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Es gibt für Jeden keinen anderen Weg der Entfaltung und Erfüllungals den der mögli
hst vollkommenen Darstellung des eigenen Wesens.
≫ Sei Du Selbst ≪ ist das ideale Gesetz, zu mindest für den jungenMens
hen, es gibt keinen andern Weg zur Warheit und zur Entwi
k-lung.Daÿ dieser Weg dur
h viele moralis
he and andre Hindernisse er-s
hwert wird, daÿ die Welt uns lieber angepaÿt und s
hwa
h sieht alseigensinnig, daraus entsteht für jeden mehr als dur
hs
hnittli
h indivi-dualisierten Mens
hen der Lebenskampf. Da muÿ jeder für si
h allein,na
h seinen eigenen Kräften und Bedürfnissen, ents
heiden, wieweiter si
h der Konvention unterwerfen oder ihr trotzen will. Wo er dieKonvention, die Forderungen von Familie, Staat, Gemeins
haft in denWind s
hlägt, muÿ er es tun mit dem Wissen darum, daÿ es auf seineeigene Gefahr ges
hieht. Wiewiel Gefahr einer auf si
h zu nehmen fähigist, dafür gibt es keinen objektiven Maÿstab. Man muÿ jedes Zuviel,jedes Übers
hreiten des eigenen Maÿes büÿen, man darf ungestraft we-der im Eigensinn no
h im Anpassen zu weit gehen.Hermann Hesse, Eigensinn ma
ht Spaÿ
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Quelques méthodes mathématiques pour la simulation molé
ulaire etmultié
helleRésumé : Ce travail présente quelques 
ontributions à l'étude théorique et numérique des mo-dèles utilisés en pratique pour la simulation molé
ulaire de la matière. En parti
ulier, on présenteet on analyse des méthodes numériques sto
hastiques dans le domaine de la physique statistique,permettant de 
al
uler plus e�
a
ement des moyennes d'ensemble. Une appli
ation parti
ulière-ment importante est le 
al
ul de di�éren
es d'énergies libres, par dynamiques adaptatives ou horsd'équilibre. On étudie également quelques te
hniques, sto
hastiques ou déterministes, utilisées en
himie quantique et permettant de résoudre de manière appro
hée le problème de minimisationasso
ié à la re
her
he de l'état fondamental d'un opérateur de S
hrödinger en dimension grande.On propose en�n des modèles réduits permettant une des
ription mi
ros
opique simpli�ée desondes de 
ho
 et de détonation par le biais d'une dynamique sto
hastique sur des degrés de libertémoyens, appro
hant la dynamique hamiltonienne déterministe du système 
omplet.Mots-
lés : Equations aux dérivées partielles, équations di�érentielles sto
hastiques, systèmesdynamiques en physique statistique, méthodes de Monte-Carlo, ondes de 
ho
.
Some Mathemati
al Methods for Mole
ular and Multis
ale SimulationAbstra
t: This work presents some 
ontributions to the theoreti
al and numeri
al study of mo-dels used in pra
ti
e in the �eld of mole
ular simulation. In parti
ular, sto
hasti
 te
hniques to
ompute more e�
iently ensemble averages in the �eld of 
omputational statisti
al physi
s arepresented and analyzed. An important appli
ation is the 
omputation of free energy di�eren
esusing nonequilibrium or adaptive dynami
s. Some sto
hasti
 or deterministi
 te
hniques to solveapproximately the S
hrödinger ground state problem for high dimensional systems are also studied.Finally, some redu
ed models for sho
k and detonation waves, relying on an average sto
hasti
dynami
s reprodu
ing in a mean sense the high dimensional deterministi
 hamiltonian dynami
s,are proposed.Keywords: Partial di�erential equations, sto
hasti
 di�erential equations, dynami
al systems instatisti
al physi
s, Monte-Carlo methods, sho
k waves.
AMS Classi�
ation: 35P05, 35J60, 37A25, 37A60, 65C30, 65C40, 76L05, 82B30, 82B35.
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1Preamble
1.1 Presentation of the main resultsDuring my PhD, I studied several te
hniques for Mole
ular Simulation, from an applied ma-themati
al viewpoint. These studies 
an be 
lassi�ed in three domains:(A) mathemati
al and numeri
al analysis of some models of quantum 
hemistry (Part IV);(B) mathemati
al and numeri
al analysis of sampling s
hemes in mole
ular dynami
s, with aspe
i�
 fo
us on sto
hasti
 te
hniques and free-energy di�eren
es 
omputations (Part II);(C) redu
tion of dimensionality for sho
k waves (Part III).1.1.1 Quantum 
hemistryThe methods I studied in quantum 
hemistry are not mainstream methods, but are nonethelessvery interesting:(a) together with Mi
hel Caffarel, Eri
 Can
ès, Tony Lelièvre, and Anthony S
e-mama, we proposed a new sampling method for Variational Monte-Carlo (see [P8℄ andChapter 6), whi
h proved to be more e�
ient and more robust, at least for the ben
hmarksystems 
onsidered. This new sampling pro
edure is an extension of usual sampling s
hemesin position spa
e to sampling s
hemes in phase-spa
e (
onsidering some �
titious momenta,it amounts to repla
ing the traditional biased random-walk used in Variational Monte-Carloby a phase-spa
e Langevin dynami
s);(b) with Eri
 Can
ès and Mathieu Lewin we proposed a dual formulation of the ele
troni
minimization problem stated in terms of se
ond-order redu
ed density matri
es (see [P9℄and Chapter 7), and tested the method on a set of small mole
ules;(
) I also studied the Optimized E�e
tive Potential problem (vaguely stated, the lo
al potentialin the Kohn-Sham equations yielding the best Hartree-Fo
k ex
hange energy). In parti-
ular, we pre
ised with Eri
 Can
ès from a mathemati
al viewpoint the proposition ofErnest Davidson, Arthur Izmaylov, Gustavo S
useria, and Viktor Staroverov,who de�ne an E�e
tive Lo
al Potential through another minimization pro
edure to remedy
onvergen
e problems arising in pra
ti
al 
omputations (see [P5℄, [A2℄ and Chapter 8).1.1.2 Mole
ular dynami
s and free-energy 
omputationsMy fo
us in this domain is on sto
hasti
 te
hniques to 
ompute quantities of interest in Sta-tisti
al Physi
s.(a) I �rst 
ompared di�erent sampling te
hniques for mole
ular dynami
s, both from theoreti
aland numeri
al viewpoints. This was done in 
ollaboration with Eri
 Can
ès and Frédéri
Legoll (see [P3℄ and Chapter 3).



2 1 Preamble(b) I then turned to the 
omputation of free-energy di�eren
es:(i) �rst using non-equilibrium dynami
s and the Jarzynski equality. This equality wasproperly derived only in the 
ase when the transition is parametrized by some ex-ternal parameter (the so-
alled al
hemi
al transitions), and so, together with TonyLelièvre andMathias Rousset, we proposed an extension to the 
ase when a rea
-tion 
oordinate indexes the transition, using a proje
ted sto
hasti
 dynami
s (see [P6℄and Se
tion 4.1.2). WithMathias Rousset, we also proposed an equilibration pro
e-dure of the swit
hing done at �nite rate (trough some birth/death pro
ess) in order toavoid the degenera
y of weights in the Jarzynski equality (see [P10℄ and Se
tion 4.2);(ii) More re
ently, we turned to adaptive methods for the 
omputation of free-energy dif-feren
es. We proposed, still with Tony Lelièvre and Mathias Rousset, a generalformalism to present all the adaptive strategies in a uni�ed framework, showed thata stationary state exists, and proposed a sele
tion pro
edure to improve the adaptivemethods when parallel implementations are 
onsidered (see [P4℄ and Se
tion 4.4.1).Finally, a work in progress with Tony Lelièvre, Felix Otto, andMathias Rous-set, is to rigorously prove the 
onvergen
e of some limiting dynami
s within thisframework using entropy methods (see [A1℄ and Se
tion 4.4.2).(
) I also proposed some extensions to the usual path sampling te
hniques when sto
hasti
dynami
s are used (see [P1℄ and Se
tion 4.3).1.1.3 Redu
ed models for sho
k wavesThe work in this �eld was mainly done at CEA (Fren
h Atomi
 Authority), with Jean-Bernard Maillet and Laurent Soulard. The aim of my work was to �nd some redu
edmesos
opi
 model to des
ribe the main features of sho
k and detonation waves:(a) I �rst proposed a simpli�ed one-dimensional model, suited for 
rystalline solids (see [P11℄and Se
tion 5.1);(b) I then proposed a three dimensional redu
ed model for sho
k waves based on some Dissipa-tive Parti
le Dynami
s model (see [P7℄ and Se
tion 5.2.2);(
) With Jean-Bernard Maillet and Laurent Soulard, we 
ould then extend this modelto the rea
tive 
ase (see [P2℄ and Se
tion 5.2.3).The models proposed in [P7,P2℄ have �rm thermodynami
 grounds, and the 
orresponding nume-ri
al results are in good agreement with all-atom studies, in a qualitative [P2℄ and quantitative [P7℄way.



1.3 Other works 31.2 List of published or a
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2Mole
ular Simulation: A Hierar
hy of Models
2.1 Quantum des
ription of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.1 The S
hrödinger equation and the ground state problem . . . . . . . . . . . . 112.1.2 Dire
t sear
h of the ground state energy . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.3 Se
ond-order redu
ed density matri
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.4 Wavefun
tion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.5 Density fun
tional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2 Classi
al des
ription of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.1 Des
ription of matter at the mi
ros
opi
 level . . . . . . . . . . . . . . . . . . . . . . 212.2.2 The mi
ro
anoni
al ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.3 The 
anoni
al ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.2.4 Other thermodynami
 ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2.5 Time-dependent properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.3 Towards longer simulation times and larger system sizes . . . . . . . . . . 262.3.1 Free-energy 
omputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.2 Ta
kling the time-s
ale problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.3.3 Redu
ed dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Quantum and Statisti
al Physi
sQuantum and statisti
al physi
s are two important domains of 
ontemporary physi
s, bothdes
ribing matter at the atomi
 level (see respe
tively Se
tion 2.1 and 2.2). Quantum physi
s
onsiders protons, neutrons and ele
trons, subje
ted to the S
hrödinger equation, whereas sta-tisti
al physi
s may be applied to quantum or 
lassi
al systems.1 In the latter 
ase, the theoryaims at des
ribing the behavior of atoms, an entity arising as the reunion of a nu
leus (made ofprotons and neutrons) and its ele
troni
 
loud. Some important physi
al 
onstants are re
alledin Table 2.1. From these 
onstants, the typi
al orders of magnitudes of the des
ription of matterat the mi
ros
opi
 level 
an be inferred: The typi
al distan
es are expressed in Å (10−10 m), theenergies are of the order of kBT ≃ 4 × 10−21 J at room temperature for 
lassi
al systems whilefor quantum systems energies are measured in Hartrees (1 Ha = 27.2 eV = 43.6 × 10−19 J), andthe typi
al times range from 10−17 s to 10−15 s depending whether quantum or 
lassi
al systemsare 
onsidered (so that the typi
al mass to 
onsider is the mass of the ele
tron or the mass of theproton).

1 The term 
lassi
al will often be employed as opposed to quantum in the sequel (and not as a synonymousof usual. . . ).



8 2 Mole
ular Simulation: A Hierar
hy of ModelsIn all 
ases, the orders of magnitude used in the mi
ros
opi
 des
ription of matter are far fromthe ma
ros
opi
 quantities we are used to � as is the number of parti
les under 
onsideration,sin
e ma
ros
opi
 materials 
ontain NA ∼ 1023 parti
les! Fortunately, statisti
al physi
s allows tobridge the gap between mi
ros
opi
 and ma
ros
opi
 des
riptions of matter, in parti
ular(i) in the framework of the thermodynami
 limit, where the number of parti
les in the mi
ro-s
opi
 des
ription of the system goes to in�nity, as well as the volume of the sample ofmatter, the density being �xed. This kind of limit 
an however be justi�ed rigorously insome 
ases only (see for example the book by Ruelle [293℄ for results 
on
erning 
lassi
alstatisti
al physi
s, and the book by Catto, Le Bris and Lions [55℄ for results aboutquantum models);(ii) in 
ertain limiting physi
al regimes (low density, weak 
oupling, mean-�eld,. . . ), the mi-
ros
opi
 system 
an be des
ribed by a kineti
 equation on the single-parti
le density �su
h as the Boltzmann equation (for a mathemati
al justi�
ation of these limits, see thereviews by Spohn, espe
ially the paper [318℄ and the book [319℄).Table 2.1. Some important physi
al 
onstants or quantities in quantum and statisti
al physi
s.Physi
al 
onstant Usual notation ValueAvogadro number NA 6.02 × 1023Boltzmann 
onstant kB 1.381 × 10−23 J/KRedu
ed Plan
k 
onstant ~ 1.054 × 10−34 JsElementary 
harge e 1.602× 10−19 CEle
tron mass me 9.11 × 10−31 kgProton mass mp 1.67 × 10−27 kgPermittivity of the va
uum ε0 8.854 × 10−12 F/mEle
tron-Volt eV 1.602 × 10−19 JComputational Quantum and Statisti
al Physi
sHow pleasant this link is from a theoreti
al viewpoint, su
h 
onsiderations 
annot hold forpra
ti
al numeri
al 
omputations of matter at the mi
ros
opi
 level sin
e this would require si-mulating NA atoms and performing O(1015) time integration steps. These numbers should be
ompared with the 
urrent orders of magnitude of the problems that 
an be ta
kled with 
lassi
almole
ular simulation, su
h as the simulation of the 
omplete satellite toba

o mosai
 virus [111℄,whi
h involved 1 million atoms over 50 ns, or the folding simulations of the Villin headpie
e,2where a total traje
tory of 500 µs was integrated for 20,000 atoms.Computational mole
ular simulation, despite its limitations, has however been used and de-veloped in the past �fty years in order to test theories on 
omputers before their appli
ations tothe real world. It is a 
urrent alternative to approximate theories des
ribing simpli�ed models,hen
e the name of �numeri
al experiment�. This use of mole
ular simulation is parti
ularly 
learin its histori
 development, whi
h was triggered and sustained by the physi
s of simple liquids, forwhi
h there was no good analyti
al theory (see the pioneering work ofMetropolis,Rosenbluth,Rosenbluth, Teller and Teller [238℄ in 1953, and the �rst mole
ular dynami
s simulation ofAlder andWainwright in 1956 [3℄). Computational quantum 
hemistry also started in the 50's,with the works of Hall [149℄ and Roothan [288℄ in 1951, and the work of Kohn and Sham [195℄in 1965 for 
ondensed matter studies.
2 See the website of the Folding�Home proje
t: http://folding.stanford.edu/



