
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Since the aim is to decompose the evolution generated by Lη = L0+ηL̃ into analytically integrable
parts, there are two principal options: either replace B by

Bη = B + ηL̃

or replace γC by γC + ηL̃. However, the schemes built on the latter option do not perform
correctly in the overdamped limit, since their invariant measures are not consistent with the
invariant measures of non-equilibrium overdamped Langevin dynamics, i.e.,

dqt = (−∇V (qt) + ηF ) dt+

 
2

β
dWt. (8.41)

The latter dynamics is obtained from (8.1) in the limit γ → +∞ upon rescaling the time as γt.
To illustrate this point, consider for instance the first-order splitting scheme associated with the
evolution operator

PA,B,γC+η‹L
∆t = e∆tA e∆tB e∆t(γC+η‹L),

i.e.,

qn+1 = qn +∆tM−1pn,

p̃n+1 = pn −∆t∇V (qn+1),

pn+1 = α∆tp̃
n+1 +

1− α∆t
γ

ηF +

 
1− α2

∆t

β
M Gn,

where α∆t = exp(−γM−1∆t) is defined after (6.31), and (Gn) is a sequence of i.i.d. Gaussian ran-
dom vectors with identity covariance. When M = Id and γ → +∞, a standard Euler–Maruyama
discretization of the equilibrium overdamped Langevin dynamics (i.e. η = 0) is obtained; whereas
we would like to obtain a consistent discretization of non-equilibrium overdamped Langevin dy-
namics (8.41). This suggests that numerical methods based on the integration of γC+ ηL̃ will not
estimate correctly the mobility for large γ.

We therefore prefer to consider schemes obtained by replacing B with B + ηL̃, such as the
first-order splitting

PA,B+η‹L,γC
∆t = e∆tA e∆t(B+η‹L) eγ∆tC , (8.42)

or the second-order splitting

P γC,B+η‹L,A,B+η‹L,γC
∆t = eγ∆tC/2 e∆t(B+η‹L)/2 e∆tA e∆t(B+η‹L)/2 eγ∆tC/2. (8.43)

For example, the numerical scheme associated with PA,B+η‹L,γC
∆t ,

qn+1 = qn +∆tM−1pn,

p̃n+1 = pn +∆t(−∇V (qn+1) + ηF ),

pn+1 = α∆tp̃
n+1 +

 
1− α2

∆t

β
M Gn,

when M = Id and in the limit as γ → +∞, is a consistent discretization of non-equilibrium
Langevin dynamics (8.41). Henceforth we let Pη,∆t denote the evolution operator associated with
one of these schemes for a fixed value of the friction γ (see Remark 8.7 for a discussion on the
limiting regime γ → +∞).

It can be shown that there exists a unique invariant measure µη,∆t for the Markov chains
induced by Pη,∆t as done in Sections 6.2.3 and 6.2.4. The crucial point is that the gradient
structure of the force term is never used explicitly in the proofs of the Lyapunov and minorization
conditions. The following result provides error estimates for the invariant measure of splitting
schemes such as (8.42) and (8.43) (see [169, Theorem 3.4]). The proof follows the same lines as
the proof of Theorem 6.1, except that expansions are performed with respect to the two small
parameters ∆t and η.
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Theorem 8.3 (Error estimates on the invariant measure for η 6= 0). Set α = 1 for
first order splitting schemes such as (8.42) and α = 2 for second order splitting schemes such
as (8.43). Then there exist functions fα,0, fα,1 ∈ S0 such that, for any smooth function ϕ ∈ S,
there is ∆t∗, η∗,K > 0 (depending on ϕ) for which, for all η ∈ [−η∗, η∗] and ∆t ∈ (0, ∆t∗],

ˆ
E
ϕdµη,∆t =

ˆ
E
ϕ(1 + ηf0,1 +∆tαfα,0 + η∆tαfα,1) dµ+ rϕ,η,∆t, (8.44)

where f0,1 is the unique solution of the Poisson equation

L∗0f0,1 = −L̃∗1 = −βFTM−1p,

and
|rϕ,η,∆t| 6 K(η2 +∆tα+1),

|rϕ,η,∆t − rϕ,0,∆t|
η

6 K(η +∆tα+1).

Let us now comment on (8.44). In this formula, the function f0,1 encodes the linear response of
the invariant measure when the perturbation is turned on for the continuous dynamics (see (8.17)),
while fα,0 accounts at leading order for the perturbation induced by the use of finite time steps.
As shown below in Corollary 8.1, the errors on transport coefficients are determined at leading
order by the cross-term of order η∆tα, which involves the correction function fα,1. Note that the
remainder term rϕ,η,∆t now collects higher-order terms both as powers of the time step ∆t and
the non-equilibrium parameter η. The estimates we obtain on the remainder, however, allow us
to take the linear response limit η → 0, as made precise by the following error estimate on the
transport coefficient (which is an immediate consequence of Theorem 8.3). In order to state the
result, we introduce the reference linear response for an observable ϕ ∈ S, namely

Rϕ,0 = lim
η→0

1

η

Åˆ
E
ϕdµη −

ˆ
E
ϕdµ

ã
,

and its numerical approximation,

Rϕ,∆t = lim
η→0

1

η

Åˆ
E
ϕdµη,∆t −

ˆ
E
ϕdµ0,∆t

ã
. (8.45)

It is often the case that the observable ϕ of interest has a vanishing average with respect to µ, as
for the function L̃∗1 = βFTM−1p used to compute the mobility in (8.13). Even in such cases, ϕ
generically has a non-zero average with respect to the invariant measure µ0,∆t of the numerical
scheme associated with a discretization of the equilibrium dynamics, so that it is indeed important
to subtract the average obtained with η = 0 in (8.45).

Corollary 8.1 (error estimates on linear responses). Under the assumptions of Theorem 8.3,
and for any ϕ ∈ S, there exist ∆t∗ > 0 and a constant K > 0 such that

Rϕ,∆t = Rϕ,0 +∆tα
ˆ
E
ϕfα,1 dµ+∆tα+1rϕ,∆t,

with |rϕ,∆t| 6 K when 0 < ∆t 6 ∆t∗.

Note that, in contrast with the error estimates provided by the Green–Kubo formulas, the error
is of order∆tα without any need to modify the observable. This makes the linear response approach
more attractive than Green–Kubo techniques when α is large and the correction function (8.38)
is difficult to compute.

As an application, we obtain the following estimate on the numerically computed mobility:

ρF,∆t = lim
η→0

1

η

Åˆ
E
FTM−1p µη,∆t(dq dp)−

ˆ
E
FTM−1p µ0,∆t(dq dp)

ã
= ρF +∆tα

ˆ
E
FTM−1p fα,1 dµ+∆tα+1r∆t, (8.46)
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where ρF is defined in (8.13). This error estimate is illustrated in Figures 8.2 and 8.3 for the same
system as in Figure 8.1. More precisely, we check in Figure 8.2 that, for a given time step ∆t, the
average velocity in the direction F is indeed linear with respect to η for η sufficiently small. The
corresponding slope gives an estimate of ρF,∆t. These estimates are then reported as a function
of ∆t in Figure 8.3. They extrapolate to the same value at ∆t = 0, with errors of order ∆t
for first-order splitting schemes, and ∆t2 for second-order splitting schemes, as expected from
Corollary 8.1.
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Fig. 8.2. Linear response of the numerical approximation of the average velocity Eη(FTM−1p) as a
function of η for the scheme associated with P γC,Bη,A,Bη,γC∆t , for ∆t = 0.01 and γ = 1. A linear fit on the
first ten values gives a slope of ρF,∆t ' 0.07416.
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Fig. 8.3. Estimated mobility ρF,∆t for the first-order scheme P
A,Bη,γC

∆t and second-order scheme
P
γC,Bη,A,Bη,γC

∆t as a function of the timestep ∆t, for γ = 1. The fits give ρF,∆t ' 0.0740 + 0.0817∆t
and ρF,∆t ' 0.0741 + 0.197∆t2, respectively.

