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Introduction

The objective of statistical mechanics is to explain the macroscopic
properties of matter on the basis of the behavior of the atom and molecules
of which it is composed.

Oscar R. Lanford III [4]

If we want to make the above definition specific for the non-equilibrium statistical
mechanics, we can refrase it as

The objective of non-equilibrium statistical mechanics is to explain the macroscopic
evolution of matter on the basis of the dynamics of the atom and molecules of which
it is composed.

This definition requires to be more specific about what we intend for macro-
scopic evolution. In most non-equilibrium problems it should be specified non only
the space scale, but also the time scale of the macroscopic evolution. In fact, as
we will see in this book, the same system can behave very differently at different
space-time scaling.

This is also related to the choice of which observables we should follow in a
macroscopic non-equilibrium evolution of a system. Here we are interested in the
evolution of conserved quantities of the systems, like energy. A major concern is
to distinguish these slow observables from the others (fast). In fact a deterministic
hamiltonian dynamics with n degrees of freedom, may have other integrals of motion
than energy. One could be total momentum, but there could be many others, and
some systems are completely integrable (like a chain of harmonic oscillators, or the
Toda lattice).

We are interested here in systems such that the only integrals of the motion
that survive to the themodynamic limit n → ∞ are given by energy, eventually
momentum (if the infinite system has translation invariant properties), and number
of particles. This is actually a very vague statement, since the corresponding infinite
system typically has an infinite amount of energy, momentum and mass. So the
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iv INTRODUCTION

precise definition of this property is that the only stationary translation invariant
measures, enough regular so that are locally absolutely continuous with respect to
Lebesgue measure, are given by Gibbs measures associated to the Hamiltonian of
the system (see chapter ?? for a precise definition of all these notions). We call this
property ergodicity, or ergodicity of the infinite system to distinguish it from the
more classical definition of ergodicity of finite systems.

A well known conterexample to this ergodicity is given by the harmonic chain
of oscillators, where the energy of each mode of vibration is conserved. This is a
linear system, and this example suggests that ergodicity should be connected with
some level of chaoticity induced by non-linearities in the interactions. The Toda
lattice conterexample (non–linear) shows that the situation is not so simple, and
in fact it is not easy to state necessary or sufficient conditions on the interaction
between particles, that will imply this ergodicity property. This is one of the ma-
jor open problem of statistical mechanics, since it is this property that allows, in a
macroscopic (space-time) description, to separate an autonomous evolution of en-
ergy, momentum and density from the other observables.

In chapter ?? we give a proof that, if a stationary measure has an excheangeable
distribution of velocities, then is a Gibbs measure, i.e. ergodicity follows from this
excheageability of the velocities.

Since at the moment we are not able to prove ergodicity of the infinite system
for any hamiltonian system, we consider stochastic perturbations of these hamilto-
nian dynamics. These stochastic perturbation exchange momentum between parti-
cles. They are local and conserve kinetic energy and eventually total momentum.
Consequently the stationary measures for these infinite stochastic dynamics have
excheangeable distributions of velocities, i.e. they are ergodic. All this is proven
in chapter ?? for a one-dimensional chain of oscillators. One can think that these
stochastic perturbations model the effect of the non-linearities, or of some other
faster chaotic degree of freedom not included in the hamiltonian dynamics.

For these ergodic systems it is useful to define the concept of local equilibrium.
This is not a property of a single probability measure on the configuration space of
the finite of infinite system, but an asymptotic property of a sequence of probability
measures. We define a sequence of probability measure a local equilibrium if locally
they converge to a Gibbs measure for the infinite system corresponding to a given
energy, momentum and density (cf. section 1.4 for a precise definition).

Thermodynamic entropy S(r, E) is defined by formula (A.5.11) from the micro-
canonical ensemble, as the limit of the logarithm of the volume of the configurations
with fixed total energy and volume of the system of n particles. Notice that this is
actually a density of entropy, and it should be thought as the thermodynamic en-
tropy of the macroscopic system of (macroscopic) length r at equilibrium with given
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value of energy E . This is obtained from a one dimensional chain of n oscillators,
with total length fixed to be nr and total energy fixed at nE , as n → ∞. It comes
out from its definition that S(r, E) is a concave function, and that

2S

(
r1 + r2

2
,
E1 + E2

2

)
≥ S(r1, E1) + S(r2, E2) (0.0.1)

The quantity on the left in (0.0.1) is the thermodynamic entropy of a system of
2n oscillators with total length fixed at n(r1 + r2) and energy fixed at n(E1 + E2).
This property of thermodynamic entropy has a classic interpretation. Suppose we
have two systems of n oscillators in microcanonical equilibrium, with corresponding
parameter r1, E1 and r2, E2, and we put them in contact fixing the two extremities

add picture here

We have then an inhomogeneous system of 2n oscillators with total length fixed
to be n(r1 + r2) and energy n(E1 + E2). This system now is in non-equilibrium, and
energy and density will evolve on a certain time scale depending on n that we will
study later on. If this new system will reach equilibrium, then the thermodynamic
entropy associated will be larger than the sum of the two initial thermodynamic
entropies. This is the classic argument explaining increase with time of thermody-
namic entropy, repeated probably thousand times by many authors. In principle it
is correct even if we where not taking the limit as n →∞, i.e. using as entropy just
the logarithm of the corresponding volume in the phase space. The usual objection
to this argument is that the dynamics of the (finite) system may not reach equilib-
rium (and in fact typically it does not 1). Here we insist in the inequality (0.0.1)
for the thermodynamic entropy S defined in the limit n →∞, i.e. associated to the
macroscopic (infinite) system in equilibrium. More precisely the sense of the entropy
increase contained in (0.0.1) as to be understood in a macroscopic space-time limit,
as we will make clear later on.

The above procedure can be generalized to k chains of n oscillators at different
equilibrium parameters obtaining

S

(
1

k

k∑
i=1

ri,
1

k

k∑
i=1

Ei

)
≥

k∑
i=1

S(ri, Ei)
1

k

where as before we identify the right hand side as the entropy of an inhomogeneous
system where we have prepared each subsystem in equilibrium at different param-
eters. Going further we can rescale the (macroscopic) size of the k macroscopic

1Even in presence of non-linearities the finite system may have periodicities and other phe-
nomena that prevent the system to converge to equilibrium, this was in fact the main point of
the Fermi-Pasta-Ulam numerical experiment. These phenomenas should disappear in the limit as
n →∞, see the clear discussion of this problem in [5]
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systems as k−1 and obtain with the limit procedure, as k →∞, the thermodynamic
entropy of a system in local equilibrium2 with profiles of energy E(y) and inverse
density r(y) as ∫ 1

0

S(r(y), E(y)) dy

that by concavity is bigger or equal than S(
∫

r(y)dy,
∫
E(y)dy). This definition

of thermodynamic entropy has precise mathematical meaning for a macroscopic
inhomogeneous system in local equilibrium. Homogeneous systems (systems in local
equilibrium with flat profile of energy and density) maximize this entropy.

Assume now that we have prove that in a certain macroscopic scale energy
and density evolve deterministically, following some profiles densities r(y, t), E(y, t),
solution of certain conservative macroscopic equations (i.e.

∫
r(y, t)dy,

∫
E(y, t)dy

are constant in t). It follows that the problem of the macroscopic increase of the
entropy in time is related to the evolution of the profiles of density and energy in
this macroscopic scale.

