Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Averaging for SPDEs: strong and weak order

Charles-Edouard BREHIER

ENS Cachan, Antenne de Bretagne, IRMAR PhD Student with A. Debussche and E. Faou

29/09/2010

Workshop: Hybrid dynamical systems simulation and applications to molecular dynamics

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

We study multiscale systems of SPDEs

$$dX^{\epsilon}(t) = (AX^{\epsilon}(t) + F(X^{\epsilon}(t), Y^{\epsilon}(t))) dt$$

$$dY^{\epsilon}(t) = \frac{1}{\epsilon} (BY^{\epsilon}(t) + G(X^{\epsilon}(t), Y^{\epsilon}(t))) dt + \frac{1}{\sqrt{\epsilon}} dW(t)$$

$$X^{\epsilon}(0) = x, Y^{\epsilon}(0) = y$$

in $H = L^2(0,1)$, on [0, T].

W: cylindrical Wiener process on H.

 $\epsilon \ll 1$.

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

We study multiscale systems of SPDEs

$$dX^{\epsilon}(t) = (AX^{\epsilon}(t) + F(X^{\epsilon}(t), Y^{\epsilon}(t))) dt$$

$$dY^{\epsilon}(t) = \frac{1}{\epsilon} (BY^{\epsilon}(t) + G(X^{\epsilon}(t), Y^{\epsilon}(t))) dt + \frac{1}{\sqrt{\epsilon}} dW(t)$$

$$X^{\epsilon}(0) = x, Y^{\epsilon}(0) = y$$

in $H = L^2(0,1)$, on [0, T].

W: cylindrical Wiener process on H.

 $\epsilon \ll 1$

Averaging principle: X^{ϵ} can be approximated by \overline{X} defined by

$$d\overline{X}(t) = (A\overline{X}(t) + \overline{F}(\overline{X}(t)))dt$$
$$\overline{X}(0) = x.$$

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

weak-order result
Application:

HMM scheme
Conclusion

We study multiscale systems of SPDEs

$$dX^{\epsilon}(t) = (AX^{\epsilon}(t) + F(X^{\epsilon}(t), Y^{\epsilon}(t))) dt$$

$$dY^{\epsilon}(t) = \frac{1}{\epsilon} (BY^{\epsilon}(t) + G(X^{\epsilon}(t), Y^{\epsilon}(t))) dt + \frac{1}{\sqrt{\epsilon}} dW(t)$$

$$X^{\epsilon}(0) = x, Y^{\epsilon}(0) = y$$

in $H = L^2(0,1)$, on [0,T].

W: cylindrical Wiener process on H.

 $\epsilon \ll 1$.

Averaging principle: X^ϵ can be approximated by \overline{X} defined by

$$d\overline{X}(t) = (A\overline{X}(t) + \overline{F}(\overline{X}(t)))dt$$
$$\overline{X}(0) = x.$$

Problems:

- ▶ Give an order of convergence, in strong and weak sense.
- Application: HMM scheme.
- ► Comparison with the SDE case.

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Existing results

► Finite dimensional case:

R. Z. Khasminskii, On an averaging principle for Itô stochastic differential equations, Kybernetica (1968).
W. E, D. Liu, E. Vanden-Eijnden, Analysis of Multiscale Methods for Stochastic Differential Equations,
Communications on Pure and Applied Mathematics (2005).

Existing results

Charles-Edouard BREHIER

The problem

Assumptions and

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

- ► Finite dimensional case:
 - R. Z. Khasminskii, On an averaging principle for Itô stochastic differential equations, Kybernetica (1968).
 W. E, D. Liu, E. Vanden-Eijnden, Analysis of Multiscale Methods for Stochastic Differential Equations,
 Communications on Pure and Applied Mathematics (2005).
- ▶ Infinite dimensional case:
 - S. Cerrai, M. Freidlin, Averaging principle for a class of SPDEs, Probability Theory & Related Fields (2009).
 - S. Cerrai, A Khasminskii type averaging principle for stochastic reaction-diffusion equations, Annals of Applied Probability (2009).

The coefficients of the equations

Stochastic integration in H
Basic properties of solutions

The averaged equation

The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

Linear coefficients (1)

Typical example: $A = B = \frac{d^2}{dx^2}$, with domain $H^2(0,1) \cap H^1_0(0,1)$ (Dirichlet boundary conditions).

The averaged equation

The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Linear coefficients (1)

Typical example: $A=B=\frac{d^2}{dx^2}$, with domain $H^2(0,1)\cap H^1_0(0,1)$ (Dirichlet boundary conditions). Spectral properties:

$$\begin{aligned} Ae_k &= -\lambda_k e_k \text{ for all } k \in \mathbb{N} \\ \lambda &:= \inf_{k \in \mathbb{N}} \lambda_k > 0, \lambda_k \sim C k^2. \\ Bf_k &= -\mu_k f_k \text{ for all } k \in \mathbb{N} \\ \mu &:= \inf_{k \in \mathbb{N}} \mu_k > 0, \mu_k \sim C' k^2. \end{aligned}$$

We can define semi-groups $(e^{tA})_{t\geq 0}$ and $(e^{tB})_{t\geq 0}$.