Remark 8.7 (overdamped limits). As explained in [169, Section 3.4], it is possible to study
the overdamped limit γ → +∞ in the above results, and in particular to obtain error estimates on
the invariant measure and on the linear response which hold uniformly for γ > 1.
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8.5 Variance reduction for non-equilibrium systems

One of the difficulties with the computation of average properties of non-equilibrium systems is
that standard variance reduction techniques, such as those described in Section 6.3, cannot be used
as such, as we illustrate below. We believe that finding appropriate variance reduction techniques
for non-reversible dynamics is a challenging and interesting open problem.what

should be
kept here?
Work in
progress
every-
where,
some-
how...

add CLR?

8.5.1 Importance sampling

If the drift term −∇V of equilibrium (overdamped) Langevin dynamics is modified to −∇(V +‹V ),
the changes in the invariant probability measure can be explicitly written down: this measure now
reads Z̃−1e−β(V+‹V )(q)dq. On the other hand, consider non-equilibrium dynamics

dqt = b(qt) dt+
√
2 dWt,

with invariant measure ψ∞(q) dq, perturbed by a gradient term, such as

dqt = (b(qt) +∇A(qt)) dt+
√
2 dWt.

We let ψA∞(q) dq denote the invariant measure of this process, assuming it exists. In general,
ψA∞(q) dq is different from Z−1ψ∞(q)eA(q) dq (consider for instance the simple example (8.7), for
which the unique invariant probability measure is the uniform measure on D = T when V = 0,
which transforms into (8.8) when V 6= 0). The expression of ψA∞ is not known, and generally has
no simple relationship with the expression of ψ∞. It is therefore unclear how to use importance
sampling strategies for non-equilibrium systems.

8.5.2 Stratification

For equilibrium systems, it is easy to construct constrained dynamics to sample the restriction of
the invariant measure of the unconstrained dynamics to some submanifold. This is the principle
of thermodynamic integration for example (REF). The invariant measure of constrained non-
equilibrium dynamics may, on the other hand, have no relationship whatsoever with the invariant
measure of the unconstrained non-equilibrium dynamics. Let us illustrate this point with a simple
example. Consider the dynamics

dq1,t = ∂q2U(q1,t, q2,t) +
√
2 dW1,t,

dq2,t = −∂q1U(q1,t, q2,t) +
√
2 dW2,t,

on the state space T2, for a given C∞ periodic function U . A simple computation shows that
ψ∞ = 1T2 is an invariant probability measure. Besides, this is the unique invariant probability
measure since the process is irreducible. Consider now the constraint ξ(q) = 0 for the choice
ξ(q) = q2. On the one hand, the restriction of ψ∞ to the space {q ∈ T2 | ξ(q) = 0} = T × {0}
is ψ∞(q1) = 1T. On the other hand, the process constrained using a constraining force in the
direction of ∇ξ reads

dq1,t = f(q1,t) dt+
√
2 dW1,t, f(q1) = ∂q2U(q1, 0).

In general, the invariant measure for this process is different from 1T. Indeed, introduce

F =

ˆ 1

0

f, V (q1) = −
ˆ q1

0

(f(s)− F ) ds.

Note that V is a periodic function (V (0) = V (1) = 0) and that f(q1) = −V ′(q1). The computations
performed in Section 8.2 show that the unique invariant probability measure of the constrained
process is

ψ∞(q1) = Z−1
ˆ 1

0

eV (q1+y)−V (q1)−Fy dy,

which is different from 1T in general.
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8.5.3 Control variate method

This method has been applied to non-equilibrium systems, but only for stochastic dynamics, for
which the coupling between two configurations driven by the same random noise is strong – for
example one-dimensional lattice gas systems [108]. The general idea of the control variate method
in this context is to simulate a system at equilibrium and a system subjected to a small external
forcing, and to monitor the difference between the flux of interest in the non-equilibrium system,
and the flux in the equilibrium one (which, up to statistical errors, should vanish). When the
coupling is sufficiently strong, the variance of the difference of the fluxes is much smaller than the
variance of the flux of the non-equilibrium system alone. On the other hand, this approach is very
difficult to use in systems where the coupling is too weak, such as perturbations of Hamiltonian
dynamics, or overdamped Langevin dynamics in regions where the Hessian of the potential is
not positive definite. With some care, it is however possible to estimate finite time correlation
functions, as done by [56].

An interesting question is: Is there a way to modify the dynamics in order to increase its
coupling properties, while keeping fixed the value of the linear response of the observable of
interest? This is, to the best of our knowledge, an open problem.

Remark 8.8 (adding non-reversible drifts). Non-reversible dynamics can also be obtained
by perturbing reversible dynamics with a non-gradient force, which is divergence-free with respect
to the equilibrium measure, however, and hence does not modify the invariant measure under
consideration. At variance with the situations discussed above, where the non-reversible drift in the
dynamics is fixed by the physical problem at hand (the computation of a given transport coefficient,
induced for instance by the constant force ηF in (8.1)) and the non-equilibrium steady-state is
unknown, here the non-equilibrium steady-state is fixed and equal to the equilibrium measure of
the reversible dynamics under consideration. Moreover, the non-reversible drift is chosen by the
user in order to accelerate the sampling procedure. For overdamped Langevin dynamics, there are
several results confirming that the addition of non-gradient but divergence-free drifts improves
the sampling, measured either in terms of convergence of the law of the process to the invariant
distribution or in terms of asymptotic variance of observables of interest. In fact, both criteria are
related to spectral gap estimates. For further precision we refer to [135, 136, 175, 229] for example.

8.5.4 Artificial dynamics

Transport coefficients can be computed by specifying both a perturbation (described by its gen-
erator L̃1) and an appropriate response function R. Once these two quantities are provided, the
transport coefficient is obtained by (8.13) or (8.24). In general, the expressions of L̃1 and R are
motivated by an analogy with experimental setups.

Now, the perturbation L̃ actually enters only through the function S = L̃∗1. There is therefore
some freedom in choosing a perturbation different from the physically relevant one, while ensuring
that the linear response is correct since L̃∗1 is preserved. This is the basis of the “synthetic NEMD”
algorithms (with the terminology of [85]), in which non physical perturbations are considered. The
interest of these non physical perturbations is that they may have better numerical properties than
the standard, physically motivated perturbations: the average linear responses are the same, but
the variance of the observables may be different, or the sizes of the transient regime before the
steady state is reached may be different.

Two synthetic dynamics can be proposed for thermal transport in one dimensional chains.
They perturb the reference dynamics (Hamiltonian dynamics with Langevin thermostats at the
same temperature at the boundaries) by nongradient forcing terms, instead of modifying the
temperatures at the boundaries. These dynamics are bulk driven (the forcing is felt directly at
every site in the chain).

(i) In [84, 185, 86, 164] a non-gradient perturbation −ξ
(
v′(qi+1 − qi) + v′(qi − qi−1)

)
is applied

at site i, with appropriate modifications at the boundaries:
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dqi = pi dt,

dpi =
(
(1− ξ)v′(qi+1 − qi)− (1 + ξ)v′(qi − qi−1)

)
dt, i 6= 1, N,

dp1 =
(
(1− ξ)v′(q2 − q1)− v′(q1)

)
dt− γp1 dt+

√
2γT dW 1

t ,

dpN = −(1 + ξ)v′(qN − qN−1) dt− γpN dt+
√
2γT dWN

t ,

The generator of the perturbation of the reference dynamics with generator (8.27) reads

L̃ = −v′(q2 − q1)∂p1 −
N−1∑
i=2

(
v′(qi+1 − qi) + v′(qi − qi−1)

)
∂pi − v′(qN − qN−1) ∂pN ,

so that L̃∗ = −L̃ − 2βJ .
(ii) Hamiltonian perturbations can also be employed. In this case, the dynamics is the Hamilto-

nian dynamics associated with the Hamiltonian H0 + ξH1 with

H1(q, p) =

N∑
i=1

iεi(q, p),

where εi is defined in (8.15), and the two end sites are still coupled to Langevin thermostats
at the same temperature T . The generator of the perturbation is

L̃ = ∇pH1 · ∇q −∇qH1 · ∇p,

so that L̃∗ = −L̃ − βJ .

