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We study multiscale systems of SPDEs
dX(t) = (AX(t) + F(X(t), Y(t))) dt
dY<(t) = %(BYE(t) + GXE(E), YE(£)))dt + ;dW(t)
X(0) = x, Y¥(0) = y

in H=12(0,1), on [0, T].
W: cylindrical Wiener process on H.
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Problems:
» Give an order of convergence, in strong and weak sense.

» Application: HMM scheme.
» Comparison with the SDE case.
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Existing results

» Finite dimensional case:
R. Z. Khasminskii, On an averaging principle for 1t6
stochastic differential equations, Kybernetica (1968).
W. E, D. Liu, E. Vanden-Eijnden, Analysis of Multiscale
Methods for Stochastic Differential Equations,
Communications on Pure and Applied Mathematics
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Linear coefficients (1)

Typical example: A= B = %22, with domain
H?(0,1) N H(0,1) (Dirichlet boundary conditions).
Spectral properties:

Aer = —Aeg forall k e N
A= inf A\ > 0, A\, ~ Ck°.
keN
Bfyx = —ugfy for all k e N
= inf ~ C'k2.
poi= ot pue > 0,k ~ C

We can define semi-groups (e");>0 and (e8);>o.
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Application:
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Conclusion B (t )6
C35 x|
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Nonlinear coefficients

> F:H?— His C2.
» U:H? - RisC.
> G(x,y) =V, U(x,y).
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Nonlinear coefficients

» F:H?>— His C2.

» U:H? - RisC}.

> G(x,y):=V,U(x,y).
Strict dissipativity assumption:

[G(x,y1) — G(x, y2)|
ly1 — yol

Lg:= sup < W

X, y1,¥2€H

Additional assumption:
There exists a >0, 0 < v < %,
x € Hand y1,y» € D((—B)")

C > 0 such that for every

[(=A)*(F(x3) = F(x,32))l < CI(=B)"(n = y2)l-
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Stochastic integration in H (1)

(Q, F, (Ft)e>0) is a filtered probability space.
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The problem

_ (Q, F, (Ft)e>0) is a filtered probability space.
e (gk)ken is any complete orthonormal system of H, and
(
t

The coefficients
of the equations

Stochastic
A it o 4

results
Bk )ken are independent real brownian motions, with respect
(o] (ft)tzo-

Basic properties of . N . .

hutiens W(t) =>4 Bk(t)qx is cylindrical Wiener process on H.
The results This series does not converge in H, but only in K such that
i ot i the imbedding W : H C K is Hilbert-Schmidt:

strong-order

resultg

Proof of the =

weak-order result ’\U’Ez H, K Z |w qk ’K < 400.

Application: k=0

HMM scheme

Conclusion
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Stochastic integration in H (2)
Take (H,(qx)) and (K, (r;)), and W random process with
values in L(H, K).

T\U daw = ! |\ d
/0 (s) (5)'_;, /0 < W(s)qerr > dBi(s)n

is well-defined for W € L2(Q x [0, T]; L2(H, K)).
Properties:

]E/T\Il(s)dW(s) =0

-
E’/ s)|x _E/o \W(S)’%Z(H,K)ds-

A generelization of 1t6 formula also holds.



Averaging for
SPDEs: strong
and weak order

Charles-Edouard
BREHIER

The problem

Assumptions and
results

The coefficients
of the equations

Stochastic

A it o 4
Basic properties of
solutions

The averaged
i

The results

Proof of the
strong-order
result

Proof of the
weak-order result

Application:
HMM scheme

Conclusion

Stochastic integration in H (2)
Take (H,(qx)) and (K, (r;)), and W random process with
values in L(H, K).

T\U daw = ! |\ d
/0 (s) (5)'_;, /0 < W(s)qerr > dBi(s)n

is well-defined for W € L2(Q x [0, T]; L2(H, K)).
Properties:

]E/T\Il(s)dW(s) =0

-
E’/ s)|x _E/o \W(S)’%Z(H,K)ds-

A generelization of 1t6 formula also holds.
If v e H, <v,W(t) > exists and the space-time white

noise property holds:

E<wv, W(t)><w,W()>=tAs<wv,v>.
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The stochastic convolution WB(t) = [/ e

Basic properties of solutions

(=B W (s) is

well-defined; it is the unique mild solution of

dZ(t)=B

Proposition

Z(t)dt + dW/(t),

Z(0) = 0.