The coefficients of the equations

Stochastic integration in *H*Basic properties of solutions

The averaged

equation The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Linear coefficients (2)

Definition

For $\alpha \in [0,1]$,

$$(-A)^{\alpha}x = \sum_{k=0}^{\infty} \lambda_k^{\alpha} x_k e_k$$

with domain

$$D(-A)^{\alpha} = \left\{ x \in H; \sum_{k=0}^{+\infty} (\lambda_k)^{2\alpha} |x_k|^2 < +\infty \right\};$$

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Linear coefficients (2)

Definition

For $\alpha \in [0,1]$,

$$(-A)^{\alpha}x = \sum_{k=0}^{\infty} \lambda_k^{\alpha} x_k e_k$$

with domain

$$D(-A)^{\alpha} = \left\{ x \in H; \sum_{k=0}^{+\infty} (\lambda_k)^{2\alpha} |x_k|^2 < +\infty \right\};$$

Regularization properties: for 0 < s < t

$$|e^{tA}x|_{(-A)^{\alpha}} \leq C_{\alpha}t^{-\alpha}|x|_{H}$$

$$|e^{tA}x - e^{sA}x|_{H} \leq \begin{cases} C\frac{(t-s)^{\delta}}{s^{\delta}}|x|_{H} \\ C(t-s)^{\delta}|x|_{(-A)^{\delta}}. \end{cases}$$

Stochastic integration in H Basic properties of solutions

The averaged equation The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Nonlinear coefficients

- $ightharpoonup F: H^2 \to H \text{ is } \mathcal{C}_h^2$
- ▶ $U: H^2 \to \mathbb{R}$ is \mathcal{C}_h^3 .
- $ightharpoonup G(x,y) := \nabla_y U(x,y).$

The averaged equation
The results

Proof of the

result

Proof of the

Application:

Conclusion

Nonlinear coefficients

▶
$$F: H^2 \to H \text{ is } C_b^2$$
.

$$ightharpoonup U: H^2 o \mathbb{R} \text{ is } \mathcal{C}_b^3.$$

$$G(x,y) := \nabla_y U(x,y).$$

Strict dissipativity assumption:

$$L_G := \sup_{x,y_1,y_2 \in H} \frac{|G(x,y_1) - G(x,y_2)|}{|y_1 - y_2|} < \mu.$$

Application: HMM scheme

Conclusion

Nonlinear coefficients

- ► $F: H^2 \to H \text{ is } C_b^2$.
- $ightharpoonup U: H^2 o \mathbb{R} \text{ is } \mathcal{C}_b^3.$
- $G(x,y) := \nabla_y U(x,y).$

Strict dissipativity assumption:

$$L_G := \sup_{x,y_1,y_2 \in H} \frac{|\mathit{G}(x,y_1) - \mathit{G}(x,y_2)|}{|y_1 - y_2|} < \mu.$$

Additional assumption:

There exists $\alpha > 0$, $0 \le \gamma < \frac{1}{4}$, C > 0 such that for every $x \in H$ and $y_1, y_2 \in D((-B)^{\gamma})$

$$|(-A)^{\alpha}(F(x,y_1)-F(x,y_2))| \leq C|(-B)^{\gamma}(y_1-y_2)|.$$

Assumptions and results

The coefficients of the equations

Stochastic

Basic properties of

solutions The averaged

equation The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Stochastic integration in H(1)

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0})$ is a filtered probability space.

The coefficients of the equations

Stochastic

integration in H

Basic properties of solutions

The averaged equation The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Stochastic integration in H(1)

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0})$ is a filtered probability space. $(q_k)_{k\in\mathbb{N}}$ is any complete orthonormal system of H, and $(\beta_k)_{k\in\mathbb{N}}$ are independent real brownian motions, with respect to $(\mathcal{F}_t)_{t>0}$.

The coefficients of the equations

Stochastic integration in H

Basic properties of

solutions The averaged

equation

The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Stochastic integration in H(1)

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0})$ is a filtered probability space. $(q_k)_{k\in\mathbb{N}}$ is any complete orthonormal system of H, and $(\beta_k)_{k\in\mathbb{N}}$ are independent real brownian motions, with respect to $(\mathcal{F}_t)_{t>0}$

 $W(t) = \sum_{k} \beta_{k}(t)q_{k}$ is cylindrical Wiener process on H.

Charles-Edouard BREHIER

The problem
Assumptions and

results The coefficients

The coefficients of the equations

Stochastic integration in *H*

Basic properties of

The averaged

equation The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

 $(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq 0})$ is a filtered probability space. $(q_k)_{k\in\mathbb{N}}$ is any complete orthonormal system of H, and $(\beta_k)_{k\in\mathbb{N}}$ are independent real brownian motions, with respect to $(\mathcal{F}_t)_{t\geq 0}$.

 $W(t) = \sum_k \beta_k(t) q_k$ is cylindrical Wiener process on H. This series does not converge in H, but only in K such that the imbedding $\Psi: H \subset K$ is Hilbert-Schmidt:

$$|\Psi|_{\mathcal{L}_2(H,K)}^2 := \sum_{k=0}^{+\infty} |\Psi(q_k)|_K^2 < +\infty.$$

The problem

Assumptions and results

The coefficients of the equations

Stochastic

integration in H

Basic properties of

The averaged

equation The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

Stochastic integration in H(2)

Take $(H, (q_k))$ and $(K, (r_l))$, and Ψ random process with values in $\mathcal{L}(H, K)$.

