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V. Jakšić (McGill University, Montreal)

L. Rey-Bellet (University of Massachusetts, Amherst)

mostly based on works by

Cohen, Evans, Gallavotti, Kurchan, Lebowitz, Morriss, Searles, Spohn, . . .

IHP/CEA-EDF-INRIA September 2010 – p. 1



History...

• Seminal works by Evans–Cohen–Morriss [93] and Evans–Searles [94]: Numerical
investigations and theoretical analysis of microscopic violation of the 2nd Law in
steady shear flows→ Transient Fluctuation Theorem

• Gallavotti–Cohen [95]: Chaotic hypothesis and nonequilibrium steady state
ensembles (à la Ruelle)→ Steady State Fluctuation Theorem

• Kurchan [98] + Lebowitz–Spohn [99]: Extension to stochastic dynamics and
Markovian processes

• Maes [99]: Fluctuation Theorems as a Gibbs property

• ..... a lot more, see reviews by Rondoni–Mejia-Monasterio [07], and Marconi et al.
[08]
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• Seminal works by Evans–Cohen–Morriss [93] and Evans–Searles [94]: Numerical
investigations and theoretical analysis of microscopic violation of the 2nd Law in
steady shear flows→ Transient Fluctuation Theorem

• Gallavotti–Cohen [95]: Chaotic hypothesis and nonequilibrium steady state
ensembles (à la Ruelle)→ Steady State Fluctuation Theorem

• Kurchan [98] + Lebowitz–Spohn [99]: Extension to stochastic dynamics and
Markovian processes

• Maes [99]: Fluctuation Theorems as a Gibbs property

• ..... a lot more, see reviews by Rondoni–Mejia-Monasterio [07], and Marconi et al.
[08]

... and Motivations
• Similar results for thermostated, open, stochastic, Markovian, .... systems, but no

unified description

• No universal rationale to define an entropy production observable

• What about quantum mechanics ?
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Overview

• Classical framework
• Entropy production

• Finite time Evans-Searles identity/symmetry

• Finite time Generalized Evans-Searles identity/symmetry

• Finite time linear response

• Nonequilibrium Steady States (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• The Evans-Searles fluctuation theorem
• The Gallavotti-Cohen fluctuation theorem
• The principle of regular entropic fluctuations

• Further Examples
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t

Notation: For µ ∈ P, f ∈ B and t ∈ T

µ(f) =

∫

M
fdµ

ft = f ◦ φt, µt(f) = µ(ft)
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t

Notation:

PI = {µ ∈ P | ∀t ∈ T : µt = µ} (steady states)

Pµ = {ν ∈ P | ν ≪ µ} (µ-normal states)

µ ∼ ν ⇐⇒ µ≪ ν and ν ≪ µ (equivalent states)

For ν ∈ Pµ : ∆ν|µ =
dν

dµ
, ℓν|µ = log∆ν|µ
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t

Relative entropy: For µ, ν ∈ P

0 ≥ Ent(ν|µ) = − sup
f∈B

(

ν(f)− log µ(ef)
)

=

{

−ν(ℓν|µ) if ν ∈ Pµ

−∞ otherwise

Note: Ent(ν|µ) = 0⇐⇒ ν = µ.
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t

Rényi relative α-entropy: For µ, ν ∈ P and α ∈ R

Entα(ν|µ) =
{

logµ(∆α
ν|µ) if ν ∈ Pµ

−∞ otherwise
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field

• Dynamics (φt)t∈T : T = Z or R (continuous) group of homeomorphisms of M

• Reference state µ: µ ∈ P, the space of Borel probability measures on (M,F)
• Observables f : f ∈ B, the space of bounded measurable real functions on M

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t

Basic assumptions:

(REG) ∀t ∈ T : µt ∼ µ

(TRI) ∀f ∈ B : µ(f ◦ ϑ) = µ(f)

We do not assume the reference state µ to be invariant!
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1. Mean entropy production rate

Proposition.

1. (REG)⇒ ∀s, t ∈ T : ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t (cocycle property)

2. (REG)+(TRI)⇒ ∀t ∈ T : ℓµt|µ ◦ ϑ = ℓµ−t|µ
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1. Mean entropy production rate

Proposition.

1. (REG)⇒ ∀s, t ∈ T : ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t (cocycle property)

2. (REG)+(TRI)⇒ ∀t ∈ T : ℓµt|µ ◦ ϑ = ℓµ−t|µ

The entropy balance equation

0 ≤ −1

t
(Ent(µt|µ)− Ent(µ|µ)) = µ

(

ℓµt|µ ◦ φt

t

)

suggests

Definition. Mean entropy production rate over the time interval [0, t]: Σt = t−1 ℓµt|µ ◦ φt
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1. Mean entropy production rate

Proposition.

1. (REG)⇒ ∀s, t ∈ T : ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t (cocycle property)

2. (REG)+(TRI)⇒ ∀t ∈ T : ℓµt|µ ◦ ϑ = ℓµ−t|µ

The entropy balance equation

0 ≤ −1

t
(Ent(µt|µ)− Ent(µ|µ)) = µ

(

ℓµt|µ ◦ φt

t

)

suggests

Definition. Mean entropy production rate over the time interval [0, t]: Σt = t−1 ℓµt|µ ◦ φt

Corollary.

1. ⇒ ∀t ∈ T : Σt = −t−1ℓµ−t|µ = Σ−t ◦ φt

2. ⇒ ∀t ∈ T : Σt ◦ ϑ = −t−1ℓµt|µ = −Σ−t
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2. Entropic fluctuations: The Evans–Searles identity

P t(f) = µ(f(Σt)) P
t
(f) = µ(f(−Σt)) (distributions of Σt and −Σt)

IHP/CEA-EDF-INRIA September 2010 – p. 6



2. Entropic fluctuations: The Evans–Searles identity

P t(f) = µ(f(Σt)) P
t
(f) = µ(f(−Σt)) (distributions of Σt and −Σt)

Theorem. (Finite time Evans–Searles [94] or Transient Fluctuation Theorem)

Under Assumptions (REG)+(TRI) negative values of Σt become exponentially rare as
t→∞ (microscopic form of 2nd law !)

dP
t

dP t
(s) = e−ts

IHP/CEA-EDF-INRIA September 2010 – p. 6



2. Entropic fluctuations: The Evans–Searles identity

P t(f) = µ(f(Σt)) P
t
(f) = µ(f(−Σt)) (distributions of Σt and −Σt)

Theorem. (Finite time Evans–Searles [94] or Transient Fluctuation Theorem)

Under Assumptions (REG)+(TRI) negative values of Σt become exponentially rare as
t→∞ (microscopic form of 2nd law !)

dP
t

dP t
(s) = e−ts

Proof. Use our Corollary: t−1ℓµ−t|µ = −Σt = Σ−t ◦ ϑ = Σt ◦ φ−t ◦ ϑ

µ
(

f
(

−Σt
))

= µ
(

f
(

Σt ◦ φ−t ◦ ϑ
))

= µ
(

f
(

Σt ◦ φ−t
))

= µ−t
(

f
(

Σt
))

= µ
(

f
(

Σt
)

e
ℓµ−t|µ

)

= µ
(

f
(

Σt
)

e−tΣt
)

�
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3. Entropic fluctuations: The Evans–Searles symmetry

et(α) = Entα(µt|µ) = logµ
(

eαtΣ−t
)

(finite time ES-function)
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3. Entropic fluctuations: The Evans–Searles symmetry

et(α) = Entα(µt|µ) = logµ
(

eαtΣ−t
)

(finite time ES-function)

Proposition. Properties of the finite time ES-function: R ∋ α 7→ et(α)

1. It is is convex.

2. et(0) = et(1) = 0.