In both cases, S = L̃∗1 = −cβJ for some constant c > 0, so that the linear response of J allows
to recover the thermal conductivity, up to a known multiplicative constant (in view of the general
result (8.24) and of the definition (8.31) of the thermal conductivity).
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The aim of this lecture is to describe the statistics of stochastic processes which remain trapped FAIRE
DES FIG-
URES

for a very long time in a subdomain S of the state space – a so-called metastable state for the
dynamics (see Section 9.1). A particular focus is placed on the description of the exit from S when
this exit occurs after a very long time. Part of the question will of course be to quantify what is
meant by “long time” in this context. As we argue in Section 9.2, this is useful from a theoretical
viewpoint to justify the use of Markov state models in discrete state spaces to model the evolution
of the system (the proof of one of the main results of Section 9.2 is postponed to Section 9.3, in the
simple case of overdamped Langevin dynamics). The description of exit events is also useful from
a numerical viewpoint to devise efficient sampling techniques of the exit event, using in particular
the so-called accelerated molecular dynamics which have been proposed by A.F. Voter and his
co-workers [276, 277, 254, 217]; see the discussion in Section 9.4.

9.1 Efficiently simulating efficiently metastable dynamics

The dynamics we consider in this lecture are the Langevin dynamics (5.5) and its overdamped
limit (4.1), which both model the evolution of a molecular system at fixed temperature. In the
following, we denote by Xt = (qt, pt) or Xt = qt the Markov process associated with the dynam-
ics (5.5) or (4.1).

In most situations of practical interest in statistical physics, the two dynamics (5.5) and (4.1)
have a metastable behavior. As already explained in Section 7.1.3, this means that the dynamics
typically remain trapped in some regions, called metastable states, for very long periods of times;
and only very occasionally hop from one metastable state to another one. This makes sense from a
physical viewpoint since these dynamics are supposed to model the actual evolution of molecular
systems. Indeed, on the one hand, the typical timescale of oscillations within a metastable state
is of the order of 1 femtosecond, namely 10−15s (see Section 1.1.1), which is also the typical
size of the timestep used to discretize the dynamics (5.5) (see the discussion around (2.35)). On
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the other hand, the metastable states typically correspond to macroscopic configurations of the
molecular system, such as the conformations of a protein, the positions of a defect in a crystal,
etc.; and transitions between these configurations indeed occur over timescales much larger than
1 femtosecond – ranging from microseconds to minutes, or even hours or more for some complicated
biological processes or rare physical processes (as those occuring for radiation damage).

In order to have in mind a schematic representation of a metastable process, we refer to
Figures 7.1 and 7.4, which present two realizations of low-dimensional metastable trajectories.
In both cases, when plotting the x-coordinate as a function of time, one observes a metastable
signal: the x-coordinate of the stochastic process remains in the vicinity of one negative value
for a long time before going to the vicinity of one positive value for a long time, and so forth.
Let us emphasize again that the two situations represented on Figures 7.1 and 7.4 are different
in nature: in the former, metastability comes from an energetic barrier (to leave an energy well,
the stochastic process has to climb the energy surface up to a saddle point) whereas in the latter,
metastability comes from an entropic barrier (to leave the entropic trap, the stochastic process
has to find a narrow escape). In practice, metastability comes from a combination of energetic and
entropic effects.

Exercise 9.1. Discuss how the mean exit time depends on the temperature for energetic barriers
(the situation encountered in Figure 7.1) and for entropic barriers (situation of Figure 7.4).

The way we discuss and numerically address metastability in this lecture differs in two ways
from what has been done through the study of Poincaré constants as in Section 4.3 or the scaling
of free energy differences in Section 7.1.3:

• we are interested here in the actual dynamics of the stochastic processes (5.5) and (4.1): we
would like for example to sample the exit time and exit point from a metastable state, or
the list of visited metastable states along the trajectories, with the correct distribution (these
are indeed random objects). This is in contrast with Lecture 7 where the only quantities of
interest are so-called thermodynamic quantities – i.e. averages with respect to the Boltzmann-
Gibbs measure, which is the stationary state of (5.5) and (4.1)), for which techniques such
as biasing (importance sampling) or conditioning (stratification) can be used. To obtain the
correct dynamics, one needs to sample trajectories, not only conformations of the molecular
system, and this is of course much more demanding.

• we adopt a local point of view, focusing on metastable states rather than maintaining a global
point of view such as the one in Section 4.3 where we discuss the metastability of a whole dy-
namics, quantified by constants in functional inequalities (Poincaré inequalities or logarithmic
Sobolev inequalities) involving integrals over the whole configuration space. Here, we study on
the contrary the metastability of a state for a given dynamics, and concentrate on the efficient
sampling of the exit from this state.

9.2 Metastable exit events and the quasi-stationary distribution

Consider a domain (i.e. a connected open set) O ⊂ RD defined in position space. The associated
state is S = O×RD for Langevin dynamics, and S = O for overdamped Langevin dynamics. The
exit event from S is given by the couple of random variables

(τS , XτS ),

where
τS = inf {t > 0, qt 6∈ O} = inf {t > 0, Xt 6∈ S} .

If S is a metastable state, the process Xt starting in S remains trapped for a very long time before
exiting. In such a situation, it is thus computationally very expensive to sample the exit event
from S.
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We first introduce in Section 9.2.1 the notion of quasi-stationary distribution (QSD), which is a
very useful concept to describe the exit event from a metastable state; and then state a result giving
the existence, uniqueness and convergence to the QSD for Langevin and overdamped Langevin
dynamics (the proof for the overdamped Langevin dynamics (4.1) is postponed to Section 9.3).
We next discuss interesting properties of metastable exit events in Section 9.2.2. These properties
allow to construct a reduced dynamics, as done in Section 9.2.3.

9.2.1 Quasi-stationary distribution

When the process Xt remains trapped for a very long time in a state S, it seems natural that it
reaches some kind of local equilibrium within the state before exiting. This is where the notion of
quasi-stationary distribution is useful. To state the definition, recall that the vector space B∞(S)
is the Banach space of bounded measurable functions on S (see Section 3.3).

Definition 9.1. A probability measure νS on S is called a quasi-stationary distribution (QSD)
for the Markov process (Xt)t>0 if and only if

X0 ∼ νS =⇒ ∀t > 0, ∀ϕ ∈ B∞(S), E (ϕ(Xt) | τS > t) =

ˆ
S
ϕdνS .

In words, νS is a quasi-stationary distribution for the Markov process (Xt)t>0 if, starting from
νS , the stochastic process at time t > 0 conditionally to stay in S up to time t is still distributed
according to νS . If one takes O = RD, a quasi-stationary distribution is thus nothing but a
stationary state for the Markov process. When O ⊂ RD, a quasi-stationary distribution describes
some kind of “local equilibrium within S”. It is therefore very natural to raise for the QSD the
same questions as those which have been studied previously in these lecture notes concerning the
stationary state of a Markov process: existence, uniqueness, longtime convergence, etc. The main
result of this section answers these questions.

Theorem 9.1. Assume that O is a bounded smooth domain of RD, and consider the Markov
process (Xt)t>0 following either the Langevin (5.5) or the overdamped Langevin dynamics (4.1).
Then, there exists a unique QSD νS in S. Moreover, for any X0 ∈ S,

lim
t→∞

E(ϕ(Xt) | τS > t) =

ˆ
S
ϕdνS . (9.1)

This result shows that the QSD is indeed the correct probability distribution to describe the
stationary state of the Markov process (Xt)t>0 when it remains trapped for a very long time in S.
Section 9.3 is devoted to the proof of this result for the overdamped Langevin dynamics (4.1).
Proofs for Langevin dynamics are much more involved; see the very recent results [176, 182]. Let
us also mention at this point the very thorough introduction [57] on QSDs and their properties.

We conclude this section with an important remark from a modelling viewpoint. In all what
follows, we are able to precisely describe and efficiently sample the exit event only when the
limit (9.1) is reached before the exit from S. This may of course depend on the initial condition
in S, or on the realization of the stochastic process. This is why we use the notion of metastable exit
in the following, to denote an exit which occurs after the local equilibrium (namely, the QSD) has
been reached within the state. A metastable state is then a region such that, for most of the entries
within this region, the exit from it is metastable. Of course, all these notions require some tolerances
(e.g. to measure the distance to the limit in (9.1) in some norm) to make them quantitative. It
is actually one aim of the mathematical analysis to give some precise and measurable notions of
such a metastable behavior.

9.2.2 Properties of the metastable exit event

A fundamental property of the exit event, when the exit is metastable, is the following one.
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Theorem 9.2. Assume that X0 is distributed according to the QSD νS in S. Then,

• the first exit time τS is exponentially distributed;
• the first exit time τS is independent of the exit point XτS .