The problem

Assumptions and results

The coefficients of the equations

Stochastic integration in H

Basic properties of

solutions The averaged equation

equation The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Stochastic integration in H(2)

Take $(H, (q_k))$ and $(K, (r_l))$, and Ψ random process with values in $\mathcal{L}(H, K)$.

$$\int_0^T \Psi(s)dW(s) := \sum_{k,l} \int_0^T < \Psi(s)q_k, r_l > d\beta_k(s)r_l$$

is well-defined for $\Psi \in L^2(\Omega \times [0, T]; \mathcal{L}_2(H, K))$. Properties:

$$\mathbb{E}\int_0^T \Psi(s)dW(s) = 0$$
 $\mathbb{E}|\int_0^T \Psi(s)dW(s)|_K^2 = \mathbb{E}\int_0^T |\Psi(s)|_{\mathcal{L}_2(H,K)}^2 ds.$

A generelization of Itô formula also holds.

Charles-Edouard BREHIER

The problem

Assumptions and results

The coefficients of the equations

Stochastic

integration in H

Basic properties of solutions The averaged

The averaged equation
The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Stochastic integration in H(2)

Take $(H, (q_k))$ and $(K, (r_l))$, and Ψ random process with values in $\mathcal{L}(H, K)$.

$$\int_0^T \Psi(s)dW(s) := \sum_{k,l} \int_0^T < \Psi(s)q_k, r_l > d\beta_k(s)r_l$$

is well-defined for $\Psi \in L^2(\Omega \times [0, T]; \mathcal{L}_2(H, K))$. Properties:

$$\mathbb{E} \int_0^T \Psi(s) dW(s) = 0$$

$$\mathbb{E} |\int_0^T \Psi(s) dW(s)|_K^2 = \mathbb{E} \int_0^T |\Psi(s)|_{\mathcal{L}_2(H,K)}^2 ds.$$

A generelization of Itô formula also holds. If $v \in H$, $\langle v, W(t) \rangle$ exists and the space-time white noise property holds:

$$\mathbb{E} < v_1, W(t) > < v_2, W(s) > = t \land s < v_1, v_2 > .$$

Basic properties of

The averaged equation

The results
Proof of the

Proof of the strong-order result

Proof of the

Application:

Conclusion

Basic properties of solutions

The stochastic convolution $W^B(t) = \int_0^t e^{(t-s)B} dW(s)$ is well-defined; it is the unique mild solution of

$$dZ(t) = BZ(t)dt + dW(t), Z(0) = 0.$$

of the equations Stochastic integration in H

Basic properties of solutions

The averaged equation
The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Basic properties of solutions

The stochastic convolution $W^B(t) = \int_0^t e^{(t-s)B} dW(s)$ is well-defined; it is the unique mild solution of

$$dZ(t) = BZ(t)dt + dW(t), Z(0) = 0.$$

Proposition

For any $\epsilon > 0$, T > 0, $x \in H$, $y \in H$, our system admits a unique **mild solution** $(X^{\epsilon}, Y^{\epsilon})$:

$$egin{aligned} X^{\epsilon}(t) &= \mathrm{e}^{tA} x + \int_{0}^{t} \mathrm{e}^{(t-s)A} F(X^{\epsilon}(s), Y^{\epsilon}(s)) ds \ Y^{\epsilon}(t) &= \mathrm{e}^{rac{t}{\epsilon}B} y + rac{1}{\epsilon} \int_{0}^{t} \mathrm{e}^{rac{(t-s)}{\epsilon}B} G(X^{\epsilon}(s), Y^{\epsilon}(s)) ds \ &+ rac{1}{\sqrt{\epsilon}} \int_{0}^{t} \mathrm{e}^{rac{(t-s)}{\epsilon}B} dW(s). \end{aligned}$$

results
The coefficients
of the equations
Stochastic
integration in H

Basic properties of solutions
The averaged

equation The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

On the fast process

If $x \in H$, the fast equation with frozen slow component is:

$$dY_{x}(t,y) = (BY_{x}(t,y) + G(x,Y_{x}(t,y)))dt + dW(t)$$
$$Y_{x}(0,y) = y.$$

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions

The averaged

The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

On the fast process

If $x \in H$, the fast equation with frozen slow component is:

$$dY_x(t,y) = (BY_x(t,y) + G(x,Y_x(t,y)))dt + dW(t)$$

 $Y_x(0,y) = y.$

For any $t \geq 0$, $y, z \in H$,

$$|Y_{\scriptscriptstyle X}(t,y)-Y_{\scriptscriptstyle X}(t,z)| \leq Ce^{-ct}|y-z|$$
 as .

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions

The averaged equation

The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

On the fast process

If $x \in H$, the fast equation with frozen slow component is:

$$dY_{x}(t,y) = (BY_{x}(t,y) + G(x,Y_{x}(t,y)))dt + dW(t)$$
$$Y_{x}(0,y) = y.$$

For any $t \geq 0$, $y, z \in H$,

$$|Y_{\scriptscriptstyle X}(t,y)-Y_{\scriptscriptstyle X}(t,z)| \leq C e^{-ct}|y-z|$$
 as .