3. It is real analytic on the intervall ]0, 1[.

4. et(1− α) = e−t(α).

5. (TRI)⇒ e−t(α) = et(α).

Proof. 1. Hölder inequality.

2. et(0) = log µ(1) = 0 and et(1) = log µ
(

eℓµt|µ

)

= logµt(1) = 0.

3. α 7→ µ
(

eαtΣ−t
)

=

∫

eαtsdP−t(s) is analytic in the strip 0 < Reα < 1.

4. et(1−α)=log µ
(

eℓµt|µe−αtΣ−t
)

=log µ
(

e−αtΣ−t◦φt
)

=logµ
(

e−αtΣt
)

=e−t(α)

5. et(α) = log µ
(

eαtΣ−t
)

= log µ
(

e−αtΣt◦ϑ
)

= logµ
(

e−αtΣt
)

= e−t(α).
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3. Entropic fluctuations: The Evans–Searles symmetry

et(α) = Entα(µt|µ) = logµ
(

eαtΣ−t
)

(finite time ES-function)

−1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

Alternative formulation of the finite time ES theorem: the finite time ES symmetry

et(1− α) = et(α)
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4. Entropy production observable – Discrete time

ℓµt+1|µ = ℓµt|µ + ℓµ1|µ ◦ φ
−t =⇒ ℓµt|µ =

t−1
∑

s=0

ℓµ1|µ ◦ φ
−s
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4. Entropy production observable – Discrete time

ℓµt+1|µ = ℓµt|µ + ℓµ1|µ ◦ φ
−t =⇒ ℓµt|µ =

t−1
∑

s=0

ℓµ1|µ ◦ φ
−s

Σt =
1

t
ℓµt|µ ◦ φ

t =
1

t

t−1
∑

s=0

σ ◦ φs,

σ = ℓµ1|µ ◦ φ
1 (Entropy production observable)
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4. Entropy production observable – Discrete time

ℓµt+1|µ = ℓµt|µ + ℓµ1|µ ◦ φ
−t =⇒ ℓµt|µ =

t−1
∑

s=0

ℓµ1|µ ◦ φ
−s

Σt =
1

t
ℓµt|µ ◦ φ

t =
1

t

t−1
∑

s=0

σ ◦ φs,

σ = ℓµ1|µ ◦ φ
1 (Entropy production observable)

Proposition.
1. µ(σ) ≥ 0 and µ(σ−1) ≤ 0.
2. (TRI)⇒ σ ◦ ϑ = −σ−1.

Proof. 1. µ(σ) = µ1(ℓµ1|µ) = −Ent(µ1|µ) ≥ 0.

Jensen⇒ eµ−1(σ) ≤ µ−1(eσ) = µ(e
ℓµ1|µ ) = µ1(1) = 1.

2. σ ◦ϑ = ℓµ1|µ ◦φ◦ϑ = ℓµ1|µ ◦ϑ◦φ−1 = ℓµ−1|µ ◦φ−1 = −ℓµ1|µ ◦φ−2 = −σ ◦φ−1.
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4. Entropy production observable – Discrete time

ℓµt+1|µ = ℓµt|µ + ℓµ1|µ ◦ φ
−t =⇒ ℓµt|µ =

t−1
∑

s=0

ℓµ1|µ ◦ φ
−s

Σt =
1

t
ℓµt|µ ◦ φ

t =
1

t

t−1
∑

s=0

σ ◦ φs,

σ = ℓµ1|µ ◦ φ
1 (Entropy production observable)

−Ent(µt|µ) =
t−1
∑

s=0

µ(σs)

et(α) = log µ
(

eα
∑t−1

s=0
σ−s

)

(TRI)⇒ et(α) = logµ
(

e−α
∑t−1

s=0
σs

)
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4. Entropy production observable – Continuous time

At the current level of generality, it is not possible to define entropy production for
continuous time dynamical systems. Hence, we shall assume:

R ∋ t 7→ ∆µt|µ ∈ L1(M,µ) is strongly C1 and

σ =
d

dt
∆µt|µ

∣

∣

∣

∣

t=0

(Entropy production observable)

is such that R ∋ t 7→ σt ∈ L1(M,µ) is strongly continuous
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4. Entropy production observable – Continuous time

At the current level of generality, it is not possible to define entropy production for
continuous time dynamical systems. Hence, we shall assume:

R ∋ t 7→ ∆µt|µ ∈ L1(M,µ) is strongly C1 and

σ =
d

dt
∆µt|µ

∣

∣

∣

∣

t=0

(Entropy production observable)

is such that R ∋ t 7→ σt ∈ L1(M,µ) is strongly continuous

Cocycle property
⇓

Σt =
1

t

∫ t

0
σsds

⇓

−Ent(µt|µ) =
∫ t

0
µ(σs)ds et(α) = log µ

(

eα
∫ t
0
σ−sds

)

µ(σ) = 0

⇓(TRI)⇓
σ ◦ ϑ = −σ et(α) = logµ

(

e−α
∫
t
0
σsds

)
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5. Example: A thermostated ideal gas

Flow φt on RN × TN : L̇j = F − λLj , θ̇j = Lj , (j = 1, . . . , N)

λ = F
l

u
, l =

1

N

∑

j

Lj , u =
1

N

∑

j

L2
j

preserves mean kinetic energy u (iso-kinetic thermostat) + exactly solvable

IHP/CEA-EDF-INRIA September 2010 – p. 10



5. Example: A thermostated ideal gas

Flow φt on RN × TN : L̇j = F − λLj , θ̇j = Lj , (j = 1, . . . , N)

λ = F
l

u
, l =

1

N

∑

j

Lj , u =
1

N

∑

j

L2
j

preserves mean kinetic energy u (iso-kinetic thermostat) + exactly solvable

M = {(L, θ)|u = ǫ} ≃ SN−1×TN , µ = normalized Lebesgue (µ-canonical ensemble)
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5. Example: A thermostated ideal gas