Proof. Consider two positive real numbers s, t. From Theorem 9.1 and the Markov property,
if X0 ∼ νS , then the law of (Xs+t)t>0 conditionally to τS > s is the same as (Xt)t>0. Therefore,

PνS (τS > s+ t) = PνS (τS > s+ t | τS > s)PνS (τS > s) = PνS (τS > t)PνS (τS > s),

which shows that PνS (τS > s) = exp(λs) for some λ > 0, and so, τS follows an exponential
distribution. Likewise, using the same reasoning, for any measurable set A ⊂ ∂S and any s > 0,

PνS (XτS ∈ A, τS > s) = PνS (XτS ∈ A | τS > s)PνS (τS > s) = PνS (XτS ∈ A)PνS (τS > s),

which proves that τS and XτS are independent. ut

Theorem 9.2 shows that if the process has been trapped in the state S for a sufficiently long
time so that one can assume it is distributed according to νS (see the convergence property (9.1)),
then the exit event satisfies the two very specific properties stated in Theorem 9.2.

9.2.3 Metastable exit events and kinetic Monte Carlo dynamics

We now use the result of Theorem 9.2 to draw a connection between the Markov dynamics on
continuous state spaces, namely (5.5) and (4.1), and discrete state space Markov dynamics (Markov
chains) which are also used in statistical physics to model the evolution of a molecular system.
We assume to this end that the full configurational space RD is partitioned into a list of domains
(Oi)i>1 (with associated states (Si)i>1):

RD =
⋃
i>1

Oi, Oi ∩ Oj = ∅ if i 6= j.

The aim is to describe the so-called state-to-state dynamics (It)t>0 defined by:

∀t > 0, Xt ∈ SIt .

The wriggles within the metastable states are indeed typically not interesting: to get the important
features of the dynamics over large timescales, only the state-to-state dynamics matter. This state-
to-state dynamics is encoded by the pure jump process (It)t>0, which has values in a discrete space.

When the process enters a state, say S1 without loss of generality, there are then two possible
situations:

• Either the process (Xt)t>0 quickly leaves S1, in which case the simulation of the time spent in S1
and of the next visited state can be done easily by simply following the dynamics of (Xt)t>0;

• Or the process (Xt)t>0 remains trapped for a long time in S1, in which case the simulation
of the exit event following the dynamics of (Xt)t>0 becomes computationally very expensive.
However, in such a case, one can assume that, after some convergence time, Xt is distributed
according to the QSD νS1 , and this can be used to theoretically characterize the exit event
(using a Markov chain, see below) or efficiently simulate it (as explained in Section 9.4).

Indeed, in the latter case, we know from Theorem 9.2 that the exit time is exponentially distributed
and independent of the exit point, and this implies that the state-to-state dynamics (It)t>0 behaves
statistically as a continuous-time Markov chain. In order to mathematically formalize this idea,
we introduce the following rates for a dynamics starting in S1:

∀i > 1, k1,i = EνS1 (τS1)P
νS1 (XτS1

∈ ∂Si). (9.2)

Note that k1,i = 0 if ∂S1 ∩ ∂Si = ∅, or more generally if PνS1 (XτS1
∈ ∂Si) = 0. All the states i

such that k1,i 6= 0 are called the neighbouring states of state 1. One can check that the exit
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event (exit time and next visited state) for the continuous-time Markov chain with the rates (9.2)
is statistically exactly the same exit event as for the original process (Xt)t>0. Indeed, for the
continuous-time Markov chain starting from the state 1 and jumping to state i with rate k1,i given
by (9.2),

• the residence time in state 1 is exponentially distributed with parameter
∑
i 6=1 k1,i = EνS1 (τS1),

and has therefore exactly the same law as τS1 when X0 ∼ νS1 ;
• the next visited state is a random variable independent of the residence time, and which takes

the value i0 with probability

k1,i0∑
i 6=1 k1,i

= PνS1 (XτS1
∈ ∂Si0).

Again, this is thus statistically consistent with the law of XτS1
when X0 ∼ νS1 .

The exit event of the continuous-time Markov chain with rates (9.2) is thus exactly the same as
the exit event for the process (Xt)t>0 starting from the QSD.

The model which consists in partitioning the configurational space into states, and introducing
rates ki,j for transitions form state Si to state Sj is called a Markov state model or kinetic Monte
Carlo (kMC) dynamics. From a mathematical point of view, this is nothing but a continuous-time
Markov chain with values in {1, 2, . . .} and infinitesimal generator encoded by

∀(i, j) ∈ {1, 2, . . .} × {1, 2, . . .}, Ki,j =


ki,j if i 6= j,

−
∑
j 6=i

ki,j if i = j.

What we have shown above is that a natural parameterization of the kMC model is given by the
formula ki,j = EνSi (τSi)P

νSi (XτSi
∈ ∂Sj). With such a parameterization, when the exit from a

state is metastable, the exit even simulated with the kMC model is statistically exactly the same
as what is obtained using the original dynamics (5.5)–(4.1). Compared to the latter, the interest
of a kMC model from a numerical viewpoint is that one can easily sample dynamics over very long
timescales, since one does not simulate the details of the dynamics within the states. However,
replacing the original dynamics by the kMC model introduces a bias, since the kMC model is
only correct for metastable exits. We discuss in Section 9.4 how to use such a kMC model to
accelerate the sampling of the original dynamics but with a control of this bias, using a kind of
predictor-corrector scheme (the kMC model being the predictor, and the original dynamics being
the corrector).

Remark 9.1. In a small temperature regime for the dynamics (5.5) and (4.1), it is natural to
define the states as the basins of attraction of the local minima of the potential function V for the
steepest descent dynamics ẋ = −∇V (x), and one can use harmonic approximations to estimates
the rates ki,j by some Eyring–Kramers formulas. In this regime, the metastability is energetic in
nature. We refer to [69] and references therein for more details.

Exercise 9.2. Assume that a list of non-intersecting metastable domains (Oi)i>1 is given, but
that this list does not make up a partition. Consider the dynamics (It)t>0 given by the last visited
state:

∀t > 0, Xσ(t) ∈ OIt , σ(t) = sup

s ∈ [0, t], Xs ∈
⋃
i>1

Oi

 .

Discuss the Markovianity of this process using the notion of QSD.

9.3 A proof of Theorem 9.1 for the overdamped Langevin dynamics

We give in this section a proof of Theorem 9.1 for the overdamped Langevin dynamics (4.1), for
which the proof is much simpler than for the Langevin dynamics (5.5). In all this section, we
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therefore assume that Xt = qt satisfies (4.1) and S = O is a bounded smooth domain of RD. We
also simply denote by τO = τS the exit time in order to simplify the notation. Recall that the
infinitesimal generator of the process reads

L = −∇V · ∇+
1

β
∆,

while its ajoint on L2(RD) is

L† = div(∇V ·) + 1

β
∆.

9.3.1 Existence of a quasi-stationary distribution

The cornerstone of the analysis is the following Feynman–Kac formula for the absorbed process.Add refer-
ence

Proposition 9.1. Consider two smooth functions v0 and ϕ, and a smooth solution v(t, x) to the
following problem: 

∂tv(t, x) = Lv(t, x) for t > 0, x ∈ O,
v(t, x) = ϕ(x) for t > 0, x ∈ ∂O,
v(0, x) = v0(x) for x ∈ O.

Then, for all t > 0 and x ∈ O,

v(t, x) = E
î
1τxO6t ϕ

Ä
Xx
τxO

äó
+ E

[
1τxO>t v0(X

x
t )
]
,

where Xx
t is the process following the overdamped Langevin dynamics (4.1) starting at x at time 0,

and τxO is the corresponding first exit time from O.

Proof. Fix a time t > 0 and consider u(s, x) = v(t− s, x), which satisfies
∂su+ Lu = 0 for s ∈ [0, t], x ∈ O,
u(s, x) = ϕ(x) for s ∈ [0, t], x ∈ ∂O,
u(t, x) = v0(x) for x ∈ O.