Consequences:

▶ It has a unique invariant probability measure:

$$\mu^{x}(dy) = \frac{1}{Z(x)} e^{2U(x,y)} \nu(dy). \tag{1}$$

 \blacktriangleright Exponential mixing: for ϕ Lipschitz continuous,

$$|\mathbb{E}\phi(Y_x(t,y))-\int\phi(z)\mu^x(dz)|\leq C(1+|x|+|y|)e^{-ct}.$$

Assumptions and results

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions

The averaged equation

The results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

The averaged equation

Definition

For any $x \in H$,

$$\overline{F}(x) = \int_H F(x,y) \mu^x(dy).$$

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions

The averaged

The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

The averaged equation

Definition

For any $x \in H$,

$$\overline{F}(x) = \int_H F(x,y) \mu^x(dy).$$

Proposition

 \overline{F} is Lipschitz continuous.

of the equations
Stochastic
integration in H
Basic properties of

The averaged

The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

The averaged equation

Definition

For any $x \in H$,

$$\overline{F}(x) = \int_H F(x,y) \mu^x(dy).$$

Proposition

F is Lipschitz continuous.

The averaged equation is:

$$d\overline{X}(t) = (A\overline{X}(t) + \overline{F}(\overline{X}(t)))dt,$$

with initial condition $\overline{X}(0) = x \in H$. It admits a unique mild solution:

$$\overline{X}(t) = e^{tA}x + \int_0^t e^{(t-s)A}\overline{F}(\overline{X}(s))ds.$$

Assumptions and results

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions
The averaged

equation

The results

Proof of the strong-order result

Proof of the

Application:

Conclusion

Strong and weak order of convergence

Theorem (Strong-order)

For any $0 < r \ll 1$, for any T > 0, if $x \in D(A)$, and $y \in H$, then for any $\epsilon > 0$ and any $0 \le t \le T$

$$\mathbb{E}|X^{\epsilon}(t) - \overline{X}(t)| \le C\epsilon^{1/2-r}.$$
 (2)

Charles-Edouard BREHIER

The problem

Assumptions and results

The coefficients of the equations
Stochastic integration in H
Basic properties of solutions
The averaged equation

The results

Proof of the strong-order result

Proof of the

Application: HMM scheme

Conclusion

Theorem (Strong-order)

For any $0 < r \ll 1$, for any T > 0, if $x \in D(A)$, and $y \in H$, then for any $\epsilon > 0$ and any $0 \le t \le T$

$$\mathbb{E}|X^{\epsilon}(t) - \overline{X}(t)| \le C\epsilon^{1/2 - r}.$$
 (2)

Theorem (Weak-order)

For any $0 < r \ll 1$, for any $\phi : H \to \mathbb{R}$ of class \mathcal{C}_b^2 , T > 0, if $x \in D(A)$, $y \in D(B)$, then for any $\epsilon > 0$ and $0 \le t \le T$

$$|\mathbb{E}[\phi(X^{\epsilon}(t))] - \mathbb{E}[\phi(\overline{X}(t))]| \le C\epsilon^{1-r}.$$
 (3)

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Idea: introduction of a parameter δ and of auxiliary processes $(\tilde{X}^{\epsilon}, \tilde{Y}^{\epsilon})$.

On $[k\delta,(k+1)\delta]$, with $0 \le k \le N := \lfloor \frac{T_0}{\delta} \rfloor$, we define

$$\begin{split} d\tilde{X}^{\epsilon}(t) &= (A\tilde{X}^{\epsilon}(t) + F(X^{\epsilon}(k\delta), \tilde{Y}^{\epsilon}(t)))dt \\ d\tilde{Y}^{\epsilon}(t) &= \frac{1}{\epsilon} (B\tilde{Y}^{\epsilon}(t) + G(X^{\epsilon}(k\delta), \tilde{Y}^{\epsilon}(t)))dt + \frac{1}{\sqrt{\epsilon}} dW(t), \end{split}$$

with $\tilde{X}^{\epsilon}(0)=x$, $\tilde{Y}^{\epsilon}(0)=y$, and a continuity assumption at any $k\delta$.

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Proof of the strong-order result (2)

▶ For any $\epsilon > 0$, for any 0 < t < T

$$\mathbb{E}|X^{\epsilon}(t)-\tilde{X}^{\epsilon}(t)|^2\leq C\delta^{2(1-r)}$$

$$\mathbb{E}|Y^{\epsilon}(t)-\tilde{Y}^{\epsilon}(t)|^2\leq C\delta^{2(1-r)}.$$

 \blacktriangleright Estimate: for any 0 < t < T

$$|\mathbb{E}|\tilde{X}^{\epsilon}(t) - \overline{X}(t)|^2 \leq C\delta^{2(1-r)} + C(1+\delta^{-r})(1 + \frac{1}{1 - e^{-c\frac{\delta}{\epsilon}}})\epsilon$$

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Conclusion

Proof of the strong-order result (2)

 \blacktriangleright For any $\epsilon > 0$, for any 0 < t < T

$$\mathbb{E}|X^{\epsilon}(t) - \tilde{X}^{\epsilon}(t)|^{2} \le C\delta^{2(1-r)}$$

$$\mathbb{E}|Y^{\epsilon}(t) - \tilde{Y}^{\epsilon}(t)|^{2} \le C\delta^{2(1-r)}.$$

 \blacktriangleright Estimate: for any 0 < t < T

$$|\mathbb{E}|\tilde{X}^{\epsilon}(t) - \overline{X}(t)|^2 \leq C\delta^{2(1-r)} + C(1+\delta^{-r})(1+\frac{1}{1-e^{-c\frac{\delta}{\epsilon}}})\epsilon$$

▶ Now we choose $\delta = \delta(\epsilon)$; then

$$\mathbb{E}|X^{\epsilon}(t)-\overline{X}(t)|^2\leq C\epsilon^{(1-r')}.$$

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (1)

Imagine that we are dealing with SDEs.