2.1 Quantum des
ription of matter 9The numeri
al mi
ros
opeMole
ular simulation 
an be used as a numeri
al mi
ros
ope. Indeed, understanding the beha-vior of matter at the mi
ros
opi
 level 
an be di�
ult from an experimental viewpoint (be
ause ofthe high resolution required, both in time and in spa
e), or be
ause we simply do not know whatto look for! Numeri
al simulations are then a valuable tool to test some ideas or obtain some datato pro
ess and analyze in order to help assessing experimental setups. This is parti
ularly true for
urrent nanos
ale systems. Nevertheless, 
omputer experiments 
annot simply repla
e real-worldexperiments: they should merely be seen as a 
onvenient �rst step in the 
onstru
tion of newtheories.Computation of average properties of physi
al systemsOne of the major aims of mole
ular simulation is to 
ompute average properties of systems -i.e. ma
ros
opi
 quantities that 
ould also be measured through experiments, but are 
omputedsin
e experiments may be unfeasible or too 
ostly. A famous instan
e of su
h 
omputations is theinvestigation of the earth's inner 
ore properties using ab-initio 
omputations [316℄. More generally,numeri
al experiments be
ome very attra
tive when high pressure or temperature regimes are
onsidered.Statisti
al physi
s also allows to bridge the gap between physi
al systems simulated at themi
ros
opi
 level, and ma
ros
opi
 quantities of interest, through averages over thermodynami
ensembles:
〈A〉 =

∫

MN×R3N

A(q, p) dµ(q, p). (2.1)In this expression, the fun
tion A ≡ A(q, p) is an observable, and the position variable q =

(q1, . . . , qN ) ∈ MN while the momentum variable p = (p1, . . . , pN ) ∈ R3N . The measure µ is aprobability measure depending on the thermodynami
 ensemble used. These quantities will bepre
ised in Se
tion 2.2.An example of observable is the bulk pressure P in a Lennard-Jones liquid. For parti
les ofmasses mi, des
ribed by their positions qi and their momenta pi, it is given by P = 〈A〉 with
A(q, p) =

1

3|M|

N∑

i=1

( |pi|2
mi

− qi ·
∂V

∂qi
(q)

)
,where |M| is the volume o

upied by the system, and the potential energy fun
tion V is givenby (2.26)-(2.27).In pra
ti
e, su
h averages 
an be 
omputed with very small systems 
ompared to the a
tualsizes of ma
ros
opi
 systems (provided the intera
tion potentials are short-ranged). For example,the equation of state of Figure 2.1 has been 
omputed with a system of a few thousands parti
lesonly, 20 orders of magnitude below the Avogadro number. The agreement with experimentalmeasurements is however very good, and high-pressure results not easily obtained with experiments
an be 
omputed.2.1 Quantum des
ription of matterWe will 
onsider in this se
tion a mole
ular system 
omposed of M nu
lei, 
onsidered �xed atthe positions x̄i ∈ R3 (1 ≤ i ≤ M), and N ele
trons, with position and spin variables denotedrespe
tively by xj ∈ R3 and σj ∈ {| ↑ 〉, | ↓ 〉} (1 ≤ j ≤ N). The state of the system is des
ribed attime t by a wavefun
tion

ψ(t; (x1, σ1), . . . , (xN , σN )) ∈ C.
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Fig. 2.1. Numeri
al equation of state of argon at T = 300 K ('+') and experimental referen
e 
urve(solid line). The ideal gas regime is plotted in dash-dotted line.For the wavefun
tion ψ to be an admissible physi
al state, the following requirements must besatis�ed:(i) Normalization: the wavefun
tion is normalized for the L2 norm, that is
∑

σ1∈{|↑ 〉,|↓ 〉}
. . .

∑

σN∈{|↑ 〉,|↓ 〉}

∫

R3N

|ψ(t, (x1, σ1), . . . , (xN , σN ))|2 dx1 . . . dxN = 1. (2.2)This property results from the interpretation of |ψ(t, ·)|2 as a probability density;(ii) Indistinguishability of identi
al parti
les: The Pauli prin
iple requires that the wavefun
-tion is antisymmetri
 under the ex
hange of 
oordinates (position, spin) of two identi
alparti
les. More pre
isely, for a permutation p of the indi
es {1, . . . , N} of signature ε(p),
ψ(t, (xp(1), σp(1)), . . . , (xp(N), σp(N))) = ε(p)ψ(t, (x1, σ1), . . . , (xN , σN )).The admissible fun
tions are therefore the elements of the spa
e

H =

N∧

i=1

L2
(
R3 × {| ↑ 〉, | ↓ 〉}, C

)
.with norm 1 (for the s
alar produ
t indu
ed by (2.2)).To pre
ise further the fun
tional spa
e, we introdu
e the Hamiltonian of the system

H = −
N∑

i=1

~2

2m
∆xi −

N∑

i=1

M∑

k=1

Zke
2

4πε0|xi − x̄k|
+

∑

1≤i<j≤N

e2

4πε0|xi − xj |
,where Zke is the 
harge of the k-th nu
leus and m is the mass of the ele
tron. In the sequel, wewill 
onsider atomi
 units, for whi
h

m = 1, e = 1, ~ = 1,
1

4πε0
= 1.In this 
ase, the mass unit is 9.11×10−31 kg, the length unit is the Bohr radius a0 = 5.29×10−11 m,the time unit is 2.42×10−17 s, and the energy unit is the Hartree Ha = 4.36×10−18 J = 27.2 eV =627 k
al/mol. This 
hange of units allows to 
onsider more intuitive values of physi
al quantities:for small systems at equilibrium (N and Z =

∑M
k=1 Zk small), the typi
al distan
es between an



2.1 Quantum des
ription of matter 11ele
tron and the nu
lei where it is bound to are of the order of the Bohr radius, and the energiesat equilibrium are of the order of several Ha. The Hamiltonian reads, in atomi
 units,
H = −

N∑

i=1

1

2
∆xi −

N∑

i=1

M∑

k=1

Zk
|xi − x̄k|

+
∑

1≤i<j≤N

1

|xi − xj |
. (2.3)In the sequel, we will denote

Vnuc(x) = −
M∑

k=1

Zk
|x− x̄k|

.The Hamiltonian operator (2.3) is self-adjoint on H (for an introdu
tion to the spe
tral theory ofquantum Hamiltonians, see the books by Reed and Simon [277℄ or Dautray and Lions [99℄).2.1.1 The S
hrödinger equation and the ground state problemWe will be interested in the sequel in ground-state properties of systems des
ribed at the quan-tum level, i.e. �nding the lowest eigenvalue of the operator H , and the 
orresponding eigenve
tor.To this end, the following minimization problem is introdu
ed:
E = inf{〈ψ,Hψ〉 | ψ ∈ H, ‖ψ‖L2 = 1}. (2.4)A minimizer of (2.4) is an eigenve
tor of the Hamiltonian asso
iated with E:

Hψ = Eψ.The existen
e of minimizers for (2.4) for Coulombi
 potentials is ensured when ∑M
k=1 Zk ≥ N byresults of spe
tral theory [99, 277, 377℄. Sin
e H is a real valued operator, the minimization 
anbe restri
ted to real-valued fun
tions. A
tually, in view of the Lapla
ien in the Hamiltonian (2.3),the minimization in (2.4) 
an even be restri
ted to fun
tions in

H1 =
N∧

i=1

H1
(
R3 × {| ↑ 〉, | ↓ 〉}, C

)
.Remark 2.1. In order to avoid unne
essarily heavy notations, the dependen
e of the ground-stateenergy on the nu
lei positions x̄1, . . . , x̄M is not denoted expli
itely. It is however 
onvenient toexpli
itely parametrize the ground-state energy as

U(x̄1, . . . , x̄M ) = inf {〈ψ,Hx̄1,...,x̄Mψ〉 | ψ ∈ H, ‖ψ‖L2 = 1} (2.5)to study the dynami
s of the system and its statisti
al properties (see Se
tion 2.2). The fun
tion Ude�ned in (2.5) is in this 
ase the intera
tion potential between the parti
les. The whole pro
edureis referred to as ab-initio mole
ular dynami
s. It relies on the approximation that the evolution ofthe ele
troni
 and nu
lear degrees of freedom 
an be de
oupled, more pre
isely that the ele
troni
degrees of freedom 
an be des
ribed by a wavefun
tion where only the positions of the nu
lei enteras parameters (in parti
ular, it is not ne
essary to take the nu
lear momenta into a

ount). Moremathemati
al pre
isions on this approximation (the so-
alled Born-Oppenheimer approximation)
an be found in the book by Teufel [342℄.For simpli
ity, we omit in the sequel the spin variable in the minimization (2.4) sin
e themathemati
al di�
ulties are left un
hanged.



12 2 Mole
ular Simulation: A Hierar
hy of Models2.1.2 Dire
t sear
h of the ground state energyWe present in this se
tion methods to solve dire
tly (possibly, only approximately) the mini-mization problem (2.4). This is a non-trivial task sin
e the minimization is performed in L2(R3N )(with 3N large), so that usual optimization te
hniques are usually hopeless, ex
ept for smallsystems.Variational Monte-CarloThe variational Monte-Carlo (VMC) method relies on the following upper bound for theground-state energy (2.4): for an arbitrary fun
tion ψ ∈ H,
E ≤ 〈ψ,Hψ〉

〈ψ, ψ〉 =

∫

R3N

EL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
, (2.6)with EL(x) = [Hψ](x)/ψ(x). The fun
tion EL(x) is 
alled the lo
al energy of the fun
tion ψ.Remark that if ψ is an eigenfun
tion of H asso
iated with the eigenvalue E, EL(x) = E for all x,and in this 
ase the varian
e of EψL (with respe
t to the measure of density |ψ(x)|2) is zero.VMC 
al
ulations are usually performed with trial wavefun
tions ψ that are good approxi-mations of some ground state wavefun
tion ψ0. These wavefun
tions are often sums of single de-terminantal wavefun
tions built upon Slater-type atomi
 orbitals, multiplied by a Jastrow fa
tor(see Eq. (6.8) for more pre
isions, and the mathemati
al analysis by Fournais, Hoffmann-Ostenhof, Hoffmann-Ostenhof and Ostergaard Sorensen [110℄ to motivate the intro-du
tion of the Jastrow 
orrelation terms). When several su
h trial wavefun
tions are 
onsidered,possibly depending on some parameters, and when these parameters are optimized (to minimizethe energy or the varian
e of EψL), good upper bounds to the ground-state energy 
an be obtained(see in parti
ular the work by Umrigar and Fillippi [351℄ for su
h a study).In pra
ti
e, the expe
tation value in (2.6) 
an be seen as the average of the quantity EL withrespe
t to the probability measure Z−1

ψ |ψ(x)|2 dx (with Zψ =
∫

R3N |ψ|2). Sin
e the integrationin (2.6) is performed in a high dimensional spa
e, it is natural to resort to sto
hasti
 te
hniques.Su
h te
hniques are presented in Chapter 3 and 
an all be adapted to the VMC framework. In par-ti
ular, we have shown in [P8℄, with E. Can
ès, M. Caffarel, A. S
emama and T. Lelièvre,that it is interesting to repla
e the gradient dynami
s traditionally used in the VMC 
ommunityby a Langevin type dynami
s (with some te
hni
al adaptations, see Chapter 6 for a more detailedpresentation of this new strategy and the 
orresponding numeri
al results).Di�usion Monte-CarloThe Di�usion Monte-Carlo (DMC) method 
onsists in remarking that the ground state of anellipti
 operator 
an be re
overed as the longtime limit of a di�usion pro
ess. Indeed, when theHamiltonian is self-adjoint and there exists a spe
tral gap γ > 0 in the dis
rete spe
trum betweenthe �rst eigenvalue (assumed to be a isolated eigenvalue of multipli
ity 1) and the se
ond one, thesolution of
∂φ

∂t
= −Hφ, φ(0, x) = ψI(x), (2.7)is su
h that

‖eE0tφ(t) − 〈ψI , ψ0〉ψ0‖ ≤ Ce−γt,where ψ0 denotes a ground-state wavefun
tion, and E0 the asso
iated ground-state energy. It 
analso be shown that the energy 
omputed at time t 
onverges exponentially fast to the ground-stateenergy; more pre
isely,
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0 ≤ 〈ψI , Hφ(t)〉

〈ψI , φ(t)〉 − E0 ≤ 〈HψI , ψI〉 − E0

〈ψ0, ψI〉
e−γt.In pra
ti
e, it is on
e again di�
ult to solve dire
tly (2.7) be
ause of the high dimension ofthe partial di�erential equation. Sto
hasti
 methods are therefore used: (2.7) is interpreted as theFokker-Plan
k equation asso
iated with a sto
hasti
 di�erential equation (SDE), and the ground-state energy is estimated by simulating the asso
iated SDE and using a Feynman-Ka
 formula.However, this is not su�
ient as su
h due to large varian
es in the estimates. Importan
e samplingte
hniques are therefore used in pra
ti
e. They 
onsist in 
hoosing a trial wavefun
tion ψI su
hthat EL(x) = [HψI ](x)/ψI(x) is as 
onstant as possible (as for VMC 
al
ulations), 
onsidering φ̃ =

ψIφ, and solving the 
orresponding di�usion equation on φ̃ by sto
hasti
 methods.The introdu
tion of some importan
e sampling fun
tion ψI has however the drawba
k thatthe equation on φ̃ is not 
ompletely equivalent to (2.7). The nodes ψ−1
I (0) of the wavefun
tionimpose indeed additional 
onstraints, and only upper bounds on the energy are obtained. Thisis the so-
alled �xed node approximation. A mathemati
al analysis of the DMC method and the�xed-node approximation is presented by Can
ès, Jourdain and Lelièvre in [50℄.Deterministi
 methodsAlthough the minimization problem (2.4) is a high-dimensional problem, and so, straightfor-ward minimization te
hniques (
onjugated gradient, et
) are usually hopeless, su
h approa
hesare nevertheless interesting to obtain ben
hmark results on small systems. The straightforwardgradient method based on the minimization of

E(ψ) =
〈ψ,Hψ〉
〈ψ, ψ〉leads to iterates of the form

ψn+1 = ψn + cn(H − E(ψn))ψn.This iterative pro
edure is therefore not well-posed in general sin
e the operator H is unboun-ded. To remedy this problem, Nakatsuji proposed to introdu
e some (self-adjoint) regularizationoperator S and to solve the so-
alled s
aled S
hrödinger equation [254, 255℄
SHψ = ES Sψ,where the ground-state energy ES is obtained as

ES = inf

{ 〈ψ, S1/2HS1/2ψ〉
〈ψ, Sψ〉

∣∣∣∣ ψ ∈ H
}
. (2.8)The regularization operator is su
h that S1/2HS1/2 is bounded, and Sψ = 0 implies ψ = 0.A
tually, ES = E, so that the minimization problem (2.8) is equivalent to (2.4). The interest ofthe formulation (2.8) is that the asso
iated gradient minimization

ψn+1 = ψn + cnS
1/2(H − ES(ψn))S1/2ψnis well-posed. Beside the dire
t minimization of (2.4), this pro
edure is also a systemati
 way toimprove trial wavefun
tions for VMC or DMC pro
edures [255℄.A more 
ommon approa
h to obtain ben
hmark results for small systems is to resort to full
on�guration intera
tion (full CI) 
omputations. In this 
ase, some Galerkin basis (φ1, . . . , φNb

)ofH1 (Nb ≥ N) is introdu
ed. Denoting by I the set ofN -tuples of distin
t elements of {1, . . . , Nb},the minimization is performed over wavefun
tions of the form
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ψ =

∑

i∈I
cI ψI ,where, for I = (i1, . . . , iN) ∈ I, ψI is the Slater determinant ψI = (N !)−1/2 Det(φi1 , . . . , φiN ). Theasso
iated approximated minimization problem

EFCI = inf

{
〈ψ,Hψ〉

∣∣∣∣∣ ψ =
∑

i∈I
cI ψI , ‖ψ‖L2 = 1

}gives an upper bound of the ground-state energy. Noti
e however that the number of determinantsto be 
onsidered in
reases fa
torially with Nb, whi
h is a severe pra
ti
al limitation to the method.2.1.3 Se
ond-order redu
ed density matri
esIt was re
ognized in the 50s by resear
hers su
h as Mayer [232℄, Löwdin [220℄ or Coul-son [72℄, that the wavefun
tion needs not to be known in its full generality to 
ompute theground-state energy of a system des
ribed by a Hamiltonian (2.3) involving only pair intera
tions.Indeed,
〈ψ,Hψ 〉 = Tr(hγ) +

1

2

∫

R3×R3

Γ (x, y ; x, y)

|x− y| dx dy = Tr(KΓ ), (2.9)where the operator
hx = −1

2
∆x + V (x)is self-adjoint on L2(R3), and the 2-body operator

K =
1

2(N − 1)
(hx1 + hx2) +

1

2|x1 − x2|is self-adjoint on L2(R3 × R3). The fun
tions γ and Γ are respe
tively the �rst and se
ond orderredu
ed density matri
es, the p-th order redu
ed density matrix asso
iated with a wavefun
tion ψbeing de�ned as
Γ (p)(x1, . . . , xp; y1, . . . , yp)

=
N !