Using Itô calculus, it holds, for any s ∈ [0, t ∧ τxO],

u(s,Xx
s ) = u(0, x) +

ˆ s

0

(∂su+ Lu)(r,Xx
r ) dr +

√
2β−1

ˆ s

0

∇u(r,Xx
r ) dWr

= u(0, x) +Ms,

where Ms =
√

2β−1
´ s
0
∇u(r,Xx

r ) dWr is a stochastic integral. Since u is assumed to be smooth,
and (Xx

r )r>0 lives in the bounded domain O up to time t ∧ τxO, the function r ∈ [0, t] 7→
∇u(r,Xx

r )1r6τxO belongs to M2([0, t]), so that E
Ä´ t∧τxO

0
∇u(r,Xx

r ) dWr

ä
= 0. Therefore,renvoyer

a ref et
verifier
notation

v(t, x) = u(0, x) = E
î
u
Ä
t ∧ τxO, Xx

t∧τxO

äó
= E
î
1τxO6t u

Ä
τxO, X

x
τxO

äó
+ E

[
1τxO>t u(t,X

x
t )
]

= E
î
1τxO6t ϕ

Ä
Xx
τxO

äó
+ E

[
1τxO>t v0(X

x
t )
]
,

which concludes the proof. ut

Exercise 9.3. Consider an initial distribution µ0(dx) = p0(x) dx on O, and define, for all t > 0,
the law p(t, x) dx of the so-called absorbed Markov process (Xt1τO>t)t>0 by

∀ϕ ∈ B∞(O), E [ϕ(Xt)1τO>t] =

ˆ
O
ϕ(x)p(t, x) dx.
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Prove that p satisfies 
∂tp(t, x) = L†p(t, x) for t > 0, x ∈ O,
p(t, x) = 0 for t > 0, x ∈ ∂O,
p(0, x) = p0(x) for x ∈ O.

(9.3)

Verify that
d

dt

Åˆ
O
p(t, x) dx

ã
6 0.

Recall that the unique invariant probability measure for the dynamics Xt = qt following (4.1)
is ν(dq) = Z−1ν exp(−βV (q)) dq introduced in (4.2). In the following, we denote by L2

ν(O) the
Hilbert space of functions from O to R which are square integrable with respect to ν, equipped
with the scalar product: passage

a ν au
lieu de µ
dans cette
section

〈ϕ, φ〉L2
ν(O) =

ˆ
O
ϕφdν. (9.4)

Note that L2
ν(O) = L2(O) since O is bounded and V is smooth.

The quasi-stationary distribution is related to spectral properties of the generator L supple-
mented with zero Dirichlet boundary conditions on ∂O. The following result summarizes the
important spectral properties we need. To state it, we denote by H1

0 (O) the closure of the space
of smooth functions with compact support in O for the H1 norm.

Proposition 9.2. The operator L supplemented with zero Dirichlet boundary conditions on ∂O,
with domain H2(O) ∩H1

0 (O), is a self-adjoint operator on L2
ν(O), with compact resolvent. It has

a discrete spectrum, with negative eigenvalues (counted with multiplicity)

0 > −λ1 > −λ2 > . . . > −λn > . . . (9.5)

and associated (normalized) eigenfunctions

(u1, u2, . . . , un, . . .),

ˆ
O
|un|2 dν = 1.

The first negative eigenvalue −λ1 is non-degenerate, and the associated eigenfunction u1 has a
constant sign on O.

Proof. The results follow from standard arguments, for which we refer for instance to [103, Theo-
rem 5.5 and Section 8.12] for more details. It was shown in Section 4.1.1 that the dynamics (4.1)
is reversible with respect to ν. Recall in particular (4.7), which states that, for all smooth and
compactly supported functions ϕ, φ : RD → R,

ˆ
RD

ϕLφdν =

ˆ
RD

(Lϕ)φdν = − 1

β

ˆ
RD
∇ϕT∇φdν.

This, in turn, implies that the dynamics restricted to O is reversible with respect to ν restricted
to O, namely: for all smooth functions ϕ, φ : O → R with compact support in O,

ˆ
O
ϕLφdν =

ˆ
O
(Lϕ)φdν = − 1

β

ˆ
O
∇ϕT∇φdν. (9.6)

Thus, the operator L with Dirichlet boundary conditions on ∂O is negative-definite and symmetric
with respect to the scalar product (9.4). Since V is assumed to be smooth, a standard reasoning
based for instance on the Lax–Milgram lemma shows that the inverse of the operator L is bounded
from L2

ν(O) to H1
0 (O), and hence compact on L2

ν(O) (since the injection from H1
0 (O) to L2

ν(O) is
compact). The inverse of L thus has a discrete spectrum. Since, the operator L is negative-definite
and symmetric, the eigenvalues are real and negative. Note indeed that the kernel of L is reduced
to 0, so that λ1 > 0 in (9.5). Using the variational characterization of the first eigenvalue:
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λ1 = inf
ϕ∈H1

0 (O)

β−1
ˆ
O
|∇ϕ|2 dν

´
O ϕ

2 dν
, (9.7)

it follows by a standard argument (if u1 is a minimizer, then |u1| is also a minimizer) that we may
always assume that u1 is a signed, say nonnegative, function. Using the Harnack inequality, it is
again standard to show u1 does not vanish on O. We therefore have that

u1 > 0 on O,

while u1 vanishes on ∂O. This in turn implies that λ1 is non-degenerate (hence λ2 > λ1 in (9.5)).
Indeed, if u is another eigenfunction associated with λ1, then, using the same arguments as

above (namely, |u| is also an eigenfunction, which cannot vanish by the Harnack inequality), it
necessarily has a sign, either positive or negative on O. This however means that it cannot be
orthogonal to u1, which proves that Ker(L − λ1) has dimension 1. ut

Exercise 9.4. Show that any eigenfunction associated with an eigenvalue λ 6= λ1 necessarily takes
positive and negative values. The eigenfunction u1 is thus the only signed eigenfunction.

Let us now introduce the probability measure

dνO =
1O u1 dνˆ
O
u1 dν

, (9.8)

which is in fact a QSD, as made precise in the following result.

Proposition 9.3. The measure νO defined by (9.8) is a QSD. In addition, νO is an eigenfunctioncf. pas
unicite
vect pp
sauf si on
normalise

associated with the eigenvalue −λ1 for the Fokker-Planck operator L† with homogeneous Dirichlet
(also known as absorbing) boundary conditions. More precisely, if we denote by

w =
dνO
dx

=
u1 e

−βVˆ
O
u1 e

−βV

the density of νO with respect to the Lebesgue measure, it holds®
L†w = −λ1w on O,
w = 0 on ∂O.

(9.9)

The eigenvalue −λ1 is the first eigenvalue of L†, and it is non-degenerate.

Proof. To prove that νO is a QSD (see Definition 9.1), it is sufficient to prove that, for any smooth
function ϕ vanishing on ∂O,

ˆ
O

E
[
ϕ(Xx

t ) 1τxO>t
]
νO(dx) =

ˆ
O
ϕ(x) νO(dx)

ˆ
O

P (τxO > t) νO(dx). (9.10)

Denote by v(t, x) = E
[
ϕ(Xx

t ) 1τxO>t
]
and v(t, x) = P (τxO > t). It follows from Proposition 9.1 that

∂tv = Lv for t > 0, x ∈ O,
v(t, x) = 0 for t > 0, x ∈ ∂O,
v(0, x) = ϕ(x) for x ∈ O,

and v satisfies the same equation with initial condition v(0, x) = 1. Therefore, using the defini-
tion (9.8) of νO and the symmetry (9.6) of the operator L,
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d

dt

Åˆ
O

E
[
ϕ(Xx

t ) 1τxO>t
]
νO(dx)

ã
=

Åˆ
O
u1 dν

ã−1 d

dt

Åˆ
O
v(t, x)u1(x) ν(dx)

ã
=

Åˆ
O
u1 dν

ã−1 ˆ
O
Lv(t, x)u1(x) ν(dx)

=

Åˆ
O
u1 dν

ã−1 ˆ
O
v(t, x)Lu1(x) ν(dx)

= −λ1
Åˆ
O
u1 dν

ã−1 ˆ
O
v(t, x)u1(x) ν(dx)

= −λ1
ˆ
O

E
[
ϕ(Xx

t ) 1τxO>t
]
νO(dx).

This implies that ˆ
O

E
[
ϕ(Xx

t ) 1τxO>t
]
νO(dx) = e−λ1t

ˆ
O
ϕdνO.