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application:

Conclusion

Asymptotic expansion (1)

Imagine that we are dealing with SDEs. We want to study

$$\mathbb{E}[\phi(X^{\epsilon}(T,x,y))] - \phi(\overline{X}(T,x))$$

$$:= u^{\epsilon}(T,x,y) - \overline{u}(T,x).$$

Proof of the strong-order result

Proof of the weak-order result

Asymptotic

The SPDE case
Example of
estimate

Application:

Conclusion

Asymptotic expansion (1)

Imagine that we are dealing with SDEs. We want to study

$$\mathbb{E}[\phi(X^{\epsilon}(T,x,y))] - \phi(\overline{X}(T,x))$$

$$:= u^{\epsilon}(T,x,y) - \overline{u}(T,x).$$

 u^{ϵ} and \overline{u} are solutions of Kolmogorov equations:

$$\frac{\partial u^{\epsilon}}{\partial t}(t, x, y) = L^{\epsilon} u^{\epsilon}(t, x, y)$$
$$u^{\epsilon}(0, x, y) = \phi(x)$$

$$\frac{\partial \overline{u}}{\partial t}(t, x, y) = \overline{L}\overline{u}(t, x, y)$$
$$\overline{u}(0, x, y) = \phi(x)$$

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (2)

Differential operators are

$$L_1\psi(x,y) = \langle By + G(x,y), D_y\psi(x,y) \rangle + \frac{1}{2}\operatorname{Tr}(D_{yy}^2\psi(x,y))$$

$$L_2\psi(x,y) = \langle Ax + F(x,y), D_x\psi(x,y) \rangle$$

$$L^{\epsilon} = \frac{1}{\epsilon}L_1 + L_2$$

$$\overline{L}\psi(x) = \langle Ax + \overline{F}(x), D_x\psi(x) \rangle.$$

Proof of the weak-order result

Asymptotic

The SPDE case
Example of
estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (2)

Differential operators are

$$L_1\psi(x,y) = \langle By + G(x,y), D_y\psi(x,y) \rangle + \frac{1}{2}\operatorname{Tr}(D_{yy}^2\psi(x,y))$$

$$L_2\psi(x,y) = \langle Ax + F(x,y), D_x\psi(x,y) \rangle$$

$$L^{\epsilon} = \frac{1}{\epsilon}L_1 + L_2$$

$$\overline{L}\psi(x) = \langle Ax + \overline{F}(x), D_x\psi(x) \rangle.$$

Strategy: find an expansion of u^{ϵ} with respect to the parameter ϵ :

$$u^{\epsilon} = u_0 + \epsilon u_1 + v^{\epsilon},$$

 v^{ϵ} being a residual term.

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application:

Conclusion

Asymptotic expansion (3)

By identification with respect to powers of ϵ :

$$L_1 u_0 = 0$$

$$\frac{\partial u_0}{\partial t} = L_1 u_1 + L_2 u_0.$$

Asymptotic expansion

The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (3)

By identification with respect to powers of ϵ :

$$L_1 u_0 = 0$$

$$\frac{\partial u_0}{\partial t} = L_1 u_1 + L_2 u_0.$$

 u_0 does not depend on y, and is solution of $\frac{\partial u_0}{\partial t} = \overline{L}u_0$, with $u_0(0,.) = \phi$: therefore $u_0 = \overline{u}$.

Proof of the weak-order result

Asymptotic

The SPDE case
Example of
estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (3)

By identification with respect to powers of ϵ :

$$L_1 u_0 = 0$$

$$\frac{\partial u_0}{\partial t} = L_1 u_1 + L_2 u_0.$$

 u_0 does not depend on y, and is solution of $\frac{\partial u_0}{\partial t} = \overline{L}u_0$, with $u_0(0,.) = \phi$: therefore $u_0 = \overline{u}$. u_1 is solution of

$$L_1u_1(t,x,y) = \langle \overline{F}(x) - F(x,y), D_xu_0(t,x) \rangle$$

:= $-\chi(t,x,y)$.

Then $u_1(t,x,y) = \int_0^{+\infty} \mathbb{E}[\chi(t,x,Y_x(s,y))]ds$.

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of

Application: HMM scheme

Conclusion

Asymptotic expansion (4)

Then

$$(\partial_t - \frac{1}{\epsilon}L_1 - L_2)v^{\epsilon} = \epsilon(L_2u_1 - \frac{\partial u_1}{\partial t}).$$

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (4)

Then

$$(\partial_t - \frac{1}{\epsilon}L_1 - L_2)v^{\epsilon} = \epsilon(L_2u_1 - \frac{\partial u_1}{\partial t}).$$

Therefore

$$u^{\epsilon}(T,x,y) - u^{0}(T,x,y) = \epsilon u^{1}(T,x,y)$$

$$+ \epsilon \mathbb{E}[u^{1}(0,X^{\epsilon}(T,x,y),Y^{\epsilon}(T,x,y))]$$

$$+ \epsilon \mathbb{E}[\int_{0}^{T} (L_{2}u_{1} - \frac{\partial u_{1}}{\partial t})(T-t,X^{\epsilon}(t,x,y),Y^{\epsilon}(t,x,y))dt].$$

$$(4)$$

Proof of the weak-order result

Asymptotic expansion

The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Asymptotic expansion (4)

Then

$$(\partial_t - \frac{1}{\epsilon}L_1 - L_2)v^{\epsilon} = \epsilon(L_2u_1 - \frac{\partial u_1}{\partial t}).$$

Therefore

$$u^{\epsilon}(T,x,y) - u^{0}(T,x,y) = \epsilon u^{1}(T,x,y)$$

$$+ \epsilon \mathbb{E}[u^{1}(0,X^{\epsilon}(T,x,y),Y^{\epsilon}(T,x,y))]$$

$$+ \epsilon \mathbb{E}[\int_{0}^{T} (L_{2}u_{1} - \frac{\partial u_{1}}{\partial t})(T-t,X^{\epsilon}(t,x,y),Y^{\epsilon}(t,x,y))dt].$$

$$(4)$$

If you can control each term, the proof is done.

