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1 Introduction.

Take the notations

X ∈ R
n, b : Rn → Rn ,

X → b(X)
B ∈Mn(R)

W n-dimensional white noise dWkdWℓ = δk,ℓdt ,

and consider the stochastic differential equation

dX = b(X)dt +BdW . (1.1)

The relationship between stochastic differential equations and drift-diffusion
semigroups is obtained after computing, from Ito’s calculus, the expectation
value

v(x, t) = E (v0(X, t);X(0) = x) ,

for some smooth and decaying observable v0 . Then v(x, t) is given by

v(t) = e−tLv0 , or

{

∂tv = −Lv = b.∂xv +
1
2
∂x(BB

t)∂xv
v(t = 0) = v0 .

(1.2)

We shall focus on two cases:

• Smoluchowski process in a gradient field: Rn = Rd, b = −∇V (x) =

−∂xV (x), B =
√

2
β
IdRn (β = 1

kBT
) and

L = (∂xV (x)).∂x −
1

β
∆x .

When e−βV (x) ∈ L1(Rd, dx), the invariant measure obtained by solv-
ing the formal adjoint equation L′µ = 0: µ = e−βV (x) dx and L is a
symmetric operator on L2(Rd, e−βV dx) .

• Langevin process: Rn = Rd
x×Rd

v,X = (x, v), b(x, v) =

(

v
− 1

m
∂xV − γ0v

)

,

B =

(

0 0

0
√

2γ0
mβ

IdRd

)

and

L = −v.∂x +
1

m
(∂xV (x)).∂v +

γ0
mβ

(−∂v +mβv) .∂v .

Its formal adjoint equals

L′ = v.∂x −
1

m
(∂xV (x)).∂v −

γ0
mβ

∂v.(∂v +mβv) ,

and the equilibrium measure is the Maxwellian

M(x, v) dxdv = e−β(mv2

2
+V (x)) dxdv ,

with M(x, v) ∈ L1(R2d, dxdv) when e−βV ∈ L1(R, dx) .
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Conjugation:

e−φ(X)∂Xe
φ(X) = (e−φ(X)×) ◦ ∂X ◦ (eφ(X)×) = ∂X + (∂Xφ(X)) .

Unitary equivalences

u ∈ L2(Rd, e−βV (x)dx) , u′(x) = (Uu)(x) = e−
βV (x)

2 u(x) ∈ L2(Rd, dx) ,

u ∈ L2(R2d,M(x, v) dxdv) ,

u′(x, v) = (Uu)(x, v) =M(x, v)1/2u(x, v) ∈ L2(R2d, dxdv) .

Smoluchowski on L2(Rd, dx):

∆
(0)
V,h =

4

β
e−

βV
2 Le

βV
2 = −h2∆x + |∂xV (x)|2 − h(∆V (x)) , h =

2

β
.

ker(∆
(0)
V,h = Ce−

V (x)
h ) .

Langevin on L2(R2d, dxdv):

K = M(x, v)−1/2L′M(x, v)1/2

= v.∂x −
1

m
(∂xV (x)).∂v +

γ0
mβ

(−∂v +
mβ

2
v).(∂v +

mβ

2
v)

kerK = CM1/2 = C(e−
β
2
(mv2

2
+V (x))) .

REF:[Ris89][Nel02][EvWeb]
We shall work in a separable Hilbert space, typically H = L2(Ω, dX) where
Ω is a domain of Rn and dX stands for the Lebesgue measure. The scalar
product will be right-C-linear and left-C-antilinear.

2 Contour integrals, semigroups and hypoel-

lipticity

2.1 Functional analysis

Hille-Yosida Theorem. Let (A,D(A)) be a closed densely defined operator
in the Hilbert space H . The following statements are equivalent:

• ∀ψ ∈ D(A), Re 〈ψ , Aψ〉 ≥ 0 (accretivity) and Ran (Id+A) = H (max-
imality).

• Any z ∈ C such that Re z < 0 belongs to the resolvent set of A and
‖(z − A)−1‖ ≤ 1

|Re z| .
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• (A,D(A)) is the generator of a strongly continuous contraction semi-
group (e−tA)t∈R+ and D(A) is the set of vectors ψ ∈ H such that
t→ e−tAψ belongs to C1(R+,H) .

REF: [Bre83][BuBe67][DaLi92][EnNa00][Paz83][ReSi75][Dav80][Yos80]

Lemma 2.1. When (A,D(A)) is maximal accretive and An = A
1+A

n

, n ∈ N∗

∀ψ ∈ D(A) , lim
n→∞

‖(A− An)ψ‖ = 0 ,

∀t ≥ 0, ∀ψ ∈ H , lim
n→∞

‖(e−tA − e−tAn)ψ‖ = 0 .

Proposition 2.2. Let (A,D(A)) be a maximal accretive operator in the
Hilbert-space H, then

∀ψ ∈ D(A), ∀t ∈ [0,+∞), e−tAψ =
1

2iπ

∫ −i∞−0

i∞−0

e−tz(z −A)−1ψ dz .

Actually the above equality has to be understood after applying some
regularization process for both sides.

2.2 Application to sectorial operators

Definition 2.3. For a densely defined closed operator (A,D(A)) in H , the
spectrum is defined by

Spec(A) = C \ ̺(A) = C \
{

z ∈ C, (z −A)−1 ∈ L(H)
}

,

and the numerical range by

Num(A) = {〈ψAψ〉 , ψ ∈ D(A), ‖ψ‖ = 1}C .

A maximally accretive operator is said sectorial if there exists θ0 > 0 such
that Num(A) ⊂

{

z ∈ C, | arg z| ≤ π
2
− θ0

}

.

Definition 2.4. For a densely defined closed operartor (A,D(A)) in H such
that D(A) ⊂ D(A∗) , the operators

ReA =
1

2
(A+ A∗) and Im A =

1

2i
(A− A∗) ,

are well defined on D(A) .

Toeplitz-Hausdorff Theorem. The numerical range is a convex set.
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Proposition 2.5. For any densely defined closed operator (A,D(A)), C \
Num(A) ⊂ ̺(A) and

‖(z −A)−1‖ ≤ 1

dist(z,Num(A))
.

Sectoriality is often a consequence of ellipticity.
Contour deformation for sectorial operators.

An example: a(x).∂x −∆x with Dirichlet boundary conditions in a regular
bounded domain Ω ⊂ Rd and diva = ∂x.a ≡ 0 .
Numerical range of v.∂x −∆v +

v2

4
− 1

2
on S1 × R .

2.3 Hypoellipticity

Definition 2.6. (L. Schwartz) A continous operator P : C∞
0 (Ω) → D′(Ω)

is said hypoelliptic at x0 ∈ Ω (in a neighborhood of x0) if x0 6∈ suppsing Pu
implies x0 6∈ suppsing u .

Hörmander’s results: Let X0, X1, . . . , Xn be (n + 1)-vector fields on Ω ⊂
Rd, Xj(x) =

∑d
k=1 ajk(x)∂xk

, ajk ∈ C∞(Ω) .

Definition 2.7. A type I operator is written P =
∑n

j=1X
2
j .

A type II operator is written P = X0 +
∑n

j=1X
2
j .