(N − p)!

∫

R3(N−p)

ψ(x1, . . . , xp, xp+1, . . . , xN )ψ(y1, . . . , yp, xp+1, . . . , xN ) dxp+1 . . . dxN .(2.10)In parti
ular, the �rst and se
ond-order density matri
es are related through
γ(x, y) =

1

N − 1

∫

R3

Γ (x, x2; y, x2) dx2.The formulation (2.9) of the ele
troni
 problem (2.4) shows that the minimization 
an berestri
ted to fun
tions Γ ≡ Γ (2) depending on 4 variables only. However, no ne
essary and su�
ient
onditions are known to ensure that a given se
ond-order redu
ed density matrix (2-RDM) isobtained from a wavefuntion ψ through the 
ontra
tion (2.10) in the 
ase p = 2. This is the so-
alled N -representability problem of 2-RDMs for pure states. An extension of this issue 
onsists in
hara
terizing the density matri
es whi
h are 
onvex 
ombinations of admissible 2-body densityoperators:
Γ (x, y) =

+∞∑

i=1

niΓi(x, y), 0 ≤ ni ≤ 1,
+∞∑

i=1

ni = N,
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ription of matter 15the 2-body density operator Γi being obtained from wavefun
tions ψi ∈ H1 through (2.10) inthe 
ase p = 2. Elements in the set CN of 
onvex 
ombinations of 2-body density operators areensemble se
ond order density matri
es. The �rst works on N -representability have been done byColeman [69℄, and the re
ent monogrpaph by Coleman and Yukalov [71℄ des
ribes the 
urrentsetting of this resear
h �eld (see also Se
tion 7.2). To this date, only ne
essary N -representability
onditions are known; these 
onditions are stated in terms of linear (in)equalities. Therefore, onlylower bounds to the true ground-state energy 
an be re
overed this way (sin
e the variationalspa
e is too large).From a numeri
al viewpoint, the �rst en
ouraging results were obtained in 1975 by Garrod,Mihaillovi
 and Rosina [120℄, and re
ently very good numeri
al results were obtained withsemi-de�nite programming te
hniques, su
h as interior point methods (see Nakata et al. [253℄)and extended Lagrangian formulations (see the papers byMazziotti [234�236℄). With E. Can
èsand M. Lewin, we proposed in [P9℄ a dual approa
h to this minimization problem. Introdu
ingthe augmented Lagrangian
L(Γ,B, µ) = Tr(KΓ ) − Tr(BΓ ) − µ{Tr(Γ ) −N(N − 1)},it 
an be shown

E = inf
Γ

sup
B∈(CN )∗, µ∈R

L(Γ,B, µ)where CN is the 
one of admissible 2-RDMs, and (CN )∗ its polar 
one, the minimization on Γbeing restri
ted to symmetri
 fun
tions. In a dual manner,
E = sup

B∈(CN )∗, µ∈R

inf
Γ

L(Γ,B, µ) = N(N − 1) sup{µ | K − µ ∈ (CN )∗},the minimization on Γ being also restri
ted to symmetri
 fun
tions (see Se
tion 7.3). Therefore,the minimization problem (2.9) 
an be redu
ed to a one-dimensional minimization. The pra
ti
alimplementation of this idea uses a Newton algorithm for the optimization in the µ variable,
ombined with an internal loop to �nd the proje
tion of K − µn onto (CN )∗ at the n-th iteration(see [P9℄ and Algorithm 7.1 in Se
tion 7.3).2.1.4 Wavefun
tion methodsVariational wavefun
tion methods make ansatz on the fun
tional form of the wavefun
tion ψ,and then perform a minimization analogous to (2.4). The most 
ommonly used approximation isthe Hartree-Fo
k (HF) approximation, whi
h 
onsists in restri
ting the variational spa
e in (2.4)to single Slater determinants (whi
h are indeed antisymmetri
 fun
tions):
ψ(x1, . . . , xN ) =

1√
N !

Det(φi(xj)), (2.11)where the N -tuple Φ = {φi}i=1,...,N is su
h that
φi ∈ H1(R3),

∫

R3

φi(x)φj(x) dx = δij .The energy asso
iated with the wavefun
tion (2.11) is
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〈ψ,Hψ〉 = EHF(Φ) =

1

2

N∑

i=1

∫

R3

|∇φi(x)|2 dx−
∫

R3

Vnuc(x)ρΦ(x) dx

+
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy − 1

2

N∑

i=1

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y| dx dy,(2.12)where the �rst-order redu
ed density matrix and density asso
iated with Φ are respe
tively

γΦ(x, y) =

N∑

i=1

φi(x)φi(y), ρΦ(x) = γΦ(x, x).The asso
iated minimization problem is
EHF = inf

{
EHF(Φ)

∣∣∣∣ Φ = {φi}i=1,...,N , φi ∈ H1(R3),

∫

R3

φiφj = δij

}
. (2.13)Sin
e the parti
ular ansatz (2.11) is made, the variational spa
e is too small, the HF energyis an upper bound to the ground-state energy (2.4). The existen
e of a minimizer for (2.13)when Z =

∑M
k=1 Zk > N − 1 has been shown by Lieb and Simon [211℄. However, nothing isknown about the uniqueness of the minimizer (up to an orthogonal transformation on the N -tuple Φ).In physi
al terms, the di�eren
e between the ground-state energy and the Hartree-Fo
k energyis 
alled the 
orrelation energy. Indeed, the assumption (2.11) is some independen
e assumptionof the ele
trons, 
ompatible with the Pauli prin
iple. When the spin variable is 
onsidered, onlytwo ele
trons with the same spin are 
orrelated with the HF ansatz, while for the true wavefun
-tion, ele
trons with di�erent spins are 
orrelated due to the Coulomb intera
tion (whi
h preventsele
trons to be too 
lose one from another).A minimizer of (2.13) satis�es the Hatree-Fo
k equations, whi
h are the Euler-Lagrange equa-tions asso
iated with (2.13) (using the invarian
e through any unitary transform, see for instan
eCan
ès, Defran
es
hi, Kutzelnigg, Le Bris and Maday [53℄):

FΦφi = −1

2
∆φi + Vnucφi +

(
ρΦ ⋆

1

|x|

)
φi +KΦφi = ǫiφi. (2.14)In this expression, the ex
hange operator KΦ is de�ned as

KΦϕ(x) = −
∫

R

γΦ(x, y)

|x− y| ϕ(y) dy. (2.15)Under the assumption Z ≥ N , Lions proved in [214℄ that there are in�nitely many solutionsto the nonlinear eigenvalue problem (2.14). It is not known whi
h additional 
onditions must besatis�ed by the solutions of (2.14) for them to be minimizers of (2.13). On the other hand, if Φ is aminimizer of (2.13), then the 
orresponding eigenvalues ǫi are the N lowest eigenvalues of FΦ [214℄,and ǫN+1 > ǫN (see Ba
h, Lieb, Loss and Solovej [17℄).From a numeri
al viewpoint, �xed-points of (2.14) are sought for, usually through self-
onsistent algorithms; indeed, even if (2.14) is not equivalent to (2.13), (2.14) turns out to beeasier to solve in pra
ti
e. An introdu
tion to the 
orresponding numeri
al te
hniques and to themathemati
al analysis of their 
onvergen
e 
an be read in the book by Can
ès, Le Bris andMaday [52℄ (see also [53℄ for a more 
omprehensive presentation).Many methods were proposed and developed to improve the HF approximation. A 
lassi�-
ation of these so-
alled post Hartree-Fo
k methods is presented in [53℄, where variational andnon-variational approa
hes are distinguished. An example of variational post-HF method is themulti
on�guration self-
onsistent �eld method, for whi
h the wavefun
tion is written as a �nite
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ription of matter 17sum of single Slater determinants (re
all indeed that any admissible wavefun
tion 
an be writtenas an in�nite sum of single determinants). This method has re
ently been investigated from amathemati
al perspe
tive by Friese
ke [114℄ and Lewin [208℄.2.1.5 Density fun
tional theoryThe Hohenberg and Kohn ideaTheHohenberg andKohn theorem [161℄ expresses the fa
t that the knowledge of the ground-state density of a system 
ompletely determines the potential Vnuc (up to a 
onstant), and theground-state wavefuntion ψ. Therefore, the minimization (2.4) over all possible wavefun
tions
an be repla
ed by a minimization over all admissible densities (see (2.18) below). Heuristi
ally, itindeed is expe
ted that the derivative of the ele
troni
 density presents singularities at the positionsof the atomi
 nu
lei, and the strength of these singularities is related to the ele
troni
 
harge ofthe 
orresponding nu
lei (Kato's 
usp 
onditions [190℄). All the parameters of the Coulombi
potential 
an therefore be re
overed from the density.The ele
troni
 energy of a system is de�ned, for an external potential V ∈ L3/2(R3) + L∞(R3)(so that V ≡ Vnuc with the notations used until here), as
E(V ) = inf

ψ∈H1

{〈
ψ,

(
H0 +

N∑

i=1

V (xi)

)
ψ

〉}
= inf
ψ∈H1

{
〈ψ,H0ψ〉 +

∫

R3

ρψV

}
, (2.16)where the Hamiltonian

H0 =

N∑

i=1

−1

2
∆xi +

∑

1≤i<j≤N

1

|xi − xj |
,does not depend on V , and where ρψ is the ele
troni
 density asso
iated with the wavefun
tion ψthrough

ρψ(x) = N

∫

R3(N−1)

|ψ(x, x2, . . . , xN )|2 dx2 . . . dxN .Noti
e that, thanks to Sobolev embeddings, ρψ ∈ L1(R3) ∩ L3(R3). The fun
tional [210℄ de�nedfor ρ ∈ L1(R3) ∩ L3(R3) as
FL(ρ) = sup

V ∈L3/2(R3)+L∞(R3)

{
E(V ) −

∫

R3

ρV

}
, (2.17)has been introdu
ed by Lieb [210℄. Note that FL is a 
onvex fun
tion, and that the ground-stateenergy 
an be re
overed as

E(V ) = inf
ρ∈L1(R3)∩L3(R3)

{
FL(ρ) +

∫

R3

ρV

}
. (2.18)This is a 
onsequen
e of the fa
t that FL is the Legendre transform of E (re
all that L3/2(R3) +

L∞(R3) is the dual spa
e of L1(R3) ∩ L3(R3) and that the fun
tional E de�ned by (2.16) is
on
ave [210℄). The fa
t that the minimization in (2.18) 
an be restri
ted to a minimization overele
troni
 densities motivates the name density fun
tional theory (DFT).An alternative de�nition of the Lieb fun
tional uses 
onvex 
ombinations of N -parti
le densityoperators, of the form
Γ (N)(x, y) =

+∞∑

i=1

niΓ
(N)
i (x, y), 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,
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ular Simulation: A Hierar
hy of Modelsthe N -parti
le density operator Γ (N)
i being obtained from wavefun
tions ψi ∈ H1 through (2.10).The set of 
onvex 
ombinations of N -parti
le density operators is the set DN of ensemble N -parti
le density operators. In this setting,

FL(ρ) = inf
{

Tr(H0Γ
(N)), Γ (N) ∈ DN , Γ (1)(x, x) = ρ(x)

}
.The fa
t that this de�nition 
oin
ides with the previous one is proven in [210℄.In order to obtain pra
ti
al models, the (unknown) fun
tion FL has to be pre
ised. There aretwo main approa
hes:(i) in the so-
alled orbital-free methods, FL is an expli
it fun
tion of the density ρ only. Forexample, the Thomas-Fermi model approximates FL by

FTF(ρ) =
10

3
(3π2)2/3

∫

R3

ρ5/3 +
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy;(ii) in Kohn-Sham models, a non-intera
ting system of N ele
trons is 
onsidered, and ρ is thesum of the 
orresponding individual densities of the ele
trons.3Pra
ti
al implementation of DFT : the Kohn-Sham s
hemeIn most 
urrent 
omputations, DFT is implemented through theKohn and Sham (KS) s
heme.First, 
onsidering a non-intera
ting ele
tron gas, H0 is approximated by its kineti
 part T =

− 1
2

∑N
i=1∆xi . The asso
iated energy is the Janak kineti
 energy fun
tional

TJ(ρ) = inf
{
Tr(H0Γ

(N)), Γ (N) ∈ DN , Γ (1)(x, x) = ρ(x)
}
,

= inf

{
1

2

+∞∑

i=1

ni

∫

R3

|∇φi|2, φi ∈ H1(R3),

∫

R3

φiφj = δij , 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,

+∞∑

i=1

ni|φi|2 = ρ

}
.This approa
h 
orresponds to the so-
alled extended KS model, in whi
h fra
tional o

upationnumbers ni are allowed. The fun
tional TJ 
an be de�ned as above for ensemble N -representabledensities ρ, i.e. arising from the 
ontra
tion of density operators belonging to DN . Coleman [69℄showed that the set of ensemble N -representable densities of �nite kineti
 energy is

IN =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫

R3

ρ = N

}
.The ele
trostati
 energy is then approximated by the Coulomb energy

J(ρ) =
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy.Finally, the error done on the kineti
 energy and on the ele
trostati
 intera
tion energy is 
om-pensated by the so-
alled ex
hange-
orrelation energy:
Exc(ρ) = FL(ρ) − TKS(ρ) − J(ρ). (2.19)The (extended) Kohn-Sham approa
h 
onsiders the following minimization problem:

3 This explains a posteriori why the Thomas-Fermi like models are 
alled orbital-free models. . .
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EKS(V ) = inf

{
1

2

+∞∑

i=1

ni

∫

R3

|∇φi|2 +

∫

R3

ρV +
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy + Exc(ρ),

φi ∈ H1(R3),

∫

R3

φiφj = δij , 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,

+∞∑

i=1

ni|φi|2 = ρ

}
.