More precisely, if one looks at the hyperbolic macroscopic space-time scale,
where space and time are rescaled in the same way (see chapter ??), the momen-
tum π(y, t) is also a macroscopic observable, and the internal energy is given by
U(y, t) = E(y, t) − π(y, t)2/2, and the total thermodynamic entropy at time t is

given by
∫ 1

0
S(r(y, t),U(y, t)) dy. The profiles triplet r(y, t), π(y, t), E(y, t) evolves in

time as solution of the Euler non-linear hyperbolic system (??). If these solutions
are smooth, then we prove in chapter ??, under the assumption that the infinite dy-
namics is ergodic, that they describe the macroscopic evolution of the corresponding
observables. It turns out that in this smooth regime

∂tS(r(y, t),U(y, t)) = 0 (0.0.2)

for any y. This means that if shock are not present, thermodynamic entropy remains
constant. Correspondingly the sysstem is also macroscopically reversible in time (in
the smooth regime Eler equations are time reversible).

2see the precise definition in section 1.4, where this notion is intended as a macroscopic asymp-
totic property.



Chapter 1

Statistical mechanics and
thermodynamics of one
dimensional chain of oscillators

1.1 The model: grand canonical formalism

We study a system of n anharmonic oscillators. The particles are denoted by
j = 1, . . . n. We denote with qj, j = 1, . . . , n their positions, and with pj the
corresponding momentum (which is equal to its velocity since we assume that all
particles have mass 1). We consider first the system attached to a wall, and we
set q0 = 0, p0 = 0. Between each pair of consecutive particles (i, i + 1) there is an
anharmonic spring described by its potential energy V (qi+1 − qi). We assume V is
a positive smooth function such that V (r) → +∞ as |r| → ∞ and such that

Z(λ, β) :=

∫
e−βV (r)+λrdr < +∞ (1.1.1)

for all β > 0 and all λ ∈ R. Let a be the equilibrium interparticle spacing, where V
attains its minimum that we assume is 0: V (a) = 0. It is convenient to work with
interparticle distance as coordinates, rather than absolute particle position, so we
define {rj = qj − qj−1 − a, j = 1, . . . , n}.

The configuration of the system is given by {pj, rj, j = 1, . . . , n} ∈ R2n, and
energy function (Hamiltonian) defined on each configuration is given by

H =
n∑

j=1

Ej

1
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where

Ej =
1

2
p2

j + V (rj), j = 1, . . . , n

is the energy of each oscillator. This choice is a bit arbitrary, because we associate
the potential energy of the bond V (rj) to the particle j. Different choices can be
made, but this one is notationally convenient.

At the other end of the chain we apply a constant force τ ∈ R on the particle
n (tension). The position of the particle n is given by qn =

∑n
j=1 rj. We consider

the Hamiltonian dynamics:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . , n,

ṗj(t) = V ′(rj+1(t))− V ′(rj(t)), j = 1, . . . , n− 1,

ṗn(t) = τ − V ′(rn(t)),

(1.1.2)

It is easy to see that, for any β > 0, the grand canonical measure µgc
τ,β defined by

dµn,gc
τ,β =

n∏
j=1

e−β(Ej−τrj)√
2πβ−1Z(βτ, β)

drjdpj (1.1.3)

is stationary for this dynamics. The distribution µn,gc
τ,β is called grand canonical

Gibbs measure at temperature T = β−1 and tension (or pressure) τ . Notice that
{r1, . . . , rn, p1, . . . , pn} are independently distributed under this probability measure.

Let us now fix a reference measure µgc
0,β0

, corresponding to a given temperature

T0 = β−1
0 and with external force τ = 0. If we consider the random vector Xj =

(rj, Ej) ∈ R × R × R+, then applying the result of appendix A, we obtain that the
sum 1

n

∑n
1 Xj has a large deviation function given by

I(r, E) = sup
λ,η<β0

{λr + ηE − Λ(λ, η)}

with

Λ(λ, η) = log

(
Z(λ, β0 − η)

Z(0, β0)

√
β0

β0 − η

)

and Λ(λ, η) = +∞ if η > β0.

Then we obtain

I(r, E) = sup
λ,β>0

{
λr − βE − log

(√
2πβ−1Z(λ, β)

)}
+ β0E + log

(√
2πβ−1

0 Z(0, β0)

)
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The function

S(r, u) = inf
λ,β>0

{
−λr + βu + log Z(λ, β) +

1

2
log

2π

β

}
(1.1.4)

is called thermodynamic entropy.

So we have obtained that

I(r, E) = −S(r, E) + β0E + log Z(0, β0) +
1

2
log

2π

β0

The density of the distribution of 1
n

∑n
j=1 Xj under µn,gc

0,β0
is given by

fn(r, E)

=

∫
R2n

e−β0
P

j Ej

(2πβ−1
0 )n/2Z(0, β0)n

δ

(
1

n

n∑
j=1

Ej − E ;
1

n

n∑
j=1

rj − r

)∏
j

drjdpj

=
e−nβ0E

(2πβ−1
0 )n/2Z(0, β0)n

∫
R2n

δ

(
1

n

n∑
j=1

Ej − E ;
1

n

n∑
j=1

rj − r

)∏
j

drjdpj

=
e−nβ0E

(2πβ−1
0 )n/2Z(0, β0)n

Γn(r, E).

Observe that Γn(r, E) defined by the equation above, does not depend on β0.
It is clearly sub–multiplicative

Γn+m(r, E) ≥ Γn(r, E)Γm(r, E)

Consequently it exists the limit

lim
n→∞

1

n
log Γn(r, E) = S(r, E) . (1.1.5)

that applying (A.5.8) we identify as the thermodynamic entropy defined by (1.1.4).
This is the fundamental relation that connects the microscopic system to its ther-
modynamic macroscopic description.

We can now define the other thermodynamic quantities from the entropy def-
inition (1.1.4). From equation (1.1.4) we have

λ(r, u) = −∂S(r, u)

∂r
, β(r, u) =

∂S(r, u)

∂u
(1.1.6)



4 CHAPTER 1. THERMODYNAMICS

and we will always define the tension as τ(r, u) = λ(r, u)/β(r, u).

r(λ, β) =
∂ log Z(λ, β)

∂λ
=

∫
r

eλr−βV (r)

Z(λ, β)
dr =

∫
rj dµgc

τ,0,β

u(λ, β) = −
∂ log

(
Z(λ, β)

√
2π/β

)
∂β

=

∫
V (r)

eλr−βV (r)

Z(λ, β)
dr +

1

2β
=

∫
Ej dµgc

τ,0,β

(1.1.7)

In thermodynamics is used the following terminology

• r is the length,

• u is the internal energy,

• T = β−1 is the temperature,

• τ = β−1λ is the pressure or the tension [6].

The above are the basic thermodynamics coordinates. Usually one choose two of
these as independent variables, and express the others as functions of these.

Computing the total differential of S(r, u) we have

dS = −βτdr + βdu =
dQ

T
(1.1.8)

where dQ is the (non-exact) differential

dQ = −τdr + du (1.1.9)

and represents the energy gained (or lost) by the system under the infinitesimal
change dr, du. Equation (1.1.9) is the differential form of the first law of thermody-
namics, while (1.1.8) is the one corresponding to the second law of thermodynamics.

1.2 Microcanonical measure

Instead of applying a force (tension) to one side of the chain, one can fix the particle
n to another wall at distance nr (qn =

∑n
j=1 rj = nr and pn = ṗn = 0). The

corresponding dynamics is then

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . , n− 1,

ṗj(t) = V ′(rj+1(t))− V ′(rj(t)), j = 1, . . . , n− 1,

rn(t) = nr −
n−1∑
j=1

rj(t) .

