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We study multiscale systems of SPDEs

dX ε(t) = (AX ε(t) + F (X ε(t),Y ε(t))) dt

dY ε(t) =
1

ε
(BY ε(t) + G (X ε(t),Y ε(t)))dt +

1√
ε
dW (t)

X ε(0) = x ,Y ε(0) = y

in H = L2(0, 1), on [0,T ].
W : cylindrical Wiener process on H.
ε� 1.

Averaging principle: X ε can be approximated by X de�ned by

dX (t) = (AX (t) + F (X (t)))dt

X (0) = x .

Problems:

I Give an order of convergence, in strong and weak sense.

I Application: HMM scheme.

I Comparison with the SDE case.
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Methods for Stochastic Di�erential Equations,
Communications on Pure and Applied Mathematics
(2005).

I In�nite dimensional case:
S. Cerrai, M. Freidlin, Averaging principle for a class of

SPDEs, Probability Theory & Related Fields (2009).
S. Cerrai, A Khasminskii type averaging principle for
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Linear coe�cients (1)

Typical example: A = B = d2

dx2
, with domain

H2(0, 1) ∩ H1
0 (0, 1) (Dirichlet boundary conditions).

Spectral properties:

Aek = −λkek for all k ∈ N
λ := inf

k∈N
λk > 0, λk ∼ Ck2.

Bfk = −µk fk for all k ∈ N
µ := inf

k∈N
µk > 0, µk ∼ C ′k2.

We can de�ne semi-groups (etA)t≥0 and (etB)t≥0.
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Linear coe�cients (2)

De�nition
For α ∈ [0, 1],

(−A)αx =
∞∑
k=0

λαk xkek

with domain

D(−A)α =

{
x ∈ H;

+∞∑
k=0

(λk)2α|xk |2 < +∞

}
;

Regularization properties: for 0 < s < t

|etAx |(−A)α ≤ Cαt
−α|x |H

|etAx − esAx |H ≤

{
C

(t−s)δ

sδ |x |H
C (t − s)δ|x |(−A)δ .
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Nonlinear coe�cients

I F : H2 → H is C2b .
I U : H2 → R is C3b .
I G (x , y) := ∇yU(x , y).

Strict dissipativity assumption:

LG := sup
x ,y1,y2∈H

|G (x , y1)− G (x , y2)|
|y1 − y2|

< µ.

Additional assumption:
There exists α > 0, 0 ≤ γ < 1

4
, C > 0 such that for every

x ∈ H and y1, y2 ∈ D((−B)γ)

|(−A)α(F (x , y1)− F (x , y2))| ≤ C |(−B)γ(y1 − y2)|.
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Stochastic integration in H (1)

(Ω,F , (Ft)t≥0) is a �ltered probability space.

(qk)k∈N is any complete orthonormal system of H, and
(βk)k∈N are independent real brownian motions, with respect
to (Ft)t≥0.
W (t) =

∑
k βk(t)qk is cylindrical Wiener process on H.

This series does not converge in H, but only in K such that
the imbedding Ψ : H ⊂ K is Hilbert-Schmidt:

|Ψ|2L2(H,K) :=
+∞∑
k=0

|Ψ(qk)|2K < +∞.
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Stochastic integration in H (2)
Take (H, (qk)) and (K , (rl )), and Ψ random process with
values in L(H,K ).

∫ T

0

Ψ(s)dW (s) :=
∑
k,l

∫ T

0

< Ψ(s)qk , rl > dβk(s)rl

is well-de�ned for Ψ ∈ L2(Ω× [0,T ];L2(H,K )).
Properties:

E
∫ T

0

Ψ(s)dW (s) = 0

E|
∫ T

0

Ψ(s)dW (s)|2K = E
∫ T

0

|Ψ(s)|2L2(H,K)ds.

A generelization of Itô formula also holds.
If v ∈ H, < v ,W (t) > exists and the space-time white

noise property holds:

E < v1,W (t) >< v2,W (s) >= t ∧ s < v1, v2 > .
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Basic properties of solutions

The stochastic convolution W B(t) =
∫ t

0
e(t−s)BdW (s) is

well-de�ned; it is the unique mild solution of

dZ (t) = BZ (t)dt + dW (t),Z (0) = 0.

Proposition

For any ε > 0, T > 0, x ∈ H, y ∈ H, our system admits a

unique mild solution (X ε,Y ε):

X ε(t) = etAx +

∫ t

0

e(t−s)AF (X ε(s),Y ε(s))ds

Y ε(t) = e
t

ε
By +

1

ε

∫ t

0

e
(t−s)

ε
BG (X ε(s),Y ε(s))ds

+
1√
ε

∫ t

0

e
(t−s)

ε
BdW (s).
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On the fast process
If x ∈ H, the fast equation with frozen slow component is:

dYx(t, y) = (BYx(t, y) + G (x ,Yx(t, y)))dt + dW (t)

Yx(0, y) = y .