Foranye >0, T >0, x€ H,y € H, our system admits a

unique mild solution (X¢, Y°):

X(t) = ex + / t el=9AF(X<(s), Y<(s))ds

0

€Jo

7

/ B G(X(s), Y¥(s))ds

e@BdW(s).
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On the fast process
If x € H, the fast equation with frozen slow component is:

dYu(t,y) = (BYx(t,y) + G(x, Yx(t,y)))dt + dW(t)
YX(O,}/) =Y.
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On the fast process
If x € H, the fast equation with frozen slow component is:

dYu(t,y) = (BYx(t,y) + G(x, Yx(t,y)))dt + dW(t)
YX(O,}/) =Y.

Forany t >0, y,z € H,

Yi(t,y) = Yi(t,z)] < Ce™y — 2| as .
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On the fast process

If x € H, the fast equation with frozen slow component is:

dYi(t,y) =

(BYx(t,y) + G(x, Yx(t,y)))dt + dW(t)

Yx(0,y) =y

Forany t >0, y,z € H,
’YX(t’y) -

Consequences:

» It has a unique invariant probability measure:
p(dy) =

» Exponential mixing: for ¢ Lipschitz continuous,

Eo(Yilt.)) ~ [ oz

Yi(t,z)] < Ce™y

Z(x)

2V (dy).

—z|as.

(1)

“(dz)] < C(1+ |x| + [y[)e™".
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Definition
For any x € H,
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For any x € H,

The problem

results

Assumptions and ?(X) — /I:I F(X,y)/JJX(d_y)

The coefficients
of the equations

Stochastic
At o

Basic properties of

solutions e
The averaged Proposition
equation

T e F is Lipschitz continuous.

Proof of the
strong-order
result

Prot o e dX(t) = (AX(t) + F(X(1))d,

weak-order result

A I' t' : . . P - . N7

P e with initial condition X(0) = x € H.
It admits a unique mild solution:

The averaged equation is:

Conclusion

X(t) = ex + / t elt=9)AF (X (s))ds.
0
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Strong and weak order of convergence

Theorem (Strong-order)

Forany0<r <1, forany T >0, ifx € D(A), andy € H,

then forany e > 0 and any 0 <t < T

E|X(t) — X(t)] < C/?.

(@)
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Strong and weak order of convergence

Theorem (Strong-order)
Forany0<r <1, forany T >0, ifx € D(A), andy € H,
then forany e > 0 and any 0 <t < T

E|X(t) — X(t)] < C/?. (2)

Theorem (Weak-order)

Forany 0 < r <1, forany ¢ : H— R of class C2, T > 0, if
x € D(A), y € D(B), then foranye >0and 0 <t< T

E[6(X(£)] — Elo(X(2))]| < Ce . (3)
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Proof of the strong-order result (1)

Idea: introduction of a parameter ¢ and of auxiliary processes
(X<, V)
On [kd, (k +1)3], with 0 < k < N := | 2|, we define

dX(t) = (AX(t) + F(X(kd), Y<(t)))dt
dye(t) = %(B?E(t) + G(X(kd), Y<(t)))dt + \}Edvv(t),

with X€(0) = x, Y¢(0) = y, and a continuity assumption at
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Proof of the strong-order result (2)

» Forany e >0, forany0 <t < T

E[X(t) — X<(t)]> < €520~
E|Y<(t) — V(1) < €207

» Estimate: forany0 <t < T

E[X(£)=-X(t)]? < €24 C(1+6)(1+———+
1
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Proof of the strong-order result (2)

» Forany e >0, forany0 <t < T

E[X(t) — X<(t)]> < €520~
E|Y<(t) — V(1) < €207

» Estimate: forany0 <t < T

E[X(£)=-X(t)]? < €24 C(1+6)(1+———+
1

» Now we choose § = §(€); then

E[X(t) = X(t)]” < Ce=).
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Imagine that we are dealing with SDEs.
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Asymptotic expansion (1)

Imagine that we are dealing with SDEs. We want to study

E[g(X(T, %, y))]=o(X(T, x))
= u(T,x,y)—u(T,x).
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Asymptotic expansion (1)
Imagine that we are dealing with SDEs. We want to study
E[¢(X(T, x,y))|=¢(X(T, x))
=u(T,x,y)—u(T,x).
u® and U are solutions of Kolmogorov equations:
ou*

E(t,x,Y) = L°u(t,x,y)