(2.20)Provided Exc is di�erentiable in IN at ρ ∈ IN and denoting by vxc(ρ) its fun
tional derivative,the Euler-Lagrange equations asso
iated with (2.20) are the (extended) Kohn-Sham equations
−1

2
∆φi(x) + V (x)φi(x) +

(∫

R3

ρ(y)

|x− y| dy
)
φi(x) + vxc(ρ)φi(x) = ǫiφi(x), (2.21)together with the 
onstraints ∫

R3 φiφj = δij , and ni = 1 if ǫi < εF , 0 ≤ ni ≤ 1 if ǫi = εF , ni = 0if ǫi > εF . The Lagrange multiplier εF of the 
onstraint∑+∞
i=1 ni = N is the so-
alled Fermi level.The usual Kohn-Sham equations

−1

2
∆φi(x) + V (x)φi(x) +

(∫

R3

ρ(y)

|x− y| dy
)
φi(x) + vxc(ρ)φi(x) = ǫiφi(x), (2.22)with ni = 1 if 1 ≤ i ≤ N , and ni = 0 otherwise, are obtained when only integer o

upation numbersare allowed. The existen
e of a minimizer to the minimization problem asso
iated with (2.22) (andhen
e, the existen
e of a normalized solution to (2.22)) has been proved by Le Bris [42℄ for someusual approximations of vxc.Re
all at this point that the potential V used here is the external potential (for instan
e,the potential Vnuc generated by the nu
lei). Therefore, the Kohn-Sham equations are formallysimilar to the Hartree-Fo
k equations (2.14), ex
ept that the non-lo
al ex
hange operator has beenrepla
ed by a lo
al ex
hange-
orrelation potential. This similarity has been used in the early daysof quantum 
hemistry to simplify the Hartree-Fo
k equations, by repla
ing the non-lo
al ex
hangepotential by its �best� approximation. The quality of this approximation must be understood in avariational sense, and is known as the Optimized E�e
tive Potential (OEP) approa
h (see belowand Chapter 8).Ex
hange-
orrelation fun
tionalsThe most simple approximation of Exc(ρ) is the lo
al density approximation (LDA), based onthe homogeneous ele
tron gas pi
ture. It reads

ELDA
xc (ρ) =

∫

R3

ρ(x)εLDA
xc (ρ(x)) dx,where εLDA

xc = εLDA
x + εLDA

c . The ex
hange part 
an be 
omputed analyti
ally as εLDA
x (ρ) =

−CDρ4/3, where CD = 3
4 ( 3
π )1/3 is the Dira
 
onstant. On the other hand, the 
orrelation parthas to approximated, using for instan
e very a

urate Quantum Monte-Carlo 
omputations. Asan improvement, it was suggested to 
onsider spin-dependent densities ρ|↑ 〉 and ρ|↓ 〉 and gradient
orre
tions ∇ρ|↑ 〉, ∇ρ|↓ 〉 to a

ount for inhomogeneities in the ele
tron density (hen
e the nameGeneralized Gradient Approximation (GGA) for this method). Many re�nements to these fun
tio-nals were proposed (for example, relying on orbital dependent fun
tions or using the Hartree-Fo
kex
hange fun
tional), but the quest for a high-quality transferable ex
hange-
orrelation is de�nitelynot over (see for instan
e the review by S
useria and Staroverov [304℄).
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ular Simulation: A Hierar
hy of ModelsFinding relevant ex
hange-only fun
tionals: the Optimized E�e
tive Potentialapproa
hSharp and Horton [308℄ proposed a systemati
 way to obtain lo
al potentials approximatingthe non lo
al Hartree-Fo
k ex
hange operator KΦ given by (2.15). They suggest to minimizethe energy of the Slater determinant 
onstru
ted with the eigenfun
tions 
ooresponding to the
N lowest eigenvalues of some one-ele
tron S
hrödinger operator − 1

2∆ + W , W being a 'lo
alpotential'.4 This tra
k was further explored by Talman and Shadwi
k [338℄. The 
orrespondingminimization problem is the so-
alled Optimized E�e
tive Potential (OEP) problem, whi
h 
anbe vaguely stated as
inf
W

{
EHF(φW1 , . . . , φWN )

∣∣∣∣
∫

R3

φWi φ
W
j = δij , (φW1 , . . . , φWN ) are the eigenve
tors
orresponding to the N lowest eigenvalues of HW = −1

2
∆+W

}
.

(2.23)However, this minimization problem, stated as su
h, does not seem to be well-posed sin
e thereis no straightforward bound on a minimizing sequen
e (Wn) in any natural norm (see the workby Ben-Haj-Yedder, Can
ès and Le Bris [25℄). A way to 
ir
umvent this di�
ulty is to repla
ethe minimization problem (2.23) by formally equivalent 
onditions that do not expli
itely referto a lo
al potential W . In this 
ase, some mathemati
al results about the well-posedness of theequivalent problem 
an be stated (see [25℄, as well as the brief summary of Se
tion 8.2).Besides these mathemati
al issues, there are also numeri
al problems in the 
omputation ofthe OEP when the problem is dis
retized using basis sets (see e.g [321℄). It is therefore temptingto repla
e the minimization problem (2.23) by a simpler minimization problem, also stating thatthe ex
hange potential to be 
onsidered is some optimal approximation of the non-lo
al ex
hangeoperator (2.15). Together with E. Can
ès, E. Davidson, A. Izmaylov, G. S
useria and V.Staroverov [P5,A2℄, we showed that it is possible to de�ne (up to an additive 
onstant) anE�e
tive Lo
al Potential (ELP), whi
h is su
h that
vELP = arginf

v∈L3(R3)+L∞(R3)

{
1

2
‖[v −KΦ, γΦ]‖2

HS

}
, (2.24)where ‖ · ‖HS is the Hilbert-S
hmidt norm for L2(R3) operators, and [A,B] = AB − BA. Themathemati
al study of the well-posedness of the minimization problem (2.24) 
an be read inSe
tion 8.3.The ELP potential has an analyti
 form, whi
h is very useful for pra
ti
al 
omputations. Let ushowever noti
e that this potential was already derived by other (non-variational) means in [138,297℄. The existen
e of solutions to the Kohn-Sham equations with a simpli�ed lo
al ex
hangepotential (solution of a simpler variational problem in Hilbert-S
hmidt norm, and proposed bySlater [312℄) is shown in Se
tion 8.1 for radial orbitals.

4 The notion of lo
al potential does not have a pre
ise meaning in the physi
s and 
hemistry literature; itis enough for this introdu
tion to think 
onsiderW ∈ L3/2(R3)+L∞
ε (R3) as a multipli
ative operator. Inthis 
ase, the essential spe
trum of the operator − 1

2
∆+W is still [0,+∞) [52,277℄. The set L3/2(R3)+

L∞
ε (R3) is the set of all fun
tion φ whi
h, for all ε > 0, 
an be written as a sum φ = φ3/2 + φ∞ with
φ3/2 ∈ L3/2(R3) and ‖φ∞‖L∞(R) ≤ ε.
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al des
ription of matter2.2.1 Des
ription of matter at the mi
ros
opi
 levelWe 
onsider in this se
tion mi
ros
opi
 systems 
omposed of N parti
les (typi
ally atoms, i.e.nu
lei and their ele
troni
 
louds), des
ribed by the position of the parti
les q = (q1, · · · , qN ) ∈
R3N and the asso
iated momenta p = (p1, · · · , pN) ∈ R3N . For physi
al and biologi
al systems
urrently studied, N is typi
ally between 103 and 109. The intera
tion between the parti
les istaken into a

ount through a potential V ≡ V (q), and the total energy of the system system isgiven by the Hamiltonian

H(q, p) =
1

2
pTM−1p+ V (q), (2.25)where M = Diag(m1, . . . ,mN ) is the mass matrix.Potential fun
tionsThe intera
tion potentials 
ould, in prin
iple, be obtained from (2.5). This is indeed the 
asein ab-initio mole
ular dynami
s simulations, where the potential is re
omputed using (2.5) ea
htime the positions of the nu
lei 
hange.This approa
h is however very time-
onsuming, so that only small systems 
an be simulated.In pra
ti
e, to ta
kle larger systems, empiri
al formulas for the potential energy fun
tion areused. These empiri
al formulas are obtained by assuming a fun
tional form for the intera
tionpotential, and then performing some parameter �tting so that 
omputed average properties mat
hexperimental results, or, possibly, simulations results from small equilibrium ab-initio simulations.The properties to be mat
hed are usually thermodynami
 properties su
h as the equation ofstate of the material or its 
ompressibility. When ab-initio mole
ular dynami
s is used to obtainben
hmark results, the Born-Oppenheimer approximation impli
itely used to write the intera
tionpotential as (2.5) may not be valid. This is for instan
e the 
ase when 
hemi
al rea
tions happenin the systems (bonds being broken or formed), though some approa
hes aim at handling su
hevents in the framework of 
lassi
al empiri
al potentials (see below).A very simple example is the potential fun
tion of a �uid 
omposed of N parti
les, intera
tingthough a pairwise additive potential depending only the distan
e between the parti
les. In this
ase,

V (q1, . . . , qN ) =
∑

1≤i<j≤N
V(|qi − qj |). (2.26)For example, the argon �uid is well des
ribed by a Lennard-Jones potential

V(r) = ǫ

((σ
r

)12

−
(σ
r

)6
)
, (2.27)with ǫ/kB = 120 K, and σ = 3.405 Å. Higher-body intera
tions 
an then be 
onsidered, in parti
u-lar for biologi
al modeling. These higher-orders terms a

ount for lo
al intera
tions (bond angles,dihedral angles, see Se
tion 3.4.1 for an expli
it example of su
h potential terms for alkane 
hains)and non-lo
al intera
tions (van der Waals for
es, Coulomb intera
tions between non-bonded atompairs) � see for instan
e the book by S
hli
k [299℄ for more pre
isions on the models used in
omputational biology.Pairwise additive potentials and three- or four-body intera
tions may however be not good en-ough an approximation. Many studies still aim at proposing better (empiri
al) potential fun
tions,in parti
ular in the �eld of 
ondensed matter, and �tting their parameters on better data sets.Re
ent instan
es of su
h potentials are the (Modi�ed) Embedded-Atom Model ((M)EAM) poten-tials [22℄, whi
h use some referen
e ele
troni
 
loud around the parti
le; or bond-order potentialsof REBO [341℄ or ReaxFF [353℄ types, whi
h 
ontain environment-dependent terms (dependingon the lo
al 
oordination of the atoms). The latter potentials 
an even handle 
hemi
al rea
tions.
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ular Simulation: A Hierar
hy of ModelsBoundary 
onditionsSeveral boundary 
onditions 
an be imposed to the system:(1) Many 
urrent simulations are done with periodi
 boundary 
onditions, so that surfa
e e�e
ts
an be avoided and bulk 
onditions are approximated. In this 
ase, a parti
le intera
ts notonly with all the parti
les in the systems, but also with their periodi
 images;(2) Some simulations are done with free boundary 
onditions. This is the 
ase for isolatedsystems (mole
ules in va
uo). It may be 
onvenient to quotient out rigid body translationsin this 
ase sin
e the potential energy is invariant under global translation and rotation ofthe system;(3) It is sometimes 
onvenient to 
onsider 
on�ned systems. In this 
ase, the positions of theparti
les are restri
ted to some prede�ned region of spa
e, and some rules have to be set forre�e
tions on the boundaries of the system (su
h as spe
ular re�e
tion of the momenta);(4) Finally, some (sto
hasti
 or deterministi
) for
ing 
an be 
onsidered at the boundaries (seeSe
tion 3.5.1).In the sequel, we will denote by M the position spa
e (also 
alled the 
on�guration spa
e), and
T ∗M its 
otangent spa
e. Typi
ally, M = T3N (a torus of dimension 3N) for simulations withperiodi
 boundary 
onditions (PBC) and N atoms in the simulation 
ell. In this 
ase, T ∗M =

T3N × R3N .Thermodynami
 ensemblesThe state of a system is des
ribed, within the framework of statisti
al physi
s, by a probabilitymeasure µ on the phase-spa
e T ∗M. Ma
ros
opi
 features of the system are then 
omputed asaverages with respe
t to this measure, as given by (2.1):
〈A〉 =

∫

MN×R3N

A(q, p) dµ(q, p).We present in the sequel two very important thermodynami
 measures, namely the mi
ro
anoni-
al and the 
anoni
al measures, des
ribing respe
tively isolated systems, and systems at a �xedtemperature (in 
onta
t with a so-
alled thermostat or energy reservoir).2.2.2 The mi
ro
anoni
al ensembleThe most simple thermodynami
 ensemble is the mi
ro
anoni
al ensemble, whi
h des
ribesisolated systems. The 
orresponding probability measure is the uniform probability measure ona

essible 
on�gurations, that is
µmc(dq, dp) = δH(q,p)−E =

dσE
|∇H | , (2.28)where dσE is the area measure indu
ed by the Lebesgue measure on the manifold M(E) =

{(q, p) | H(q, p) = E}. Thermodynami
 integrals of the form (2.1) are 
omputed in pra
ti
eresorting to some ergodi
ity assumption:
〈A〉 = lim

T→+∞

1

T

∫ T

0

A(Φt(q, p)) dt, (2.29)where, in the mi
ro
anoni
al ensemble, the �ow Φt is the �ow of the hamiltonian dynami
s asso-
iated with (2.25):
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



q̇i(t) =
∂H

∂pi
(q(t), p(t)) =

pi(t)

mi
,

ṗi(t) = −∂H
∂qi

(q(t), p(t)) = −∇qiV (q(t)).

