Long-time convergence of an Adaptive Biasing Force method: the bi-channel case

Kimiya Minoukadeh

CERMICS, École des Ponts ParisTech

Joint work with Tony Lelièvre

CEA-EDF-INRIA school IHP, Paris. 30 September 2010

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Consider a system of N particles with coordinates $q \in \mathcal{D} = \mathbb{R}^{3N}$. The particles interact through the potential $V : \mathcal{D} \to \mathbb{R}$.

In the canonical ensemble, the microscopic state of the system is described by the canonical measure

$$d\phi(q)=Z^{-1}e^{-eta V(q)}dq$$

where $\beta = 1/(k_B T)$. This is used to calculate macroscopic properties, or ensemble averages of an observable A:

$$\langle A
angle = \int_{\mathcal{D}} A(q) \; d\phi(q)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Sampling the canonical measure

Define a process X_t that is ergodic with respect to ϕ . Then,

$$\langle A \rangle = \int_{\mathcal{D}} A(q) \ d\phi(q) \approx \lim_{T \to \infty} \frac{1}{T} \int_0^T A(X_t) \ dt$$

To sample the measure $d\phi$: use the overdamped Langevin dynamics

$$dX_t = -
abla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t$$

where $X_t \in \mathbb{R}^d$ is the system trajectory and W_t a *d*-dimensional Brownian motion.

Fokker-Planck equation: the density $\psi(t, \cdot)$ of the law of X_t satisfies

$$\partial_t \psi = \operatorname{div} \left(\nabla V \psi + \beta^{-1} \nabla \psi \right).$$

It can be checked that ϕ is indeed a stationary solution.

Metastabilities

Sampling ϕ using standard Langevin dynamics is often slow due to metastable regions in the potential V.

- The slow variable is described by a reaction coordinate ξ .
- The reaction coordinate is a smooth function $\xi : \mathcal{D} \to \mathcal{M}$ (\mathbb{R} or \mathbb{T}).
- In the above, a good choice is $\xi(x, y) = x$.

イロト イポト イヨト イヨト

Free Energy

The free energy is defined by $A(x) = -\beta^{-1}\log \phi^{\xi}(x)$, where ϕ^{ξ} is the marginal density in ξ :

$$\phi^{\xi}(x) = \int_{\mathbb{R}} e^{-\beta V(x,y)} dy.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Free Energy as a biasing potential

Suppose the free energy A is given. Then, we may perform dynamics with modified potential $\mathcal{V} = \mathcal{V} - A \circ \xi$:

$$dX_t = -\nabla (V - A \circ \xi)(X_t) dt + \sqrt{2\beta^{-1}} dW_t$$

Invariant measure: $d\phi_A = Z_A^{-1} e^{-\beta(V-A\circ\xi)} dq$. Unbias to compute canonical average.

イロン イヨン イヨン イヨン

Free Energy as a biasing potential

However, normally the free energy A is not given.

We will see how to

- estimate A (up to an additive constant) on the fly;
- use this estimate to bias dynamics to encourage exploration of the reaction coordinate space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of talk

Free Energy Computation

- Free energy differences
- Adaptive Biasing Force (ABF) method
- 2 Long-time convergence of ABF
 - Logarithmic Sobolev inequalities
 - Existing convergence results
- 3 The bi-channel model
 - Model and hypotheses
 - New convergence results

→ Ξ →

Free energy differences Adaptive Biasing Force (ABF) method

Free energy differences

Compute the free-energy difference

$$A(x) - A(x_0) = \int_{x_0}^x A'(x) dx,$$

where A'(x), called the mean force, is the conditional expectation

$$A'(x) = \frac{\int_{\mathbb{R}} F^{V}(x, y) e^{-\beta V} dy}{\int_{\mathbb{R}} e^{-\beta V} dy} = \mathbb{E}_{\phi} \left[F^{V}(q) \middle| \xi(q) = x \right]$$

where $F^V = \partial_x V$.