Flow φt on RN × TN : L̇j = F − λLj , θ̇j = Lj , (j = 1, . . . , N)

λ = F
l

u
, l =

1

N

∑

j

Lj , u =
1

N

∑

j

L2
j

preserves mean kinetic energy u (iso-kinetic thermostat) + exactly solvable

M = {(L, θ)|u = ǫ} ≃ SN−1×TN , µ = normalized Lebesgue (µ-canonical ensemble)

σ =
∑

j

∂

∂Lj

(

F − λLj

)

∣

∣

∣

∣

∣

∣

M

= (N − 1)
F√
ǫ
tanh ξ, ξ = −1

2
log

√
u− l√
u+ l

,

where the motion of ξ is governed by ξ̇ = ǫ−1/2F .
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5. Example: A thermostated ideal gas

Flow φt on RN × TN : L̇j = F − λLj , θ̇j = Lj , (j = 1, . . . , N)

λ = F
l

u
, l =

1

N

∑

j

Lj , u =
1

N

∑

j

L2
j

preserves mean kinetic energy u (iso-kinetic thermostat) + exactly solvable

M = {(L, θ)|u = ǫ} ≃ SN−1×TN , µ = normalized Lebesgue (µ-canonical ensemble)

σ =
∑

j

∂

∂Lj

(

F − λLj

)

∣

∣

∣

∣

∣

∣

M

= (N − 1)
F√
ǫ
tanh ξ, ξ = −1

2
log

√
u− l√
u+ l

,

where the motion of ξ is governed by ξ̇ = ǫ−1/2F .

It easily follows that

et(α) = log

(

Γ(N/2)√
πΓ((N − 1)/2)

∫ ∞

−∞
(cosh ξ)−(N−1)(1−α)(cosh(ξ + Fǫ−1/2t))−(N−1)αdξ

)
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5. Example: A thermostated ideal gas

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

1

t
et(α) for various values of t > 0
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6. Thermodynamics: Forces & fluxes

Assume we have some control of our dynamical system

R
n ∋ X 7→ (M,φt

X , µX)
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6. Thermodynamics: Forces & fluxes

Assume we have some control of our dynamical system

R
n ∋ X 7→ (M,φt

X , µX)

• X = (X1, . . . , Xn) are mechanical or thermodynamical forces (affinities).

• µ0 is φt
0-invariant i.e., X = 0 is equilibrium⇒ σX=0 = 0.

• σX = X ·ΦX =
n
∑

j=1

XjΦ
(j)
X .

• Φ
(j)
X is the flux (current) associated to Xj .

• For simplicity ϑ is idependant of X and (M,φt
X , µX) is TRI

ΦX ◦ ϑ = −ΦX ⇒ µX(ΦX) = 0.
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7. Generalized ES–identity/symmetry

P t
X(f) = µX

(

f

(

1

t

∫ t

0
ΦXs ds

))

P
t
X(f) = µX

(

f

(

−1

t

∫ t

0
ΦXs ds

))
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7. Generalized ES–identity/symmetry

P t
X(f) = µX

(

f

(

1

t

∫ t

0
ΦXs ds

))

P
t
X(f) = µX

(

f

(

−1

t

∫ t

0
ΦXs ds

))

Theorem. (Finite time Generalized ES fluctuation theorem) Under our assumptions, as
t→∞, the averaged current Φ likes to flow s.t. X ·Φ > 0:

dP
t
X

dP t
X

(Φ) = exp (−tX ·Φ)

IHP/CEA-EDF-INRIA September 2010 – p. 13



7. Generalized ES–identity/symmetry

P t
X(f) = µX

(

f

(

1

t

∫ t

0
ΦXs ds

))

P
t
X(f) = µX

(

f

(

−1

t

∫ t

0
ΦXs ds

))

Theorem. (Finite time Generalized ES fluctuation theorem) Under our assumptions, as
t→∞, the averaged current Φ likes to flow s.t. X ·Φ > 0:

dP
t
X

dP t
X

(Φ) = exp (−tX ·Φ)

Equivalently the generalized ES function

gt(X,Y ) = logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

satisfies the generalized ES symmetry

gt(X,X − Y ) = gt(X,Y )
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7. Generalized ES–identity/symmetry

P t
X(f) = µX

(

f

(

1

t

∫ t

0
ΦXs ds

))

P
t
X(f) = µX

(

f

(

−1

t

∫ t

0
ΦXs ds

))

Theorem. (Finite time Generalized ES fluctuation theorem) Under our assumptions, as
t→∞, the averaged current Φ likes to flow s.t. X ·Φ > 0:

dP
t
X

dP t
X

(Φ) = exp (−tX ·Φ)

Equivalently the generalized ES function

gt(X,Y ) = logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

satisfies the generalized ES symmetry

gt(X,X − Y ) = gt(X,Y )

Proof. −(X − Y ) ·ΦXs ◦ ϑ = σX−s − Y ·ΦX−s.
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8. Finite time linear response

If

X 7→ 〈ΦX〉t =
1

t

∫ t

0
µX (ΦXs) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X 〉t

∣

∣

∣

X=0
(finite time transport matrix)
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8. Finite time linear response

If

X 7→ 〈ΦX〉t =
1

t

∫ t

0
µX (ΦXs) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X 〉t

∣

∣

∣

X=0
(finite time transport matrix)

Theorem. (Finite time Green-Kubo formula and Onsager reciprocity relations)
Assume that (X,Y ) 7→ gt(X,Y ) is C2 near (0, 0). Then

Lt
jk =

1

2

∫ t

−t
µ0

(

Φ
(k)
0 Φ

(j)
0s

)

(

1− |s|
t

)

ds =
1

t

∫ t

0

[

1

2

∫ s

−s
µ0

(

Φ
(k)
0 Φ

(j)
0u

)

du

]

ds

where Φ
(j)
0s = Φ

(j)
0 ◦ φs

0. In particular the finite time transport matrix is symmetric.
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8. Finite time linear response

Remark. The following shows that the transport matrix is non-negative

0 ≤ 〈σX〉t =
n
∑

j=1

Xj〈Φ(j)
X 〉t =

n
∑

j,k=1

Lt
jkXjXk + o(|X|2).
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8. Finite time linear response

Remark. The following shows that the transport matrix is non-negative

0 ≤ 〈σX〉t =
n
∑

j=1

Xj〈Φ(j)
X 〉t =

n
∑

j,k=1

Lt
jkXjXk + o(|X|2).

Proof of the theorem. One has

〈Φ(j)
X 〉t = −

1

t
∂Yj

gt(X,Y )

∣

∣

∣

∣

Y =0

⇒ Lt
jk = ∂Xk

〈Φ(j)
X 〉t

∣

∣

∣

X=0
= −1

t
∂Xk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X,Y )
∣

∣

∣

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

(note that the symmetry of Lt already follows from this formula!) Thus we can write

Lt
jk =

1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)
0s1

Φ
(j)
0s2

)

ds1ds2 =
1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)
0 Φ

(j)
0(s2−s1)

)

ds1ds2

and the result follows from change of integration variables and integration by parts.
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9. Example: Thermally driven open system

Hamiltonian description:

• Small system S: HS(pS , qS) on MS .