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic expansion

The SPDE case
Example of
estimate

Application:

Conclusion

A and B are unbounded.

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic expansion

The SPDE case
Example of
estimate

Application:

Conclusion

The SPDE case

A and B are unbounded.

The Kolmogorov equations are more difficult to deal with.

Assumptions and

Proof of the strong-order result

Proof of the weak-order result Asymptotic expansion

The SPDE case Example of

Application:

Conclusion

The SPDE case

A and B are unbounded.

The Kolmogorov equations are more difficult to deal with. Remedy: reduction to a finite dimensional problem and proving uniform bounds with respect to dimension.

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic

Asymptotic expansion
The SPDE case

Example of estimate

Application: HMM scheme

Conclusion

We use spaces $H_N^{(1)}$ and $H_N^{(2)}$ spanned by the first N eigenvectors of the operators A and B.

Reduction to a finite dimensional problem (1)

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic

expansion
The SPDE case
Example of

Application:

Conclusion

We use spaces $H_N^{(1)}$ and $H_N^{(2)}$ spanned by the first N eigenvectors of the operators A and B.

We naturally define orthogonal projectors $P_N^{(1)}$, $P_N^{(2)}$, coefficients F_N , G_N , and processes

$$dX_{N}^{\epsilon}(t) = (AX_{N}^{\epsilon}(t) + F_{N}(X_{N}^{\epsilon}(t), Y_{N}^{\epsilon}(t)))dt$$

$$dY_{N}^{\epsilon}(t) = \frac{1}{\epsilon}(BY_{N}^{\epsilon}(t) + G_{N}(X_{N}^{\epsilon}(t), Y_{N}^{\epsilon}(t)))dt + \frac{1}{\sqrt{\epsilon}}dW_{N}(t),$$
(5)

Reduction to a finite dimensional problem (1)

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic

The SPDE case
Example of

Application:

Conclusion

We use spaces $H_N^{(1)}$ and $H_N^{(2)}$ spanned by the first N eigenvectors of the operators A and B.

We naturally define orthogonal projectors $P_N^{(1)}$, $P_N^{(2)}$, coefficients F_N , G_N , and processes

$$dX_{N}^{\epsilon}(t) = (AX_{N}^{\epsilon}(t) + F_{N}(X_{N}^{\epsilon}(t), Y_{N}^{\epsilon}(t)))dt$$

$$dY_{N}^{\epsilon}(t) = \frac{1}{\epsilon}(BY_{N}^{\epsilon}(t) + G_{N}(X_{N}^{\epsilon}(t), Y_{N}^{\epsilon}(t)))dt + \frac{1}{\sqrt{\epsilon}}dW_{N}(t),$$
(5)

We have new invariant measures $\mu_N^{\mathsf{x}}(dy)$, new averaged coefficient $\overline{F_N}$.

Proof of the weak-order result Asymptotic

expansion The SPDE case

Example of

Application: HMM scheme

Conclusion

Reduction to a finite dimensional problem (2)

New averaged equation

$$d\overline{X_N}(t) = (A\overline{X_N}(t) + \overline{F_N}(\overline{X_N}(t)))dt.$$
 (6)

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result Asymptotic expansion

The SPDE case
Example of
estimate

Application:

Conclusion

New averaged equation

$$d\overline{X_N}(t) = (A\overline{X_N}(t) + \overline{F_N}(\overline{X_N}(t)))dt.$$
 (6)

Lemma

1. For any fixed $\epsilon > 0$ and $t \geq 0$, when $N \to +\infty$

$$\mathbb{E}|X^{\epsilon}(t)-X_{N}^{\epsilon}(t)|^{2}+\mathbb{E}|Y^{\epsilon}(t)-Y_{N}^{\epsilon}(t)|^{2}\to 0.$$

2. For any $t \geq 0$, when $N \rightarrow +\infty$

$$|\overline{X}(t) - \overline{X_N}(t)| \to 0.$$

Proof of the weak-order result Asymptotic expansion The SPDE case

Example of estimate

Application: HMM scheme

Conclusion

Example of estimate

For any t, x, y,

$$\begin{split} |u_1(t,x,y)| &= |\int_0^{+\infty} \mathbb{E}[\chi(t,x,Y_x(s,y))]ds| \\ &\leq \int_0^{+\infty} |\mathbb{E}[\chi(t,x,Y_x(s,y))]|ds \\ &\leq \int_0^{+\infty} Ce^{-cs}(1+|x|+|y|)[y\mapsto \chi(t,x,y)]_{Lip}ds. \end{split}$$

Proof of the weak-order result Asymptotic expansion The SPDE case Example of

Application:

Conclusion

Example of estimate

For any t, x, y,

$$\begin{aligned} |u_1(t,x,y)| &= |\int_0^{+\infty} \mathbb{E}[\chi(t,x,Y_x(s,y))]ds| \\ &\leq \int_0^{+\infty} |\mathbb{E}[\chi(t,x,Y_x(s,y))]|ds \\ &\leq \int_0^{+\infty} Ce^{-cs}(1+|x|+|y|)[y\mapsto \chi(t,x,y)]_{Lip}ds. \end{aligned}$$

But $\chi(t,x,y) = \langle \overline{F}(x) - F(x,y), D_x u_0(t,x) \rangle$; so you need $|D_x u_0(t,x).h|$, for any h.