In the general case, $F^V = (\nabla V \cdot \nabla \xi) |\nabla \xi|^{-2} - \beta^{-1} \text{div}(\nabla \xi |\nabla \xi|^{-2})$,

Adaptive Biasing Force method

The Adaptive Biasing Force (ABF) method uses an on-the-fly estimate of the free energy

$$\begin{cases} dX_t = -\nabla (V - A_t \circ \xi)(X_t) dt + \sqrt{2\beta^{-1}} dW_t \\ A'_t(z) = \mathbb{E} \left[F^V | \xi(X_t) = z \right] \end{cases}$$

The density $\psi(t, \cdot)$ of the law of X_t satisfies the Fokker-Planck equation

$$\partial_t \psi = \operatorname{div}(\nabla(V - A_t \circ \xi)\psi + \beta^{-1}\nabla\psi)$$

$$A'_t(x) = \frac{\int_{\mathbb{R}} F^V(x, y) \ \psi(t, x, y) \ dy}{\int_{\mathbb{R}} \psi(t, x, y) \ dy}.$$
(1)

It can be checked that a stationary solution is $\psi_{\infty} = Z^{-1}e^{-\beta(V-A_{\infty}\circ\xi)}$. Substituting $\psi(t, \cdot)$ with $\psi_{\infty}(\cdot)$ in (1) gives $A'_{\infty} = A'$.

Free energy differences Adaptive Biasing Force (ABF) method

PDE formulation

Fokker-Planck equation

$$\partial_t \psi = \operatorname{div}(\nabla (V - A_t \circ \xi)\psi + \beta^{-1}\nabla \psi)$$

In the case $\xi(x, y) = x$, the marginal satisfies

$$\partial_t \psi^{\xi} = \beta^{-1} \partial_{\mathsf{x}\mathsf{x}} \psi^{\xi}.$$

So in the case $\mathcal{M} = \mathbb{T}$, one has $\psi_{\infty}^{\xi} \equiv 1$.

・ 同 と く ヨ と く ヨ と

Free energy differences Adaptive Biasing Force (ABF) method

Long-time convergence of ABF

Questions

- How quickly does $A'_t \rightarrow A'$?
- How quickly does $\psi \to \psi_{\infty}$?

Tools

• Relative entropy and logarithmic Sobolev inequalities (LSI)

イロト イヨト イヨト イヨト

Logarithmic Sobolev inequalities Existing convergence results

Free Energy Computation

- Free energy differences
- Adaptive Biasing Force (ABF) method

2 Long-time convergence of ABF

- Logarithmic Sobolev inequalities
- Existing convergence results

3 The bi-channel model

- Model and hypotheses
- New convergence results

- 4 回 2 - 4 □ 2 - 4 □

Entropy and Fisher information

Relative entropy

The 'distance' between two probability measures ν and ν_∞ (ν absolutely continuous w.r.t. ν_∞ , $\nu\ll\nu_\infty)$ will be measured by

$$\begin{array}{ll} \text{relative entropy} & \textit{H}(\nu|\nu_{\infty}) = \int \log\left(\frac{d\nu}{d\nu_{\infty}}\right) d\nu \end{array}$$

Note that $H(\nu|\nu_{\infty}) \ge 0$, since $x\log(x) \ge x - 1$ and $\int \nu = \int \nu_{\infty} = 1$. Furthermore $H(\nu|\nu_{\infty}) = 0$ iff $\nu = \nu_{\infty}$.

Convergence of relative entropy \implies convergence in L^1 -norm

Csiszar-Kullback inequality

For two probability measures ν and ν_{∞} ,

$$\|\nu - \nu_{\infty}\|_{\mathrm{TV}} \leq \sqrt{2H(\nu|\nu_{\infty})}.$$

Logarithmic Sobolev inequalities

Fisher information

The relative Fisher information of a probability measure ν with respect to ν_∞ is given by

Fisher information
$$F(\nu|\nu_{\infty}) = \int \left| \nabla \log \left(\frac{d\nu}{d\nu_{\infty}} \right) \right|^2 d\nu$$

Logarithmic Sobolev inequality (LSI)

A probability measure ν_{∞} is said to satisfy a logarithmic Sobolev inequality with constant ρ (in short: LSI(ρ)) if for all probability measures ν absolutely continuous w.r.t. ν_{∞} , we have

$$H(
u|
u_{\infty}) \leq rac{1}{2
ho} F(
u|
u_{\infty})$$

・ロト ・ 同ト ・ ヨト ・ ヨト

LSI and exponential convergence to equilibrium

Suppose $\phi_{\infty} = Z^{-1}e^{-V}$ satisfies $\text{LSI}(\rho_0)$.