A type I (resp. II) operator is said to satisfy Hörmander’s condition at rank r
at x0 if

{[

Xj1, . . . , [Xjp−1, Xjp] . . .
]

(x0) , p ≤ r, jk ∈ {1, . . . , n}
}

(resp. jk ∈
{0, 1, . . . , n}) has rank d .
On a compact set K ⊂ Ω, those operators satify Hörmander’s condition at
rank r ∈ N∗ if it is true for all x0 ∈ K .

Hörmander’s theorem: If a type I or type II operator satisfies Hörmander’s
condition at x0 ∈ Ω then it is hypoelliptic in a neighborhood of x0 .
REF:[Hor67][Hor85][Mal76][Mal78][Koh78] [RoSt77][HeNo85].
Hypoellipticity is often proved via subellipticity.

Definition 2.8. A differential operator is said subelliptic in Ω if there exists
c > 0 such that the estimate

∀u ∈ C∞
0 (Ω) , ‖u‖Hs+c ≤ Cs (‖Pu‖Hs + ‖u‖Hs) ,

holds for all s ∈ R .

Subelliptic estimates:
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• For type I operators with Hörmander’s condition at rank r:

‖u‖
Hs+1

r
≤ Cs

(

n
∑

j=1

‖Xju‖Hs + ‖u‖Hs

)

‖u‖s+ 2
r
≤ Cs (‖Pu‖Hs + ‖u‖Hs) ,

holds for any u ∈ C∞
0 (ωx0) .

• For type II operators with Hörmander’s condition at rank r > 1:

‖u‖
H

s+ 2
2r−1

≤ Cs (‖Pu‖Hs + ‖u‖Hs) ,

holds for any u ∈ C∞
0 (ωx0) .

An example: v.∂x − ∂2v +
v2

4
− 1

2
on S1

x × Rv . Spectrum. Hypoellipticity.
Resolvent estimates.

2.4 Subelliptic estimates and deformation of the con-
tour integral

Proposition 2.9. Let (K,D(K)) be a maximal accretive operator in the
Hilbert space H. For any η ∈]0, 1[, the estimate

|z + 1|2η‖u‖2 ≤ 4〈u , ((K + 1)∗(K + 1))ηu〉+ 4‖(K − z)u‖2

holds for all u ∈ D(K) and z ∈ C with Re z ≥ −1.

Proposition 2.10. Let (K,D(K)) be a maximal accretive operator in H .
Assume that there exists a non negative (self-adjoint) operator (Λ, D(Λ)),

Λ ≥ 1, with D(Λ2)
dense⊂ D(K), ε > 0, and C > 0 such that

∀u ∈ D(Λ2) , ‖Ku‖ ≤ C‖Λ2u‖
∀u ∈ D(Λ2) , ∀ν ∈ R, ‖Λεu‖ ≤ C (‖(K − iν)u‖+ ‖u‖) .

Then the spectrum of K lies in

SK =

{

z ∈ C, |z + 1| ≤ C ′|Re z + 1| 2ǫ , Re z ≥ −1

2

}

.

Moreover when z 6∈ Sk with Re z ≥ −1
2
, the resolvent is estimated by

‖(z −K)−1‖ ≤ C ′|z + 1|−ε .

Consequences for the contour integral.
Example v.∂x − ∂2v +

v2

4
− 1

2

REF:[HeNi04][EcHa03]
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3 Kramers-Fokker-Planck and Fokker-Planck

operators

3.1 Well defined dynamics

We work in this paragraph with β = m = 1 . Once the problem is trans-
formed into

K = v.∂x − (∂xV (x)).∂v + γ0(−∂v +
v

2
).(∂v +

v

2
) , in L2(R2d, dxdv)

there is no reason to restrict the analysis to the case e−V ∈ L1(Rd, dx) .
Metastability.
It is known that when V (x) goes to −∞ as x → ∞ faster that −|x|2 the
Hamiltonian dynamics is not well defined. As soon as there is some friction
(and diffusion), the dynamics is well defined for all times.

A = iB

A accretive : Re 〈Ax , x〉 ≥ 0 B symmetric : 〈Bx , x〉 ∈ R

Re 〈Ax , x〉 ≤ 0 and ≥ 0

(A accretive) ⇒
(

A accretive
)

(B symm.) ⇒
(

B symm.
)

(A accretive) ⇒ (A∗ accretive) (B symm.) ⇒ (B∗ symm.)

A maximally accretive B self-adjoint

Hille-Yosida theorem Stone theorem
for contraction semigroup : for unitary group :
((e−tA)t≥0) ⇔ (A max. acc.) ((e−itB)t∈R) ⇔ (B self-adj.)

(A max. acc.) implies (B self-adj.) implies
(Spec(A) ⊂ {Re z ≥ 0}) (Spec(B) ⊂ R)

By following this correspondence it is possible to introduce the notion of
essential maximal accretivity when the domain of the closed operator cannot
be made explicit.

Definition 3.1. An accretive operator A in H with domain D(A), is said
essentially maximally accretive if it admits a unique maximally accretive ex-
tension.
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The equivalence of the next statements can easily be checked :

1. A is essentially maximally accretive.

2. A is maximally accretive.

3. There exists λ0 > 0 such that A∗ + λ0I is injective.

4. There exists λ1 > 0 such that the range of A+ λ1I is dense in H.

Remark 3.2. A particular case is when A is a differential operator with C∞

coefficients initially defined with D(A) = C∞
0 (Rn) in L2(Rn). The domain of

its closure equals

D(A) =
{

f ∈ L2(Rn), Af ∈ L2(Rn)
}

.

According to the point 4, the essential maximal accretivity of A is true if for
some λ1 > 0

(

(λ1 + A′)f = 0 in D′(Rn), f ∈ L2(Rn)
)

⇒ (f = 0)

where A′ is the formal adjoint of A .

Proposition 3.3.
Let V be a C∞ potential on Rd, then the Kramers-Fokker-Planck operator
defined on C∞

0 (R2d) defined by

K := γ0(−∆v +
1

4
|v|2 − d

2
) +X0 , (3.1)

where
X0 := v · ∂x −∇V (x) · ∂v (3.2)

is essentially maximally accretive as soon as γ0 > 0 .

This is an hypoelliptic version of Simader’s Theorem which says that a non
negative Schrödinger operator −∆ +W (x) with W ∈ C∞(Rd) is essentially
self-adjoint on C∞

0 (Rd) .
REF:[ReSi75][HeNi05][Sim78].

3.2 A necessary condition for the compactness of (1 +
K)−1

Theorem 3.4.
Assume that V is C∞ function. If the operator K has a compact resolvent
then ∆

(0)
V/2 has a compact resolvent.
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3.3 Case with a quadratic potential

Set Dx = 1
i
∂x and consider an operator qW (x,Dx) with a quadratic symbol

q(x, ξ) =
∑

|α|+|β|=2

cα,βx
αξβ X = (x, ξ) ∈ R

2n .

q is given by a C-valued quadratic form q(X) = tXMX with tM = M ∈
Mn(C) . Weyl quantization

[qW (x,Dx)u](x) =

∫

Rn

ei(x−y).ξq(
x+ y

2
, ξ)u(y) dy

dξ

(2π)n
.

Those operators are well defined continuous operators S(Rn) → S(Rn) and
S ′(Rn) → S ′(Rn) .