(1.2.1)
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The dynamics now is conserving the total energy H =
∑

j Ej and the total length∑n
j=1 rj. The microcanonical measures µn,mc

r,u are now stationary for this dynamics.
These are defined in the following way:

Consider the vector valued i.i.d. random variables

{Xj = (rj, Ej), j = 1, . . . , n},

distributed by dµn,gc
0,β0

. Fix x = (r, E),and define µn,mc
x the conditional distribution of

(r1, p1, . . . , rn, pn) on the manifold
∑n

j=1 Xj = nx. This is defined, for any bounded

continuous function G : R× R+ → R and H : R2n → R, by∫
G(Ŝn)H(r1, p1, . . . , rn, pn) dµn,gc

0,β0
(r1, p1, . . . , rn, pn)

=

∫
R×R+

dx G(x)fn(x)

∫
H(r1, p1, . . . , rn, pn) dµn,mc

x

where Ŝn = 1
n

∑n
i=1 Xi. It is easy to see that µn,mc

x does not depend on β0. We call
µn,mc

x the microcanonical measure.

The multidimensional application of theorem A.5.4 gives the following equiva-
lence between microcanonical and grandcanonical measure:

Theorem 1.2.1 Given x = (r, E), let

β = β(r, E), τ = λ(r, E)β−1.

Then for any bounded continuous function F : R2k → R we have

lim
n→∞

∫
F (r1, p1, . . . , rk, pk) dµn,mc

x (r1, p1, . . . , rn, pn)

=

∫
F (r1, p1, . . . , rk, pk) dµgc

τ,β(. . . , r1, p1, . . . , rn, pn, . . .)

It will be useful later the equivalence of ensembles in the following form:

Theorem 1.2.2 Under the same conditions of Theorem 1.2.1, assume that∫
F (r1, p1, . . . , rk, pk) dµk,gc

τ,β (r1, p1, . . . , rk, pk) = 0.

Then

lim
n→∞

∫ ∣∣∣∣∣ 1

n− k

n−k∑
i=1

F (ri+1, pi+1, . . . , ri+k, pk+i)

∣∣∣∣∣ dµn,mc
x = 0

The proof of these two theorems follows the argument used for Theorems A.5.4
and A.5.5.
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1.3 Canonical measure

Applying a Langevin’s thermostat at temperature T = β−1 to the particle n (or to
any other particle), we obtain a dynamics that has the canonical measure µn,c

r,β as
stationary measure:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . , n− 1,

dpj(t) = (V ′(rj+1(t))− V ′(rj(t))) dt

+ δj,n−1

(
−pj(t)dt +

√
βdw(t)

)
, j = 1, . . . , n− 1,

rn(t) = nr −
n−1∑
j=1

rj(t) .

(1.3.1)

This is defined as follows:

If we condition the grand canonical measure µn,gc
0,0,β on the total length of the

chain equal to L = nr =
∑

j rj = qn− q0 , we obtain the canonical measure that we
denote by µn,c

r,β. We can formally write

dµn,c
r,β =

∏
j

e−βp2
j/2√

2πβ−1
dpj ⊗

e−β
P

j V (rj)

Zn,c(r, β)
δ

(∑
j

rj = nr

)∏
j

drj

where Zn,c(r, β) is the normalization constant (canonical partition function).

Similar statements as theorems 1.2.1 and 1.2.2 holds, µn,c
r,β converging to the

grand-canonical measure µn,gc
τ,β , with τ given by the thermodynamic relations (1.1.6).

Other boundary conditions can be made, like applying a tension τ and a
Langevin thermostat at temperature β−1 to the n particle, obtaining a system with
µgc

τ,β as stationary measure.

1.4 Local equilibrium, local Gibbs measures

The Gibbs distributions defined in the above sections are also called equilibrium
distributions for the dynamics. Studying the non-equilibrium behaviour we need the
concept of local equilibrium distributions. These are probability distributions that
have some asymptotic properties when the system became large (n →∞), vaguely
speaking locally they look like Gibbs measure. We need a precise mathematical
definition, that will be useful later for proving macroscopic behaviour of the system.



1.4. LOCAL EQUILIBRIUM, LOCAL GIBBS MEASURES 7

Definition 1.4.1 Given two functions β(y) > 0, τ(y), y ∈ [0, 1], we say that the
sequence of probability measures µn on R2n has the local equilibrium property (with
respect to the profiles β(·), τ(·)) if for any k > 0 and y ∈ (0, 1),

lim
n→∞

µn

∣∣
([ny],[ny]+k)

= µk,gc
τ(y),β(y) (1.4.1)

Sometimes we will need some weaker definition of local equilibrium (for ex-
ample relaxing the pointwise convergence in y). It is important here to understand
that local equilibrium is a property of a sequence of probability measures.

The most simple example of local equilibrium sequence is given by the local
Gibbs measures:

n∏
j=1

e−β(j/n)(Ej−τ(j/n)rj)√
2πβ(j/n)−1Z(β(j/n)τ(j/n), β(j/n))

drjdpj = gn
τ(·),β(·)

n∏
j=1

drjdpj (1.4.2)

Of course are local equilibrium sequence also small order perturbation of this se-
quence like

e
P

j Fj(rj−h,pj−h,...,rj+h,pj+h)/ngn
τ(·),β(·)

n∏
j=1

drjdpj (1.4.3)

where Fj are local functions.

To a local equilibrium sequence we can associate a thermodynamic entropy,
defined as

S(r(·), u(·)) =

∫ 1

0

S(r(y), u(y)) dy (1.4.4)

where r(y), u(y) are computed from τ(y), β(y) using (1.1.7).
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Appendix A

Large Deviations

A.1 Introduction

As Dembo and Zeitouni point out in the introduction to their monograph on the
subject [1], there is no real theory of large deviations, but a variety of tools that
allow analysis of small probability.

To give an idea of what we mean with large deviations, let us consider a se-
quence of independent identical distributed real valued random variables X1, X2, . . . , Xn

such that E(X2
j ) = 1, and E(Xj) = 0. Let Ŝn = 1

n

∑
i Xi the empirical sum. The

weak law of large numbers says that for any δ > 0,

P(|Ŝn| ≥ δ) −→
n→∞

0 (A.1.1)

The central limit theorem is a refinement that says

P(
√

nŜn ∈ [a, b]) −→
n→∞

1√
2π

∫ b

a

e−x2/2dx . (A.1.2)

In the case Xj ∼ N (0, 1), we have Ŝn ∼ N(0, 1/n), and we can compute explicitly

P(|Ŝn| ≥ δ) = 1− 1√
2π

∫ δ
√

n

−δ
√

n

e−x2/2dx .

therefore (exercise)
1

n
log P(|Ŝn| ≥ δ) −→

n→∞
−δ2

2
(A.1.3)

Equation (A.1.3) is an example of a large deviation statement.

9



10 APPENDIX A. LARGE DEVIATIONS

A.2 Cramér’s Theorem in R

Let {Xn} a sequence of i.i.d. random variables on R with common probability
distribution α(dx). We define the moment generating function

M(λ) = E
[
eλX1

]
(A.2.1)

and let us assume that there exists λ∗ > 0 such that M(λ) < ∞ if |λ| < λ∗. Notice
that, since |x| ≤ λ−1(eλx + e−λx) for any λ > 0, this condition implies that X1 is
integrable and we denote m = E(X1) ∈ R. It is easy to see that m = M ′(0). We
are interested in the logarithmic moment generating function

Z(λ) = log E
[
eλX1

]
(A.2.2)

By Jensen’s inequality, we have Z(λ) ≥ λm > −∞. Let DZ = {λ : Z(λ) < +∞}.
Under our hypothesis, 0 ∈ Do

Z (the interior of DZ).

Lemma A.2.1 1. Z(·) is convex.