Then if $\phi(t, \cdot)$ satisfies (the PDE associated to overdamped dynamics)

$$\partial_t \phi = \operatorname{div}(\nabla V \phi + \nabla \phi) = \operatorname{div}\left(\phi \nabla \log\left(\frac{\phi}{\phi_\infty}\right)\right),$$

we have

$$\begin{split} \frac{d}{dt} H(\phi | \phi_{\infty}) &= \int \log \left(\frac{\phi}{\phi_{\infty}} \right) \partial_t \phi \\ &= - \int \left| \nabla \log \left(\frac{\phi}{\phi_{\infty}} \right) \right|^2 \phi = -F(\phi | \phi_{\infty}) \leq -2\rho_0 H(\phi | \phi_{\infty}) \end{split}$$

Therefore, $\phi(t, \cdot)$ tends to ϕ_{∞} exponentially fast with rate $2\rho_0$:

 $H(\phi(t,\cdot)|\phi_{\infty}) \leq H(\phi(0,\cdot)|\phi_{\infty})e^{-2\rho_0 t}.$

By the Csiszar-Kullback inequality: $\int |\phi - \phi_{\infty}| \leq \sqrt{2H_0} e^{-\rho_0 t}.$

LSI constants

Estimates on LSI constants.

- Bakry-Emery theorem: Any measure ν with density proportional to e^{-V}, with V α-convex, satisfies LSI(α).
- **3** Holley-Stroock perturbation: If ν satisfies LSI(α) and $\tilde{\nu} = e^{U}\nu$ for bounded function U, then $\tilde{\nu}$ satisfies LSI(α'), where

$$\alpha' = \alpha \text{exp}(-2 \text{osc}(U)) < \alpha, \ \ \text{osc}(U) = \sup U - \inf U.$$

Convergence of ABF: existing results

How about convergence to equilibrium of ABF?

Let us assume that $\exists \rho_1 > 0$

$$\forall x \in \mathbb{T}, \ \ d\mu_{\infty|x} = \frac{\psi_{\infty}(x,y) \ dy}{\psi_{\infty}^{\xi}(x)} \text{ satisfies } \mathsf{LSI}(\rho_1).$$

and that $\|\partial_{x,y}V\|_{L^{\infty}} \leq M < \infty$. Note that typically $\rho_1 > \rho_0$.

Theorem: [Lelièvre, Rousset, Stoltz, Nonlinearity, 2008]

 $orall t \geq t_0 > 0$, $\exists ar{C} > 0$ such that

$$\int_{\mathbb{T}} |A_t'(x) - A'(x)|^2 dx \leq \bar{C} \exp(-\lambda t)$$

where $\lambda = \beta^{-1} \min(\rho_1, 4\pi^2)$. This implies that $\|\psi(t, \cdot) - \psi_{\infty}\|_{L^1}^2$ also converges exponentially fast to zero with rate λ .

Logarithmic Sobolev inequalities Existing convergence results

Results suboptimal in 'bi-channel' case

'Bi-channel' scenario

- $d\mu_{\infty|x}$ satisfies LSI(ρ_1)
- but high energy barriers at fixed ξ
- therefore ρ_1 very small!

Can we do better?

It was observed numerically [Minoukadeh, Chipot, Lelièvre, *JCTC*, 2010] that high energy barriers at fixed ξ *do not* always slow down convergence of the ABF method.