(2.30)Ergodi
ity 
an be shown rigorously for 
ompletely integrable systems and their perturbations (seefor instan
e the referen
e book by Arnol'd [11℄).From a numeri
al viewpoint, the ergodi
ity property requires very stable algorithms allowinga longtime integration of the hamiltonian dynami
s. The dynami
s (2.30) is an ordinary di�e-rential equation (ODE) whi
h is often numeri
ally integrated by the 
elebrated velo
ity-Verletalgorithm5 [360℄ 



pn+1/2= pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1),

(2.31)where ∆t is the time step. The numeri
al �ow asso
iated with the velo
ity-Verlet algorithm sharestwo qualitative properties with the exa
t �ow Φt of (2.30): it is time reversible and symple
ti
.These two properties are very important for the longtime integration of the hamiltonian dynami
s:A well-established result, re
alled in the referen
e book by Hairer, Lubi
h and Wanner [146℄on geometri
 numeri
al integration (see in parti
ular Chapters VIII and IX), is that the energyof the system is 
onserved up to O(∆t2) over times O(e−c/∆t) when the Störmer-Verlet s
heme isused. The numeri
al analysis of mi
ro
anoni
al sampling methods based on these properties (inthe very parti
ular 
ase of 
ompletely integrable systems) 
an be read in the papers by Can
ès,Castella, Chartier, Le Bris, Legoll, Faou and Turini
i [48, 49, 203℄.2.2.3 The 
anoni
al ensembleSystems at a �xed temperature (in parti
ular, systems in 
onta
t with a thermostat) aredes
ribed by the 
anoni
al probability measure µ on T ∗M:
dµ(q, p) = Z−1 exp(−βH(q, p)) dqdp, (2.32)where β = 1/kBT (T denotes the temperature and kB the Boltzmann 
onstant). The 
onstant Zin (2.32) is the normalization 
onstant de�ned as
Z =

∫

T∗M
exp(−βH(q, p)) dqdp,and is also 
alled the partition fun
tion in statisti
al physi
s. Sin
e the HamiltonianH is separable,the 
anoni
al measure is of the form

dµ(q, p) = dπ(q)dκ(p),where
dκ(p) = P(p) dp = Z−1

p exp

(
−β

2
pTM−1p

)
dp, (2.33)and

dπ(q) = f(q) dq = Z−1
q e−βV (q) dq. (2.34)

5 See also [145℄ for more histori
al pre
isions: The algorithm introdu
ed by Verlet in 1967 [360℄ wasalready known by Störmer at the beginning of the 20th 
entury, and even by Newton!
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ular Simulation: A Hierar
hy of ModelsThe positive numbers Zq =
∫
M e−βV (q) dq and Zp = (2π/β)3N/2

∏N
i=1m

3/2
i are normalization
onstants. Noti
e that we impli
itely assumed that the measures µ and π are probability measures,whi
h is the 
ase when e−βV ∈ L1(M). It is straightforward to sample from dκ, so that the a
tualissue is to sample from dπ.Theoreti
al and numeri
al 
omparison of some usual sampling methodsSome numeri
al methods to generate 
on�gurations (qn, pn)n≥0 su
h that

lim
N→+∞

1

N

N−1∑

n=0

A(qn, pn) =

∫

T∗M
A(q, p) dµ(q, p) (2.35)are presented in the review paper [P3℄ 
o-authored with E. Can
ès and F. Legoll (see alsoChapter 3). In parti
ular, we propose a 
lassi�
ation of usual 
anoni
al sampling methods in three
ategories, and pre
ise their theoreti
al ergo
ity properties. More pre
isely, we distinguish(i) purely sto
hasti
 methods, su
h as the Reje
tion method or importan
e sampling te
h-niques, whose 
onvergen
e relies on usual probabilisti
 theorems (Law of Large Numbers(LLN), Central Limit Theorem (CLT));(ii) methods based on deterministi
 hamiltonian dynami
s, modi�ed by sto
hasti
 perturba-tions to ensure that di�erent energy levels are explored. These methods are either Markov
hains te
hniques, su
h as Metropolis-Hastings s
hemes [153, 238℄ using the hamiltoniandynami
s as a proposition fun
tion (Hybrid Monte-Carlo s
heme [88℄), or sto
hasti
 dif-ferential equations having the hamiltonian dynami
s as limiting dynami
s (Langevin dy-nami
s). In all 
ases, the methods are 
onstru
ted su
h that the 
anoni
al measure isinvariant. Sin
e theorems analogous to LGN and CLT for Markov 
hains or pro
esses 
anbe obtained under rather general assumptions, the theoreti
al ergodi
ity of these methodsis usually granted (see in parti
ular the ex
ellent book by Meyn and Tweedie [240℄ fortheoreti
al results for Markov 
hains, as well as Se
tion 3.6 for a summary of some relevanttheoreti
al results in the 
ontext of 
omputational statisti
al physi
s);(iii) 
ompletely deterministi
 methods, based on the Nosé-Hoover paradigm [259,260℄. In this
ase, extended variables (q, p, x) are 
onsidered, and their dynami
s is postulated in amanner that the marginal of the invariant measure with respe
t to the additional variable xis the 
anoni
al measure. Though this 
onsisten
y result, no theoreti
al ergodi
ity proofis known. On the other hand, there exist some theoreti
al non-ergodi
ity results (see theproof by Legoll, Luskin and Moe
kel [204℄ based on a perturbation of 
ompletelyintegrable systems).We have also 
ompared the numeri
al ergodi
ity of these methods for a simple alkane mole
ule,both for stati
 properties (thermodynami
 integrals of the form (2.1)) and for time-dependentproperties su
h as auto
orrelation fun
tions (see Se
tion 2.2.5). The numeri
al results show, asqualitatively expe
ted, that the e�
ien
y of purely sto
hasti
 methods de
reases rapidly when thedimension of the system in
reases. Completely deterministi
 methods may be di�
ult to use (
hoi
eof parameters, ne
essity of small time-steps to ensure the proper 
onservation of some invariants ofthe dynami
s). On the other hand, methods mixing mole
ular dynami
s and sto
hasti
 te
hniquesare found to be more robust and e�
ient.Metastability and the obstru
tion to numeri
al ergodi
ityEven if the theoreti
al ergodi
ity is ensured and 
an be 
he
ked numeri
ally for simple systems,it is often the 
ase in pra
ti
e for interesting physi
al systems that numeri
al ergodi
ity fails dueto the presen
e of very di�erent time s
ales in the system. Fast time s
ales are typi
ally asso
iatedwith fast 
omponent of the potential energy, and require small time-steps to be resolved. For
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e, bond lengths in a mole
ule have a vibration period of the order of a femtose
ond (10−15 s),whereas other quantities (su
h as the ba
kbone stru
ture of a protein) evolve on mu
h longertime s
ales. Long time s
ales are often the 
onsequen
e of metastable features of the potential:metastable regions are portions of the phase-spa
e lo
ated around a lo
al minima of the potentialenergy surfa
e, separated by high energy barriers. Interesting events su
h as protein folding o

uronly when several metastable basins have been explored, and this may require times of the orderof the mi
rose
ond (10−6 s) or more [299℄.When the metastable states of the system are identi�ed, it is possible to de
ouple the metastablevariables and the remaining degrees of freedom: A possible 
ure to the failure of the numeri
alergodi
ity is then to resort to free energy di�eren
es 
omputation te
hniques (see Se
tion 2.3.1).There are of 
ourse many other ways to pro
eed, su
h as the a

elerated dynami
s of Se
tion 2.3.2.There are also methods based on the spe
tral properties of the Markov transition kernel to identifythe metastable states, see the work of S
hütte [301℄. Robust, general purpose methods able tosample 
omplex potential energy surfa
es (su
h as those of large biologi
al systems) are howeverstill la
king.2.2.4 Other thermodynami
 ensemblesThere are several other thermodynami
 ensembles beside the mi
ro
anoni
al and the 
anoni
alensembles, for instan
e ensembles where the number of parti
les, the pressure and the tempera-ture are 
onserved (NPT ensemble), or the grand 
anoni
al ensemble, where the volume, thetemperature and the average number of parti
les are 
onserved. The grand-
anoni
al ensemble isalso termed µVT ensemble, denoting by µ the 
hemi
al potential.6 The µVT probability measureis [270℄
dν(N, qN , pN) = Z−1 1

h3NN !V N
eβ(µN−HN (qN ,pN )) dqN dpN , (2.36)where d is the dimension of the spa
e, V the volume of simulation the 
ell, and HN is the Hamilto-nian (2.25) for N intera
ting parti
les. The normalization 
onstant Z reads (denoting by T ∗MNthe 
otangent spa
e of the manifold MN )

Z =

∞∑

N=0

1

ΛNN !V N
eβµN

∫

T∗MN

e−βHN (qN , pN ) dqN dpN ,where Λ = h(2πmβ−1)−1/2 (with h the Plan
k 
onstant) is the �thermal de Broglie wavelength�.The �rst te
hniques developed to sample from (2.36) were Monte-Carlo te
hniques [258℄. We referto [113, Chapter 5℄ for further referen
es. Te
hniques from NVT sampling were then transposedto the µVT setting, su
h as Hybrid Monte-Carlo [218℄ or Nosé-Hoover dynami
s [56, 57, 216℄(see [296, Chapter 8℄ for further referen
es 
on
erning these methods and their extensions).It may also be the 
ase that some external for
ing is performed on the system (see Se
tion 3.5).For instan
e, there may be parti
le 
reations or destru
tion or some thermalization at the boun-daries of the system only. In these 
ases, it is not always 
lear whi
h thermodynami
 ensemble touse, and whi
h quantities are preserved (exa
tly or in average).2.2.5 Time-dependent propertiesTime-dependent properties are of the general form
〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ, (2.37)

6 In this se
tion but in this se
tion only, the notation µ is the 
hemi
al potential and not the thermody-nami
 measure used.
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hy of Modelswhere Φt is the �ow of the dynami
s used to generate traje
tories. The traje
tories (q(t), p(t))t≥0 =

Φt(q, p)t≥0 may be 
omputed using the hamiltonian �ow asso
iated with (2.25). This is a 
onsitant
hoi
e sin
e the 
anoni
al measure (2.32) is invariant under the mi
ro
anoni
al dynami
s (2.30).Transport 
oe�
ients are examples of dynami
al properties. For instan
e, the self di�usion
oe�
ient in a system of N identi
al parti
les of mass m 
an be 
omputed by the Einstein rela-tion [276℄:
D = lim

t→+∞
1

6Nt

〈
N∑

i=1

|qi(t) − qi(0)|2
〉
,where qi(t) is the position of the i-th parti
le at time t, and 〈 · 〉 denotes an ensemble average overthe initial 
onditions. An alternative expression is the Green-Kubo formula based on the integratedvelo
ity auto
orrelation fun
tion [276℄:

D =
1

3Nm2

∫ +∞

0

〈
N∑

i=1

pi(t) · pi(0)

〉
dt,where pi(t) is the momentum of the i-th parti
le at time t. Other 
lassi
al examples are the shearvis
osity of a �uid or its thermal di�usivity [276℄.An a

urate numeri
al 
omputation of time-dependent thermodynami
al integrals asks �rst fora good sampling of the starting points, distributed a

ording to the 
anoni
al distribution. Thesepoints should not be too numerous - one must be able to run short hamiltonian traje
tories (oneor several) starting from ea
h point with reasonable 
omputer ressour
es. The 
ost of 
omputinga single traje
tory over a given physi
al time interval [0, T ] s
ales as (∆t)−1. The total 
ost is oforder O(N(∆t)−1), where N is the number of starting points. Therefore, for a �xed 
omputational
ost, there is a trade-o� to be made between the a

ura
y of the sampling of dµ (s
aled by N)and the a

ura
y of the numeri
al integration of (2.30) (given by ∆t).In pra
ti
e, it is sometimes the 
ase that time-dependent properties at 
onstant temperatureare 
omputed as a traje
torial averages (relying on some ergodi
ity assumption). It is not 
learhowever whether su
h a pro
edure is 
orre
t, sin
e the dynami
s is either the hamiltonian �ow,in whi
h 
ase the initial 
onditions are not properly sampled, or the dynami
s is 
onsistant withthe 
anoni
al ensemble, in whi
h 
ase there are usually parameters to be 
hosen, and it is un
learthat the �nal result is independent on those parameters. For instan
e, the self-di�usion of a watermole
ule depends a priori on the fri
tion used in the Langevin dynami
s.However, in any 
ases, systems do not usually 
onserve their energies in the longtime limitbe
ause of intera
tions with their environment. Sampling initial 
anoni
al 
onditions and perfor-ming hamiltonian dynami
s may then be justi�ed only for the 
omputation of time-dependentproperties for short times, sin
e the intera
tions with the environment 
an be negle
ted. An alter-native strategy 
ould be to resort to systems with sto
hasti
 boundary 
onditions, but governedby hamiltonian dynami
s in the 
ore simulation region (see Se
tion 3.5). In this situation, thethermostatting pro
edure on the boundaries does not dire
tly a�e
t the dynami
s and thus, theproperties to be 
omputed. The in�uen
e of the thermostat nonetheless plays a role on longertimes sin
e the energy of the system is allowed to �u
tuate.2.3 Towards longer simulation times and larger system sizesThe mole
ular simulation te
hniques presented in the previous se
tions only allow to simulatesystems very small 
ompared to real physi
al systems, and for short times only. However, thebehavior of 
ertain ma
ros
opi
 systems is in�uen
ed in the long-term by events happening at themi
ros
opi
 level. For instan
e, biologi
al mole
ules are subje
ted to important 
hanges of their
onformations (and thus, of their biologi
al properties) on time s
ales of the order of a se
ond,
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al times for the evolution of me
hani
al properties of materials subje
ted to radiationdamages s
ale as years whereas the 
orresponding relevant mi
ros
opi
 events (evolution of thedislo
ations, migration of va
an
ies, et
) happen on mi
ros
opi
 time s
ales. There is therefore aneed for methods enabling larger simulations. We fo
us in this se
tion on three strategies:(i) free-energy te
hniques, whi
h allow to enfor
e transitions from a metastable state to ano-ther one, provided the transition 
an be 
onveniently parametrized (Se
tion 2.3.1);(ii) te
hniques to in
rease the simulated time, resorting to larger time-steps, a

elerated dy-nami
s, or Kineti
 Monte-Carlo te
hniques (Se
tion 2.3.2);(iii) redu
ed dynami
s, whi
h are mesos
opi
 dynami
s 
orresponding to the all-atom dyna-mi
s through some averaging pro
edure, and are therefore 
omputationally less demanding(Se
tion 2.3.3).We do not mention here te
hniques to in
rease the spatial sizes of the system, su
h as domainde
omposition methods, or model 
oupling, where a region of the system is des
ribed with a re�nedmodel while the remaining part of the system is des
ribed with a 
oarser method. An instan
e ofthe latter approa
h is the quasi
ontinuum method of Tadmor, Ortiz and Phillips [334℄, wherean atomisti
 des
ription and a �nite element dis
retization are 
oupled. This method has beenstudied from a mathemati
al perspe
tive on a model one-dimensional system by Blan
, Le Brisand Legoll in [32℄.2.3.1 Free-energy 
omputationsWhen the variables at the origin of the metastable behavior of the system are known (orassumed to be known), it is possible to use free-energy te
hniques to enfor
e transitions betweenmetastable states. Of 
ourse the reliability of the methods 
ru
ially depends on the 
hoi
e of therea
tion 
oordinate, whi
h represents the essential degrees of freedom. The determination of theseessential degrees of freedom is a very important problem. Thus, in the following, we suppose thata �good� rea
tion 
oordinate is given, and we are interested in the 
omputation of free energydi�eren
es asso
iated with this rea
tion 
oordinate.Remark 2.2 (Mathemati
al motivation for the 
hoi
e of the rea
tion 
oordinate). Onlyfew mathemati
al studies have dealt with the optimal 
hoi
e of the rea
tion 
oordinate. In the workof Vanden-Eijnden and Tal [357℄ a variational de�nition of the rea
tion 
oordinate and thesurfa
e separating two metastability zones is proposed. This de�nition is at the origin of the stringmethod [370℄ (see also the 
orresponding dis
ussion in [91℄).The absolute free energy of a system is de�ned as
F = − 1

β
lnZ,where Z =

∫
T∗M e−βH(q,p) dq dp is the partition fun
tion. It 
an be 
omputed only for 
ertainsystems, su
h as ideal gases, or solids at low temperature (resorting to the phonon spe
trum) [113,281℄. However, in many appli
ations, the quantity of interest is the free energy di�eren
e betweenan initial and a �nal state. These di�eren
es indeed give information on the relative stabilities ofseveral spe
ies, and the free energy di�eren
e pro�le between the initial and the �nal state 
an beused to pre
ise the transition kineti
s from one state to the other. Transitions from an initial to a�nal state 
an be 
lassi�ed in two 
ategories:(i) the so-
alled al
hemi
al 
ase 
onsiders transitions indexed by an external parameter λ(intensity of a magneti
 �eld, temperature, parameters of an intera
tion potential). Thesystem is then governed by a Hamiltonian Hλ (or a potential Vλ). The 
orresponding freeenergy di�eren
e is
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∆F = −β−1 ln