2. Z(·) is continuously differentiable in Do
Z and

Z ′(λ) =
E(X1e

λX1)

M(λ)
λ ∈ Do

Z .

Proof:

1. For any α ∈ [0, 1], it follows by Hölder inequality

E(e(αλ1+(1−α)λ2)X1) ≤ M(λ1)
αM(λ2)

1−α

and consequently

Z(αλ1 + (1− α)λ2) ≤ αZ(λ1) + (1− α)Z(λ2)

2. The function fε(x) = (e(λ+ε)x−eλx)/ε converges pointwise to xeλx, and |fε(x)| ≤
eλx(eδ|x|− 1)/δ ≤ eλx(eδx + e−δx)/δ = h(x), for every |ε| ≤ δ. For any λ ∈ Do

Z ,
there exists a δ > 0 small enough such that E(h(X1)) ≤ M(λ+δ)+M(λ−δ) <
+∞. Then the result follows by the dominated convergence theorem.
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�

Using the same argument one can prove that Z(·) ∈ C∞(Do
Z). Computing the

second derivative we obtain

Z ′′(λ) =
E(X2

1e
λX1)

M(λ)
−
(

E(X1e
λX1)

M(λ)

)2

≥ 0

Observe that Z ′′(0) = Var(X1). To avoid the trivial deterministic case, we assume
that Var(X1) > 0. It follows that Z ′′(λ) > 0 for any λ ∈ Do

Z , i.e. Z(·) is strictly
convex.

We define the rate function as the Fenchel-Legendre transform of Z

I(x) = sup
λ∈R

{λx−Z(λ)} (A.2.3)

It is immediate to see that I is convex (as supremum of linear functions), hence
continuous, and that I(x) ≥ 0. Furthermore we have that I(m) = 0. In fact by
Jensen’s inequality M(λ) ≥ eλm for any λ ∈ R, so that

λm−Z(λ) ≤ 0

and it is equal to 0 for λ = 0. We conclude that I(m) = 0.

Consequently m is a minimum of the convex positive function I(x). It follows
that I(x) is nondecreasing for x ≥ m and nonincreasing for x ≤ m.

Observe that if x > m and λ < 0

λx−Z(λ) ≤ λm−Z(λ)

that implies
I(x) = sup

λ≥0
{λx−Z(λ)} x > m (A.2.4)

Similarly one obtains

I(x) = sup
λ≤0

{λx−Z(λ)} x < m (A.2.5)

Here are other important properties of I(·):

Lemma A.2.2 I(x) → +∞ as |x| → ∞, and its level sets are compact.

Proof: If x > m ∨ 0, for any positive λ ∈ DZ ,

I(x)

x
≥ λ− Z(λ)

x
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and limx→+∞Z(λ)/x = 0, so we have limx→+∞ I(x)/x ≥ λ. Consequently its level
sets {x : I(x) ≤ a} are bounded, and closed by continuity of I. �

We want to prove the following theorem:

Theorem A.2.3 (Cramer) For any set A ⊂ R,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1

n
log P(Ŝn ∈ A) ≤ lim sup

n→∞

1

n
log P(Ŝn ∈ A) ≤ − inf

x∈Ā
I(x)

were Ao is the interior of A and Ā is the closure of A.

A.2.1 Properties of Legendre transforms

We denote DI = {x ∈ R : I(x) < ∞}.

Lemma A.2.4

The function I is convex in DI , strictly convex in D0
I and I ∈ C∞(Do

I). Furthermore
for any x̄ ∈ Do

I there exists a unique λ̄ ∈ Do
Z such that

x̄ = Z ′(λ̄)

and
λ̄ = I ′(x̄)

Furthermore I(x̄) = λ̄x̄−Z(λ̄).

We will say that x̄ and λ̄ are in duality if the conditions of the above lemma are
satisfied.

Proof: The function Fx(λ) = λx − Z(λ) has a maximum for λ = λ̄. This is
because it is concave and ∂λFx(λ̄) = 0. It follows that I(x̄) = λ̄x̄ − Z(λ̄) and that
Z(λ) = supx {λx− I(x)}. By the same argument Gλ(x) = λx− I(x) is maximized
by x̄. �

A.2.2 Proof of Cramer’s theorem

Upper bound
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Let us start with A a closed interval of the form Jx = [x, +∞) and let x > m. Then
the exponential Chebycheff’s inequality gives for any λ > 0

P(Ŝn ≥ x) ≤ e−nλxE[e
Pn

i=1 λXi ] = e−nλxM(λ)n

Since λ > 0 is arbitrary, we can optimize the bound and obtain for x > m

1

n
log P(Ŝn ≥ x) ≤ − sup

λ>0
{λx−Z(λ)} = −I(x) (A.2.6)

where we use (A.2.4) in the last equality. Similarly for x < m we obtain

1

n
log P(Ŝn ≤ x) ≤ − sup

λ<0
{λx−Z(λ)} = I(x) (A.2.7)

Consider now an arbitrary closed set C ⊂ R. If m ∈ C, then infx∈C I(x) = 0
and the upper bound is trivial.

If m 6∈ C, let (x1, x2) be the largest open interval around m such that C ∩
(x1, x2) = ∅, i.e.

C ⊆ (−∞, x1] ∪ [x2, +∞)

(if x1 = −∞ then C ⊆ [x2, +∞) and if x2 = +∞ then C ⊆ (−∞, x1]). Observe
that x1 < m < x2. Consequently

P(Ŝn ∈ C) ≤ P(Ŝn ≥ x2) + P(Ŝn ≤ x1) ≤ 2 max{P(Ŝn ≥ x2), P(Ŝn ≤ x1)}

and using (A.2.6) and (A.2.7)

1

n
log P(Ŝn ∈ C) ≤ −min{I(x2), I(x1)}+

1

n
log 2 (A.2.8)

and from the monotonicity of I(x) on (−∞, x1] and [x2, +∞)

inf
x∈C

I(x) ≥ min{I(x2), I(x1)}

which concludes the upper bound.

Lower bound

Given an open set G, it is enough to prove that for any x ∈ G

lim inf
n→∞

1

n
log P(Ŝn ∈ G) ≥ −I(x) .
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To this end, it is enough to prove that for any x and any δ > 0,

lim inf
n→∞

1

n
log P(Ŝn ∈ (x− δ, x + δ)) ≥ −I(x) .

Clearly it is enough to consider x such that I(x) < ∞. Assume α has finite support
and that α((−∞, 0)) > 0, α((0,∞)) > 0. Then Z is finite everywhere (DZ = Do

Z =
R) and there exists a unique λ0 ∈ Do

Z such that

I(x) = λ0x−Z(λ0) and x = Z ′(λ0)

Assuming x ≥ m, we have that λ0 ≥ 0.

Let us define the probability law on R

αλ0(dy) =
eλ0y

M(λ0)
α(dy)

Notice that ∫
y αλ0(dy) = Z ′(λ0) = x

Noting An,δ = {(x1, . . . , xn) : (x1 + · · · + xn)/n ∈ (x − δ, x + δ)} ⊂ Rn, then for
δ1 < δ

P(Ŝn ∈ (x− δ, x + δ)) ≥
∫

An,δ1

α(dx1) . . . α(dxn)

= M(λ0)
n

∫
An,δ1

e−λ0(x1+···+xn)αλ0(dx1) . . . αλ0(dxn)

≥ M(λ0)
ne−nλ0(x+δ1)

∫
An,δ1

αλ0(dx1) . . . αλ0(dxn)

By the law of large numbers, for any δ1 > 0∫
An,δ1

αλ0(dx1) . . . αλ0(dxn) −→
n→∞

1

so that

lim inf
n→∞

1

n
log P(Ŝn ∈ (x− δ, x + δ)) ≥ − [λ0(x + δ1)−Z(λ0)] = −I(x)− λ0δ1

Since δ1 < δ is arbitrary, we can let δ1 → 0 and it gives the result. If x < m, we
have λ0 < 0, and in the steps of the above we will have x− δ1 instead of x + δ1.