Proposition 3.5. When Re q ≥ 0, there exists a constant Cq such that
Cq + qW (x,Dx) with domain

{

u ∈ L2(Rn) , qW (x,Dx)u ∈ L2(Rn)
}

is maximal accretive and there is a generalized Mehler’s formula for e−tqW (x,Dx) .

REF:[Hor95]
By using Wick and Anti-Wick quantization, one checks easily that the nu-
merical range of

qW (x,Dx) = −zq + qWick(x,Dx) = zq + qA−Wick(x,Dx), zq ∈ C ,

satisifies

−zq + q(R2n) ⊂ Num(qW (x,Dx)) ⊂ zq + q(R2n) .

With the complex-valued quadratic form X → q(X) is associated a complex
bilinear symmetric form (X, Y ) → q(X, Y ) .

Definition 3.6. On the phase-space R2n introduce the symplectic form

σ(X, Y ) = ξ.y − x.η , X = (x, ξ), Y = (y, η) .

For a quadratic symbol q, the Hamilton map F ∈ M2n(C) is given by

∀X, Y ∈ R
2n , σ(X,F (Y )) = q(X, Y ) = q(Y,X) = σ(Y, FX) = −σ(F (X), Y ) ,

and the singular space by

S =

(

∞
∩
j=0

ker
[

ReF ( Im F )j
]

)

∩ R
2n .
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Note that here were consider complex-valued quadradic forms. For the
complex linear application F , the mapping ReF and Im F are the standard
real and imaginary parts after taking the real part and imaginary part of all
matrix components. It must not be confused with 1

2
(F +F ∗) and 1

2i
(F −F ∗)

more natural when one thinks in terms of hermitian quadratic forms.

Proposition 3.7. Assume

( Re q ≥ 0) and S = {0} .

Then the spectrum of qW (x,Dx) is given by

Spec(qW (x,Dx)) =







∑

λ∈σ(F ),Re (iλ)≥0

(rλ + 2kλ)(iλ) , kλ ∈ N







where rλ is the dimension of the characteristic space of F for the eigenvalue
λ .

REF:[Sjo74][HiPr09].
Application to: K + d

2
= v.∂x − ∂xV (x).∂v − ∆v +

v2

4
when V is quadratic.

K is unitarily equivalent to the sum of commuting operators

⊕d
j=1(vj∂xj

− µjxj∂vj − ∂2vj +
v2j
4
)

with

qj(x, v, ξ, η) = η2 +
v2

4
− i(vξ − µjxη), x, v, ξ, η ∈ R ,

Fj =









0 i
2

0 0

− iµj

2
0 0 1

0 0 0
iµj

2

0 −1
4

− i
2

0









iλ± =
1

4
(1±

√

1− 4µj) , rλ±
= 1 .

Subelliptic estimate for K: Let Λ2 = 1−∆2
x + x2 −∆v + v2 with symbol

qΛ2(x, v, ξ, η) = 1 + ξ2 + x2 + η2 + v2

We have obviously

∀u ∈ D(Λ2) , ‖Ku‖ ≤ C‖Λ2u‖ .

Proposition 3.8. For any ε ∈ [0, 2
3
], there exists a constant Cε > 0 such

that
∀u ∈ D(Λ2), ∀ν ∈ R, ‖Λεu‖ ≤ Cε (‖(K − iν)u‖+ ‖u‖) .
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3.4 Global hypoellipticity for K

Hypotheses:

a) The potential V is a C∞ function and there exist n ≥ 1 (possibly n > 1/2)
and, for all α ∈ Nd, a positive constant Cα such that

∀x ∈ R
d, |∂αxV (x)| ≤ Cα

(

1 + 〈x〉2n−min{|α|,2}) .

b) There exists two constants C0 = C0(V ) > 0 and C1 = C1(V ) > 0 such
that

∀x ∈ R
d, ±V (x) ≥ C−1

0 〈x〉2n − C0 and |∂xV (x)| ≥ C−1
1 〈x〉2n−1 − C1.

Notations: The operators K and Λ are defined by

v.∂x − Vβ(x)).∂v − γ(−∂v +
v

2
).(∂v +

v

2
) ,

Λ2 = 1−∆x +
1

4
|∂xVβ(x)|2 −

1

2
(∆Vβ(x))−∆2

v +
v2

4
,

with Vβ(x) = βV (β− 1
2nx) , γ = γ0

√
mβ

n−1
2n .

For R > 0 and ν ∈ N
∗, the function QR is defined on (0,+∞)ν, without

reference to ν, by

QR(t1, . . . , tν) =

ν
∏

j=1

(

tj +
1

tj

)R

.

The notation C(V ) will denote a finite subset of

{

C0(V ), C1(V ), Cα, α ∈ N
d
}

defined in the Hypotheses 1) and 2).

Theorem 3.9. Under the above hypotheses (n > 1/2) and by setting

ε = min{1/4, 1/(4n− 2)}

there is a constant Chyp = cQR(C(V ), β, γ) such that

∀ν ∈ R, ∀u ∈ S(R2d), ‖Λεu‖ ≤ Chyp (‖(K − iν)u‖+ ‖u‖) .

Corollary 3.10. The operator K has a compact resolvent.

Corollary 3.11. The deformation contour of e−tKψ = 1
2iπ

∫ −i∞
+i∞ e−tz(z −

K)ψdz can be performed according to Proposition 2.10.
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Comments:

• Method: variant of Kohn’s method for X0 +
∑n

j=1X
2
j by writing

K = X0 + b∗.b , X0 = v.∂x −
∂xV (x)

.
∂v

bj = γ1/2(∂vj +
vj
2
) , b∗j = γ1/2(−∂vj +

vj
2
)

aj = γ1/2
(

∂xj
+

(∂xj
V (x))

2

)

, a∗j = γ1/2
(

−∂xj
+

(∂xj
V (x))

2

)

[bj , bk] = [b∗j , b
∗
k] , [bj , b

∗
k] = γδj,k ,

[aj, ak] = [a∗j , a
∗
k] = 0 , [aj, a

∗
k] = γ(∂2xj ,xk

V (x)) ,

[bj , X0] = aj ,
[

b∗j , X0

]

= a∗j .

• In [HeNi05], the Hypothesis has been relaxed into

∀α ∈ N
d , |α| > 1, ∀x ∈ R

d, |∂αxV (x)|ωC(1 + |∂xV (x)|)〈x〉−̺0 , ̺0 > 0
1

C
〈x〉1/M − C ≤ |∂xV (x)| ≤ C〈x〉M + C ,M ≥ 1 .

• The proof of this result requires the use of Weyl-Hörmander pseudo-
differential calculus (see [BoCh94][BoLe89][HeNi05][Hor85, Chap 18]).

• The exponent ε is not optimal. This is usual with Kohn’s method. The
exponent 2/3 can be obtained when V is at most quadratic at ∞ (see
a.e. [HePr11]).

• All the written results of this type assume that the Hessian HessV (x)
is well controled by the gradient |∂xV (x)| as x→ ∞ . It does not work

for V (x1, x2) = ±x21x22 for which the compactness of (1 + ∆
(0)
V/2)

−1 is
well understood and depends on the sign ± .