• Large reservoirs Rj : Hj(pj , qj) on Mj (j = 1, . . . , N ).

• Decoupled joint system: H0(p, q) = HS(pS , qS) +
∑

j Hj(pj , qj).

• Coupling: V (p, q) =
∑

j Vj(pS , qS , pj , qj).

• Coupled system: H(p, q) = H0(p, q) + V (p, q).

• Hamiltonian flow: φt on M = MS ×M1 × · · ·MN .

• TRI holds with ϑ(p, q) = (−p, q) provided H ◦ ϑ = H.
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9. Example: Thermally driven open system

Hamiltonian description:

• Small system S: HS(pS , qS) on MS .

• Large reservoirs Rj : Hj(pj , qj) on Mj (j = 1, . . . , N ).

• Decoupled joint system: H0(p, q) = HS(pS , qS) +
∑

j Hj(pj , qj).

• Coupling: V (p, q) =
∑

j Vj(pS , qS , pj , qj).

• Coupled system: H(p, q) = H0(p, q) + V (p, q).

• Hamiltonian flow: φt on M = MS ×M1 × · · ·MN .

• TRI holds with ϑ(p, q) = (−p, q) provided H ◦ ϑ = H.

• Reference state:
1

Z
e−βHS−

∑
j βjHjdp dq.

• Thermodynamic forces: Xj = β − βj ⇒ νX =
1

Z
e−βH0+

∑
j XjHjdp dq.
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9. Example: Thermally driven open system

Hamiltonian description:

• Small system S: HS(pS , qS) on MS .

• Large reservoirs Rj : Hj(pj , qj) on Mj (j = 1, . . . , N ).

• Decoupled joint system: H0(p, q) = HS(pS , qS) +
∑

j Hj(pj , qj).

• Coupling: V (p, q) =
∑

j Vj(pS , qS , pj , qj).

• Coupled system: H(p, q) = H0(p, q) + V (p, q).

• Hamiltonian flow: φt on M = MS ×M1 × · · ·MN .

• TRI holds with ϑ(p, q) = (−p, q) provided H ◦ ϑ = H.

• Reference state:
1

Z
e−βHS−

∑
j βjHjdp dq.

• Thermodynamic forces: Xj = β − βj ⇒ νX =
1

Z
e−βH0+

∑
j XjHjdp dq.

Problem: µ0 is not φt invariant (recall our assumption!)

Cure: If V is well localized, µX =
1

Z
e−βH+

∑
j XjHjdp dq describes the same

thermodynamics as νX → (M,φt, µX)
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9. Example: Thermally driven open system

Energy conservation + Liouville theorem⇒ µXt =
1

Z
e−βH+

∑
j XjHj◦φ−t

dp dq

⇓
∆µXt|µX

= e
∑

j Xj(Hj◦φ−t−Hj)

⇓

σX =
d

dt
∆µXt|µX

∣

∣

∣

∣

t=0

= −
∑

j

Xj{H,Hj} =
∑

j

Xj{Hj , Vj} =
∑

j

XjΦ
(j)

⇓
Fluxes Φ(j) = −{H,Hj} = {Hj , V } = {Hj , Vj} are independant of X
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9. Example: Thermally driven open system

Energy conservation + Liouville theorem⇒ µXt =
1

Z
e−βH+

∑
j XjHj◦φ−t

dp dq

⇓
∆µXt|µX

= e
∑

j Xj(Hj◦φ−t−Hj)

⇓

σX =
d

dt
∆µXt|µX

∣

∣

∣

∣

t=0

= −
∑

j

Xj{H,Hj} =
∑

j

Xj{Hj , Vj} =
∑

j

XjΦ
(j)

⇓
Fluxes Φ(j) = −{H,Hj} = {Hj , V } = {Hj , Vj} are independant of X

[

Assume Hj ◦ ϑ = Hj ⇒ Φ(j) ◦ ϑ = −Φ(j)

]

Hj ◦ φt −Hj = −
∫ t

0
Φ

(j)
s ds

⇓
Φ(j) is the energy flux out of reservoir Rj
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9. Example: Open harmonic chain

HS(pS , qS) =
∑

|x|≤m

p2x + q2x
2

+

m+1
∑

x=−m

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−m−1=qm+1=0
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9. Example: Open harmonic chain

HS(pS , qS) =
∑

|x|≤m

p2x + q2x
2

+

m+1
∑

x=−m

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−m−1=qm+1=0

The two reservoirs RL and RR are similar but much longer chains (n≫ m)

HL(pL, qL) =

−m−1
∑

x=−n

p2x + q2x
2

+

−m
∑

x=−n

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−n−1=q−m=0

HR(pR, qR) =
n
∑

x=m+1

p2x + q2x
2

+

n+1
∑

x=m+1

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

qm=qn+1=0
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9. Example: Open harmonic chain

HS(pS , qS) =
∑

|x|≤m

p2x + q2x
2

+

m+1
∑

x=−m

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−m−1=qm+1=0

Fully coupled chain

H(p, q) =
n
∑

x=−n

p2x + q2x
2

+

n+1
∑

x=−n

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−n−1=qn+1=0
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9. Example: Open harmonic chain

HS(pS , qS) =
∑

|x|≤m

p2x + q2x
2

+

m+1
∑

x=−m

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−m−1=qm+1=0

Coupling

V = H −H0 = H − (HL +HS +HR) = −q−m−1q−m − qmqm+1
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9. Example: Open harmonic chain

HS(pS , qS) =
∑

|x|≤m

p2x + q2x
2

+

m+1
∑

x=−m

(qx − qx−1)2

2

∣

∣

∣

∣

∣

∣

q−m−1=qm+1=0

Fluxes

Φ(L) = {HL, V } = −p−m−1q−m Φ(R) = {HR, V } = −pm+1qm
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9. Example: Open harmonic chain

Linear equations of motion←→ Linear Hamiltonian flow φt = etL

Quadratic forms 2H, 2HL, 2HR ←→ Symmetric matrices h ,hL, hR

k(X) = XLhL ⊕XRhR

Reference state

µX =
1

Z
e−βH+XLHL+XRHRdp dq ←→

Gaussian with covariance

DX = (βh − k(X))−1
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9. Example: Open harmonic chain

Linear equations of motion←→ Linear Hamiltonian flow φt = etL

Quadratic forms 2H, 2HL, 2HR ←→ Symmetric matrices h ,hL, hR

k(X) = XLhL ⊕XRhR

Reference state

µX =
1

Z
e−βH+XLHL+XRHRdp dq ←→

Gaussian with covariance

DX = (βh − k(X))−1

Generalized ES-function reduces to a Gaussian integral

gt(X,Y ) = −1

2
log det

(

I −DX

(

etL
∗
k(Y )etL − k(Y )