Assume now α is of unbounded support with α((−∞, x)) > 0, α((x,∞)) > 0.
Let A0 > 0 be such that α([−A0, x)) > 0, α((x, A0]) > 0. For any A ≥ A0 let β
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be the law of X1 conditioned on {|X1| ≤ A}, and βn the law of Ŝn conditioned on
{|Xi| ≤ A, i = 1, . . . , n}. Then, for all n ≥ 1 and every δ > 0,

αn((x− δ, x + δ)) = βn((x− δ, x + δ)) {α([−A, A])}n

The preceding result applies for βn. Note

ZA(λ) = log

∫ A

−A

eλyα(dy),

and observe that the logarithmic generating function of β is given by

ZA(λ)− log α([−A, A]) ≥ ZA(λ)

It follows that

lim inf
n→∞

1

n
log αn((x− δ, x + δ)) ≥ inf

λ∈R

{
ZA(λ)− λx

}
(A.2.9)

Let us define

I∗(x) = lim sup
A→∞

[
sup
λ∈R

{
λx−ZA(λ)

}]
then we have

lim inf
n→∞

1

n
log αn((x− δ, x + δ)) ≥ −I∗(x) (A.2.10)

Observe that ZA(·) is nondecreasing in A, ZA(0) ≤ Z(0) = 0, and thus −I∗(x) ≤ 0.
Moreover the assumption α([−A0, x)) > 0, α((x, A0]) > 0 implies

λx−ZA(λ) ≥ − inf {log α[−A0, x) , log α(x, A0]}

Therefore we have −I∗(x) > −∞. The level sets {λ; ZA(λ) − λx ≤ −I∗(x)} are
non-empty, compact sets that are nested with respect to A. Then it exists λ0 in
their intersection and −I(x) ≤ Z(λ0)− λ0x = limA→∞ZA(λ0)− λ0x ≤ −I∗(x). By
(A.2.10) we get

lim inf
n→∞

1

n
log αn((x− δ, x + δ)) ≥ −I(x)

The proof for an arbitrary probability law α is completed by observing that
if either α((−∞, x)) or α((x,∞)) = 0 then Z(·) is a monotone function with
infλ∈R{Z(λ)− λx} = log α({x}). Then we have

αn((x− δ, x + δ)) ≥ αn({x}) = α({x})n

and

lim inf
n→∞

1

n
log P(Ŝn ∈ (x− δ, x + δ)) ≥ −I(x)

�
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Remark A.2.5 Notice that the proof contains the non-asymptotic bound (A.2.8),
i.e.

∀n ≥ 1, P(Ŝn ∈ C) ≤ 2e−n infx∈C I(x) (A.2.11)

also called Chernoff’s bound.

Remark A.2.6 The lower bound was obtained by using the change of variable in
conjunction with the law of large numbers for the new probabilities. One can get
better bound by using the central limit theorem, and obtain the following corollary

Corollary A.2.7 For any x > m,

lim
n→∞

1

n
log P(Ŝn ≥ x) = −I(x) if x > m

lim
n→∞

1

n
log P(Ŝn ≤ x) = −I(x) if x < m

(A.2.12)

Proof : By the central limit theorem∫
{x1+···+xn/n∈[x,x+δ1)}

αλ0(dx1) . . . αλ0(dxn) −→
n→∞

1

2

So in the proof of the lower bound one can substitute (x− δ, x + δ) with [x, x + δ).
Since P(Ŝn ≥ x) ≥ P(Ŝn ∈ [x, x + δ)) one obtains

lim inf
n→∞

1

n
log P(Ŝn ≥ x) ≥ −I(x)

The upper bound follows from the one in theorem A.2.3.

Examples in R

1. Let α be the gaussian distribution

1√
2πσ2

e−(x−m)2/2σ2

dx

then I(x) = (x − m)2/2σ2. In this case one can compute it directly, since
Ŝn − nm has law N (0, σ2/n).

2. α = 1
2
(δ0 + δ1) (Bernoulli). Then M(λ) = 1

2
(1 + eλ) and

I(x) = x log x + (1− x) log(1− x) + log 2 if x ∈ [0, 1]

and I(x) = +∞ otherwise.
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3. For the exponential law α(dx) = βe−βx1x≥0 dx, we have M(λ) = β/(β − λ)
for −∞ < λ < β, otherwise M(λ) = +∞. Then

I(x) = βx− 1− log(βx) if x > 0

and I(x) = +∞ if x ≤ 0.

4. If ξ in a random variable with law N (0, 1/β), then ξ2 has law χ2(1), i.e. a
gamma law Γ(1/2, β/2), which has density

β1/2

√
2Γ(1/2)

x−1/2e−βx

Its moment generating function is M(λ) = (β/(β − 2λ))1/2 if λ < β/2, other-
wise equal to +∞. The rate function results

I(x) =
1

2
{βx− log(βx)− 1} if x > 0

and +∞ if x < 0.

A.3 Cramér’s Theorem in Rd

Let {Xn} be a sequence of i.i.d. random variables in Rd, and denote α(dx) the
common law. We define as before, for u ∈ Rd, the moment generating function and
its logarithm

M(u) =

∫
Rd

eu·x α(dx), Z(u) = log M(u) (A.3.1)

and we denote DZ = {u ∈ Rd : Z(u) < +∞}. We assume that 0 ∈ Do
Z . Then M(u)

is smooth in this open set and ∇M(0) = m = E(X1).

The rate function is the Legendre-Fenchel transform of Z:

I(x) = sup
u∈Rd

{u · x−Z(u)} (A.3.2)

As in the one dimensional case, it follows immediately from the definition that I
is non negative, convex, lower semicontinuous and I(m) = 0. Denoting DI = {x :
I(x) < +∞} we have similar properties as in the one dimensional case:
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Lemma A.3.1 I(x) ∈ C∞(DI
o), and m ∈ (DI

o). There exists a diffeomorphism
between DI

o and Do
λ defined by

u∗ = (∇Z)(u), u = (∇I)(u∗) (A.3.3)

and
(∇2Z)(u) =

[
∇2I)(u∗)

]−1
(A.3.4)

Theorem A.3.2 For any Borel set A ⊂ Rd,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1

n
log P(Ŝn ∈ A) ≤ lim sup

n→∞

1

n
log P(Ŝn ∈ A) ≤ − inf

x∈Ā
I(x)

were Ao is the interior of A and Ā is the closure of A.

Proof :

The lower bound is proven in the same way as in d = 1. Consider u∗ such that
I(u∗) < +∞. To simplify we assume there exists a unique u ∈ Do

I such that

I(u∗) = u∗ · u−Z(u) u = (∇I)(u∗)

Then we consider the new probability law on Rd, absolutely continuous with respect
to α, defined by

αu(dx) = eu·x−Z(u) α(dx)

Observe that ∫
xαu(dx) = u∗

Noting An,δ = {(x1, . . . ,xn) : |(x1 + · · ·+xn)/n−u∗| ≤ δ} ⊂ Rn, then for any δ1 < δ

P(|Ŝn − u∗| < δ) ≥
∫

An,δ1

α(dx1) . . . α(dxn)

= M(u)n

∫
An,δ1

e−u·(x1+···+xn)αu(dx1) . . . αu(dxn)

= M(u)ne−nu·u∗
∫

An,δ1

e−u·[(x1+···+xn)−nu∗]αu(dx1) . . . αu(dxn)

≥ e−nI(u∗)e−n|u|δ1
∫

An,δ1

αu(dx1) . . . αu(dxn)

The law of large numbers now says that

lim
n→∞

∫
An,δ1

αu(dx1) . . . αu(dxn) = 1
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and we obtain

lim inf
n→∞

1

n
log P(|Ŝn − u∗| < δ) ≥ −I(u∗)− |u|δ1

and letting δ1 → 0 we conclude that for any δ > 0 we have the lower bound

lim inf
n→∞

1

n
log P(|Ŝn − u∗| < δ) ≥ −I(u∗)

The upper bound requires a little more work. Convexity plays a role here.