REF:[EPRR99][HeNi04][HeNi05]

3.5 Trend to the equilibrium

Notations: Set

L′ = v.∂x −
1

m
(∂xV (x)).∂v − γ0∂v(

1

mβ
∂v + v)

Consider the spaces

Hs,s =
{

u ∈ S ′(R2d), Λsu ∈ L2(R2d)
}

,
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such that
∪s∈RHs,s = S ′ and ∩s∈R Hs,s = S .

The Maxwellian function is

M(x, v) = e−β(mv2

2
+V (x)) .

Depending on the case M ∈ L1(R2d, dxdv) (case +) or not (case −) we set

M1/2S ′ ∋ f 7−→
(

(
∫

f)M0

)

± =

{

(
∫

f)M0 if V > 0 near ∞,
0 if V < 0 near ∞.

The quantity ω1(Vβ) is the first nonzero eigenvalue of ∆
(0)
1
2
Vβ
, (see Smolu-

chowski process).

Theorem 3.12. Under the same assumptions as in γ0, β,m > 0, we have:

1) The Cauchy problem

∂tf = −L′f , f(t = 0) = f0 ,

is well-posed for t ≥ 0 in M1/2S ′(R2d). Moreover the solution f(t)
belongs to M1/2S(R2d) for t > 0 .

2) There exists a real τ = τ(β, γ0, m) > 0 and for any s ≥ 0 two constant
cs > 0 and Rs > 0 so that the estimate

∥

∥

∥
f(t)−

(

(
∫

f0)M0

)

±

∥

∥

∥

M1/2Hs,s
≤ csQRse

−τt ‖f0‖M1/2H−s,−s

holds for all f0 ∈M1/2H−s,−s(R2d) with

QRs = QRs

(

C(V )s,
√
mγ0, β, t, τ,m

)

and for s = 0 QR0 = QR0

(

C(V ),
√
mγ0, β, t, τ

)

.

3) In part 2), we can take

τ(β, γ0, m) = τ1(β, γ0, m)
def
=

γ0min{1, ω1(Vβ)}
64(5 + 3γ0

√
mβ

n−1
2n + 3CVβ

)2
(3.3)

where C2
Vβ

= max
{

sup
(

(Hess Vβ)
2 −

(

1
4
(∂xVβ)

2 − 1
2
∆Vβ

)

Id
)

, 0
}

.

4) There exists a constant c > 0, so that any τ satisfying part 2) is bounded
by

τ ≤ c
√

ω1(Vβ) log
[

QR0(C(V ),
√
mγ0, β, ω1(Vβ))

]

.

Comments:

• All the factors of exponential quantities occuring in the estimates show
an algebraic dependance in terms of (t, γ0, m, β) .

• Note that in the multiple well case and when β → ∞, ω1(Vβ) can be
exponentially small, i.e. like e−βC .

REF:[HeNi04]
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β � 1 c2 -convex (concave)
(n ≥ 1)

Hypothesis H2+ H2-

√
mγ0β

n−1
2n � 1 γ0β

n−1
n � τ �

− log

(√
mγ0β

3n−1
2n

)

√
mβ

n−1
2n

γ0 � τ �
− log

(√
mγ0β

3n−1
2n

)

√
mβ

n−1
2n

1 � √
mγ0β

n−1
2n

1
mγ0

� τ �
log

(√
mγ0β

−1−n
2n

)

√
mβ

n−1
2n

1

mγ0β
n−1
n

� τ �
log

(√
mγ0β

−1−n
2n

)

√
mβ

n−1
2n

Table 1: High temperature asymptotics.
The notation a � b means a ≤ κV b where κV depends only on V .
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β � 1
(n ≥ 1)

Morse function with 1 or 0 local minimum More than 1 or 0 minimum

√
mγ0 � β

n−1
2n

γ0

β
2(n−1)

n

� τ �
− log

(√
mγ0β

−n−1
n

)

√
m

τ � e
−

β
3κV√
m

log
(√

mγ0 +
1√
mγ0

)

β
n−1
2n � √

mγ0
1

mγ0β
n−1
n

� τ �
log

(√
mγ0β

3n−1
n

)

√
m

τ � e
−

β
3κV√
m

log (
√
mγ0)

Table 2: Low temperature asymptotics.
The notation a � b means a ≤ κV b where κV depends only on V .
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3.6 The low temperature limit like a semiclassical limit

Consider now the case m = 1, γ0 = 1 and 1
β
= h→ 0:

K = v.∂x − ∂xV (x) + h(−∂v +
v

2h
).(∂v +

v

2h
) .

By mutiplying by h it becomes

hK = v.(h∂x)− (∂xV (x)).(h∂v) + (−h∂v +
v

2
).(h∂v +

v

2
) .

It enters in the framework of semiclassical analysis of PDE’s which can be
summarized by:

• Multiply h all differentiation operators, ξ is quantized into hDx = h
i
∂x .

• Multiply all the phases by 1
h
: all the relevant exponential quantities or

functions have the form e
ϕ
h .

Using semiclassical techniques and recent advances about the elliptic case
(that is for ∆

(0)
V/2,h) [HKN04][HeNi06][Lep10.2], Hérau-Hitrik-Sjöstrand ob-

tained in a series of three articles [HHS08.1][HHS08.2][HHS10] accurate in-
formations about the low temperature limit in a multiple well case. By as-
suming that V is a Morse function at most quadratic at infinity they prove:

• There are m0 exponentially small O(e−
c
h ) eigenvalues, where m0 is the

number of local minima of V . These eigenvalues are real.

• They extend the return to the equilibrium to an expansion including
all the eigenspaces associated with exponentially small eigenvalues.

• Following an approach similar to the one developed for ∆
(0)
V/2,h they

compute accurately, i.e. with an explicit first order term, the m0 expo-

nentially small eigenvalues λk(t) ∼ hν
(

∑∞
j=0 ak,jh

j
)

e−
ck
h .

The method is slightly different than the one used in [HeNi04]. Instead of
using algebraic manipulation of commutators à la Kohn, the semiclassical
framework and the specific assumptions allow to use a more geometric ap-
proach. The strategy of the proof relies on:

• Subelliptic estimates, rather in the spirit of hypocoercivity (see [Vil09]),
are obtained after introducing a phase-space weight

〈p0〉T0 =
1

T0

∫ T0/2

−T0/2

p0 ◦ exp(tHp1) dt

where here p0(x, y, ξ, η) =
v2

4
, p1(x, v, ξ, η) = v.ξ − (∂xV (x)).η and Hp1

is the Hamilton vector field in R4d
x,v,ξ,η associated with p1 . Note that

17



the quantity 〈p0〉T0 carries the information about commutators. By
formally expanding the series

p0 ◦ etHp1 =
∞
∑

k=0

tk

k!
{p1, {p1, . . . {p1, p0} . . .}} ,

while the Poisson bracket of symbols {a, b} is quantized into i
[

aW , bW
]

.
This averaging of symbol according to a flow, is a powerful tool in the
analysis of non self-adjoint semiclassical problems (see [Sjo00]).

• The fact that V is a Morse function allows to compare K with a
quadratic model around local minima, especially for the spectral anal-
ysis around z = 0 .

• Additional properties are used and will be described in Section 5.