UE(O7X>Y) = (Z)(X)

gi(t, x,y) = Lu(t,x,y)
U(vav.y) = ¢(X)
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Asymptotic expansion (2)

Differential operators are

Liy(x,y) =< By + G(x,y), Dyib(x,y) > +%TV(D§y¢(XaY))
Lap(x,y) =< Ax + F(x, y), Dxo(x, y) >
L€ = %Ll + Lo
Lip(x) =< Ax + F(x), Dx(x) > .
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Asymptotic expansion (2)

Differential operators are

Liy(x,y) =< By + G(x,y), Dyib(x,y) > +%TV(D§y¢(XaY))
Lap(x,y) =< Ax + F(x, y), Dxo(x, y) >
L€ = %Ll + Lo
Lip(x) =< Ax + F(x), Dx(x) > .

Strategy: find an expansion of u€ with respect to the

parameter e:
u¢ = ug + euy + v©,

v¢ being a residual term.
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Asymptotic expansion (3)

By identification with respect to powers of e

Livg=0
Oug
— =1 Loug.
ot 1U1 + Log
ug does not depend on y, and is solution of % = Lug, with
up(0,.) = ¢: therefore ug = .
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Asymptotic expansion (3)

By identification with respect to powers of e

Livg=0
Oug

W =1Ly + Lyug.

ug does not depend on y, and is solution of % = Lug, with
up(0,.) = ¢: therefore ug = .
uy is solution of

Llul(tvxv.y) =< F(X) - F(Xay)v DXUO(taX) >
= _X(t7X7.y)‘

Then ui(t, x,y) = f0+oo E[x(t,x, Yx(s,y))]ds.
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Asymptotic expansion (4)

Then

Therefore
u (T, x,y) — u®(T,x,y) = eu* (T, x,y)
+ B[ut (0, X(T, x, ), Y(T, x,¥))]

+ eE[/ (Loun — 7)(7 Xt %0 y), YE(E %, y))dt].
(4)
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Asymptotic expansion (4)

Then 5
(0; — le — L)€ = e(Lour — 8‘;1)
Therefore
u (T, x,y) — (T, x,y) = e’ (T, x,y)
+ E[u' (0, X(T, x,y), Y(T,x,y))]
+ eE[/ (Loun — 7)(7 Xt %0 y), YE(E %, y))dt].

If you can control each term, the proof is done.

(4)
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The SPDE case

A and B are unbounded.

The Kolmogorov equations are more difficult to deal with.
Remedy: reduction to a finite dimensional problem and
proving uniform bounds with respect to dimension.
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Reduction to a finite dimensional problem (1)

We use spaces H,(Vl) and H,(V2) spanned by the first N
eigenvectors of the operators A and B.

We naturally define orthogonal projectors P,(Vl), P,(Vz),
coefficients Fp, Gp, and processes

dXjy(t) = (AXp(t) + Fn(Xp(t), Yi(t)))dt

L(BYE(t) + Gu(Xg (1), Yi(0))dt + jgdwN(t),

dYy(t) = <
(5)
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Reduction to a finite dimensional problem (1)

We use spaces H,(Vl) and H,(V2) spanned by the first N
eigenvectors of the operators A and B.

We naturally define orthogonal projectors P,(Vl), P,(Vz),
coefficients Fp, Gp, and processes

dXjy(t) = (AXp(t) + Fn(Xp(t), Yi(t)))dt

dYi(t) = ~(BYi(e) + Gu(Xi(e), Via(£))de + jgdwN(t),
(5)

We have new invariant measures u7(dy), new averaged
coefficient Fy.
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Reduction to a finite dimensional problem (2)

New averaged equation

dXn(t) = (AXn(t) + Fu(Xn(t)))dt.

Lemma

1. For any fixed e > 0 and t > 0, when N — +o0

E|X(t) — Xy (6)” + ElY<(t) — Yi(t)
2. Foranyt >0, when N — +00

[X(t) — Xn(t)| — 0.