))

In particular

et(α) = gt(X,αX) = −1

2
log det

(

I − αDX

(

etL
∗
k(X)etL − k(X)

))
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9. Example: Open harmonic chain

0 100 200 300 400 500 600 700 800
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Mean entropy production rate µ(Σt) = − d

dα
et(α)

∣

∣

∣

∣

α=0
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9. Example: Open harmonic chain

−0.5 0 0.5 1 1.5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

n=100   m=10   β=4   X
L
=−X

R
=1

 

 

t=1

t=50

t=300

t=350

t=800

steady state

1

t
et(α) for various values of t > 0
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10. Nonequilibrium Steady States

Definition. µ+ ∈ PI is the NESS of (M,φt, µ) if

lim
t→∞

1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropy producing if µ+(σ) > 0.
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10. Nonequilibrium Steady States

Definition. µ+ ∈ PI is the NESS of (M,φt, µ) if

lim
t→∞

1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropy producing if µ+(σ) > 0.

Quasi-Theorem. The NESS µ+ of (M,φt, µ) is entropy producing if and only if
µ+ 6∈ Pµ, i.e., µ+ is singular w.r.t. µ.

Entropy production is the signature of non-equilibrium
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10. Nonequilibrium Steady States

Definition. µ+ ∈ PI is the NESS of (M,φt, µ) if

lim
t→∞

1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropy producing if µ+(σ) > 0.

Quasi-Theorem. The NESS µ+ of (M,φt, µ) is entropy producing if and only if
µ+ 6∈ Pµ, i.e., µ+ is singular w.r.t. µ.

Entropy production is the signature of non-equilibrium

Theorem.
1. If ν ∈ PI ∩ Pµ then ν(σ) = 0.
2. If µt(σ)− µ+(σ) = O(t−1) then µ+(σ) = 0 implies µ+ ∈ PI ∩ Pµ.
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11. Linear response: The large time limit

Assume that for small X ∈ Rn the controlled system (M,φt
X , µX ) has a NESS µX+

〈ΦX〉+ = lim
t→∞

〈ΦX〉t = µX+(ΦX) (steady currents in the NESS µX+)
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11. Linear response: The large time limit

Assume that for small X ∈ Rn the controlled system (M,φt
X , µX ) has a NESS µX+

〈ΦX〉+ = lim
t→∞

〈ΦX〉t = µX+(ΦX) (steady currents in the NESS µX+)

Assume that X 7→ 〈ΦX〉+ is differentiable at X = 0 and set

Ljk = ∂Xk
〈Φ(j)

X 〉+
∣

∣

∣

X=0
(NESS transport matrix)
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11. Linear response: The large time limit

Assume that for small X ∈ Rn the controlled system (M,φt
X , µX ) has a NESS µX+

〈ΦX〉+ = lim
t→∞

〈ΦX〉t = µX+(ΦX) (steady currents in the NESS µX+)

Assume that X 7→ 〈ΦX〉+ is differentiable at X = 0 and set

Ljk = ∂Xk
〈Φ(j)

X 〉+
∣

∣

∣

X=0
(NESS transport matrix)

Finally assume that the equilibrium current-current correlation function satisfies

µ0

(

Φ
(k)
0 Φ

(j)
0t

)

= O(t−1) (t→∞)
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11. Linear response: The large time limit

Assume that for small X ∈ Rn the controlled system (M,φt
X , µX ) has a NESS µX+

〈ΦX〉+ = lim
t→∞

〈ΦX〉t = µX+(ΦX) (steady currents in the NESS µX+)

Assume that X 7→ 〈ΦX〉+ is differentiable at X = 0 and set

Ljk = ∂Xk
〈Φ(j)

X 〉+
∣

∣

∣

X=0
(NESS transport matrix)

Finally assume that the equilibrium current-current correlation function satisfies

µ0

(

Φ
(k)
0 Φ

(j)
0t

)

= O(t−1) (t→∞)

Theorem. The Green-Kubo Formula

Ljk =
1

2

∫ ∞

−∞
µ0

(

Φ
(k)
0 Φ

(j)
0s

)

ds

[

:= lim
T→∞

1

2

∫ T

T
µ0

(

Φ
(k)
0 Φ

(j)
0s

)

ds

]

holds if and only if Ljk = lim
t→∞

Lt
jk.
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11. Linear response: The large time limit

Remarks. 1. The 3 assumptions are delicate dynamical problems that can only be
checked in specific models.

2. If the GK-Formula holds, so do the Onsager Reciprocity Relations Ljk = Lkj .

3. The condition Ljk = lim
t→∞

Lt
jk means that the limit and derivative can be exchanged

in the following expression

∂Xk

[

lim
t→∞

〈Φ(j)
X 〉t

]∣

∣

∣

∣

X=0

= lim
t→∞

[

∂Xk
〈Φ(j)

X 〉t
∣

∣

∣

X=0

]

This is also a delicate dynamical problem.
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11. Linear response: The large time limit

Remarks. 1. The 3 assumptions are delicate dynamical problems that can only be
checked in specific models.

2. If the GK-Formula holds, so do the Onsager Reciprocity Relations Ljk = Lkj .

3. The condition Ljk = lim
t→∞

Lt
jk means that the limit and derivative can be exchanged

in the following expression

∂Xk

[

lim
t→∞

〈Φ(j)
X 〉t

]∣

∣

∣

∣

X=0

= lim
t→∞

[

∂Xk
〈Φ(j)

X 〉t
∣

∣

∣

X=0

]

This is also a delicate dynamical problem.

Proof. Recall that

Lt
jk =

1

t

∫ t

0
F (s)ds, F (s) =

1

2

∫ s

−s
µ0

(

Φ
(k)
0 Φ

(j)
0u

)

du

If the GK-Formula holds, then F (t)→ Ljk and the fundamental property of the Cesàro
mean implies that Lt

jk → Ljk. Invoking Hardy-Littlewood’s Tauberian theorem one gets

the reverse implication.
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12. Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem (CLT) holds for the current Φ0 if there is a positive
semi-definite matrix D s.t., for all bounded continuous function f : Rn → R,

lim
t→∞

µ0

(

f

(

1√
t

∫ t

0
Φ0s ds

))

= mD(f)

where mD is the centered Gaussian measure of covariance D on Rn.
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12. Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem (CLT) holds for the current Φ0 if there is a positive
semi-definite matrix D s.t., for all bounded continuous function f : Rn → R,

lim
t→∞

µ0

(

f

(

1√
t

∫ t

0
Φ0s ds

))

= mD(f)

where mD is the centered Gaussian measure of covariance D on Rn.
The following well known result of Bryc is often useful to establish the validity of the CLT.
We set Iǫ = {X ∈ Rn | |X| < ǫ} and Dǫ = {X ∈ Cn | |X| < ǫ}.