A similar equality is obtained for v by replacing ϕ by 1, which yields (9.10).
The relation between the spectrum of the operator L with Dirichlet boundary conditions on ∂O,

seen as on operator on L2
ν(O), and the operator L† with absorbing boundary conditions, follows

the from variational equality satisfied by the eigenfunctions uk:

∀ϕ ∈ H1
0 (O) ∩H2(O), −

ˆ
O
ukLϕdν =

1

β

ˆ
O
∇uTk∇ϕdν = λk

ˆ
O
ukϕdν.

This equality shows that (−λk, uke−βV ) is an eigenvalue/eigenfunction couple for L† if and only
if (−λk, uk) is an eigenvalue/eigenfunction couple for L. ut

Remark 9.2. The assumption that O is connected and bounded is important to ensure the unique-
ness of the QSD. Indeed if O is bounded but not connected, there exists a QSD in each of the con-
nected components of O, and any convex combination of these QSDs is also QSD. In addition, if O
is connected but unbounded, it is expected that the process admits many QSDs, see for example [57,
Example 6.31] which considers the Ornstein–Uhlenbeck process in dimension 1 and O = (0,+∞).

Exercise 9.5. Prove that if X0 is distributed according to the QSD νO, then the parameter of the
exponential random variable τO is λ1. What is the law of XτO?

9.3.2 Longtime convergence to the quasi-stationary distribution

We again consider Xt = qt solution to (4.1) with initial condition X0 ∈ O, where O is a bounded
domain of RD. We denote by ν0 the (arbitrary) distribution of X0. We can then state the following
convergence result.

Proposition 9.4. Assume that the initial arbitrary distribution ν0 of X0 admits a Radon–Nikodym

derivative
dν0
dν

with respect to the invariant measure ν of the dynamics Xt, such that

∥∥∥∥dν0dν
∥∥∥∥2
L2
ν(O)

=

ˆ
O

Å
dν0
dν

ã2
dν <∞. (9.11)

Then, there exists C ∈ R+ (which depend on ν0) such that

∀ϕ ∈ B∞(O), ∀t > C

λ2 − λ1
,

∣∣∣∣E [ϕ(Xt)|τO > t]−
ˆ
O
ϕdνO

∣∣∣∣ 6 C‖ϕ‖∞e−(λ2−λ1)t, (9.12)

where −λ2 < −λ1 < 0 are the first two eigenvalues of the operator L on the weighted space L2
ν(O).
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Proof. Fix ϕ ∈ B∞(O), and define∣∣∣∣E [ϕ(Xt)|τO > t]−
ˆ
O
ϕdνO

∣∣∣∣ .
Notice that

E [ϕ(Xt)|τO > t] =

ˆ
O
v(t, x) ν0(dx)ˆ

O
v(t, x) ν0(dx)

, (9.13)

with v(t, x) = E
[
ϕ(Xx

t )1τxO>t
]
and v(t, x) = E

[
1τxO>t

]
= P(τxO > t). Proposition 9.1 implies that

∂tv = Lv for t > 0, x ∈ O,
v(t, x) = 0 for t > 0, x ∈ ∂O,
v(0, x) = ϕ(x) for x ∈ O,

and v satisfies the same equation with initial condition v(0, x) = 1.
From the spectral decomposition of the operator L provided by Proposition 9.2, and recalling

the notation 9.4, we obtain the following expressions for v and v:

v(t, x) =
∑
k>1

e−λkt〈ϕ, uk〉L2
ν(O)uk(x), v(t, x) =

∑
k>1

e−λkt〈1, uk〉L2
ν(O)uk(x).

Therefore, using the definition (9.8) of the QSD νO and (9.13),

E [ϕ(Xt)|τO > t] =

∑
k>1

e−λkt〈ϕ, uk〉L2
ν(O)

ˆ
O
uk dν0

∑
k>1

e−λkt〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

=

〈1, u1〉L2
ν(O)

ˆ
O
ϕdνO

ˆ
O
u1 dν0 +

∑
k>2

e−(λk−λ1)t〈ϕ, uk〉L2
ν(O)

ˆ
O
uk dν0

〈1, u1〉L2
ν(O)

ˆ
O
u1 dν0 +

∑
k>2

e−(λk−λ1)t〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

,

where
´
O u1dν0 > 0 and

´
O u1 dν > 0 since u1 > 0. Then,

e(t) =

∣∣∣∣∣∣∣∣∣∣

∑
k>2

e−(λk−λ1)t

Å
〈ϕ, uk〉L2

ν(O) − 〈1, uk〉L2
ν(O)

ˆ
O
ϕdνO

ãˆ
O
uk dν0

〈1, u1〉L2
ν(O)

ˆ
O
u1 dν0 +

∑
k>2

e−(λk−λ1)t〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣∣∣∣∣∣∣
6 e−(λ2−λ1)t

∑
k>2

∣∣∣∣〈ϕ, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣+ ∣∣∣∣〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣ ˆ
O
|ϕ| dνO∣∣∣∣∣∣〈1, u1〉L2

ν(O)

ˆ
O
u1 dν0 +

∑
k>2

e−(λk−λ1)t〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣∣∣
. (9.14)

Let us start by providing upper bounds for the numerator in the latter inequality. Since (uk)k>1

is an orthonormal basis of L2
ν(O),∑

k>2

∣∣∣∣〈ϕ, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣ =∑
k>2

∣∣∣∣∣〈ϕ, uk〉L2
ν(O)

≠
uk,

dν0
dν

∑
L2
ν(O)

∣∣∣∣∣ 6 ‖ϕ‖L2
ν(O)

∥∥∥∥dν0dν
∥∥∥∥
L2
ν(O)

6
»
ν(O)‖ϕ‖∞

∥∥∥∥dν0dν
∥∥∥∥
L2
ν(O)

, (9.15)
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and, by similar manipulations,∑
k>2

∣∣∣∣〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣ˆ
O
|ϕ| dνO 6

»
ν(O)‖ϕ‖∞

∥∥∥∥dν0dν
∥∥∥∥
L2
ν(O)

. (9.16)

For the lower bound on the denominator of (9.14), we likewise write∣∣∣∣∣∣∑k>2

e−(λk−λ1)t〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣∣∣ 6 e−(λ2−λ1)t
∑
k>2

∣∣∣∣〈1, uk〉L2
ν(O)

ˆ
O
uk dν0

∣∣∣∣
6 e−(λ2−λ1)t

∥∥∥∥dν0dν
∥∥∥∥
L2
ν(O)

.

This implies that there exists C ∈ R+ (independent of ϕ) such that, for any t > C/(λ2 − λ1),

〈1, u1〉L2
ν(O)

ˆ
O
u1 dν0 +

∑
k>2

e−(λk−λ1)t〈1, uk〉L2
ν(O)

ˆ
O
uk dν0 >

1

2
〈1, u1〉L2

ν(O)

ˆ
O
u1 dν0 > 0.

Inserting respectively the inequalities (9.15)–(9.16) and the above inequality in the numerator and
denominator of (9.14) leads to the desired conclusion. ut

Remark 9.3. It can actually be shown that the constant C in (9.12) is uniform with respect to update en
fonction
travail en
cours

the initial condition ν0; see for example [107, Theorem 3]. This requires to study the spectrum of
the operator L in appropriate Banach spaces, instead of the Hilbert space L2

ν(O), which makes the
analysis more involved.

Note that the assumption (9.11) on the initial condition ν0 is not restrictive. Indeed, for the
conditioned diffusion process, the time evolution of the density is regularizing. Even if (9.11) is
not satisfied at initial time, this condition will be satisfied for the law of the process evolved for
a positive time t0 > 0. This allows to plug in the exponential convergence estimate (9.12) after
this time t0. The regularization part is made precise in the following lemma, stated for t0 = 1 for
simplicity of notation.