Although more accurate, these semiclassical results valid for the low temper-
ature regime, are less general than the results of the previous section which
also gives information for the high temperature limit.

4 About the constant Cτ in ‖e−tA‖ ≤ Cτe
−τt

Let A be a maximal accretive operator. By the functional calculus one gets
easily.

Proposition 4.1. When (A,D(A)) is self-adjoint or normal

‖e−tA‖ ≤ 1× e−tmin Reσ(A) .

Respectively if ‖e−tA‖ ≤Me−τt then M = 1 and τ ≤ min Re σ(A) .

The situation is more subtle for a general non self-adjoint maximal ac-
cretive operator.

The resolvent is the Laplace transform of the semigroup.

(z − A)−1 = −
∫ +∞

0

etze−tA dt .

Gearhardt-Prüss-Hwang-Greiner Theorem. a) If ‖(z −A)−1‖ is uni-
formly bounded in {Re z ≤ τ} then there exists Cτ > 0 such that ‖e−tA‖ ≤
Cτe

−τt .
b) If ‖e−tA‖ ≤ Cτe

−τt then for every α < τ the resolvent ‖(z − A)−1‖ is
uniformly bounded in {Re z ≤ α} .
REF:[EnNa00][Paz83]
Questions: What about the behaviour of Cτ when A is not self-adjoint or
normal ? Is it related with σ(A) ?
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Answer to the second question: No.
An example coming from fluid mechanics: it was introduced by T. Gallay

in [GGN09] as a model problem in order to understand the linear stability
of Oseen vortices in R

2, after his works with G. Wayne [GaWa02][GaWa05].
Consider in dimension d = 1 the operator

Hε = −∂2x + x2 +
i

ε

1

(1 + x2)k/2
, k ≥ 2, ε > 0 .

It is maximal accretive, with a compact resolvent and with a numerical range

Num(Hε) ⊂
{

λ ∈ C, Reλ ≥ 1 , Im λ ∈ [0,
1

ε
]

}

.

We introduce the quantities

Σ(ε) = min Re σ(Hε) , Ψ(ε) =

(

sup
λ∈R

‖(Hε − iλ)−1‖
)−1

.

The following estimates hold

1

Σ(ε)
≤ 1

Ψ(ε)
≤ sup

λ∈R

1

dist(iλ,Num(Hε))
≤ 1 .

The operator Hε is sectorial so that the following result can be applied.

Lemma 4.2. Let A be a maximal accretive operator in a Hilbert space X,
with numerical range contained in the sector {z ∈ C ; | arg z| ≤ π

2
− 2α} for

some α ∈ (0, π
4
]. Assume that A is invertible and let

Σ = inf Re (σ(A)) > 0 , and Ψ =

(

sup
λ∈R

‖(A− iλ)−1‖
)−1

.

Then the following holds:

i) If there exist C ≥ 1 and µ > 0 such that ‖e−tA‖ ≤ C e−µt for all t ≥ 0,
then

Σ ≥ µ , and Ψ ≥ µ

1 + log(C)
·

ii) For any µ ∈ (0,Σ), we have ‖e−tA‖ ≤ C(A, µ) e−µt for all t ≥ 0, where

C(A, µ) =
1

π tanα

(

µN(A, µ)+2π
)

, and N(A, µ) = sup
λ∈R

‖(A−µ−iλ)−1‖ .

iii) If moreover µ ∈ (0,Ψ), the quantity N(A, µ) is not larger than (Ψ−µ)−1.

19



REF:[GGN09].
In our case one finds

1

C0ε
2

k+4

≤ Ψ(ε) ≤ C0

ε
2

k+4

, Σ(ε) ≥ C1

ε
2

k+2

.

In a recent note [HeSj09], Helffer and Sjöstrand studied a more quantitative
version of the Gerhardt-Prüss theorem without the sectoriality condition. By
setting

1

r(τ)
= sup

Re z≤τ
‖(z − A)−1‖ = sup

Re z=τ
‖(z −A)−1‖ .

they proved: If m(t) ≥ ‖e−tA‖ is a continuous function, then for all a, ã and
t ≥ 0 such that t = a+ ã

‖S(t)‖ ≤ e−τt

r(τ)‖ 1
m
‖eτ.L2([0,a])‖ 1

m
‖eτ.L2([0,ã])

,

In particular for a = ã = t
2
, and starting from an initial bound m(t) =

m̃(t)e−τt this also gives a new one m̂(t)e−τt with

m̂(t)

r(τ)
≤ 1
∫ t/2

0

(

r(τ)
m̃(s)

)2

ds
.

Passing from m̃ to m̂ may be iterated.

5 Additional structures

5.1 PT symmetry

The operator

K = v.∂x − (∂xV (x)).∂v + γ(−∆v +
v2

4
− d

2
) V ∈ C∞(Rd)

is not any non self-adjoint operator. It has a symmetry property called PT -
symmetry, a name coming from quantum mechanics (PT refers to parity and
time, see a.e. [Ben05]). The operator U given by

Uu(x, v) = u(x,−v) .

is unitary with
U = U∗ = U−1 .

The conjugation with U gives

U∗KU = K∗ ,
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This property has been used in [HHS10] in order to compute accurately
the small eigenvalues of K in the small temperature limit. The next result
explains why the small eigenvalues are real and in which sense K behaves
like a self-adjoint operator arount z = 0 in the spectral plane.

Proposition 5.1. Let (A,D(A)) be a closed densely defined operator in a
separable Hilbert space H, such that (1 + A)−1 is compact, so that σ(A) is
discrete, and D(A) = D(A∗) . Assume that there exists a unitary operator,
U∗ = U−1, such that and U∗AU = A∗ . Then the spectrum Spec(A) is invari-
ant by complex conjugation.
If additionally

• ReA = A + A∗ is non negative with min Spec( ReA) \ {0} = γ > 0,
and UΠ0 = Π0U = Π0 by setting Π0 = 1{0}( ReA) ;

• Γ is a bounded contour such that

Tr

[

1

2πi

∫

Γ

A(z −A)−1 dz

]

= Tr [AΠΓ] ∈ (0,
γ

2
) (5.1)

with ΠΓ = 1
2πi

∫

Γ
(z −A)−1 dz and AΠΓ = ΠΓA = ΠΓAΠΓ ;

then the following properties hold

• 〈u, v〉U = 〈u, Uv〉 is a hermitian positive definite form on EΓ = RanΠΓ ;

• A
∣

∣EΓ is self-adjoint and non negative for the scalar product 〈 , 〉U ;

• EΓ admits a basis of eigenvectors of A, (e1, . . . , eN), orthonormal for
the scalar product 〈 , 〉U , such that

• there exists a constant CΓ,γ > 0 such that for all z ∈ C being inside the
contour Γ, the inequality

‖(z −A)−1
∣

∣

EΓ
‖ ≤ CΓ,γ

dist(z, 〈λ1, . . . , λN〉)
.

holds with the initial norm on L(E−) .