Let C any Borel set in Rd. Then the exponential Chebicheff inequality implies
for any u ∈ Rd

P
(
Ŝn ∈ C

)
≤ exp

[
−n inf

x∈C
u · x

]
E
(
enu·Ŝn

)
= exp

[
−n inf

x∈C
u · x

]
M(u)n

and optimizing in u ∈ Rd we obtain

1

n
log P

(
Ŝn ∈ C

)
≤ − sup

u∈Rd

inf
x∈C

[u · x−Z(u)] (A.3.5)

So to conclude we need to exchange “supu∈Rd” with “infx∈C”. This is immediate if
C is a convex set by the following lemma (c.f. [3], chapter 6):

Lemma A.3.3 Let g(u,x) be convex and lower semicontinuous in x, concave and
uppersemicontinuous in u, then if C is compact and convex

inf
x∈C

sup
u∈Rd

g(u,x) = sup
u∈Rd

inf
x∈C

g(u,x) (A.3.6)

Consider now any compact set K ⊂ Rd,there exists l > 0 such that infx∈K I(x) =
l. By the ower semicontinuity of I(·), for a fixed ε > 0 and any x′ ∈ K, there exists
a closed ball C(x′) such that

I(x) ≥ l − ε ∀x ∈ C(x′)

Since K is compact, there exists a finite subcover C(x′1), . . . , C(x′N) extracted from
these closed ball. Then

P
(
Ŝn ∈ K

)
≤

N∑
j=1

P
(
Ŝn ∈ C(x′j)

)
≤ N max

1≤j≤N
P
(
Ŝn ∈ C(x′j)

)
≤ N max

1≤j≤N
exp

(
−n inf

C(x′j)
I

)
≤ Ne−n(l−ε)
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and

lim sup
n→∞

1

n
log P

(
Ŝn ∈ K

)
≤ −(l − ε)

Since ε is arbitrary, this proves the upper bound for compact sets.

To extend this bound from compact to closed sets, we need to prove the expo-
nential tightness of the distribution of Ŝn, i.e.

lim
ρ→∞

lim
n→∞

1

n
log P

(
Ŝn 6∈ Hρ

)
= −∞ (A.3.7)

where Hρ = [−ρ, ρ]d is the centered hypercube of length 2ρ. To prove this observe

that, denoting Ŝ
(j)
n is the average of X

(j)
1 , . . . , X

(j)
n , by applying the results obtained

in the one-dimensional case, we have

P
(
Ŝn 6∈ Hρ

)
≤

d∑
j=1

P
(
Ŝ(j)

n 6∈ (−ρ, ρ)
)
≤ d max

j=1,...,d
exp

(
−n min{Ij(ρ), Ij(−ρ)}

)
where Ij is the rate function for the j−marginal distribution of the law α. Then
(A.3.7) follows by applying lemma A.2.2.

�

A.4 Generalities on Large Deviations

Let X a complete separable metric space and Pn a family of probability distributions
on X. In the previous sections X = Rd and Pn the distribution of Ŝn. We says that
{Pn} satisfies a large deviation principle with good rate function I(·) if there exists
a function I : X → [0,∞] such that:

1. I(·) is lower semicontinuous.

2. For each ` < ∞ the set {x : I(x) ≤ `} is compact in X.

3. For each closed set C ⊂ X

lim sup
n→∞

1

n
log Pn(C) ≤ − inf

x∈C
I(x).

4. For each open set G ⊂ X

lim inf
n→∞

1

n
log Pn(G) ≥ − inf

x∈G
I(x).
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Here the adjective good refers to properties 1 and 2. The next lemma does not
require the rate function I to be good.

Theorem A.4.1 Varadhan’s Lemma. Let Pn satisfy the large deviation princi-
ple with rate function I. Then for any bounded continuous function F (x) on X

lim
n→∞

1

n
log

∫
enF (x)dPn(x) = sup

x∈X
{F (x)− I(x)}.

Proof.

Upper bound. For any given δ > 0, since F is bounded and continuous, we can
find a finite number of closed sets covering X such that the oscillation of F (·) on
each of these closed sets is less or equal δ. Then∫

enF (x)dPn(x) ≤
m∑

j=1

∫
Cj

enF (x)dPn(x) ≤
m∑

j=1

enFj+δPn(Cj)

where Fj = infCj
F (x). It follows

lim sup
n→∞

1

n
log

∫
enF (x)dPn(x) ≤ sup

1≤j≤m
[Fj + δ − inf

Cj

I(x)]

≤ sup
1≤j≤m

sup
Cj

[F (x)− I(x)] + δ

= sup
x∈X

[F (x)− I(x)] + δ

Since δ is arbitrary, we can let it go to 0.

Lower bound. By definition of a supremum for any δ > 0 we can find y ∈ X
such that F (y)− I(y) ≥ supx[F (x)− I(x)]− δ/2. Since F is continuous we can find
an open neighborhood U of y such that F (x) ≥ F (y)− δ/2 for any x ∈ U . Then we
obtain

lim inf
n→∞

1

n
log

∫
enF (x)dPn(x) ≥ lim inf

n→∞

1

n
log

∫
U

enF (x)dPn(x)

≥ F (y)− δ

2
− inf

x∈U
I(x) ≥ F (y)− I(y)− δ

2
≥ sup

x
[F (x)− I(x)]− δ

and we conclude from the arbitrariness of δ. �
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Theorem A.4.2 Contraction Principle. Let Pn satisfy the large deviation prin-
ciple with rate function I, and π : X → Y a continuous mapping from X to another
complete separable metric space Y . Then P̃n = Pnπ

−1 satisfies a large deviation
principle with rate function

Ĩ(y) = inf
x:π(x)=y

I(x),

Ĩ(y) = +∞ if {x : π(x) = y} = ∅

Proof. Since π is continuous, given any closed set C̃ ⊂ Y , the subset C = π−1(C̃) is
closed in X. Then

lim sup
n→∞

1

n
log P̃n(C̃) = lim sup

n→∞

1

n
log Pn(C) ≤ − inf

x∈C
I(x) = − inf

y∈C̃
inf

x:π(x)=y
I(x).

and similarly for the lower bound. �

A.5 Large deviations for densities

We deal first with the one-dimensional case. If the distribution of Ŝn on R has
a density that we denote by fn(x), from Cramers theorem we have the intuition
that fn(x) ∼ e−nI(x) for large n. We will prove this under some condition on the
probability α(dx). It is interesting to notice that we will not use Cramer’s theorem
in the proof, but the following local central limit theorem.

Theorem A.5.1 Local central limit theorem. Let φ(k) the characteristic func-
tion of a centered probability measure α(dx) with finite variance σ2, and assume that
|φ(k)| < 1 if k 6= 0 and that there exists an integer r ≥ 1 such that |φ|r is integrable.
Let g̃n(x) the probability density of (X1 + · · · + Xn)/

√
n, where Xj are i.i.d. with

common law α. Then

lim
n→∞

g̃n(x) =
1√

2πσ2
e−x2/2σ2

.