Lemma 9.1. Consider an initial condition ν0 on O. Then, at time t = 1, the law ν1 of X1

conditioned on τO > 1 has a bounded density with respect to the Lebesgue measure. Moreover,

∀ϕ ∈ B∞(O), ∀t > 1, E [ϕ(Xt)|τO > t] = E [ϕ(Xν1
t )|τν1O > t− 1] , (9.17)

where Xν1
t denotes the solution to (4.1) with initial condition ν1, and associated exit time τν1O . As

a consequence,

lim
t→∞

E [ϕ(Xt)|τO > t] =

ˆ
O
ϕdνO. (9.18)

Note that the condition (9.17) is similar to a semigroup property, not obvious here since the
evolution is nonlinear due to the renormalization of the total mass in order to define a prob-
ability measure (see for instance (9.19) in the proof below). In fact, the proof shows that the
convergence (9.18) happens at an exponential rate.

Proof. The measure ν1 is a probability measure on O and is defined by the equality

∀ϕ ∈ B∞(O),
ˆ
O
ϕdν1 = E [ϕ(X1)|τO > 1] .

Now,

E [ϕ(X1)|τO > 1] =
E [ϕ(X1)1τO>1]

P(τO > 1)
=

ˆ
O
ϕ(x)p(1, x) dx
ˆ
O
p(1, x) dx

, (9.19)
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where p satisfies (9.3). From standard regularity results on parabolic equations [87, Chapter 6],
we know that p belongs to C∞((0,+∞),O). This implies in particular that

dν1
dx

=
p(1, ·)ˆ

O
p(1, y) dy

and that the integrability condition (9.11) is satisfied by ν1.
Let us next prove (9.17). Fix t > 1 and ϕ ∈ B∞(O). Then,

E [ϕ(Xt)1τO>t] = E [ϕ(Xt)1τO>t|τO > 1]P(τO > 1) = E
î
ϕ(Xν1

t )1τν1O >t−1

ó
P(τO > 1),

where we used the Markov property for the absorbed Markov process (Xt1τO>t)t>0. By applying
this equality to ϕ = 1, we similarly obtain

P(τO > t) = P (τν1O > t− 1)P(τO > 1).

Therefore,

E [ϕ(Xt)|τO > t] =
E [ϕ(Xt)1τO>t]

P(τO > t)
=

E
î
ϕ(Xν1

t )1τν1O >t−1

ó
P(τO > 1)

P (τν1O > t− 1)P(τO > 1)

= E [ϕ(Xν1
t )|τν1O > t− 1] .

The limit (9.18) then follows from Proposition 9.4 by sending t→∞ in the latter equality. ut
Lemma 9.1 implies that, whatever the initial condition ν0 onO, the process (Xt)t>0 conditioned

to stay inO converges in the longtime limit to the QSD νO introduced in (9.8). This yields therefore
the following corollary, which concludes the proof of Theorem 9.1 for the overdamped Langevin
dynamics.

Corollary 9.1. The overdamped Langevin dynamics (4.1) admits a unique QSD in the bounded
domain O.
Exercise 9.6. Prove that, under the assumptions of Proposition 9.4, the following inequality holds
for any bounded measurable function ϕ : R+ ×O → R:

|E [ϕ (τO − t,XτO )|τO > t]− EνO [ϕ (τO, XτO )]| 6 C‖ϕ‖∞e−(λ2−λ1)t.

To this end, check first that E [ϕ(τO − t,XτO )|τO > t] = E [φ(Xt)|τO > t] where φ(x) = E
î
ϕ(τxO, X

x
τxO

)
ó
.

Exercise 9.7. This exercise is a follow-up of Exercise 9.3. Consider an initial condition ν0(dx) =
q0(x) dx on O. Define, for any t > 0, the law q(t, x) dx of Xt conditioned to τO > t as

∀ϕ ∈ B∞(O), E [ϕ(Xt)|τO > t] =

ˆ
O
ϕ(x)q(t, x) dx.

Prove that q satisfies the following nonlinear system of equations:
∂tq(t, x) = L†q(t, x)−

Åˆ
∂O

∂nq(t, ·)dσ∂O
ã
q(t, x) for t > 0, x ∈ O,

q(t, x) = 0 for t > 0, x ∈ ∂O,
q(0, x) = q0(x) for x ∈ O,

(9.20)

where ∂nq = nT∇q denotes the normal derivative (n being the outward normal unit vector to O)
and σ∂O is the Lebesgue measure on ∂O.
Remark 9.4. As mentioned above, similar results (existence and uniqueness of the QSD, and
convergence to the QSD) can be proven for the Langevin dynamics, see [176, 182]. The main
additional difficulties is that in this case, the infinitesimal generator is not elliptic but hypoelliptic,
and the state S = O × RD is not bounded. It is however possible to prove some compactness on
the semi-group associated with the absorbed diffusion process, which yields the spectral properties
needed to get the results, using in particular the Krein-Rutman theorem [62] to prove the existence,
sign and non-degeneracy of the principal eigenfunction.
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9.4 From theory to numerics

As explained in Section 9.1, the simulation of the process (Xt)t>0 following the Langevin dynam-
ics (5.5) or the overdamped Langevin dynamics (4.1) is computationally expensive if there are
metastable states where the process remains trapped. In the previous section, we have shown that
in such a situation, one has a precise characterization of the exit event out of a metastable state
where the process remains trapped for a sufficiently long time. The aim of this section is to show
how this information can be leveraged to devise efficient numerical methods to sample the exit
event, and thus to efficiently simulate the original dynamics.

Such algorithms follow two steps:

• First, when the process (Xt)t>0 enters a state S, one has to estimate the time Tcorr it takes
for the process trapped in S to reach the QSD νS (see Equation (9.1) in Theorem 9.1). Notice
that Tcorr, known as the decorrelation time, a priori depends on the initial condition in S.

• Second, if the process does not exit before this time Tcorr, one would like to use the under-
standing we gained on the exit event (see Theorem 9.2) in order to build an efficient algorithm
to sample the exit event (exit time and exit point).

These two steps are successively investigated in Sections 9.4.1 and 9.4.2.

9.4.1 Estimation of the decorrelation time

We discuss here how to estimate in practice the time t = Tcorr it takes to reach the limit νS , up
to some error, for the distribution of Xt conditioned to τS > t. From a theoretical viewpoint, we
know that this convergence time is related to a spectral gap for the infinitesimal generator of the
absorbed process (see for example (9.12) for the overdamped Langevin dynamics), but this cannot
be used in practice since this spectral gap is very difficult to estimate.

One way to estimate this convergence is to first get a sample which approximates the law of Xt

conditioned to τS > t, and then to test the stationarity of this sample (namely the fact that the
law of this sample does not depend on t).

Let us first consider how to get a sample which approximates the law of Xt conditioned to τS >
t. A natural rejection algorithm is to consider N processes following the original dynamics, and to
kill a process as soon as it leaves the state S. The problem with this algorithm is that the dynamics
we consider here almost surely leave the state S in finite time, so that no sample at all remains
in the longtime limit. A simple idea to fix this issue and keep a fixed number of samples is to
duplicate one of the remaining trajectories each time a trajectory leaves the state. This is the so-
called Fleming–Viot particle system [93], which we now describe. Consider i.i.d. initial conditions
Xk

0 (k ∈ {1, . . . , N}) distributed according to some initial condition µ0. The process is then the
following:

(1) Integrate N realizations of the original dynamics, driven by independent Brownian motions,
until one of them, say X1

t , exits;
(2) Kill the process that exits;
(3) With uniform probability 1/(N − 1), randomly choose one of the survivors (X2

t , . . . , X
N
t ),

say X2
t ;

(4) Branch X2
t , with one copy persisting as X2

t , and the other becoming the new X1
t (and thus

evolving in the future independently from X2
t ).

Notice that the Fleming–Viot particle process can be implemented in parallel, with each replicaXk
t

evolving on distinct CPUs.
In order to mathematically analyze this algorithm, define the associated empirical distribution

µt,N =
1

N

N∑
k=1

δXkt . (9.21)

It is expected that (see [191, 275] for some results in that direction), for any measurable set A ⊂ S,
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lim
N→∞

µt,N (A) = P(Xt ∈ A | τS > t). (9.22)

This is a so-called propagation of chaos result [259]. From (9.1) and (9.22), we infer in particular
that

lim
t→∞

lim
N→∞

µt,N (A) = νS(A).

The idea is then to quantify the convergence to νS of the process Xt conditioned to τS > t by
considering, for a fixed N , the convergence of the Fleming–Viot particle system to its stationary
state.