Theorem. Suppose that for some ǫ > 0 the function gt(0, Y ) = logµ0

(

eY ·
∫
t
0
Φ0sds

)

is

analytic in Dǫ, satisfies

sup
Y ∈Dǫ,t>1

1

t
|gt(0, Y )| <∞

and lim
t→∞

1

t
gt(0, Y ) exists for all Y ∈ Iǫ. Then the CLT holds for Φ0 with covariance

matrix

Djk = lim
t→∞

∫ t

−t
µ0

(

Φ
(k)
0 Φ

(j)
0s

)

(

1− |s|
t

)

ds
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12. Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem (CLT) holds for the current Φ0 if there is a positive
semi-definite matrix D s.t., for all bounded continuous function f : Rn → R,

lim
t→∞

µ0

(

f

(

1√
t

∫ t

0
Φ0s ds

))

= mD(f)

where mD is the centered Gaussian measure of covariance D on Rn.

We say that the Fluctuation-Dissipation Theorem holds for the system (M,φt
X , µX) if:

• The Green-Kubo Formula

Ljk =
1

2

∫ ∞

−∞
µ0

(

Φ
(k)
0 Φ

(j)
0s

)

ds

(and therefore the Onsager Reciprocity Relations Ljk = Lkj ) hold.

• The CLT holds for Φ0 with a covariance matrix [Djk] satisfying Einstein’s Relation

Djk = 2Ljk
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12. Central Limit Theorem – Fluctuation-Dissipation

Remark. Both, the exchange of lim
t→∞

and ∂Xk
and Bryc’s theorem can often be justified

by the following multi-variable version of Vitali’s convergence theorem.

Theorem. Suppose that the function Ft : Dǫ → C is analytic for all t > 0 and satisfies

sup
X∈Dǫ,t>1

|Ft(X)| <∞.

If lim
t→∞

Ft(X) exists for X ∈ Iǫ then it exists for all X ∈ Dǫ and defines an anaytic

function F . Moreover, the derivatives of Ft converge to the corresponding derivatives of
F uniformly on compact subsets of Dǫ.
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13. Large deviations

A vector valued observable f = (f(1), . . . , f(n)) satisfies a Large Deviation Principle
(LDP) w.r.t. (M,φ, µ) if there exists a upper-semicontinuous function

I : Rn → [−∞, 0]

with compact level sets such that, for all Borel sets G ⊂ Rn

sup
Z∈G̊

I(Z) ≤ lim inf
t→∞

1

t
logµ

({

x ∈M

∣

∣

∣

∣

1

t

∫ t

0
fs(x)ds ∈ G

})

≤ lim sup
t→∞

1

t
logµ

({

x ∈M

∣

∣

∣

∣

1

t

∫ t

0
fs(x)ds ∈ G

})

≤ sup
Z∈Ḡ

I(Z).

where G̊ denotes the interior of G and Ḡ its closure. I is called the rate function.
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14. The Gärtner-Ellis theorem

Assume that the limit

h(Y ) = lim
t→∞

1

t
logµ(e−

∫
t
0
Y ·fsds)

exists in [−∞,+∞] for all Y ∈ Rn and is finite for Y in some open neighborhood of 0.
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14. The Gärtner-Ellis theorem

Assume that the limit

h(Y ) = lim
t→∞

1

t
logµ(e−

∫
t
0
Y ·fsds)

exists in [−∞,+∞] for all Y ∈ Rn and is finite for Y in some open neighborhood of 0.

1. Suppose that h(Y ) is differentiable at Y = 0. Then, the limit

〈f〉+ = lim
t→∞

1

t

∫ t

0
µ(fs)ds

exists and 〈f〉+ = −∇h(0).

For any regular sequence tn one has

lim
n→∞

1

tn

∫ tn

0
fs(x)ds = 〈f〉+

for µ-a.e. x ∈M .

[ tn is regular if
∑

n e−atn <∞ for all a > 0 ]
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14. The Gärtner-Ellis theorem

Assume that the limit

h(Y ) = lim
t→∞

1

t
logµ(e−

∫
t
0
Y ·fsds)

exists in [−∞,+∞] for all Y ∈ Rn and is finite for Y in some open neighborhood of 0.

2. Suppose that h(Y ) is a lower semicontinuous function on Rn which is differentiable
on the interior of the set D = {Y ∈ Rn | h(Y ) <∞} and satisfies

lim
D̊∋Y →Y0

|∇h(Y )| =∞

for all Y0 ∈ ∂D. Then the Large Deviation Principle holds for f w.r.t. (M,φ, µ) with the
rate function

I(Z) = inf
Y ∈Rn

(Y · Z + h(Y ))

[ −I(Z) is the Legendre transform of h(−Y ), in particular I(Z) is concave ]

IHP/CEA-EDF-INRIA September 2010 – p. 27



14. The Gärtner-Ellis theorem

Assume that the limit

h(Y ) = lim
t→∞

1

t
logµ(e−

∫
t
0
Y ·fsds)

exists in [−∞,+∞] for all Y ∈ Rn and is finite for Y in some open neighborhood of 0.

Remarks. 1. The conclusion of Part 2 holds in particular if h(Y ) is differentiable on Rn.

2. There are other (local) versions of the Gärtner-Ellis theorem that are useful in
applications. Suppose, for example, that the function h(Y ) is finite, strictly convex and
continuously differentiable in some open neighborhood B ⊂ Rn of the origin. Then Part
1 holds as well as a weaker version of Part 2:

The large deviation principle holds provided the set G is contained in a
sufficiently small neighborhood of 〈f〉+.
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15. The Evans–Searles fluctuation theorem

Recall that the finite time ES-function et(α) = µ
(

e−α
∫ t
0
σs ds

)

satisfies the ES-symmetry et(1− α) = et(α) and et(0) = et(1) = 0 for all t
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15. The Evans–Searles fluctuation theorem

Recall that the finite time ES-function et(α) = µ
(

e−α
∫ t
0
σs ds

)

satisfies the ES-symmetry et(1− α) = et(α) and et(0) = et(1) = 0 for all t

Assume that the ES-function e(α) = lim
t→∞

1

t
log et(α) ∈ [−∞,∞] exists for all α ∈ R

⇓

e(α) is a convex function satisfying the ES-symmetry e(1− α) = e(α) and
e(0) = e(1) = 0

IHP/CEA-EDF-INRIA September 2010 – p. 28



15. The Evans–Searles fluctuation theorem

Theorem.

If e(α) is differentiable at α = 0 then:

1. µ+(σ) = −e′(0) = e′(1). In particular, the system is entropy producing (µ+(σ) > 0)
iff e(α) is not identically zero on [0, 1].