Proof. The characteristic function of α is defined by

φ(k) =

∫
eixkα(dx) (A.5.1)

The characteristic function of the distribution of X1 + · · · + Xr is φr(k) that is
integrable. It follows that the probability density g̃n(x) exists for any n ≥ r (cf. [?],
theorem XV.3.3). Then

g̃n(x) =
1

2π

∫ +∞

−∞
e−ixk

[
φ

(
k√
n

)]n

dk
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and therefore∣∣∣∣g̃n(x)− 1√
2πσ2

e−x2/2σ2

∣∣∣∣ ≤ 1

2π

∫ +∞

−∞

∣∣∣∣φ( k√
n

)n

− e−k2σ2/2

∣∣∣∣ dk

Given a > 0, we split the integral in three parts.

1. Uniformly in k ∈ [−a, a],

φ

(
k√
n

)n

=

(
1− k2σ2

2n
+ o

(
1

n

))n

−→
n→∞

e−k2σ2/2

so that ∫ +a

−a

∣∣∣∣φ( k√
n

)n

− e−k2σ2/2

∣∣∣∣ dk → 0

2. Observe that it is possible to choose δ > 0 such that

|φ(k)| ≤ e−k2σ2/4 if |k| ≤ δ.

Then for the interval |k| ∈ (a, δ
√

n), we can estimate as∫ δ
√

n

a

∣∣∣∣φ( k√
n

)n

− e−k2σ2/2

∣∣∣∣ dk ≤
∫ δ

√
n

a

2e−k2σ2/4dk ≤
∫ +∞

a

2e−k2σ2/4dk

that converge to 0 as a →∞.

3. It remains to estimate the contribution from the interval (δ
√

n, +∞). Since
we assumed that |φ(k)| < 1 for k 6= 0, and since |φ|k is integrable, we have
φ(k) → 0 as k →∞. Consequently we must have sup|k|≥δ |φ(k)| = η < 1, and
we can estimate∫ +∞

δ
√

n

∣∣∣∣φ( k√
n

)n

− e−k2σ2/2

∣∣∣∣ dk ≤ ηn−r

∫ +∞

−∞

∣∣∣∣φ( k√
n

)∣∣∣∣r dk +

∫ +∞

δ
√

n

e−k2σ2/2dk

= ηn−r
√

n

∫ +∞

−∞
|φ (k)|r dk +

∫ +∞

δ
√

n

e−k2σ2/2dk

that converges to 0 as n →∞.

�

Distributions such that their characteristic function |φ(k)| < 1 for k 6= 0 are
called non-lattice ( [2], chapter 2). It does not imply they have density.

We assume now that the measure α(dx) satisfies all the assumptions made in
section A.2, and furthermore its characteristic function satisfies conditions of the
local central limit theorem A.5.1. Then, for n ≥ r, the distribution of Ŝn on R has
a density that we denote by fn(x).
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Theorem A.5.2 For any y ∈ Do
I we have

lim
n→∞

1

n
log fn(y) = −I(y) . (A.5.2)

Proof.

Let τyα the translation of the measure α by y. Assume that m =
∫

xα(dx) = 0,
otherwise just recenter it and consider τmα.

Let y ∈ DI
o. Then by lemma A.2.4 there exists a unique λ ∈ DZ

o such that
y = Z ′(λ), λ = I ′(y), and I(y) = λy −Z(λ). Define

α̃(y, dx) =
1

M(λ)
e(x+y)λτyα(dx)

Observe that this is a probability distribution with 0 average. In fact∫
α̃(y, dx) =

1

M(λ)

∫
ezλα(dz) = 1

and ∫
xα̃(y, dx) = −y +

1

M(λ)

∫
zezλα(dz) = −y + Z ′(λ) = 0

So we treat here y as a parameter. Let Xy
1 , . . . , Xy

n i.i.d. random variables with law
given by α̃(y, dx).

For n ≥ r it exists the density for the distribution of (Xy
1 + · · · + Xy

n)/n that
we denote by fn(x, y), and it is equal to

fn(x, y) =
en(x+y)λ

M(λ)n
fn(x + y) = en(I(y)+λx)fn(x + y)

To prove this formula, compute, for a given bounded measurable function G(·):

E (G((Xy
1 + · · ·+ Xy

n)/n)) =

∫
Rn

G(ŝn)en(I(y)+λŝn)τyα(dx1) . . . τyα(dxn)

=

∫
R

G(ŝ)en(I(y)+λŝ)fn(ŝ + y)dŝ

(A.5.3)

It follows that
fn(y) = e−nI(y)fn(0, y)

To conclude we only need to prove that (log fn(0, y))/n → 0 as n →∞.

Let f̃n(x, y) the density of (Xy
1 +· · ·+Xy

n)/
√

n. Then fn(x, y) =
√

nf̃n(
√

nx, y).
By the local central limit theorem A.5.1, the result follows immediately. �
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For y ∈ R define ν
(n)
y (dx1, . . . , dxn) the conditional distribution of (X1, . . . , Xn)

on the hyperplane x1 + · · ·+xn = ny. This is defined as the probability measure on
Rn−1 satisfying the relation

E
(
G(Ŝn)H(X1, . . . , Xn)

)
=

∫
R

dyfn(y)G(y)

∫
H(x1, . . . , xn)ν(n)

y (dx1, . . . , dxn)

Lemma A.5.3 Let F be a bounded continuous function on R and y ∈ Do
I , λ = I ′(y).

For every θ ∈ R, the limit

lim
n→∞

1

n
log

∫
eθ(F (x1)+....+F (xn))ν(n)

y (dx1, . . . , dxn) = G(y, θ) (A.5.4)

exists and G is differentiable at θ = 0 with

∂G(y, θ)

∂θ

∣∣∣
θ=0

=

∫
F (x)αλ(dx). (A.5.5)

Proof Denote by Hn(y, θ) the function∫
eθ(F (x1)+....+F (xn))ν(n)

y (dx1, . . . , dxn) =
Hn(y, θ)

fn(y)
(A.5.6)

which, by (A.5.3), can be formally written as

Hn(y, θ) =

∫
x1+···+xn=ny

eθ(F (x1)+....+F (xn))α(dx1) . . . α(dxn).

Let us denote

a(θ) =

∫
eθF (x)α(dx), M(λ, θ) =

1

a(θ)

∫
eλx+θF (x)α(dx)

Then we can compute the Cramér rate function for the law a(θ)−1eθF (x)α(dx), and
this is given by

Iθ(y) = I(y, θ) = sup
λ̄

{
λ̄y − log M(λ̄, θ)

}
Observe that DIθ

= DI because F is bounded. If (Y1, . . . , Yn) are i.i.d. distributed
by a(θ)−1eθF (x)α(dx), then the density of the distribution of (Y1 + · · · + Yn)/n is
given by a(θ)−nHn(y, θ). Then by applying A.5.2 to this law we obtain

lim
n→∞

1

n
log Hn(y, θ) = −I(y, θ) + log a(θ).
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Consequently we have, applying again A.5.2

lim
n→∞

1

n
log

∫
eθ(F (x1)+....+F (xn))ν(n)

y (dx1, . . . , dxn) = lim
n→∞

1

n
log Hn(y, θ)− lim

n→∞

1

n
log fn(y)

= log a(θ)− I(y, θ) + I(y) ≡ G(y, θ).