For any t ≥ 0, y , z ∈ H,

|Yx(t, y)− Yx(t, z)| ≤ Ce−ct |y − z | as .

Consequences:

I It has a unique invariant probability measure:

µx(dy) =
1

Z (x)
e2U(x ,y)ν(dy). (1)

I Exponential mixing: for φ Lipschitz continuous,

|Eφ(Yx(t, y))−
∫
φ(z)µx(dz)| ≤ C (1 + |x |+ |y |)e−ct .
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The averaged equation

De�nition
For any x ∈ H,

F (x) =

∫
H

F (x , y)µx(dy).

Proposition

F is Lipschitz continuous.

The averaged equation is:

dX (t) = (AX (t) + F (X (t)))dt,

with initial condition X (0) = x ∈ H.
It admits a unique mild solution:

X (t) = etAx +

∫ t

0

e(t−s)AF (X (s))ds.
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X (t) = etAx +

∫ t

0

e(t−s)AF (X (s))ds.
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Strong and weak order of convergence

Theorem (Strong-order)

For any 0 < r � 1, for any T > 0, if x ∈ D(A), and y ∈ H,

then for any ε > 0 and any 0 ≤ t ≤ T

E|X ε(t)− X (t)| ≤ Cε1/2−r . (2)

Theorem (Weak-order)

For any 0 < r � 1, for any φ : H → R of class C2b , T > 0, if
x ∈ D(A), y ∈ D(B), then for any ε > 0 and 0 ≤ t ≤ T

|E[φ(X ε(t))]− E[φ(X (t))]| ≤ Cε1−r . (3)
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Proof of the strong-order result (1)

Idea: introduction of a parameter δ and of auxiliary processes

(X̃ ε, Ỹ ε).
On [kδ, (k + 1)δ], with 0 ≤ k ≤ N := bT0

δ c, we de�ne

dX̃ ε(t) = (AX̃ ε(t) + F (X ε(kδ), Ỹ ε(t)))dt

dỸ ε(t) =
1

ε
(BỸ ε(t) + G (X ε(kδ), Ỹ ε(t)))dt +

1√
ε
dW (t),

with X̃ ε(0) = x , Ỹ ε(0) = y , and a continuity assumption at
any kδ.
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Proof of the strong-order result (2)

I For any ε > 0, for any 0 ≤ t ≤ T

E|X ε(t)− X̃ ε(t)|2 ≤ Cδ2(1−r)

E|Y ε(t)− Ỹ ε(t)|2 ≤ Cδ2(1−r).

I Estimate: for any 0 ≤ t ≤ T

E|X̃ ε(t)−X (t)|2 ≤ Cδ2(1−r)+C (1+δ−r )(1+
1

1− e−c
δ
ε

)ε

I Now we choose δ = δ(ε); then

E|X ε(t)− X (t)|2 ≤ Cε(1−r ′).
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Asymptotic expansion (1)

Imagine that we are dealing with SDEs.

We want to study

E[φ(X ε(T , x , y))]−φ(X (T , x))

:= uε(T , x , y)− u(T , x).

uε and u are solutions of Kolmogorov equations:

∂uε

∂t
(t, x , y) = Lεuε(t, x , y)

uε(0, x , y) = φ(x)

∂u

∂t
(t, x , y) = Lu(t, x , y)

u(0, x , y) = φ(x)
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Asymptotic expansion (2)

Di�erential operators are

L1ψ(x , y) =< By + G (x , y),Dyψ(x , y) > +
1

2
Tr(D2

yyψ(x , y))

L2ψ(x , y) =< Ax + F (x , y),Dxψ(x , y) >

Lε =
1

ε
L1 + L2

Lψ(x) =< Ax + F (x),Dxψ(x) > .

Strategy: �nd an expansion of uε with respect to the
parameter ε:

uε = u0 + εu1 + v ε,

v ε being a residual term.
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Asymptotic expansion (3)

By identi�cation with respect to powers of ε:

L1u0 = 0

∂u0
∂t

= L1u1 + L2u0.

u0 does not depend on y , and is solution of ∂u0∂t = Lu0, with
u0(0, .) = φ: therefore u0 = u.
u1 is solution of

L1u1(t, x , y) =< F (x)− F (x , y),Dxu0(t, x) >

:= −χ(t, x , y).

Then u1(t, x , y) =
∫ +∞
0

E[χ(t, x ,Yx(s, y))]ds.
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Asymptotic expansion (4)

Then

(∂t −
1

ε
L1 − L2)v ε = ε(L2u1 −

∂u1
∂t

).

Therefore

uε(T , x , y)− u0(T , x , y) = εu1(T , x , y)

+ εE[u1(0,X ε(T , x , y),Y ε(T , x , y))]

+ εE[

∫ T

0

(L2u1 −
∂u1
∂t

)(T − t,X ε(t, x , y),Y ε(t, x , y))dt].