Proof of the weak-order result Asymptotic expansion The SPDE case Example of

Application:

Conclusion

Since $u_0(t,x) = \phi(\overline{X}(t,x))$, we compute

$$D_{x}u_{0}(t,x).h = D\phi(\overline{X}(t,x)).\eta^{h}(t,x),$$

with

$$\frac{d\eta^h(t,x)}{dt} = A\eta^h(t,x) + D\overline{F}(\overline{X}(t,x)).\eta^h(t,x)$$
$$\eta^h(0,x) = h.$$

Assumptions and

Proof of the strong-order result

Proof of the weak-order result Asymptotic expansion The SPDE case Example of

Application: HMM scheme

Conclusion

Since $u_0(t,x) = \phi(\overline{X}(t,x))$, we compute

$$D_{x}u_{0}(t,x).h = D\phi(\overline{X}(t,x)).\eta^{h}(t,x),$$

with

$$\frac{d\eta^h(t,x)}{dt} = A\eta^h(t,x) + D\overline{F}(\overline{X}(t,x)).\eta^h(t,x)$$
$$\eta^h(0,x) = h.$$

For any $0 \le t \le T |\eta^h(t,x)|^2 \le C_T |h|^2$.

Proof of the weak-order result Asymptotic expansion The SPDE case Example of estimate

Application: HMM scheme

Conclusion

Since $u_0(t,x) = \phi(\overline{X}(t,x))$, we compute

$$D_X u_0(t,x).h = D\phi(\overline{X}(t,x)).\eta^h(t,x),$$

with

$$\frac{d\eta^h(t,x)}{dt} = A\eta^h(t,x) + D\overline{F}(\overline{X}(t,x)).\eta^h(t,x)$$
$$\eta^h(0,x) = h.$$

For any $0 \le t \le T |\eta^h(t,x)|^2 \le C_T |h|^2$. Conclusion: for any t,x,y

$$|\epsilon u^{1}(T,x,y) + \epsilon \mathbb{E}[u^{1}(0,X^{\epsilon}(T,x,y),Y^{\epsilon}(T,x,y))]|$$

$$\leq C(1+|x|+|y|)\epsilon.$$

Conclusion

Since $u_0(t,x) = \phi(\overline{X}(t,x))$, we compute

$$D_X u_0(t,x).h = D\phi(\overline{X}(t,x)).\eta^h(t,x),$$

with

$$\frac{d\eta^h(t,x)}{dt} = A\eta^h(t,x) + D\overline{F}(\overline{X}(t,x)).\eta^h(t,x)$$
$$\eta^h(0,x) = h.$$

For any $0 \le t \le T |\eta^h(t,x)|^2 \le C_T |h|^2$. Conclusion: for any t,x,y

$$|\epsilon u^{1}(T,x,y) + \epsilon \mathbb{E}[u^{1}(0,X^{\epsilon}(T,x,y),Y^{\epsilon}(T,x,y))]|$$

$$\leq C(1+|x|+|y|)\epsilon.$$

. . .

Proof of the weak-order result

Application:

Description of the numerical method Convergence results

Conclusion

Description of the numerical method (1)

Aim: approximation of the slow component X^{ϵ} . Principle:

- ▶ 2 time step size Δt (macrosolver for X) and δt (microsolver for Y): Heterogeneous Multiscale Method.
- ▶ Instead of looking at $X^{\epsilon}(t)$, look at $\overline{X}(t)$ (averaging result!).
- ▶ Microsolver used to approximate \overline{F} .

More precisely:

Proof of the weak-order result

Application: HMM scheme

Description of the numerical method Convergence

results Conclusion

Description of the numerical method (1)

 $\underline{\operatorname{Aim}}$: approximation of the slow component X^{ϵ} . Principle:

- ▶ 2 time step size Δt (macrosolver for X) and δt (microsolver for Y): Heterogeneous Multiscale Method.
- ▶ Instead of looking at $X^{\epsilon}(t)$, look at $\overline{X}(t)$ (averaging result!).
- ▶ Microsolver used to approximate \overline{F} .