∫

T∗M
e−βH1(q,p) dq dp

∫

T∗M
e−βH0(q,p) dq dp


 ;(ii) in the rea
tion 
oordinate 
ase, the transition is indexed through some level set fun
-tion ξ(q) ∈ Rm indexing submanifolds of the 
on�guration spa
e, and

∆F = −β−1 ln




∫

T∗M
e−βH(q,p) δξ(q)−z1 dq dp

∫

T∗M
e−βH(q,p) δξ(q)−z0 dq dp


 .Re
all that δξ(q)−z is the measure de�ned on Σ(z) = {q, ξ(q) = z} by

δξ(q)−z = |∇ξ|−1dσΣ(z).Free energy di�eren
es are mu
h more amenable to 
ompute than the absolute free energy.Classi
al te
hniques to this end fall within four main 
lasses (see Figure 2.2 for a 
artoon 
ompa-rison):(i) The �rst one, dating ba
k to Kirkwood [194℄, is thermodynami
 integration, whi
h mi-mi
s the quasi-stati
 evolution of a system as a su

ession of equilibrium samplings (thisamounts to an in�nitely slow swit
hing between the initial and �nal states);(ii) The se
ond one, the free energy perturbation method, was introdu
ed by Zwanzig [380℄,and is suited to the al
hemi
al 
ase only. It re
asts free energy di�eren
es as 
anoni
alaverages, so that usual sampling te
hniques 
an be employed. Noti
e also that there existmany re�nements for those two 
lasses of te
hniques, su
h importan
e sampling te
hniques(the umbrella sampling of Torrie and Valleau [345℄);(iii) A more re
ent 
lass of methods uses dynami
s arising from a swit
hing at a �nite rate,using nonequilibrium dynami
s with a suitable exponential reweighting, as introdu
ed byJarzynski in [187℄;(iv) �nally, adaptive dynami
s may be used. In this 
ase, the swit
hing s
hedule is not imposeda priori, but a biasing term in the dynami
s for
es the transition by penalizing the regionswhi
h have already been visited. This biasing term 
an be a biasing for
e as for the AdaptiveBiasing For
e te
hnique of Darve and Pohorille [75℄, or a biasing potential in the 
aseof theWang and Landau s
heme [368℄ or the nonequilibrium metadynami
s of Iannuzzi,Laio and Parrinello [179℄.We detail now to some extend these approa
hes in the al
hemi
al setting, for simpli
ity, andindi
ate how the method 
an be extended to treat transitions indexed by a rea
tion 
oordinate.Thermodynami
 integrationIn the al
hemi
al setting,
F (λ) = − 1

β
ln

∫

T∗M
e−βHλ(q,p) dq dp.Thermodynami
 integration 
onsists in remarking that F (λ) =

∫ λ
0 F ′(s) ds, and that the derivative

F ′(λ) =

∫

T∗M

∂Hλ

∂λ
(q, p) e−βHλ(q,p) dq dp

∫

T∗M
e−βHλ(q,p) dq dp
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(a) Thermodynami
 integration: a proje
ted dy-nami
s is used to sample ea
h �sli
e� of thephase-spa
e. (b) Perturbative method: an instantaneoustransition from the initial to the �nal state is
onsidered.

(
) Nonequilibrium dynami
s: the swit
hingspeed is the same for ea
h traje
tory and is im-posed a priori. (d) Adaptive dynami
s: the system is for
ed toleave regions where the sampling is su�
ient.Fig. 2.2. Cartoon 
omparison of the di�ent te
hniques to 
ompute free energy di�eren
es.is the 
anoni
al average of ∂Hλ

∂λ with respe
t to the 
anoni
al measure dµλ = Z−1
λ e−βHλ(q,p) dq dp.Therefore, in pra
ti
e, F ′(λi) is 
omputed by usual sampling te
hniques for a sequen
e of va-lues λi ∈ [0, 1] and integrated numeri
ally to obtain the free-energy di�eren
e pro�le.The extension to transitions indexed by a rea
tion 
oordinate 
an be done using for instan
eproje
ted sto
hasti
 dynami
s (see the work by Ci

otti, Lelièvre and Vanden-Eijnden [66℄,re
alled in Se
tion 4.1.2). In this 
ase, it 
an be shown rigorously that the derivative of thefree energy 
an be obtained as an average over the Lagrange multipliers asso
iated with the
onstraint ξ(q) �xed. Alternatively, Hybrid Monte-Carlo type approa
hes may be used to samplethe submanifold of �xed values of ξ (see S
hütte and Hartmann [151℄).Free-energy perturbationFree-energy perturbation 
onsists in rewriting ∆F as

∆F = −β−1 ln

∫

T∗M
e−β(H1−H0)dµ0.



30 2 Mole
ular Simulation: A Hierar
hy of ModelsNoti
e that this te
hnique 
annot be used as su
h to 
ompute free energy di�eren
e in the rea
tion
oordinate 
ase, sin
e the 
orresponding measures δξ(q)−z2 and δξ(q)−z1 have non overlappingsupports.7An approximation of ∆F is then obtained by generating 
on�gurations (qn, pn) distributeda

ording to dµ0 and averaging the 
orresponding quantities e−β(H1−H0)(qn,pn). However, it isoften the 
ase that the initial and the �nal distributions dµ0 and dµ1 hardly overlap, so thatintermediate steps are 
onsidered. De
omposing the free-energy 
hange in n intermediate steps
λi = i/n:

∆Fi = −β−1 ln
Zλi+1

Zλi

= −β−1 ln

∫

T∗M
e−β(Hλi+1

−Hλi
)dµλi ,it holds ∆F = ∆F0 + · · · + ∆Fn−1. It is expe
ted that the overlap between dµi and dµi+1 issu�
ient provided n is large.The elementary free-energy di�eren
es ∆Fi 
an be 
omputed more e�
iently using some im-portan
e sampling te
hnique, namely Umbrella sampling [345℄ is this 
ontext. It relies on thefollowing reformulation:

∆F = −β−1 ln

∫

T∗M
e−β(H1−W )dπW

∫

T∗M
e−β(H0−W )dπW

,where dπW (q, p) = Z−1e−βW (q,p) dq dp. The measure dπW should be 
hosen su
h that it has anappre
iable overlap both with dµ0 and dµ1. This bridging property motivated the name Umbrellasampling. Some possible 
hoi
es for the umbrella fun
tion are
dπW (q) = Z−1

1/2 e−βH1/2(q,p) dq dp,or using H̃1/2 de�ned by the relation
dπW (q) = Z̃−1

1/2 e−βH̃1/2(q,p) dq dp =
1

2
(dµ0 + dµ1).The Jarzynski equalityThe Jarzynski equality 
an easily be obtained for a system governed by hamiltonian dynami
s,starting at equilibrium, and subje
ted to a swit
hing at �nite rate (in a time T < +∞) fromthe state λ(0) = 0 to the state λ(T ) = 1. More pre
isely, we 
onsider initial 
onditions sampleda

ording to dµ0, and the system of non-autonomous ordinary di�erential equations (0 ≤ t ≤ T )





q̇i(t) =
∂Hλ(t)

∂pi
(q(t), p(t)),

ṗi(t) = −∂Hλ(t)

∂qi
(q(t), p(t)).

(2.38)De�ning by Φλ the asso
iated �ow, the work performed on the system starting from some initial
onditions (q, p) is
W (q, p) =

∫ T

0

∂Hλ(t)

∂λ
(Φλt (q, p))λ

′(t) dt = H1(Φ
λ
T (q, p)) −H0(q, p).Indeed, with Φλt (q, p) = (Q(t), P (t)),

7 This te
hnique is however used in pra
ti
e to 
ompute free energy di�eren
e in the rea
tion 
oordinate
ase: To this end, the free energy di�eren
e is approximated by the free energy di�eren
e asso
iatedwith the transition indexed by Vλ(q) = V (q) +K(ξ(q) − zλ)2, for K large enough.
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∂t
(
Hλ(t)(Φ

λ
t (q, p))

)
=
∂Hλ(t)

∂λ
(Φλt (q, p))λ

′(t) +
∂Hλ(t)

∂q
· ∂tQ(t) +

∂Hλ(t)

∂p
· ∂tP (t),and the last two terms on the right-hand side 
ompensate ea
h other in view of (2.38). Then,

∫

T∗M
e−βW (q,p) dµ0(q, p) = Z−1

0

∫

T∗M
e−βH1(Φ

λ
T (q,p)) dq dp = Z−1

0

∫

T∗M
e−βH1(q,p) dq dpsin
e ΦλT de�nes a 
hange of variables of Ja
obian 1. The above equality 
an be restated as

E(e−βW ) =
Z1

Z0
= e−β∆F , (2.39)where the expe
tation is taken with respe
t to initial 
onditions distributed a

ording to dµ0. Theextension to sto
hasti
 dynami
s is presented in Se
tion 4.1.1, following the proof of Hummer andSzabo [177℄ relying on a Feynman-Ka
 formula.Extension to the rea
tion 
oordinate 
aseWe have proposed with T. Lelièvre and M. Rousset [P6℄ an extension of the Jarzynskinonequilibrium dynami
s to the rea
tion 
ase, as well as the extension of the equality (2.39). Thedynami
s relies on proje
ted sto
hasti
 dynami
s, and the equality allowing the 
omputation offree energy di�eren
es is still obtained using a Feynman-Ka
 equality (see Se
tion 4.1.2). However,the 
orre
t derivation of this equality requires a 
areful de�nition of the work exerted on thesystem, whi
h 
an be 
omputed as some traje
torial average of the Lagrange multipliers requiredto proje
t the dynami
s onto the visited submanifolds of 
onstant values of ξ, minus an additionalterm 
orre
ting the biais introdu
ed by the nonequilibrium for
ing (a for
e is exerted on the systemto for
e the transition, and the 
orresponding work should be dis
arded).Degenera
y of the weightsFree-energy di�eren
es 
an be obtained as a nonlinear average over many realizations. Therealizations of the swit
hing pro
ess 
an be straightforwardly parallelized resorting to many inde-pendent traje
tories, so that natural a posteriori error bounds are provided via the 
entral limittheorem. However, as elegant as the Jarzynski equality may be, it is often the 
ase in pra
ti
e,unless the swi
hing is very slow, that the weights are degenerated, so that some rare realizationsrule out the average. These heuristi
 
onsiderations 
an be made rigorous in some situations, whereanalyti
al 
omputations 
an be done. Consider the Hamiltonian

Hλ(q, p) =
1

2
ω2(q − λ)2 +

1

2
p2,and the linear swit
hing s
hedule λ(t) = t/T . The general solution of the hamiltonian dynami
s is

q(t) = q(0) cos(ωt) +
p(0)

ω
sin(ωt) +

∫ t

0

ω sin(ωs)λ(t− s) ds.For simpli
ity, the swit
hing time is 
hosen su
h that ωT = π/2 mod π (but the following analysisremains qualitatively valid whenever ωT 6= 0 mod π). Then,
q(T ) = q(0) + λ(T ) − 1

ωT
, p(T ) = −ωq(0) +

1

T
.Therefore, if the initial positions are 
anoni
ally sampled (that is, q(0) ∼ ω−1β−1/2N (0, 1)), thenthe �nal positions and momenta are distributed respe
tively a

ording to
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q(T ) ∼ 1 − 1

ωT
+ ω−1β−1/2N (0, 1), p(T ) ∼ 1

T
+ β−1/2N (0, 1).It 
an be read from these formulas that the distribution of the 
on�gurations lags behing the
anoni
al distribution. Indeed, the positions for example are distributed around the average posi-tion 1− (ωT )−1 instead of 1, and the di�eren
e between the average values grows as the swit
hingis performed faster. It is also possible to 
ompute the works asso
iated with the swit
hing:

W = H1(q(T ), p(T )) −H0(q(0), p(0)) =
1

T 2
+

2ω

T
q(0) ∼ 1

T 2
+

2

T
√
β
N (0, 1). (2.40)This shows that E(W ) = T−2 > ∆F = 0, the expe
tation being taken with respe
t to initial
on�gurations (q(0), p(0)) 
anoni
ally distributed (for the Hamiltonian H0), while E(e−βW ) = 1 =

e−β∆F as expe
ted. When the swit
hing time is small, it is 
lear from the expression (2.40) thatthe lower tail of the work distribution is of paramount importan
e to obtain 
orre
t estimatesof the free energy di�eren
e, and that very a small fra
tion of the work distribution will ruleout the expe
tation value. More pre
isely, denoting by P (W ) the probability density of the workdistribution,
E(e−βW ) =

∫

R

e−βWP (W ) dW = C

∫

R

exp

[
−βT

2

8

(
W +

4

T 2

)2
]
dW.When T is small, the values of the work 
ontributing the most to the integral are distributedaround −4/T 2, with a standard deviation O(T ). These values are however quite unlikely in viewof (2.40). The lower tail of the work distribution is related to the tails of the distribution of theinitial 
on�gurations. Therefore, unless the initial 
on�gurations 
an be sampled very a

urately(whi
h asks for a large sample of starting points, as well as an unbiased and e�
ient samplingmethod), the swit
hing should not be performed too fast, and, in any 
ases, the exponential re-weighting (2.39) must be performed.To avoid the degenera
y of weights, espe
ially when the swit
hing is not slow, we have proposedwith M. Rousset in [P10℄ to use a sele
tion me
hanism on repli
as of the system simulated inparallel (see also Se
tion 4.3.3). This sele
tion uses an intera
ting system of parti
les, a strategyinspired by resampling te
hniques (see the literature on sequential Monte-Carlo algorithms, inparti
ular the book by Dou
et, Freitas and Gordon [84℄ and the review paper by Dou
et,Del Moral and Jasra [85℄). In this 
ase, it is not ne
essary to atta
h a weight to ea
h parti
le,the equilibrium being maintained at all times through probabilisti
 sele
tion rules (birth/deathpro
ess): Repli
as with a work lower than the average work are favoured, while the other ones arepenalized. The 
onsisten
y of this approa
h 
an be shown in the limit of an in�nite number ofrepli
as (see the works by Rousset [289, 290℄).Another approa
h to 
ompute more reliably the expe
tation value (2.39) is to 
onsider thisexpe
tation as an expe
tation over all possible transition paths. Path sampling strategies, possibly
ombined with importan
e sampling te
hniques, 
an then be used [331,374℄ to bias the samplingtowards paths 
orresponding to unlikely low values of the work (see Se
tion 4.3 for more pre
isionson path sampling and its appli
ation to the 
omputation of free energy di�eren
es).Adaptive dynami
sAdaptive dynami
s aim at spending just enough time to sample the measures dµλ as is needed,while over
oming free energy barriers. To des
ribe pre
isely adaptive dynami
s, we proposed aformulation in terms of a �xed point strategy in [P4℄ with T. Lelièvre and M. Rousset (seealso Se
tion 4.4). We present here adaptive dynami
s in the al
hemi
al setting, but all the originalformulations of this method were proposed in the rea
tion 
oordinate 
ase.
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onvenient to 
onsider the extended variable X = (q, λ), where the asso
iated rea
tion
oordinate ξ(X) = λ ∈ T. We 
onsider here that the transition is parametrized using a potentialfun
tion V (q, λ), the 
orresponding 
anoni
al measures being dπλ(q) = Z−1
λ e−βV (q,λ) dq. When Xtevolves a

ording to an overdamped Langevin dynami
s:

{
dqt = −∇qV (qt, λt) dt+

√
2β−1 dW q

t ,

dλt = −∂λV (qt, λt) dt+
√

2β−1 dWλ
t ,

(2.41)(where W q
t , Wλ

t are standard independent brownian motions) the measure
dΠ(q, λ) = Z−1e−βV (q,λ) dq dλis invariant.8 In prin
iple, it is possible to use the dynami
s (2.41) to sample extended 
on�gura-tions distributed a

ording to dΠ(X), and then 
ompute free energy di�eren
es as

F (λ2) − F (λ1) = −β−1 ln
ψeq(λ2)

ψeq(λ1)
,where the marginals ψeq of the equilibrium distribution are de�ned as

ψeq(λ) =

∫

M
e−βV (q,λ) dq.However, the above dynami
s 
annot be used as su
h when there are metastable features in thefree-energy di�eren
e pro�le F (λ)−F (0), be
ause the values of the parameter λ will remain stu
kin some subset of [0, 1]. Free energy barriers are asso
iated with values of ψeq(λ) small 
omparedto ψeq(0).In order to over
ome these metastable features, adaptive dynami
s propose to add a biasingterm in the dynami
s of the variable λt in (2.41) so as to explore the whole interval [0, 1]. The biasshould also give the free energy pro�le in the longtime limit. To make these heuristi
 
onsiderationspre
ise, it is 
onvenient to resort to ensembles of realizations of some sto
hasti
 dynami
s on Xt,namely {

dqt = −∇qV (qt, λt) dt+
√

2β−1 dW q
t ,

dλt = −∂λ [V (qt, λt) − Fbias(t, λt)] dt+
√

2β−1 dWλ
t ,

(2.42)where a biasing term Fbiais(t, λ) has been introdu
ed. The 
on�gurations of the system are thendes
ribed at time t by some distribution ψt(q, λ) (in pra
ti
e, this 
orresponds to simulating anin�nite number of repli
as in parallel). The distribution of the variables λt is given by the marginals
ψt(λ) =

∫

M
ψt(q, λ) dq.If the biasing term Fbias(t, λ) indeed 
onverges to F (λ), then the variableX subje
ted to the dyna-mi
s (2.42) is distributed a

ording to dΠ∞(q, λ) = Z−1

∞ e−β(V (q,λ)−F (λ)), so that λ is distributeda

ording to the marginals
ψ∞(λ) =

∫

M
exp(−β[V (q, λ) − F (λ)]) dq = 1.

8 Of 
ourse, boundary 
onditions should be spe
i�ed for the variable λ. For 
ertain rea
tion 
oordinates,periodi
 boundary 
onditions 
an be used. A more detailed dis
ussion on the appropriate boundary
onditions 
an be read in Se
tion 4.4.
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ular Simulation: A Hierar
hy of ModelsThis means that the metastable features of the free energy pro�le have been removed, and allregions are explored in the same manner.Adaptive biasing potentialIn pra
ti
e, the key issue for adaptive dynami
s is to propose a 
onvenient update for thebiasing potential Fbias(t, λ). A �rst idea is to for
e the marginals ψt(λ) to 
onverge to the targetvalue ψ∞(λ) = 1, and to rely on the dynami
s on qt in (2.42) to obtain the right distribution of
on�gurations for a �xed value of λ. Assuming that the 
on�gurations of the system are instan-taneously distributed a

ording to ψt(q, λ) = Z−1
t e−β(V (q,λ)−Fbias(t,λ)) (whi
h is indeed the 
ase ifthe dynami
s on the q variable is mu
h faster than the dynami
s in the λ variable), the update

∂tFbias(t, λ) = −β
−1

τ
lnψt(λ) =

1

τ
(F (λ) − Fbias(t, λ)) + ctwith τ > 0 is su
h that Fbias(t, λ) → F (λ) as t → +∞ (up to a 
onstant term not dependingon λ). In general, ψt(q, λ) 6= Z−1

t e−β(V (q,λ)−Fbias(t,λ)), but the biasing potential is still updated as
∂tFbias(t, λ) = −β

−1

τ
lnψt(λ). (2.43)In this 
ase, it 
an be shown that, if there is a stationary point of the dynami
s (2.42) with theupdate (2.43), then it holds Fbias(t, λ) → F (λ) (up to a 
onstant). The update (2.43) is quitenatural in view of the requirement that the marginals ψt(λ) should be 
onstant: when ψt(λ) > 1(overexplored region), the bias is de
reased, whereas the biasing term is in
reased in underexploredregions, 
orresponding to ψt(λ) < 1 (see Figure 2.3).
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(b) Free energiesFig. 2.3. (a) Target marginal distribution in the λ variable at time t (dotted line) and 
urrent marginaldistribution (solid line). (b) Target free energy pro�le (solid line) and proposed biasing potential (dashedline): In this 
ase, the bias should be de
reased in the �rst free energy well where the sampling is su�
ient(ψt(λ) > ψ∞(λ)), and in
reased in the se
ond one to favour the sampling of this region.Adaptive biasing for
eIn the same vein, the biasing term 
an be introdu
ed as a biasing for
e (instead of a biasingpotential). Assuming again that the 
on�gurations of the system are instantaneously distributeda

ording to ψt(q, λ) = Z−1
t e−β(V (q,λ)−Fbias(t,λ)), the update
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∂t∂λFbias(t, λ) = −β

−1

τ




∫

M
∂λV (q, λ)ψt(q, λ) dq
∫

M
ψt(q, λ) dq

− ∂λFbias(t, λ)


 =

1

τ
(∂λF (λ) − ∂λFbias(t, λ))for some τ > 0 is su
h that the biasing for
e ∂λFbias(t, λ) 
onverges to ∂λF (λ). In the general 
ase,the biasing for
e is still updated as

∂t∂λFbias(t, λ) = −β
−1

τ




∫

M
∂λV (q, λ)ψt(q, λ) dq
∫

M
ψt(q, λ) dq

− ∂λFbias(t, λ)


 . (2.44)As in the 
ase of biasing potentials, it 
an be shown that, if there exists a stationary state for theabove dynami
s, then Fbiais(t, λ) → F (λ) (up to a 
onstant) in the longtime limit.With T. Lelièvre, F. Otto andM. Rousset [A1℄ (see also Se
tion 4.4.2 for a mathemati
alproof in a simpli�ed 
ase and a brief introdu
tion to the mathemati
al te
hniques required for theproof), we 
ould write a proof of 
onvergen
e of the dynami
s (2.44) in the limiting regime τ → 0.The proof relies on the introdu
tion of an entropy fun
tion for the measure ψt, and its de
ompo-sition into a ma
ros
opi
 
ontribution (asso
iated with the marginals ψt) and a mi
ros
opi
 part(depending only on the 
onditioned measures ψt/ψt). On the other hand,

∂tψt = ∂λλ ψt,whi
h implies the 
onvergen
e of the marginals ψt and the de
ay of the ma
ros
opi
 entropy. Thede
ay of the mi
ros
opi
 entropy is ensured when the 
onditioned measures ψ∞(·, λ)/ψ∞(λ) sa-tisfy a logarithmi
 Sobolev inequality with a 
onstant uniform with respe
t to λ. From a physi
alviewpoint, this expresses the fa
t that the dynami
s for �xed λ are uniformly ergodi
. Finally, therate of 
onvergen
e is the minimum between the ma
ros
opi
 
onvergen
e rate (di�usive explo-ration) and the mi
ros
opi
 
onvergen
e rate (related to the logarithmi
 Sobolev 
onstant). Theextension of the proof to the rea
tion 
oordinate 
ase follows the same lines but requires to modifyslightly the dynami
s (2.44).Enhan
ing the 
onvergen
eThe above formalism using ensemble of realizations naturally suggests a parallel implemen-tation of the dynami
s through repli
as 
onstru
ting a 
ommon biasing term. This plain parallelimplementation 
an however be enhan
ed through some sele
tion pro
ess on the repli
as (see [P4℄).Indeed, in the above heuristi
 analysis, it seemed important to have a uniform sampling of thea

essible spa
e in the λ variable (the rea
tion 
oordinate in this setting). A sele
tion pro
ess(jump/bran
hing pro
ess) 
an be surimposed to the di�usion dynami
s (2.42) to dupli
ate repli-
as in underexplored regions (innovative parti
les) and eliminate repli
as in overexplored regions.It is, in some sense, a non-lo
al pro
edure, 
omplementary to the di�usion pro
ess, to equilibriatethe distribution of the values of the rea
tion 
oordinates as fast as possible. Numeri
al results ina simple 
ase 
an be found in [P4℄ (see also Se
tion 4.4.1).2.3.2 Ta
kling the time-s
ale problemWe present in this se
tion some strategies to rea
h longer simulation times. Ta
kling the time-problem is more di�
ult than ta
kling the spa
e-problem, sin
e parallel implementation strategiesare usually limited by the sequential nature of time.



36 2 Mole
ular Simulation: A Hierar
hy of ModelsThe parareal strategyA noti
eable ex
eption to the above intrinsi
 limitation is the parareal strategy, introdu
ed byLions,Maday and Turini
i in [213℄, and then applied to the �eld of mole
ular dynami
s in [18℄.The parareal strategy 
onsists in a 
heap sequential part, the proposition of a 
oarse traje
tory ofthe system using a 
oarse integrator (large time-step or 
oarse for
e-�eld), whi
h is then re�nedin parallel; this pro
edure is repeated until 
onvergen
e.Taking larger time-stepsIt is a typi
al situation in mole
ular dynami
s that the potential energy is the sum of a rapidlyevolving term and a term evolving on mu
h longer time s
ales:
V (q) = Vslow(q) + Vfast(q). (2.45)The fast term may arise from sti� 
omponents in the potential energy (or degrees of freedom withsmall asso
iated masses), and is generally mu
h 
heaper to evaluate than the slow term. Indeed,the fast term usually 
orresponds to 
lose range intera
tions, and the 
ost of its evaluation s
aleslinearly with the system size. On the 
ontrary, the slow term often 
orresponds to long-rangeintera
tions, whose 
ost s
ales quadrati
ally with the system size.When V is given by (2.45), the time step used for the integration of the dynami
s is di
tatedby the fast part of the potential. There are several methods to handle this issue:(i) when the fast term 
omes from sti� 
omponents in the potential, and these sti� 
omponentsare 
onsidered to penalize some 
onstraints (an almost 
onstant bond length in a mole
ulefor instan
e), it may be advantageous to resort to 
onstrained dynami
s, as is done inRATTLE [8℄ and SHAKE [295℄;(ii) multiple time-step methods may be used. The fast for
es are then evaluated with atime step ∆t 
lose to the time step used in the standard velo
ity-Verlet algorithm, whe-reas the slow for
es are evaluated with a larger time step ∆tslow. One su
h algorithmis the so-
alled Impulse method [141, 347℄, whi
h 
orresponds to a Strang splitting ofthe original Hamiltonian in two terms, H = Hslow + Hfast with Hslow(q, p) = Vslow(q),

Hfast(p, q) = Vfast(q) + 1
2p
TM−1p. However, numeri
al resonan
es require the slow for
eevaluation time step∆tslow to be smaller than half the period of the fast movement [31,119℄.So, ∆tslow is still restri
ted by the highest frequen
y modes (see also [146, Chap. XIII℄ fora 
omprehensive review in the 
ase when the fast term is harmoni
).Kineti
 Monte-Carlo approa
hesIn Kineti
 Monte-Carlo (KMC) algorithms, a list of metastable states and events that mayhappen in the system (possible transitions between metastable states) is 
onsidered. The system
an be an all-atom system, or a redu
ed version of the all-atom system (for example, for eventshappening on a 
ristal, the atoms of the 
ristal are not represented, and only the defe
ts, su
h asva
an
ies, interstitial atoms and aggregates, are 
onsidered; this approa
h is the so-
alled Obje
tKMC).For simpli
ity, we present here only the equilibrium KMC algorithm, for whi
h the list ofevents and their o

uren
e probabilities are �xed (te
hniques to update the list of events on the�y have also been developed, see Henkelman and Jonsson [158℄). It is assumed that the eventso

ur at random times distributed a

ording to a Poisson distribution. Indexing by i the possibleevents, with rates ri (so that the 
orresponding random times are distributed a

ording to thedensity rie−rit), the KMC algorithm, �rst proposed by Bortz, Kalos and Lebowitz [37℄ in the
ontext of material s
ien
e (and independently proposed later by Gillespie [129, 130℄ to treat
hemi
al rea
tions) is



2.3 Towards longer simulation times and larger system sizes 37KMC algorithmAlgorithm 2.1. Consider a list of M possible events i = 1, . . . ,M , with asso
iated rea
tionrates ri. Starting from some initial 
on�guration of the system and t0 = 0,(1) 
hoose an event k, a

ording to the dis
rete probabilies (wi)i=1,...,M with wi =
ri∑M
j=1 rj

;(2) perform the move 
orresponding to the event k;(3) in
rement the time by a random time distributed a

ording to an exponential distribu-tion of parameter∑M
j=1 rj : tn+1 = tn + τn, τn ∼ E




M∑

j=1

rj


;(4) go to Step (1).This algorithm is not e�
ient as su
h when the rates span several orders of magnitudes, sin
ein this 
ase, the less unfrequent events are performed very often in the KMC algorithm, and thetime in
rements are not large (of the order of the smallest typi
al time of the possible events).In this 
ase, Gillespie and Petzold [131, 132℄ have shown how to perform some time 
oarse-graining based on the τ -leap method, in order to obtain a 
hemi
al Langevin equation or evensome deterministi
 kineti
 equation.Another route is to remark that events happening almost simultaneously but far away onefrom ea
h other may be treated as independent events. Domain de
omposition te
hniques forKMC [309℄ are based on this idea, the main 
hallenges being the syn
hronization of time in thedi�erent subdomains and the treatment of events happening at the boundaries of the subdomains.Some spatially adaptive 
oarse-graining may also be 
onsidered [63℄.Computation of rea
tion ratesThe most important and time-
onsuming part in a KMC 
omputation is a
tually the 
omputa-tion of the rea
tion rates of the possible events. These events are transitions from one metastablestate to the other, so that, when the temperature is not too high (and entropi
 e�e
ts are nottoo important), these metastable states are lo
al minima of the potential energy surfa
e. In this
ase also, the transition states between two lo
al minima are saddle-points of the potential energysurfa
e, lo
ated along the minimum energy path bridging the initial and the �nal state. The lo-
ation of the saddle-point on the minimum energy path is due to the Large Deviation Theory ofFreidlin and Wentzell [112℄.We des
ribe here te
hniques used in many pra
ti
al 
omputations, whi
h rely on the Rea
tiveFlux method of Bennett and Chandler [26, 60℄, and on the Transition State Theory (TST),introdu
ed in the 30s by Eyring and Wigner [102, 371℄. The �rst step in all these methods isto lo
alize transition states, whi
h are saddle-points of order 1 of the energy surfa
e (the Hessianmatrix has only one negative eigenvalue),9 and to parametrize the transition from one metastablestate to the other using some rea
tion 
oordinate (or 
olle
tive variable, or order parameter) ξ(q),su
h that the transition state 
orresponds to Σ = ξ−1{ 1