In order to test the stationarity of the Fleming–Viot particle system, one can use for example
a criterium which compares an average over the replicas at a given time, with an average over the
replicas and over time. When the two coincide (up to some fixed error threshold), the system is
considered at stationarity. This requires to choose observables to average out, and also a threshold
value to compare the two averages. This is the principle of the so-called Gelman–Rubin convergence
diagnostic [100].

Combining these two techniques (Fleming–Viot particle process and Gelman–Rubin conver-
gence diagnostic) yields a practical way to estimate Tcorr, for a given initial condition µ0 in S. For
more details, see [31, 122].

9.4.2 The parallel replica algorithm

Once the convergence to the QSD within a state S has been reached before the exit from this
state, various algorithms can be used to efficiently sample the exit event. Let us present one such
example: the parallel replica algorithm [277, 218]. Its principle is based on the following corollary
of Theorem 9.2.

Corollary 9.2. Consider N i.i.d. initial conditions Xk
0 (for k ∈ {1, . . . , N}), distributed according

to the QSD νS in S. Let each of the replicas (Xk
t )t>0 evolve according to the original dynamics

(either Langevin (5.5) or overdamped Langevin (4.1)), driven by independent Brownian motions.
Denote by τkS the exit time from S for the k-th replica (Xk

t )t>0, and by K0 the index of the first
replica which exits S:

K0 = argmin
16k6N

τkS .

Then, the law of
Å
NτK0

S , XK0

τ
K0
S

ã
is the same as the law of (τ1S , X

1
τ1
S
).

Note that the statement of the law on the exit time simply corresponds to the fact that the
minimum of N independent exponential laws with mean θ is still an exponential law, but with
mean Nθ.

Proof. From Theorem 9.2, we know that that (τkS)16k6N are N i.i.d. exponential random variables,
and that τkS is independent from Xk

τkS
for all 1 6 k 6 N . Denote by λ the parameter of the

exponential law. Then, for any t > 0 and any measurable set A ⊂ ∂S,

P
Å
XK0

τ
K0
S
∈ A, NτK0

S > t

ã
=

N∑
k=1

P
Å
XK0

τ
K0
S
∈ A, NτK0

S > t, K0 = k

ã
=

N∑
k=1

E

Ñ
1Xk

τkS
∈A1τkS>t/N

∏
` 6=k

1τ`S>τkS

é
=

N∑
k=1

E
Å
1Xk

τkS
∈A1τkS>t/N e−(N−1)λτ

k
S

ã
,

where we used a conditioning by (Xk
t )t>0 in the last step. By the independence of τkS and Xk

τkS
,
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P
Å
XK0

τ
K0
S
∈ A, NτK0

S > t

ã
= NP

Ä
X1
τkS
∈ A
ä

E
Ä
1τ1
S>t/N

e−(N−1)λτ
1
S
ä

= NP
Ä
X1
τkS
∈ A
ä ˆ ∞

t/N

e−(N−1)λs λe−λs ds

= P
Ä
X1
τkS
∈ A
ä
e−λt

= P
Ä
X1
τkS
∈ A
ä

P
(
τ1S > t

)
.

This shows indeed that
Å
NτK0

S , XK0

τ
K0
S

ã
has the same the law as (τ1S , X

1
τ1
S
). ut

This corollary allows to check that the following generalized Parallel Replica algorithm [277, 31]
yields a statistically consistent state-to-state dynamics:

(1) Run a reference walker, using the original dynamics.
(2) Each time the reference walker enters a state, start a Fleming–Viot particle process (with N

replicas simulated in parallel) with the entering point as initial condition.
(3) If the reference walker exits before the Fleming–Viot particle process reaches stationarity, go

back to Step (1); else go to the parallel step (Step (3)).
(4) Parallel step: Starting from the end points of the Fleming–Viot particle process (approximately

i.i.d. with law the QSD), run independent trajectories and consider the first exit event. Multiply
the first exit time by N and go back to Step (1), using the first exit point as an initial condition
to continue the trajectory.

Recall that the time at which the Fleming–Viot particle process becomes stationary is determined
using the Gelman–Rubin convergence diagnostic. As explained in Corollary 9.2, the parallel step
yields a consistent exit time and exit point if the initial conditions of the N walkers are i.i.d.
with law the QSD. Notice that in the parallel step, the N walkers are simulated in parallel, which
means that, in terms of wall-clock time, it only takes the time to generate the first exit among the
N walkers.

Consistency of the algorithm.

There are two main sources of bias in the algorithm, at the end of Step (3) and the beginning of
Step (4).

• Convergence to the QSD: One considers that the Fleming–Viot process has reached stationarity
when the Gelman–Rubin convergence diagnostic is satisfied, and that this corresponds to the
time to reach the QSD. There are two parameters to control this: first, the number of replicas
in the Fleming–Viot process (the larger, the better); and second, the threshold and observables
used in the Gelman–Rubin statistics (the more observables and the tighter the threshold, the
better).

• Independence between the replicas in the Fleming–Viot particle process: Both the Gelman–
Rubin convergence diagnostic and the consistency of the parallel step (see Corollary 9.2) re-
quire that the replicas in the Fleming–Viot particle process are i.i.d. with law the law of Xt

conditioned to τS > t. We already discussed in the first item the fact that the convergence
to the conditioned distribution requires N to be large. In addition to this, the particles are
strictly speaking not independent, because some correlations are induced by the branching in
the Fleming–Viot particle process. Let us make two remarks concerning this point. First, if the
state S is indeed metastable, very few particles actually leave the state, and the correlations are
thus weak in practice. Second, it is in principle possible to reduce these correlations by using a
Fleming–Viot particle process with M � N particles, and only considering the first N walkers
(the propagation of chaos result indeed shows that these N walkers become independent in the
large M limit, see [259, Proposition 2.2 on page 177]). ref plus

precise
pour
Fleming
Viot
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Let us stress that it would be interesting to obtain quantitative measures of these biases. It is
observed that they are negligible for practical cases of interest and well-chosen states S. We refer
for example to [31, 122] for a discussion of the values of the parameters to control the convergence,
and for some numerical illustrations of the accuracy and efficiency of this algorithm.

Interest of the algorithm.

There are various reasons why the algorithm has a practical interest:

• During Step (4) (parallel step), the sampling of the exit event is done in a wall clock time
which is N times smaller than the wall clock time which would have been necessary using only
1 walker. This is because, as shown by Corollary 9.2, the first exit time among the replicas
is N times smaller than the first exit time of one of them. This is the main interest of this
algorithm: it gives a way to parallelize time, which is a very difficult task in general because
of the sequential nature of the time evolution of dynamics. Moreover, the parallel efficiency
(scalability) is very good: in the parallel step, using N CPUs in parallel divides the wall-clock
time to sample the exit event by N .

• The algorithm is very versatile: it can be applied for any Markov process as soon as one can
proves the existence of a QSD in the chosen states. Notice that the states can be very general
(in particular, the metastability of the states can be of energetic or entropic nature, and it is
not required that the states make up a partition).

• The time to reach the QSD is estimated on-the-fly at each time the process enters a state: it
depends on the state and on the initial condition within the state. It is observed in practice
that this time actually depends a lot on the initial condition [122].

Let us emphasize that this technique is very recent, and that many refinements and variants are
still under study, see for example [11, 217, 218].

Remark 9.5 (Other methods to accelerate the dynamics). As mentioned in Remark 9.1, in
a small temperature regime and for states which are defined as energetic wells, there are very good
approximations of the rates which parameterize the exit event. In this regime, it is then possible
to use other algorithms which rely on this additional information, and can be even more efficient
than Parallel Replica; see for example the hyperdynamics [276] or the temperature accelerated
dynamics [254]. We refer to [173] for more details and references.

Remark 9.6 (On the choice of the states). The efficiency of the Parallel Replica algorithm
crucially depends on the choice of the states: the maximal efficiency is obtained when a very
small amount of time is spent outside the states, and when for most of the visits to the states,
the QSD is reached before the reference walker leaves the state. In practice, as already mentioned
in Remark 9.1, one can use the basins of attraction of the local minima of V for the steepest
descent dynamics ẋ = −∇V (x) to define the states. This seems indeed appropriate for application
in material sciences [218]. For biological applications, states can be determined using collective
variables and free energy wells, see for example [122]. For a discussion on the choice of the states,
we also refer to [173, Section 4.5].
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