イロト イヨト イヨト イヨト

Model and hypotheses New convergence results

Free Energy Computation

- Free energy differences
- Adaptive Biasing Force (ABF) method

2 Long-time convergence of ABF

- Logarithmic Sobolev inequalities
- Existing convergence results

3 The bi-channel model

- Model and hypotheses
- New convergence results

- 4 回 2 - 4 □ 2 - 4 □

Model and hypotheses New convergence results

Towards a bi-channel model

BI-CHANNEL POTENTIAL

 $V:\mathbb{T}\times\mathbb{R}\to\mathbb{R}$

BI-CHANNEL MODEL

 $V_0: \mathbb{T} \times \mathbb{R} \to \mathbb{R}$ $V_1: \mathbb{T} \times \mathbb{R} \to \mathbb{R}$

(ロ) (同) (E) (E) (E)

Bi-channel model

The new model to describe the bi-channel scenario:

- channels are indexed by $i \in \{0, 1\}$
- potentials V_0 , $V_1 : \mathbb{T} \times \mathbb{R} \to \mathbb{R}$.

$$\begin{split} dX_t &= -\nabla (V_{I_t} - A_t \circ \xi) (X_t) dt + \sqrt{2} dB_t, \\ A'_t(x) &= \mathbb{E} \left[\partial_x V_{I_t}(X_t) | \xi(X_t) = x \right], \\ I_t &\in \{0, 1\} \text{ is a jump process with generator} \\ L\varphi(x, y, i) &= -\lambda(x) (\varphi(x, y, i) - \varphi(x, y, 1 - i)). \end{split}$$

The process (X_t, I_t) has law with density $\psi(t, x, y, i)$ satisfying

$$\partial_t \psi = \operatorname{div}(\psi_\infty
abla \log(\psi/\psi_\infty)) + \partial_x ((A' - A'_t)\psi) - \lambda(x)(\psi - \psi_{1-i})$$

イロン イヨン イヨン イヨン

э

Hypotheses

[H1] Region of 'no exchange': $\exists \mathcal{E} \subset \mathbb{T}$ where $\lambda(x) = 0$:

$$\lambda(x) = \lambda \mathbf{1}_{\mathbb{T} \setminus \mathcal{E}}(x) \text{ and } \forall x \in \mathbb{T} \setminus \mathcal{E}, V_0(x, \cdot) = V_1(x, \cdot).$$

[H2] Regularity: $\exists 0 < C, M < \infty$ such that $\forall i \in \{0, 1\}$,

$$\left\|\partial_{x,y}V_i\right\|_{L^\infty} \leq M \text{ and } \left\|rac{\int_{\mathbb{R}}\partial_xV_ie^{-V_i}\;dy}{\int_{\mathbb{R}}e^{-V_i}\;dy}
ight\|_{L^\infty} \leq C.$$

[H3] LSI on new measures: Let $\mu_{\infty|x,i}$ be the equilibrium measures conditioned to $\xi(q) = x$ and channel *i*. $\exists \rho > 0, \forall x \in \mathbb{T}, \forall i \in \{0, 1\},$

 $\mu_{\infty|x,i}$ satisfies LSI(ho).

Typically $\rho > \rho_1 > \rho_0$, where ρ_1 is LSI constant associated to $\mu_{\infty|x}$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Hypotheses

Next, assume that A is a good bias in each channel.

Consider the operator $\mathcal{L} = (\mathcal{L}_0, \mathcal{L}_1)$ on $f : \begin{cases} \mathbb{T} \to \mathbb{R}^2 \\ x \mapsto (f_0(x), f_1(x)) \end{cases}$ with $f_i \in H^1(1/f_{i,\infty})$.

$$-\mathcal{L}_i f = \partial_x \left[f_{i,\infty} \partial_x (f_i/f_{i,\infty}) \right] - \lambda(x) (f_i - f_{1-i}),$$

with $f_{0,\infty} = f_{1,\infty}$ for $x \in \mathbb{T} \setminus \mathcal{E}$. \mathcal{L} is symmetric and positive definite with respect to the inner product $\langle f, g \rangle = \sum_{i=0}^{1} \int_{\mathbb{T}} f_i(x)g_i(x) (1/f_{i,\infty})dx$ and has spectral gap $\theta > 0$.

[H4] Assume the spectral gap is sufficiently large:

$$heta > heta_{\min} ext{ with } heta_{\min} = rac{8(C+M
ho^{-1/2})^2 ilde{M}}{c}.$$

where
$$\inf_{x,i} \psi_{\infty}^{\xi,l} = c > 0$$
 and $\sup_{x} \psi^{\xi}(0,x) = \tilde{M} < \infty$.