Remark 5.2. This does not prove resolvent estimates for A and z inside
Γ, because ΠΓ is not a priori an orthogonal projection. Actually in practice,
resolvent estimates have to be proved first in order to control ‖ΠΓ‖ and also
to verify condition (5.1). But once it is done in a rough sense, the self-
adjointness property w.r.t 〈 , 〉U can be used to have finer spectral results.
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5.2 Supersymmetry

For the sake of simplicity we work here on Rd with the euclidean metric and
we assume that

lim
x→∞

|∇V (x)| = +∞ , Hess(V (x))
x→∞
= o(∇V (x))

We shall first consider the Witten Laplacian

∆
(0)
V,h = −h2∆x + |∇V (x)|2 − h∆V (x) ,

which has a compact resolvent and then see how this can be extended to K
via the hypoelliptic Laplacian structure introduced by Bismut.

5.2.1 Differential forms

A differential form of degree 1 is

ω(x) =

d
∑

j=1

ωj(x)dxj

with ωj(x) = ∂xj
f(x) when ω = df .

For degree p, the antisymmetric p-linear form dxI = dxi1 ∧ . . . ∧ dxip , I =
{i1, . . . , ip}, i1 < . . . < ip, applied to p-vectors in Rd, (X1, . . . , Xp), is the
determinant made with the lines i1, . . . , ip of the matrix (X1, . . . , Xp) written
in the canonical basis. For any permutation σ ∈ �p, the antisymmetry writes

dxiσ(1)
∧ . . . ∧ dxiσ(p)

= ε(σ)dxi1 ∧ . . . ∧ dxip . (5.2)

A p-differential form is

ω =
∑

♯I=p

ωI(x)dxI .

The exterior product of two forms ω (degree p) and η (degree q) is given by

ω ∧ η =
∑

♯I=p , ♯J=q

ωI(x)ηJ(x)(dxI) ∧ (dxJ) .

The interior product of ω, with a vector X (possibly a vector field X(x)) is
given by the (p− 1)

iXω =
∑

♯I=p

ωI(x)iX(x)(dxI)

where iX(dxi1 ∧ . . . ∧ dxip)(T2, . . . Tp) = (dxi1 ∧ . . . ∧ dxip)(X, T2, . . . , Tp) .
A p-differential form is said C∞ when all its coefficient ωI are C∞ . Its differ-
ential is given by

dω(x) =
d
∑

i=1

∑

♯I=p

∂xi
ωI(x)dxi ∧ dxI ,
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and the antisymmetry (5.2) implies d ◦ d = 0 . With the euclidean scalar
product on Rd, there is a natural scalar product on ΛpRd = Vect(dxI , ♯I = p)
given by

〈dxI , dxJ〉 = δIJ .

By using the Lebesgue measure Leb(dx) on Rd, the L2 scalar product of two
(complex-valued) p-forms is given by

〈ω , η〉ΛpL2 =

∫

Rd

∑

♯I=p

ωI(x)ηI(x) Leb(dx) ,

and the Sobolev spaces ΛpHs(Rd) and their weighted versions are defined as
usual .
The differential d sends ΛpC∞

0 (Rd) into Λp+1C∞
0 (Rd) and its formal adjoint,

with respect to the L2-scalar product, is denoted by d∗ : Λp+1C∞
0 → ΛpC∞

0

〈d∗ω , η〉Λp−1L2 = 〈ω , dη〉ΛpL2 ,

and is called the codifferential.
When ω = ω{1,...,d}dx1 ∧ . . . dxd, one defines

∫

Rd

ω =

∫

Rd

ω{1,...,d} Leb(dx) ,

and consequently the integral
∫

ω∧η when ω ∈ ΛpC∞
0 and η ∈ Λd−pC∞

0 . The
Hodge star operator, ⋆ : Λp → Λd−p is the local operator given by

〈ω , η〉ΛpL2 =

∫

Rd

(⋆ω) ∧ η ,

⋆ω =
∑

♯I=p

ωI(x) ⋆ (dxI) =
∑

♯I=p

ωI(x)(−1)nIdx{1,...,d}\I .

One easily checks

⋆ ◦ ⋆ = (−1)p(d+1) , d∗ = (−1)p(d+1)+1 ⋆ d⋆ , d∗ ◦ d∗ = 0 .

Similar calculations show that the formal adjoint of df∧ : ΛpC∞
0 → Λp+1C∞

0

is i∇f .

5.2.2 Witten Laplacian

The Smoluchowski process leads to

∆
(0)
V,h = −h2∆+ |∇V (x)|2 − h(∆V (x))

= (−h∂x + ∂x(V (x))).(h∂x + ∂xV (x)) = d∗V,hdV,h ,
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with

dV,h = e−
V
h (hd)e

V
h = hd+ dV ∧ , d∗V,h = e−

V
h (hd)∗e

V
h = hd∗ + i∇f .

These deformed differential and codifferential, introduced by Witten, satisfy

dV,h ◦ dV,h = 0 and d∗V,h ◦ d∗V,h = 0 .

The Witten Laplacian is the deformed Hodge Laplacian

∆V,h = d∗V,hdV,h + dV,hd
∗
V,h = (dV,h + d∗V,h)

2 =

d
⊕

p=0

∆
(p)
V,h .

When V ∈ C∞(Rd), ∆
(p)
V,h is essentially self-adjoint on ΛpC∞

0 (Rd) by Simader’s
theorem [Sim78].
By making use of the magic Cartan formula iXd + diX = LX , one gets the
formula

∆V,h = h2(d∗d+ dd∗) + |∇V (x)|2 + h(L∇V + L∗
∇V )

where (L∇V +L∗
∇V ) is a matricial 0-th order differential operator with entries

which are linear expressions of ∂2xixj
V (x) .

If limx→∞ |∇V (x)|2 = +∞ and |HessV (x)| ≤ C(1 + |∇V (x)|2), then ∆V,h

has a compact resolvent. The commutations

dV,h(∆V,h) = dV,hd
∗
V,hdV,h = ∆V,hdV,h

d∗V,h(∆V,h) = ∆V,hd
∗
V,h on ΛC∞

0 (Rd)

lead to

(z −∆V,h)
−1dV,h = dV,h(z −∆V,h)

−1

(z −∆V,h)
−1d∗V,h = d∗V,h(z −∆V,h)

−1

for any z ∈ C \ Spec(∆V,h), on the form domain of ∆V,h . The functional
calculus yields

1E(∆
(p+1)
V,h )dV,h = dV,h1E(∆

(p)
V,h) and 1E(∆

(p−1)
V,h )d∗V,h = d∗V,h1E(∆

(p)
V,h)

for any bounded Borel set E ⊂ R . In particular when ψ is an eigenvector of
∆

(p)
V,h with eigenvalue λ 6= 0, the following alternatives occur

• either dV,hψ 6= 0 and dV,hψ is an eigenvector of ∆
(p+1)
V,h with the same

eigenvalue λ, or dV,hψ = 0 and d∗V,hψ 6= 0 is an eigenvector of ∆
(p−1)
V,h

with the same eigenvalue;

• either d∗V,hψ 6= 0 and d∗V,hψ is an eigenvector of ∆
(p−1)
V,h with the same

eigenvalue λ, or d∗V,hψ = 0 and dV,hψ 6= 0 is an eigenvector of ∆
(p+1)
V,h

with the same eigenvalue.
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Definition 5.3. A Morse function on R
d is a C∞function of which all the

critical points are non degenerate:

∇V (x) = 0 ⇒ det(Hess V (x)) 6= 0 .