More precisely:

$$X_{n+1} = X_n + \Delta t A X_{n+1} + \Delta t \tilde{F}_n$$

 $X_0 = x.$

Assumptions and

Proof of the strong-order result

Proof of the weak-order result

Application:

Description of the

Convergence results

Conclusion

Description of the numerical method (2)

$$Y_{n,m+1,j} = Y_{n,m,j} + \frac{\delta t}{\epsilon} B Y_{n,m+1,j} + \frac{\delta t}{\epsilon} G(X_n, Y_{n,m,j}) + \sqrt{\frac{\delta t}{\epsilon}} \chi_{n,m+1,j},$$

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme

Description of the

numerical method Convergence results

Conclusion

Description of the numerical method (2)

$$Y_{n,m+1,j} = Y_{n,m,j} + \frac{\delta t}{\epsilon} B Y_{n,m+1,j} + \frac{\delta t}{\epsilon} G(X_n, Y_{n,m,j}) + \sqrt{\frac{\delta t}{\epsilon}} \chi_{n,m+1,j},$$

with
$$\chi_{n,m+1,j} = \frac{1}{\sqrt{\frac{\delta t}{\epsilon}}} (W_{(m+1)\frac{\delta t}{\epsilon}}^{n,j} - W_{m\frac{\delta t}{\epsilon}}^{n,j}).$$

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application:

HMM scheme Description of the

numerical method Convergence results

Conclusion

Description of the numerical method (2)

$$Y_{n,m+1,j} = Y_{n,m,j} + \frac{\delta t}{\epsilon} B Y_{n,m+1,j} + \frac{\delta t}{\epsilon} G(X_n, Y_{n,m,j}) + \sqrt{\frac{\delta t}{\epsilon}} \chi_{n,m+1,j},$$

with
$$\chi_{n,m+1,j} = \frac{1}{\sqrt{\frac{\delta t}{\epsilon}}} (W_{(m+1)\frac{\delta t}{\epsilon}}^{n,j} - W_{m\frac{\delta t}{\epsilon}}^{n,j}).$$

$$\tilde{F}_n = \frac{1}{MN} \sum_{i=1}^{M} \sum_{m=n,r}^{N_m} F(X_n, Y_{n,m,j}),$$

with parameters M, n_T , N, $N_m = n_T + N - 1$.

Convergence results

Conclusion

Description of the numerical method (2)

$$Y_{n,m+1,j} = Y_{n,m,j} + \frac{\delta t}{\epsilon} B Y_{n,m+1,j} + \frac{\delta t}{\epsilon} G(X_n, Y_{n,m,j}) + \sqrt{\frac{\delta t}{\epsilon}} \chi_{n,m+1,j},$$

with
$$\chi_{n,m+1,j} = \frac{1}{\sqrt{\frac{\delta t}{\epsilon}}} (W_{(m+1)\frac{\delta t}{\epsilon}}^{n,j} - W_{m\frac{\delta t}{\epsilon}}^{n,j}).$$

$$\tilde{F}_n = \frac{1}{MN} \sum_{i=1}^M \sum_{m=n_T}^{N_m} F(X_n, Y_{n,m,j}),$$

with parameters M, n_T , N, $N_m = n_T + N - 1$. Initial conditions:

$$Y_{0,0,j} = y$$

 $Y_{n+1,0,j} = Y_{n,N_m,j}$

Proof of the weak-order result

Application:
HMM scheme
Description of the
numerical method
Convergence

results Conclusion

Strong convergence

Theorem

Assume $x \in D(A)$. For any $0 < r \ll 1$, for any T > 0, there exists c, C > 0 such that for any $0 \le n \le N_0 = \lfloor \frac{T}{\Delta t} \rfloor$

$$\begin{split} \mathbb{E}|X_{n}-X(n\Delta t)| &\leq C(\epsilon^{\frac{1}{2}-r}+\Delta t^{1-r}) \\ &+ C[(\frac{\delta t}{\epsilon})^{1/2-r}+\frac{1}{\sqrt{N\frac{\delta t}{\epsilon}+1}}e^{-cn\tau\frac{\delta t}{\epsilon}}(R+\sqrt{R})] \\ &+ C\frac{\sqrt{\Delta t}}{\sqrt{M(N\frac{\delta t}{\epsilon}+1)}}, \end{split}$$

with
$$R = \frac{\Delta t}{1 - e^{-\frac{c}{2}N_m \frac{\delta t}{\epsilon}}}$$
.

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application: HMM scheme Description of the numerical method

Convergence results

Conclusion

Theorem

Assume $x \in D(A)$ and $y \in D(B)$. Let $\Phi : H \to H$ of class \mathcal{C}_b^2 . For any $0 < r \ll 1$, for any T > 0, there exists c, C > 0 such that for any $0 \le n \le N_0 = \lfloor \frac{T}{\Delta t} \rfloor$

$$\begin{split} |\mathbb{E}\Phi(X_n) - \mathbb{E}\Phi(X(n\Delta t))| &\leq C(\epsilon^{1-r} + \Delta t^{1-r}) \\ &+ C[(\frac{\delta t}{\epsilon})^{1/2-r} + \frac{1}{\sqrt{N\frac{\delta t}{\epsilon} + 1}} e^{-cn\tau \frac{\delta t}{\epsilon}} (R + R^2)] \\ &+ C\frac{\Delta t}{M(N(\frac{\delta t}{\epsilon}) + 1)}. \end{split}$$

Conclusion

Charles-Edouard BREHIER

The problem

Assumptions and results

Proof of the strong-order result

Proof of the weak-order result

Application:

HMM scheme

Proof of a strong order and of a weak order of convergence, as for SDEs.

Weak order is better than strong order.

HMM method can be adapted.

Assumptions and

Proof of the strong-order result

Proof of the weak-order result

Application:

Conclusion

Proof of a strong order and of a weak order of convergence, as for SDEs

Weak order is better than strong order.

HMM method can be adapted.

Some limits:

- ▶ No noise in the slow equation.
- ► The strict dissipativity assumption.
- ightharpoonup The additional assumption on F.