Model and hypotheses New convergence results

Relative entropies

We introduce the following functionals:

- Total entropy $E(t) = H(\psi|\psi_{\infty})$
- Macroscopic entropy $E_{\mathcal{M}}(t) = \mathcal{H}(\psi_{\infty}^{\xi}|\psi_{\infty}^{\xi})$
- Local entropy $e_m(t,x) = H(\mu_{t|x}|\mu_{\infty|x})$

• Microscopic entropy $E_m(t) = \int_{\mathbb{T}} e_m \ \psi^{\xi}(x) \ dx$

$$E = E_m + E_M$$

イロト イヨト イヨト イヨト

Model and hypotheses New convergence results

Brief outline

Aim: show $E_m = H(\mu_{t|x}|\mu_{\infty|x})$ decays exponentially fast with rate limited by ρ , LSI constant of $d\mu_{\infty|x,i}$.

Why E_m ?

 $\textbf{0} \ A'_t - A' \text{ can be controlled by } E_m: \text{ It can be shown } \exists R > 0, \ \forall t \geq 0$

$$\int_{\mathbb{T}} |A'_t - A'|^2 \psi^{\xi} dx \leq 2R^2 E_m(t).$$

2 $dE_M/dt = -F(\psi^{\xi}|\psi^{\xi}_{\infty})$ and $F(\psi^{\xi}|\psi^{\xi}_{\infty}) \leq F_0 e^{-8\pi^2 t}$

So From $E = E_m + E_M$, the total entropy *E* also converges exponentially fast.

4 Csiszar-Kullback inequality implies the same for $\|\psi - \psi_{\infty}\|_{L^1}$.

Model and hypotheses New convergence results

Convergence of ABF: bi-channel case

Theorem [Lelièvre, Minoukadeh, 2010]

Assume hypotheses [H1]-[H4]. There exists a smooth function $\Lambda : (\theta_{\min}, \infty) \rightarrow (0, \rho)$ which is increasing and such that:

$$\Lambda(\rho + 2\theta_{\min}) = \frac{\rho}{2} \text{ and } \Lambda(\theta) \rightarrow \begin{cases} 0 \text{ as } \theta \rightarrow \theta_{\min} \\ \rho \text{ as } \theta \rightarrow \infty \end{cases}$$

such that $\forall \varepsilon \in (0, \Lambda(\theta))$, $\exists K > 0$ such that, $\forall t > 0$,

$$E_m(t) \leq Kexp\left(-2\min\{(\Lambda(heta) - arepsilon), 4\pi^2\} t
ight).$$

This implies that the total entropy E and thus $\|\psi(t, \cdot) - \psi_{\infty}\|_{L^{1}}^{2}$ converge exponentially fast to zero with the same rate. Furthermore, for any positive time $t_{0} > 0$ and $\varepsilon \in (0, \Lambda(\theta)), \exists \overline{K} > 0$ such that $\forall t \geq t_{0}$,

$$\int_{\mathbb{T}} |A_t'(x) - A'(x)|^2 \, dx \leq \bar{K} exp\left(-2\min\{(\Lambda(\theta) - \varepsilon), 4\pi^2\} t\right).$$

イロン イヨン イヨン イヨン

э

References

Adaptive Biasing Force (ABF) method

- [1] E. Darve and A. Pohorille, J. Chem. Phys. (2001)
- [2] J. Hénin and C. Chipot, J. Chem. Phys. (2004).

Multiple-Walker ABF (MW-ABF)

[3] K. Minoukadeh, C. Chipot, T. Lelièvre, J. Chem. Theory Comput. (2010).

Long-time convergence of ABF

- [4] T. Lelièvre, M. Rousset, G. Stoltz, Nonlinearity (2008).
- [5] T. Lelièvre, K. Minoukadeh, Preprint: hal-00477302 (2010).

Book: "Free Energy Computations: A Mathematical Perspective"

[6] T. Lelièvre, M. Rousset, G. Stoltz, Imperial College Press (2010).

イロト イヨト イヨト イヨト