When x0 is a critical point of the real valued Morse function V , the number
of negative eigenvalues of Hess V (x) is called its index.

Theorem 5.4. Let V ∈ C∞(Rd) be a Morse function such that

lim
x→∞

|∇V (x)| = +∞ and |Hess V (x)| ≤ C(1 + |∇V (x)|2) ,

for all x ∈ Rd . Then for all p ∈ {1, . . . , d} and for h ∈ (0, h0), h0 > 0

small enough, the dimension of the spectral subspace Fp = Ran 1[0,Ch3/2](∆
(p)
V,h)

equals mp, the number of critical points of V with index p . Moreover the
restricted differential β = dV,h1[0,Ch3/2)(∆V,h) provides the chain complex

0 // F
(0)
M . . . F

(p−1)
M

β(p−1)
//

oo
F

(p)
M

β(p)
//

β(p−1)∗
oo

F
(p+1)
M . . . F

(d)
M

//

β(p)∗
oo

0
oo

(5.3)

and dim ker(βp)/ ker(βp−1) = bp is the p-th Betti number, which is here b0 =
1, bp = 0 for p > 1 .
For any p ∈ {0, . . . , d}, the O(h3/2) eigenvalues are actually exponentially
small O(e−

c
h ) .

REF: [Wi82][HeSj89][CFKS87]

Remark 5.5. • With this result on compact Riemannian manifolds, E. Wit-
ten provided an analytic approach to Morse inequalities in his celebrated
article [Wi82].

• The result is proved usually for a compact Riemannian manifold. Here
we chose to stay in Rd in order to avoid the introduction of more so-
phisticated material. Under our assumptions for V , the proof for a
compact Riemannian manifold can easily adapted to this case.

Here comes an important point: The eigenvalues of ∆
(0)
V,h are the squares of

the singular values of dV,h . In particular, the exponentially small eigenvalues

of ∆
(0)
V,h are the squares of the singular values of β(0) . An easy case of Fan

inequalities says that the singular values of compact operators (or matrices),
usually labelled in the decreasing order satisfy

sk(B1A) ≤ ‖B1‖sk(A) , sk(AB0) ≤ ‖B0‖sk(A) .

In particular when C0 : F
(0) → F (0) and C1 : F

(1) → F (1) are almost unitary
operators, in the sense that C∗

jCj = IdF (j) +O(e−
c
h ) then

sk(β
(0)) = sk(C1β

(0)C0)(1 +O(e−
c
h )) .
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As an application, it suffices to construct almost orthonormal quasimodes,
i.e. approximate eigenvectors, for ∆

(0)
V,h and ∆

(1)
V,h and to compute the ma-

trix of β(0) in these bases in order to get a good approximation of the ex-
ponentially small eigenvalues of ∆

(0)
V,h . When this construction in made a

simple linear algebra argument relying on gaussian elimination gives the re-
sult (see [Lep09][Nie04]). This linear algebra structure reflects the order-
ing of exit times used via the probabilistic or potential theory approach
[BEGK04][BGK04]. This was used to compute accurately the exponentially

small eigenvalues of ∆
(0)
V,h in the form

λk(∆
(0)
V,h) = ak(h)e

−
f(Uj(k))

(1)
−U

(0)
k

h , k ∈ {1, . . . , m0} ,

where U
(0)
k is a local minimum of V , U

(1)
j(k) is the saddle point involved in Ar-

rhenius law and ak(h) = hν
∑∞

j=0 h
jaj,k with ν and a0,k explicitely computed.

This was achieved on a compact manifold or Rd [HKN04], on a compact man-
ifold with natural boundary conditions ([HeNi03][Lep10.2]), and was recently
extended to the case of p-forms on a compact manifold ([Lep11][LNV11]).

5.2.3 Boundary Witten Laplacians

We stick here to the simple one dimensional case on the segment [−1, 1], with
a Morse function V (x) such that V ′(1) 6= 0 and V ′(−1) 6= 0 . The interior
Witten Laplacian on functions is given by

∆
(0)
V,hu = [−h2∆+ |V ′(x)|2 − hV ′′(x)]u , ∀u ∈ C∞

0 ((−1, 1)) .

Meanwhile interior Witten Laplacian of 1-forms is given by

∆
(1)
V,h(u(x)dx) =

[

[−h2∆+ |V ′(x)|2 + hV ′′(x)]u
]

dx , ∀u ∈ C∞
0 ((−1, 1)) .

Consider the case when V (x) = (x − 1/2)2 for example. The Dirichlet re-

alization ∆
(0,D)
V,h of ∆

(0)
V,h has no kernel ker(∆

(0),D
V,h ) = {0} and at least one

exponentially small eigenvalue.
For one-forms the lower bound V ′′ ≥ 2 implies

∆
(1),D
V,h ≥ 2h .

Hence the commutation dV,h∆
(0)
V,h = ∆

(1)
V,hdV,h valid on C∞

0 ((−1, 1)) cannot be

extended to the domains of ∆
(0),D
V,h :

dV,h∆
(0),D
V,h 6= ∆

(1),D
V,h dV,h .

The solution comes from the fact that degree-p (with p > 0) Witten Lapla-
cians are actually systems of differential operators acting on vector valued
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functions. Hence, Dirichlet conditions can be imposed only on a part of the
components of ω ∈ ΛpC∞(Ω) . Locally the boundary ∂Ω of Ω can be written
{xd = 0} in a coordinate system (x1, . . . , xd−1, xd) = (x′, xd), where xd is a
normal coordinate. A p-form has the local writing

ω(x) =
∑

♯J=p, J⊂{1,...,d−1}
ωJdxJ +

∑

♯J=p−1, J⊂{1,...,d−1}
ωJ,ddxJ ∧ dxd

= tω(x) + nω(x) .

The good Dirichlet realization is given by

D(∆
(p),D
V,h ) =

{

ω ∈ ΛpH2(Ω) , tω
∣

∣

∂Ω
= 0 , td∗V,hω

∣

∣

∂Ω
= 0
}

and the form domain

Q(∆
(p),TD
V,h ) =

{

ω ∈ ΛpH1(Ω) , tω
∣

∣

∂Ω
= 0
}

.

The good Neumann realization is given by

D(∆
(p),TN
V,h ) =

{

ω ∈ ΛpH2(Ω) ,nω
∣

∣

∂Ω
= 0 , ndV,hΩ

∣

∣

∂Ω
= 0
}

and the form domain

Q(∆
(p),TN
V,h ) =

{

ω ∈ ΛpH1(Ω) ,nω
∣

∣

∂Ω
= 0
}

.

In our one-dimensional example, a function u ∈ C∞([−1, 1]) belongs to

D(∆
(0),TD
V,h ) if u(−1) = u(1) = 0 . A 1-form u(x)dx with u ∈ C∞([−1, 1]) be-

longs to D(∆
(1),TD
V,h ) if −hu′(1)+u(1)V ′(1) = 0 and hu′(−1)+u(−1)V ′(−1) =

0 .
For a Morse function V on Ω, with no critical points on ∂Ω and such that
V
∣

∣

∂Ω
is a Morse function, the notion of critical point has to be extended. For

the tangential Dirichlet realization, a generalized critical point with index p
is either an interior critical point with index p or a critical point of V

∣

∣

∂Ω
with

index p − 1 such that the exterior normal derivative ∂nV is positive. The
intuition is that the exterior of Ω has the potential −∞, corresponding to
the absorption of particles. For the Neumann realization, a general critical
point is either an interior critical point with index p or a critical point of
V
∣

∣

∂Ω
with index p, such that ∂nV < 0 . The intuition is that the exterior

of Ω has the potential +∞, corresponding to the reflexion of particles at
the boundary. The study of boundary Witten Laplacian and this definition
of generalized critical points, was initially presented in [ChLi95] and used
in [HeNi06][Lep10.2]. More recently it led F. Laudenbach in [Lau11] to a
general treatment of Morse theory for boundary manifolds.