(4)
If you can control each term, the proof is done.
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The SPDE case

A and B are unbounded.

The Kolmogorov equations are more di�cult to deal with.
Remedy: reduction to a �nite dimensional problem and
proving uniform bounds with respect to dimension.
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Reduction to a �nite dimensional problem (1)

We use spaces H
(1)
N and H

(2)
N spanned by the �rst N

eigenvectors of the operators A and B .

We naturally de�ne orthogonal projectors P
(1)
N , P

(2)
N ,

coe�cients FN , GN , and processes

dX ε
N(t) = (AX ε

N(t) + FN(X ε
N(t),Y ε

N(t)))dt

dY ε
N(t) =

1

ε
(BY ε

N(t) + GN(X ε
N(t),Y ε

N(t)))dt +
1√
ε
dWN(t),

(5)
We have new invariant measures µxN(dy), new averaged
coe�cient FN .
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Reduction to a �nite dimensional problem (2)

New averaged equation

dXN(t) = (AXN(t) + FN(XN(t)))dt. (6)

Lemma

1. For any �xed ε > 0 and t ≥ 0, when N → +∞

E|X ε(t)− X ε
N(t)|2 + E|Y ε(t)− Y ε

N(t)|2 → 0.

2. For any t ≥ 0, when N → +∞

|X (t)− XN(t)| → 0.
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Example of estimate

For any t, x , y ,

|u1(t,x , y)| = |
∫ +∞

0

E[χ(t, x ,Yx(s, y))]ds|

≤
∫ +∞

0

|E[χ(t, x ,Yx(s, y))]|ds

≤
∫ +∞

0

Ce−cs(1 + |x |+ |y |)[y 7→ χ(t, x , y)]Lipds.

But χ(t, x , y) =< F (x)− F (x , y),Dxu0(t, x) >; so you need
|Dxu0(t, x).h|, for any h.
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Since u0(t, x) = φ(X (t, x)), we compute

Dxu0(t, x).h = Dφ(X (t, x)).ηh(t, x),

with

dηh(t, x)

dt
= Aηh(t, x) + DF (X (t, x)).ηh(t, x)

ηh(0, x) = h.

For any 0 ≤ t ≤ T |ηh(t, x)|2 ≤ CT |h|2.
Conclusion: for any t, x , y

|εu1(T , x , y) + εE[u1(0,X ε(T , x , y),Y ε(T , x , y))]|
≤ C (1 + |x |+ |y |)ε.

. . .
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Description of the numerical method (1)

Aim: approximation of the slow component X ε.
Principle:

I 2 time step size ∆t (macrosolver for X ) and δt
(microsolver for Y ): Heterogeneous Multiscale Method.

I Instead of looking at X ε(t), look at X (t) (averaging
result!).

I Microsolver used to approximate F .

More precisely:

Xn+1 = Xn + ∆tAXn+1 + ∆tF̃n

X0 = x .
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Description of the numerical method (2)

Yn,m+1,j = Yn,m,j +
δt

ε
BYn,m+1,j +

δt

ε
G (Xn,Yn,m,j)

+

√
δt

ε
χn,m+1,j ,

with χn,m+1,j = 1q
δt
ε

(W n,j

(m+1) δt
ε

−W
n,j

m δt
ε

).

F̃n =
1

MN

M∑
j=1

Nm∑
m=nT

F (Xn,Yn,m,j),

with parameters M, nT , N, Nm = nT + N − 1.
Initial conditions:

Y0,0,j = y

Yn+1,0,j = Yn,Nm,j .
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Strong convergence

Theorem
Assume x ∈ D(A). For any 0 < r � 1, for any T > 0, there
exists c ,C > 0 such that for any 0 ≤ n ≤ N0 = b T∆t

c

E|Xn−X (n∆t)| ≤ C (ε
1
2
−r + ∆t1−r )

+ C [(
δt

ε
)1/2−r +

1√
N δt

ε + 1
e−cnT

δt
ε (R +

√
R)]

+ C

√
∆t√

M(N δt
ε + 1)

,

with R = ∆t

1−e−
c
2
Nm

δt
ε
.
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Weak convergence

Theorem
Assume x ∈ D(A) and y ∈ D(B). Let Φ : H → H of class

C2b . For any 0 < r � 1, for any T > 0, there exists c ,C > 0
such that for any 0 ≤ n ≤ N0 = b T∆t

c

|EΦ(Xn)−EΦ(X (n∆t))| ≤ C (ε1−r + ∆t1−r )

+ C [(
δt

ε
)1/2−r +

1√
N δt

ε + 1
e−cnT

δt
ε (R + R2)]

+ C
∆t

M(N( δtε ) + 1)
.
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Conclusion

Proof of a strong order and of a weak order of convergence,
as for SDEs.
Weak order is better than strong order.
HMM method can be adapted.

Some limits:

I No noise in the slow equation.

I The strict dissipativity assumption.

I The additional assumption on F .
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