2.50.
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The SPDE case < / Ce_cs(]_ + |X‘ + ]y|)[y = X(taxay)]LiPdS'
0

Example of =~
estimate

Application:
HMM scheme

Conclusion




Averaging for
SPDEs: strong
and weak order

Charles-Edouard

BREHIER

The problem

Assumptions and
results

Proof of the
strong-order
result

Proof of the
weak-order result

Asymptotic
ex| ion

Example of
estimate

Application:
HMM scheme

Conclusion

Example of estimate

For any t, x,y,
—+o00
(v = | /0 E[x(t, x, Ye(s, y))]ds]
—+o00
< /0 E[x(t,x, Yi(s, y))]|ds

+oo
: / Ce™ (1 + x| + [y Dly = x(t; x, y)lLipds.
0

But x(t,x,y) =< F(x) — F(x,y), Dxuo(t, x) >; so you need
| Dy uo(t, x).h|, for any h.
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weak-order result

Asymptotic
ex| ion

MBS For any 0 < ¢ < T [i/"(t, %) < Cr A2
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Since ug(t, x) = ¢(X(t, x)), we compute

with

Dyug(t, x).h = D(X(t,x)).n"(t, ),

dnP(t, x)

dt

= Anf(t,x) + DF(X(t,x)).n"(t, x)
n"(0,x) = h.

Forany 0 <t<T |77h(t,x)\2 < CT|h|2.
Conclusion: for any t,x,y

leut (T, x, ) + €B[u' (0, X(T, x,y), Y(T,x,y))|

< C(1+ [x[ + lyl)e.
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Description of the numerical method (1)

Aim: approximation of the slow component X¢.
Principle:
» 2 time step size At (macrosolver for X) and §t
(microsolver for Y'): Heterogeneous Multiscale Method.

> Instead of looking at X¢(t), look at X(t) (averaging
result!).

» Microsolver used to approximate F.

More precisely:
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Description of the numerical method (1)

Aim: approximation of the slow component X¢.
Principle:
» 2 time step size At (macrosolver for X) and §t
(microsolver for Y'): Heterogeneous Multiscale Method.

> Instead of looking at X¢(t), look at X(t) (averaging
result!).

» Microsolver used to approximate F.

More precisely:

Xni1 = Xp + AtAXp11 + AtF,
Xo = x.
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Description of the numerical method (2)

Yn ,m+1j —

_l’_

Y 7

ot

7J+

ot

Byn ,m+1.j + —

— Xn,m+1,j5
€

0

t
G( n nmd)
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ot

0

\£ ,m+1j = =Y n,mj + — Byn ,m+1,j +—
ot
+ ?Xn,m-i-l,jﬂ
: 1 ] J

t
G( n nmJ)
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Description of the numerical method (2)

ot ot
Yn7m+17j = Y: 7.] + Byn m+17./ + G( n nm)J)

ot
+ — Xn,m+1,,
€
1 M  Nm
n — mz Z F(Xna Ynm,J)7
j=1 m=nt

with parameters M, ny, N, Ny, = n + N — 1.
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Description of the numerical method (2)

ot ot
Yn7m+17j = Y: 7.] + BYn m+1’-l + G( n nm"l)
ot
+ — Xn,m+1,,
€
‘ 1 M  Nm
n — mz Z F(Xna Ynm,J)7

Jj=1 m=nTt

with parameters M, ny, N, Ny, = n + N — 1.
Initial conditions:

Yoo, =Y
Yn41,05 = Yo, Nm,-
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UMY Assume x € D(A). Forany 0 < r < 1, forany T > 0, there
results exists ¢, C > 0 such that for any 0 < n < Ng = L%J

Proof of the
strong-order

el E|X,~X(nAt)] < Ce2 ™" + At')
Proof of the
ot 1
+CI()* T+

Application: € s
HMM scheme th _|_ 1
Description of the €

numerical method

Convergence A/ At
results + C

Conclusion M(N% + 1)

weak-order result

e (R+ VR)]
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Weak convergence

Theorem

Assume x € D(A) and y € D(B). Let & : H — H of class
Cg. Forany 0 < r < 1, forany T >0, there exists ¢, C > 0
such that for any 0 < n < Ny = {%J

IE®(X,)—Ed(X(nAt))| < C(el =" + At~

(St ]. ot
+ C[(= 1/2—r+7e—cn7? R+R2
i e
At
+C =
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Proof of the as fOI’ SDES
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result Weak order is better than strong order.

result

Proof of the HMM method can be adapted.
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Application:
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The problem
A ti d
remlte Proof of a strong order and of a weak order of convergence,
Proof of the as fOI’ SDES
t -ord .
resalt Weak order is better than strong order.
Proof of the HMM method can be adapted.
weak-order result .

Some limits:

Application:
HMM scheme » No noise in the slow equation.

Conclusion

» The strict dissipativity assumption.

» The additional assumption on F.
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