2. (Strong law of large numbers) For all regular sequences tn

1

tn

∫ tn

0
σs(x) ds→ µ+(σ)

for µ-a.e. x ∈M .

3. If e(α) is differentiable on R, then σ satisfies a LDP w.r.t. (M,φ, µ) with the rate
function I(s) = infα∈R(αs+ e(α)). Moreover,

I(−s) = I(s)− s
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15. The Evans–Searles fluctuation theorem

Theorem.

If e(α) is differentiable at α = 0 then:

1. µ+(σ) = −e′(0) = e′(1). In particular, the system is entropy producing (µ+(σ) > 0)
iff e(α) is not identically zero on [0, 1].

2. (Strong law of large numbers) For all regular sequences tn

1

tn

∫ tn

0
σs(x) ds→ µ+(σ)

for µ-a.e. x ∈M .

3. If e(α) is differentiable on R, then σ satisfies a LDP w.r.t. (M,φ, µ) with the rate
function I(s) = infα∈R(αs+ e(α)). Moreover,

I(−s) = I(s)− s

Proof. I(−s) = infα∈R(−αs+ e(α)) = infα∈R(−αs+ e(1− α))

= infα∈R(−(1− α)s+ e(α)) = −s+ I(s)
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15. The Evans–Searles fluctuation theorem

Similar conclusions hold for currents Φ
(j)
X if one assumes that the GES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞
1

t
logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

exists. It automatically satisfies the GES-symmetry g(X,X − Y ) = g(X,Y ).
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15. The Evans–Searles fluctuation theorem

Similar conclusions hold for currents Φ
(j)
X if one assumes that the GES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞
1

t
logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

exists. It automatically satisfies the GES-symmetry g(X,X − Y ) = g(X,Y ).

Theorem.

1. If Y 7→ g(X,Y ) is differentiable at Y = 0 then

〈ΦX〉+ = µX+(ΦX) = −∇Y g(X,Y )|Y =0

and for any regular sequence tn

1

tn

∫ tn

0
ΦXs(x) ds→ µX+(ΦX)

for µX -a.e. x ∈M .

Proof. Gärtner-Ellis.
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15. The Evans–Searles fluctuation theorem

Similar conclusions hold for currents Φ
(j)
X if one assumes that the GES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞
1

t
logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

exists. It automatically satisfies the GES-symmetry g(X,X − Y ) = g(X,Y ).

2. If g(X,Y ) is C2 near (X,Y ) = (0, 0) then the transport matrix [Ljk] is well defined
and satisfies the Onsager reciprocity relations.

3. If in addition µ0(Φ
(k)
0 Φ

(j)
0t ) = O(t−1) and, for some ǫ > 0,

sup
Y ∈Dǫ,t>1

1

t
|gt(0, Y )| <∞

then the Fluctuation-Dissipation Theorem holds.

Proof. 2. Since 〈Φ(j)
X 〉+ = ∂Yj

g(X,Y )
∣

∣

Y =0
, the GES-symmetry yields

Ljk = ∂Xk
∂Yj

g(X,Y )
∣

∣

X=Y =0
= −1

2
∂Yj

∂Yk
g(X,Y )

∣

∣

X=Y =0
⇒ Ljk = Lkj
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15. The Evans–Searles fluctuation theorem

Similar conclusions hold for currents Φ
(j)
X if one assumes that the GES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞
1

t
logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

exists. It automatically satisfies the GES-symmetry g(X,X − Y ) = g(X,Y ).

2. If g(X,Y ) is C2 near (X,Y ) = (0, 0) then the transport matrix [Ljk] is well defined
and satisfies the Onsager reciprocity relations.

3. If in addition µ0(Φ
(k)
0 Φ

(j)
0t ) = O(t−1) and, for some ǫ > 0,

sup
Y ∈Dǫ,t>1

1

t
|gt(0, Y )| <∞

then the Fluctuation-Dissipation Theorem holds.

Proof. 3. By our general result the GK-Formula holds iff one can interchange lim
t→∞

and

∂YJ
∂Yk

. This is ensured by Vitali’s theorem. The CLT follows from Bryc’s theorem.
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15. The Evans–Searles fluctuation theorem

Similar conclusions hold for currents Φ
(j)
X if one assumes that the GES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞
1

t
logµX

(

e−Y ·
∫
t
0
ΦXs ds

)

exists. It automatically satisfies the GES-symmetry g(X,X − Y ) = g(X,Y ).

4. If Y 7→ g(X,Y ) is differentiable on Rn then the LDP holds for ΦX with the rate function
IX(s) = infY ∈Rn (Y · s+ g(X,Y )). Moreover,

IX (−s) = IX (s)−X · s

Proof. Again Gärtner-Ellis.
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16. The Gallavotti-Cohen fluctuation theorem

Let µ+ be a NESS of (M,φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
logµ+

(

e−α
∫
t
0
σs ds

)

exists.
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16. The Gallavotti-Cohen fluctuation theorem

Let µ+ be a NESS of (M,φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
logµ+

(

e−α
∫
t
0
σs ds

)

exists.

Remark. In general, unlike the ES-function et(α), the finite time GC-function

e+t(α) = logµ+

(

e−α
∫
t
0
σs ds

)

does not satisfy "the symmetry", i.e. e+t(1− α) 6= e+t(α).
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16. The Gallavotti-Cohen fluctuation theorem

Let µ+ be a NESS of (M,φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
logµ+

(

e−α
∫
t
0
σs ds

)

exists.

Remark. In general, unlike the ES-function et(α), the finite time GC-function

e+t(α) = logµ+

(

e−α
∫
t
0
σs ds

)

does not satisfy "the symmetry", i.e. e+t(1− α) 6= e+t(α).

Definition. The GC symmetry holds if, for all α ∈ R, e+(1− α) = e+(α).
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16. The Gallavotti-Cohen fluctuation theorem

Theorem.

If the GC-symmetry holds and e+(α) is differentiable at α = 0 then:

1. µ+(σ) = −e′+(0) = e′+(1). In particular, the system is entropy producing (µ+(σ) > 0)

iff e+(α) is not identically zero on [0, 1].

2. (Strong law of large numbers) For all regular sequences tn

1

tn

∫ tn

0
σs(x) ds→ µ+(σ)

for µ+-a.e. x ∈M .