Differentiating G(y, θ) we have

∂G(y, θ)

∂θ
=

a′(θ)

a(θ)
− ∂I(y, θ)

∂θ

In order to compute this last expression let us set λ∗(y, θ) = ∂yI(y, θ). Existence of
λ∗(y, θ) is provided by the assumption y ∈ Do

I and the equality between the sets DI

and DIθ
. We have

I(y, θ) = λ∗y − log M(λ∗, θ).

Then, since ∂λ log M(λ∗, θ) = y, we get

∂θI(y, θ) = y∂θλ
∗ −M−1 (∂θM + ∂λM∂θλ

∗) = −∂θ log M(λ∗, θ)

= ∂θ log a(θ)−M−1∂θ

∫
eλx+θF (x)α(dx) =

a′(θ)

a(θ)
−
∫

F (x)eλ∗x+θF (x)−log M(λ∗,θ)α(dx)

So we have

∂θG(y, θ) =

∫
F (x)eλ∗x+θF (x)−log M(λ∗,θ)α(dx)

and sending θ → 0 we obtain

∂θG(y, 0) =

∫
F (x)eλ∗(y,0)x−log M(λ∗(y,0),0)α(dx) =

∫
F (x)αλ(dx)

�

Theorem A.5.4 For any y ∈ Do
I , and any ε > 0

lim
n→∞

ν(n)
y

(∣∣∣∣∣ 1n
n∑

j=1

F (Xj)−
∫

F (x)αλ(dx)

∣∣∣∣∣ ≥ ε

)
= 0 (A.5.7)

Proof. Without loosing any generality, let us assume that
∫

F (x)αλ(dx) = 0.
Consequently G(θ, y) = O(θ2). Then for any θ > 0

ν(n)
y

(∣∣∣∣∣ 1n
n∑

j=1

F (Xj)

∣∣∣∣∣ ≥ ε

)
≤ e−nθε

∫
eθ|

Pn
j=1 F (xj)|ν(n)

y (dx1, . . . , dxn)

≤ e−nθε

∫
eθ

Pn
j=1 F (xj)ν(n)

y (dx1, . . . , dxn)

+e−nθε

∫
e−θ

Pn
j=1 F (xj)ν(n)

y (dx1, . . . , dxn)



A.5. LARGE DEVIATIONS FOR DENSITIES 27

and by (A.5.4)

lim
n→∞

1

n
log ν(n)

y

(∣∣∣∣∣ 1n
n∑

j=1

F (xj)

∣∣∣∣∣ ≥ ε

)
≤ −θε + max{G(θ, y), G(−θ, y)}

Optimizing the above bound in θ one obtains

lim
n→∞

1

n
log ν(n)

y

(∣∣∣∣∣ 1n
n∑

j=1

F (xj)

∣∣∣∣∣ ≥ ε

)
≤ −Cε2

for some positive constant C. �

Observe that ν
(n)
y is a symmetric measure, so we have∫

F (x1)ν
(n)
y (dx1, . . . , dxn) =

∫
1

n

n∑
j=1

F (xj)ν
(n)
y (dx1, . . . , dxn) −→

n→∞

∫
F (x)αλ(dx)

Theorem A.5.5 Let F (x1, . . . , xk) a bounded continuous function on Rk and y ∈
Do

I , then

lim
n→∞

∫
F (x1, . . . , xk)ν

(n)
y (dx1, . . . , dxn) =

∫
F (x1, . . . , xk)αλ(dx1) . . . αλ(dxk)

Proof. It is enough to consider functions of the form F (x1, . . . , xk) = F1(x1) . . . F (xk).
For simplicity let us prove the case k = 2, the generalization to any k is straight-
forward. Without loosing generality, let us assume that

∫
Fj(x)αλ(dx) = 0. By the

exchange symmetry of ν
(n)
y we have∫

F1(x1)F2(x2)ν
(n)
y (dx1, . . . , dxn) =

∫
1

n(n− 1)

∑
i6=j

F1(xi)F2(xj)ν
(n)
y (dx1, . . . , dxn)

=

∫
n2

n(n− 1)

(
1

n

∑
i

F1(xi)

)(
1

n

∑
j

F2(xj)

)
ν(n)

y (dx1, . . . , dxn) + O

(
1

n

)
and this last expression converges to 0 an n →∞ by (A.5.7) .

�

The generalization to more dimensions of the above results is quite straight-
forward and can be left as exercise. Let us state here what the result is in this
context.
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Let α(dx) a probability measure on Rd that satisfies conditions used in section
A.3. Let us assume that its characteristic function is such that |φ(k)| < 1 for k 6= 0,
and such that |φ(k)|r is integrable on Rd for some integer r ≥ 1. Then, for n ≥ r
the n-convolution of α has a density and we denote by fn(x) the density of the
distribution of (X1 + · · ·+ Xn)/n, where {Xj} are i.i.d. with common distribution
α(dx).

Theorem A.5.6 For any y ∈ Do
I we have

lim
n→∞

1

n
log fn(y) = −I(y) . (A.5.8)

Example Let V : R → R+ a positive function such that V (y) → +∞ for
|y| → +∞, and such that

Z(λ, β) =

∫
e−βV (y)+λydy < ∞ ∀ λ ∈ R, β > 0.

Then we can define the probability density (on R2)

fλ,β(r, p) =
e−β(V (r)+p2/2)+λr√

2πβ−1Z(λ, β)
(A.5.9)

Let {Yj = (rj, pj)} be a sequence of i.i.d. random variables with common law
given by f0,β0(r, p)dr dp, β0 > 0 fixed.

Then the vector valued random variables Xj = (rj, (V (rj)+p2
j/2)) clearly has

a law α(dx) which is degenerate in R2 but α ∗ α has a density w.r.t. the Lebesgue
measure. Its logarithmic moment generating function is given by

Z(λ, η) = log

∫
eλr+η(V (r)+p2/2)f0,β(r, p)drdp = log

Z(λ, β0 − η)

Z(0, β0)

√
β0

β0 − η


for η < β0 and +∞ otherwise. The corresponding Legendre transform, for r ∈ R
and E > 0, is given by

I(r, E) = sup
η<β0,λ

{λr + ηE − logZ(λ, η)}

= sup
β>0,λ

{
λr − βE − log

(√
2πβ−1Z(λ, β)

)}
+ β0E + log

(√
2πβ−1

0 Z(0, β0)

)
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The function defined by

S(r, E) = inf
λ,β>0

{
−λr + βE − log

(
Z(λ, β)

√
2πβ−1

)}
(A.5.10)

is called thermodynamic entropy. So we have obtained

I(r, E) = −S(r, E) + β0E + log Z(0, β0) +
1

2
log

2π

β0

Observe that S does not depend on β0.

The density of the distribution of 1
n

∑n
j=1 Xj is given by

fn(r, E)

=

∫
R2n

e−β0
P

j Ej

(2πβ−1
0 )n/2Z(0, β0)n

δ

(
1

n

n∑
j=1

Ej − E ;
1

n

n∑
j=1

rj − r

)∏
j

drjdpj

=
e−nβ0E

(2πβ−1
0 )n/2Z(0, β0)n

∫
R2n

δ

(
1

n

n∑
j=1

Ej − E ;
1

n

n∑
j=1

rj − r

)∏
j

drjdpj

=
e−nβ0E

(2πβ−1
0 )n/2Z(0, β0)n

Γn(r, E).

where Γn(r, p, E) is the volume of the corresponding 2n − 2-dimensional surface on
R2n and does not depend on β0. Applying (A.5.8) we obtain

lim
n→∞

1

n
log Γn(r, E) = S(r, E) . (A.5.11)

for any (r, E) ∈ Do
S. A sufficient condition to have D0

S = R × (0,∞) is V (r) ≥ cr2

for a positive constant c.
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