27



5.2.4 Hypoelliptic Laplacian

We work on Rn = Re1⊕· · ·⊕Ren and recall that the dual basis to (e1, . . . , en)
is denoted by (dx1, . . . , dxn) . The duality between Λp

R
n and Λp

R
n,∗ is given

by
ω.(u1 ∧ . . . ∧ up) = ω(u1, . . . , up) .

For a linear mapping A : Rn,∗ → Rn, A(dxj) =
∑n

i=1Aijei we set

ΛpA(ω1 ∧ . . . ∧ ωp) = (Aω1) ∧ . . . ∧ (Aωp) , ωj ∈ R
n,∗ ,

(ω, η)A =

∫

Rn

ω.((ΛpA)η)(x) Leb(dx) , ω, η ∈ ΛpC∞
0 (Rn) .

With coordinates the duality product ω.((ΛpA)η) equals

∑

♯I=♯J=p

ωI(x)ηJ(x)(dxi1 ∧ . . . ∧ dxip).(Adxj1 ∧ . . . ∧ Adxjp)

=
∑

♯I=♯J=p

(

p
∏

ℓ=1

Aiℓ,jℓ

)

ωI(x)ηJ (x) . (5.4)

For an operator a : ΛpC∞
0 (Rn) → Λp′C∞

0 (Rn) the formal adjoint a∗A w.r.t A
is defined by

(ω , aη)A = (a∗,Aω , η)A , ∀ω ∈ Λp′C∞
0 (Rn), ∀η ∈ ΛpC∞

0 (Rn),

and it is uniquely defined when A is invertible. If one considers the operator
∂xj

: ΛpC∞
0 (Rn) → ΛpC∞

0 (Rn) defined by

∂xj

(

∑

♯I=p

ωI(x)dxI

)

=
∑

♯I=p

(∂xj
ωI)(x)dxI

the formula (5.4) gives ∂∗,Axj
= −∂xj

.

For ω1 ∈ Λ1C∞(Rn), the definition of ω.(Λpη) leads to

(ω1∧)∗,A = iAω1 .

From the writing dΦ,hη =
∑n

j=1(h∂xj
+ ∂xj

Φ(x)) ◦ (dxj∧), we get

d∗,AΦ,h =
n
∑

j=1

(−∂xj
+ ∂xj

Φ(x)) ◦ (iAdxj
) .
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Both satisfy dΦ,h ◦dΦ,h = 0 and d∗,AΦ,h ◦d
∗,A
Φ,h = 0 and the corresponding “Hodge

Laplacian” is

∆A
Φ,h = d∗,AΦ,hdΦ,h + dΦ,hd

∗
Φ,h = (d∗,AΦ,h + dΦ,h)

2 .

=
n
∑

j,k=1

(−h∂xj
+ ∂xj

Φ(x))Ajk(h∂xk
+ ∂xk

Φ(x))

+2h

n
∑

j,k=1

∂2xj ,xk
Φ(x) ◦ dxj ◦ iAdxj

.

When n = 2d, x is replaced by (x, v), and

Φ(x, v) =
v2

2
+ V (x) , A =

1

2

(

0 1
−1 γ

)

,

one gets for functions

∆
A,(0)
Φ,h = v.(h∂x)− (∂xV (x)).(h∂v) +

γ

2
(−h∂v + v)(h∂v + v)

which is essentially Kh up to some change of scale.
It is possible to consider ∆

A,(p)
Φ,h . Note that it is neither self-adjoint, nor

elliptic. Bismut who introduced this operator in the natural invariant writ-
ing of Riemannian geometry called it the hypoelliptic Laplacian. Combining
the hypoelliptic analysis, the PT-symmetry and this supersymmetry, Hérau-
Hitrik-Sjöstrand recently adapted the analysis of exponentially small eigen-
values of the Witten Laplacian, and gave accurate values of the exponentially
small eigenvalues for ∆

A,(0)
V,h .

REF:[Bis05] and [Bis11] for a recent short introduction and additional refer-
ences); [HHS10] for the accurate semiclassical analysis of exponentially small
eigenvalues on R2d

x,v, [Leb05][Leb07] for a rapid approach to the key analysis
issues of the hypoelliptic Laplacian; and finally [TTK06] for a presentation
by physicists.

5.3 Nilpotent Lie algebras

We end this paragraph with the introduction of the Lie-algebra structure
hidden in ∆

(0)
τ0V

.

Consider in R
d+1
x,t , the Lie algebra generated by the vector fields

Xj = ∂xj
, Yj = ∂xj

V (x)∂t j = 1, . . . , d (5.5)

For any τ0 ∈ R∗, we consider the unitary representation ΠV,τ0 of this Lie-
algebra in L2(Rd) given by

ΠV,τ0(Xj) = ∂xj
, ΠV,τ0(Yj) = ∂xj

V (x)iτ0
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After setting

Lj = Xj − iYj = ∂xj
− i∂xj

V (x)∂t j = 1, . . . , d , (5.6)

the Witten Laplacian ∆
(0)
τ0V

can be written

∆
(0)
τ0V

=
∑

j

ΠV,τ0(Lj)
∗ΠV,τ0(Lj)

=
∑

j

ΠV,τ0(−X2
j − Y 2

j + i[Xj , Yj])

= ΠV (L
∗L) .

Hence finding subelliptic estimates for ∆
(0)
τ0V

becomes now related to the hy-
poellipticity of the overdetermined system L = (L1, . . . , Ld), that is the ques-
tion whether for some neighborhood ωx0,t of (x0, t) ∈ Rd+1

(Lju ∈ C∞(ωx0,t), ∀j ∈ {1, . . . , d}) ⇒ (u ∈ C∞(ωx0,t)) .

When V is a polynomial the Lie-algebra generated by (Xj, Yj)j∈{1,...,d} is
nilpotent. Helffer-Nourrigat theory of maximal hypoellipticity then provides
sufficient conditions and algorithms to check that ∆

(0)
V/2 has a compact re-

solvent. For example (1 + ∆
(0)
V/2)

−1 is compact when V (x1, x2) = −x21x22 but

not when V (x1, x2) = +x21x
2
2 . For this specific potentials, a similar result

(not written) can be proved for the Kramers-Fokker-Planck equation but no
general result is known up to now.
REF: [HeNo85][HeMo88][Nie09](for a complete analysis of the Witten Lapla-
cian with a polynomial potential eluding sophisticated use of Kirillov theory
[Kir62] [Nou82] [Puk67]).
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magnétique et équation de Harper. Lecture Notes in Phys., 345, Springer
(1989) pp 118–197.
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(2009).
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(2008).
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