3. If e+(α) is differentiable on R, then σ satisfies a LDP w.r.t. (M,φ, µ+) with the rate
function I+(s) = infα∈R(αs+ e+(α)). Moreover,

I+(−s) = I+(s)− s
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16. The Gallavotti-Cohen fluctuation theorem

In a similar way, assuming the existence of the GGC-function

g+(X,Y ) = lim
t→∞

1

t
logµ+

(

e−Y ·
∫
t
0
ΦXsds

)

and the GGC-symmetry g+(X,X − Y ) = g+(X,Y ) yields the fluctuation-dissipation
theorem if g+(X,Y ) is C2.
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17. Example: A thermostated ideal gas

Recall that σ = (N − 1)ǫ−1/2F tanh ξ with ξ̇ = ǫ−1/2F . If F 6= 0, it follows that

lim
t→∞

σt(L, θ) = (N − 1)
|F |√
ǫ
,

for (Lebesgue)-a.e. (L, θ). In particular 〈σ〉+ = (N − 1)
|F |√

ǫ
> 0: The system is entropy

producing. Explicit solution of the equations of motion show that the NESS is given by

dµ+ =
∏

j

δ(Lj −
|F |
F

√
ǫ)

dLj dθj

2π
.

Note that it is singular w.r.t. Lebesgue!
It is also easy to show that the ES-function exists and is given by

e(α) = lim
t→∞

1

t
et(α) = −〈σ〉+

(

1

2
−
∣

∣

∣

∣

α− 1

2

∣

∣

∣

∣

)

.

It is differentiable near α = 0. The ES Fluctuation Theorem yields e′(0) = −〈σ〉+ (!), the
strong law of large number (much more is true!) and a (local) LDP for σ.
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17. Example: A thermostated ideal gas

σ does not fluctuate in the NESS µ+, and one has

e+t(α) = log µ+

(

e−α
∫
t
0
σsds

)

= −αt〈σ〉+

The GC-function also exists

e+(α) = lim
t→∞

1

t
e+t(α) = −α〈σ〉+

but does not satisfy the symmetry e+(1− α) 6= e+(α): The GC Fluctuation Theorem
fails!
With F as a control parameter we get σF = FΦ with Φ = (N − 1)ǫ−1/2 tanh ξ. The
GES-function

g(F, Y ) = lim
t→∞

1

t
et(Y/F ) = e(Y/F ) = −N − 1

F
√
ǫ

(

F

2
−
∣

∣

∣

∣

Y − F

2

∣

∣

∣

∣

)

is not C2 near (0, 0). The ES Fluctuation Theorem does not provide the
Fluctuation-Dissipation Theorem.
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17. Example: A thermostated ideal gas

In fact, the finite time transport matrix

Lt = ∂F 〈Φ〉t|F=0 =
1

2

∫ t

−t
µ(ΦΦs)

(

1− |s|
t

)

ds =
t

2
µ(Φ2) =

(N − 1)2

N

t

2ǫ
→∞

diverges as t→∞.

This does not come as a surprise since

〈Φ〉+ = µ+(Φ) =
(N − 1)√

ǫ

|F |
F

is not differentiable at F = 0.
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18. Example: Open harmonic chain

With finite reservoirs, the large time limit

〈Φ(L/R)〉+ = lim
t→∞

1

t

∫ t

0
µX

(

Φ
(L/R)
s

)

ds = lim
t→∞

1

2t
tr
(

DX(hL/R − etL
∗
hL/RetL)

)

= 0

is trivial. To get entropy production we need to take the thermodynamic limit of the
reservoir: n→∞, m fixed.
As n→∞ the matrices h, hL, hR (naturally imbedded in B(ℓ2(Z)⊕ ℓ2(Z))) have strong
limits. For example

h→
(

I 0

0 I −∆

)

,

where ∆ is the finite difference Laplacian on ℓ2(Z). In the same way the generators L,
L0 of the Hamiltonian flow and of the decoupled flow have strong limits and the
corresponding groups etL, etL0 converge strongly and uniformly on compact time
intervals.

⇓

gt(X,Y ) = −1

2
log det

(

I +

∫ t

0
DXesL

∗
φ(Y )esLds

)
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18. Example: Open harmonic chain

To perform the t→∞ limit, we note that the wave operators

W± = lim
t→±∞

h1/2e−tLetL0h
−1/2
0 (pL + pR)

exist and are complete (Kato-Birman). Explicit calculation of the scattering matrix
S = W ∗

+W− then leads to

g(X,Y ) = lim
t→∞

gt(X,Y ) = − 1

π
log

(

[(β −XL)− (YR − YL)][(β −XR)− (YR − YL)]

(β −XL)(β −XR)

)

which is real analytic in {Y ∈ R2 | − (β −XR) < YR − YL < β −XL}. One can show

sup
Y ∈Dǫ,t>1

1

t
|gt(0, Y )| <∞

for small anough ǫ. Finally from local decay estimate for the lattice Klein-Gordon
equation

|(δx, e−it
√

I−∆δy)| ≤ Cx,y |t|−1/2 ⇒ µ0(Φ
(j)
0 Φ

(k)
0t ) = O(t−1)
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18. Example: Open harmonic chain

Thus, all conclusions of the ES Fluctuation Theorem hold.

The state µXt is Gaussian with covariance DXt = etLDXetL
∗

. Since

DXt → DX+ = h−1/2W−(β −XLpL −XRpR)−1W ∗
−h−1/2 (strongly)

the NESS µX+ exists and is Gaussian with covariance DX+.
The GGC-function is thus

g+t(X,Y ) = −1

2
log det

(

I +

∫ t

0
DX+esL

∗
φ(Y )esLds

)

and one shows
g+(X,Y ) = lim

t→∞
g+t(X,Y ) = g(X,Y ).

It follows that all the conclusions of the GC Fluctuation Theorem also hold.

Remark. The difference DX −DX+ is not trace class, therefore the NESS µX+ is
singular w.r.t. the reference state µX .
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19. The principle of regular entropic fluctuations

Remark. Since, for entropy producing systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
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19. The principle of regular entropic fluctuations

Remark. Since, for entropy producing systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.

Cohen-Gallavotti: Note on two theorems in nonequilibrium statistical mechanics. J. Stat. Phys. 96,
1343–1349 (1999)
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19. The principle of regular entropic fluctuations

Remark. Since, for entropy producing systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
Consequently one expects the two functions e(α) and e+(α) as well as the two
generalized functions g(X,Y ) and g+(X,Y ) to be quite different.
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19. The principle of regular entropic fluctuations

Remark. Since, for entropy producing systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
Consequently one expects the two functions e(α) and e+(α) as well as the two
generalized functions g(X,Y ) and g+(X,Y ) to be quite different.

Our main contribution to the subject (as far as classical systems are concerned) is the
following

Principle of regular entropic fluctuations. In all systems known to exhibit the GC-
symmetry, respectively the GGC-symmetry, one has

e+(α) = e(α), respectively g+(X,Y ) = g(X,Y ),

which is equivalent to

lim
t→∞

lim
s→∞

1

t
log µs

(

e−α
∫ t
0
στ dτ

)

= lim
s→∞

lim
t→∞

1

t
log µs

(

e−α
∫ t
0
στ dτ

)
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20. Further examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ RZ with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

• Markov chains
• Chaotic Homeomorphisms of compact metric spaces

• Anosov diffeomorphisms
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