2}. The normal to the surfa
e Σ at q ∈ Σis denoted by n(q). The rea
tant region is A = ξ−1[0, 1
2 ), the produ
t region is ξ−1(1

2 , 1]The forward rea
tive �ux (measuring es
apes from A to Ac) is then de�ned, for a time t, asthe forward �ux through the dividing surfa
e (see Figure 2.4, Left):
9 This lo
alization is done using some method to follow the eigenve
tors 
orresponding to one of thelowest eigenvalues of the Hessian matrix, starting from the bottom of the energy well.
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ular Simulation: A Hierar
hy of Models
k+(t) =

〈
δξ(q(0))=1/2 ∂t(ξ(q))|t=0 1Ac(q(t))

〉

〈1Ac(q)〉

=

∫

Σ

n(q(0)) · p(0)

m
1Ac(q(t)) e−βH(q,p) dσΣ(q, p)

∫

T∗M
1Ac(q) e−βH(q,p) dq dp

.The ba
kward rea
tive �ux k−(t) is de�ned in a similar manner. In pra
ti
e, this expression rea
hesa plateau value for times t≪ (k+(0)+k−(0))−1, and this limit is the rea
tive �ux rate. The 
hoi
eof the dividing surfa
e Σ is very important for pra
ti
al implementations sin
e a bad 
hoi
e ofthis surfa
e leads to many re
rossings, and few transitions (see Remark 2.2 for an optimization ofthe interfa
e).
A

ν
0

E
a

Fig. 2.4. Left: S
hemati
 pi
ture of the �ux leaving region A through the dividing surfa
e. Some attemptsare su

essful (traje
tories ending outside of A), others are not (traje
tories ending on the left of thedividing surfa
e). Right: Harmoni
 TST approximation.The 
lassi
al TST rate 
onstant is a
tually k(0), i.e. it 
orresponds to the rea
tive �ux valuewhen re
rossings are dis
arded (whi
h 
orresponds to setting t = 0), and is an upper bound forthe true rate. The TST approximation is therefore not suited for di�usive pro
esses. Harmoni
TST is the further approximation that the rate 
onstant 
an be written as
kHTST = ν0e

−βEa ,where the a
tivation energy Ea is the di�eren
e between the energy of the saddle-point and thelo
al minima from whi
h the es
ape is attempted, and ν0 is homogenous to a frequen
y (seeFigure 2.4, Right). Harmoni
 TST 
an be derived rigoroulsy in the one-dimensional 
ase for aharmoni
 potential under the assumption βEa ≫ 1 (see e.g. [178, Se
tion III.A℄). In the mutli-dimensional 
ase, the harmoni
 TST rate is given by the Vineyard expression [362℄
kHTST =

∏3N
i=1 ν

min
i∏3N−1

i=1 νsad
i

e−βEa ,where (νmin
i )i=1,...,3N are the frequen
ies of the Hessian matrix at the bottom of the energy well,and (νsad

i )i=1,...,3N−1 are the positive frequen
ies of the Hessian matrix at the saddle-point.
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tion pathsTransition Path SamplingTransition Path sampling (TPS) is a te
hnique developed by Bolhuis, Chandler, Dellagoand Geissler [80, 81℄ whi
h allows to sample rea
tive paths (for a �xed time interval T ). Area
tive path is de�ned in this 
ontext as a traje
tory (deterministi
 or sto
hasti
) starting insome initial subset A of phase-spa
e and ending in another region B of phase-spa
e at time T .This 
an indeed be a 
hallenging task with straightforward MD when high free-energy barriersseparate both regions. This is even more 
hallenging when many lo
al minima separate both states,and no 
onvenient rea
tion 
oordinate 
an be found (the 
orresponding free-energy surfa
es aresaid to be rough).TPS is a method to sample paths bridging A and B on
e an initial rea
tive path is given.More pre
isely, the 
orresponding algorithm is a Metropolis-Hastings algorithm with a 
onvenientproposition fun
tion allowing, starting from a rea
tive path at the n-th iteration, to propose amodi�ed (hopefully rea
tive) path at iteration n + 1. When the underlying dynami
s is determi-nisti
, an e�
ient proposal fun
tion 
onsists in 
hoosing randomly a time along the traje
tory,modifying slightly the momenta of the parti
les at this time, and integrating the dynami
s forwardand ba
kward in time (see the review paper by Dellago, Bolhuis et Geissler [81℄ for morepre
isions). When the underlying dynami
s is sto
hasti
, for instan
e when a Langevin dynami
sis 
onsidered, the latter algorithm is often still used (the dynami
s is integrated forward and ba-
kward in time using a new realization of the brownian motion), so that the proposition of a newpath uses only some information at a given time along the traje
tory. In parti
ular, the spe
i�
realization of the brownian motion whi
h led to the transition is 
ompletely dis
arded, and so,the probability to obtain a new rea
tive path may be low, espe
ially if the transition is di�usive.Inversly, Crooks and Chandler [74℄ proposed to keep 
ompletely the realization of the brownianmotion that led to the transition, ex
ept on a small time interval. In this 
ase, the proposal path isvery similar to the previous path, and the iterations in the Metropolis-Hastings algorithm may bevery 
orrelated. I proposed in [P1℄ an approa
h generalizing the two te
hniques presented above:in this framework, a path is represented as its initial 
onditions and the spe
i�
 realization of thebrownian motion that led to the transition. A new path is proposed by sele
ting a time at randomalong the traje
tory, but integrated forward and ba
kward using a new realization of the brow-nian motion 
orrelated to the previous one (the amout of 
orrelation being a tunable parameter).Numeri
al tests show that this new algorithm is indeed interesting (see [P1℄ and Se
tion 4.3)Computation of rea
tion 
onstantsThe sampling of the path ensemble allows the 
omputation of rate 
onstants for transitionsfrom A to B (whi
h 
an be used for KMC 
omputations for instan
e). More pre
isely, starting attime t = 0 with repli
as of the system all lo
ated in A, it holds
C(t) =

〈1A(q0)1B(qt)〉
〈1A(q0)〉

≃ kAB t,for times τmol ≪ t ≪ τrxn, and where 〈·〉 denotes an average over all possible paths (see [81℄ andSe
tion 4.3 for more pre
isions on the measure used in path-spa
e). The times τmol and τrxn arerespe
tively the mole
ular de
orrelation time and the typi
al rea
tion time, namely
τrxn =

1

kAB + kBA
.In pra
ti
e, it is possible to sample only paths of a pres
ribed temporal length and to 
omputefrom the resulting sample whether C(t) s
ales linearly. The pre
ise pro
edure to extra
t the rate
onstant from those simulations is explained in [81, Se
tion 4.4℄.
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ular Simulation: A Hierar
hy of ModelsFinding a 
onvenient initial path is a di�
ult task in pra
ti
e. Some strategies are proposedin [81℄. It is also possible to enfor
e progressively the paths to end up in B. In this 
ase, free-energyte
hniques 
an be used provided some order parameter de�ning the end region B is known. Thiswas done by Geissler and Dellago in [122℄ using nonequilibrium swit
hing dynami
s. This 
analso be done with several paths swit
hed in parallel, using a sele
tion pro
edure to ensure thatthe �nal sample of paths is not degenerate (see [P1℄ and Se
tion 4.3.3).Path sampling formulated as a sto
hasti
 partial di�erential equationIn TPS, a path is represented as a numeri
al traje
tory, that is, a sequen
e of 
on�gurationsseparated by a time ∆t. In parti
ular, the measure on path spa
e depends on the time step 
hosen,and the results are not formulated in an intrinsi
 manner. From a mathemati
al viewpoint, it isinteresting to formulate the path sampling problem at a 
ontinuous level. In the formulation ofHairer, Stuart, Voss and Wiberg [147, 330℄, the sampling of paths linking an initial state x0to a �nal state x1 (bridge path sampling) is formulated as a sto
hasti
 partial di�erential equation(SPDE). Only then, this SPDE is dis
retized so that paths 
an be 
omputed in pra
ti
e. Thisway, more e�
ient numeri
al algorithms 
an be proposed (see Beskos, Roberts, Stuart, andVoss [29℄).A

elerated dynami
sSeveral te
hniques were proposed to a

elerate mole
ular dynami
s 
omputations. We presenthere three strategies, proposed by Voter, from the most rigorous to the most approximate one(i.e. relying on less and less assumptions).Hyperdynami
sThe Hyperdynami
s method, introdu
ed by Voter in [365℄, is reminis
ent of Umbrella sam-pling te
hniques (see Se
tion 2.3.1). The idea is to 
onsider a bias potential ∆V ≥ 0 a
ting only onthe wells of the energy minima, so that the dynami
s is una�e
ted near transition states (saddle-points of the energy lands
ape). In this manner, for a simulation time t (algorithmi
 time), thesystems spends less time near the bottom of the energy wells, and more time in the transitionregions. The a

umulated physi
al time is
thyper =

∫ t

0

eβ∆V (qs) ds ≥ t,so that the speed-up fa
tor thyper/t ≥ 1. The key 
hallenge in this method, as in all Umbrellasampling methods, is the 
onstru
tion of the bias potential for many-dimensional problems. Someproposals were made in [364℄ (using a hessian-based potential) or in [243℄ (relying on the assump-tion that transitions 
an be dete
ted by signi�
ant 
hanges in some bond lengths).Parallel Repli
a dynami
sThis method, proposed byVoter in [366℄, enables to parallelize (with a linear s
aling) the timeevolution for true infrequent transitions in a system, under the assumption that the es
ape timesare exponentially distributed. The method relies on the mathemati
al remark that the sum of Mexponentially distributed random variables (with parameter τ) is also exponentially distributed,but with a parameter Mτ . Therefore, unless a transition o

urs, it is equivalent to simulate onesystem or several independent repli
as of the system, and adding the asso
iated simulated timesto give the 
orresponding simulation time of a single system.A pra
ti
al implementation of this idea is that several repli
as of a same system are simulatedon di�erent pro
essors, and whenever a transition from one metastable state to another one o

urs,
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remented by the sum of all simulationtimes, all repli
as start from the new metastable state (the su

essful system is repli
ated) andsome de
orrelation is performed, then the parallel time integration until the next transition isstarted again. This strategy 
an be used even if the pro
essors do not have the same speeds.However, some 
are has to taken to dete
t transitions properly. A 
lassi
al pro
edure to this end isa quen
hing pro
edure using some gradient des
ent method, 
he
king at 
onvergen
e whether thegeometry at the basin minimum has 
hanged. Appli
ations of this method 
an be found in [367℄.Temperature A

elerated dynami
sThis te
hnique, proposed by Sorensen and Voter in [317℄, 
an be applied to infrequent eventsystems when harmoni
 TST is a good approximation. The typi
al appli
ation is radiation damagefor very long times. The system is simulated at some higher temperature T+, while the dynami
sof interest is for a temperature T− < T+. Starting from some metastable state, the attemptedes
apes out of this metastable state are inter
epted, and the 
orresponding harmoni
 TST rateare 
omputed. More pre
isely, for the i-th es
ape event at time ti+, the rate is
ki+ = νi0e

−Ei
a/kBT+ ,so that the 
orresponding transition time ti− asso
iated with the lower temperature T i− is

ti− = ti+ exp

(
Eia
kB

(
1

T−
− 1

T+

))
.After this 
omputation, the system is re�e
ted ba
k in the metastable state, and the simulation
ontinues. Assuming some lower bound on the prefa
tors νi0, it is possible to derive an upperbound on the simulation time required at the higher temperature in order to be sure that (say)95% of the transitions at the lower temperature have o

ured. Finally, the system undergoes thetransition event with the smallest time ti−, and the simulation time is advan
ed by ti−. The mainlimitation to this approa
h is that the temperature T+ 
annot be too large in pra
ti
e, otherwiseharmoni
 TST is no longer valid.2.3.3 Redu
ed dynami
sSome dynami
s 
an be expli
itely redu
ed in some limiting regime. This is the 
ase for somemodel systems (see below for the 
ase of a system 
oupled with a deterministi
 heat bath 
omposedof harmoni
 os
illators). Even if this is not possible in general, a formal analysis may suggesta reasonable form for the redu
ed dynami
s, and some parameter estimation then has to beperformed to reprodu
e as well as possible the simulation results obtained for the original modelwith the redu
ed model.Redu
ed dynami
s in the 
ase of a 
oupling with a deterministi
 heat bathFor a parti
le 
oupled to many harmoni
 os
illators, Zwanzig [379℄ formally showed that thelimiting dynami
s on the 
oupled parti
le is a generalized Langevin equation (with memory).This formal proof was put on �rm mathemati
al grounds by Kupferman, Stuart, Terry andTupper in the 
ase of a single parti
le harmoni
ally 
oupled with bath parti
les [199℄.In [P11℄, I have used su
h a 
oupling with harmoni
 bath degrees of freedom to modelsho
k waves using a one-dimensional atom 
hain model. Although this simpli�ed model is one-dimensional, it 
aptures some e�e
ts of higher dimensional models, in parti
ular some relaxationof the energy behind the sho
k front, whi
h allows to 
orre
t the non-physi
al behavior of one-dimensional 
hains under sho
k loading (see also Se
tion 5.1 for more pre
isions on the limitingdynami
s when the number of degrees of freedom of the heat bath goes to in�nity).
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ular Simulation: A Hierar
hy of ModelsDissipative Parti
le Dynami
s modelsDissipative Parti
le Dynami
s is a mesos
opi
 model introdu
ed in 1992 by Hoogerbruggeand Koelman [170℄, and later put on �rm thermodynami
 grounds by Español and Warrenin 1995 [98℄. The primary aim of DPD was the modeling of 
omplex �uids, based on the heuris-ti
 
oarse-graining that droplets or blobs of �uids (that is, a 
olle
tion of mole
ules moving in a
oherent fashion) 
an be repla
ed by single mesos
opi
 parti
les, intera
ting through 
onservative(pairwise additive) and vis
ous for
es with their neighbors, while subje
ted to some thermal mo-tion. What is not always 
lear in those models, is the typi
al physi
al length and time s
ales ofthe problem (how 'mesos
opi
' it is).DPD models may be derived from (all-atom) mi
ros
opi
 models for harmoni
 one-dimensionalatom 
hains [94℄ (see also the limiting equation obtained in [P11℄ and Se
tion 5.1, whi
h is of ge-neralized DPD type). In a more general 
ontext, Flekkoy, Coveney and De Fabritiis [106℄motivate the dynami
s using Voronoi 
ells. In all 
ases, the all-atom deterministi
 dynami
s isrepla
ed by a sto
hasti
 dynami
s, where the deterministi
 part arises from some average beha-vior of the system, and the sto
hasti
 part models the �u
tuations around the average behaviorresulting from the degrees of freedom whi
h are no longer treated expli
itely.As 
an be seen from the equilibrium measure of the dynami
s (see (2.46)), the 
onservativepart of the dynami
s a

ounts for thermodynami
al properties of the system, while the fri
tionand �u
tua
tion parts enhan
e the vis
osity of the system [97℄. The DPD dynami
s reads




dqi =
pi
mi

dt,

dpi =
∑

j 6=i
−∇qiV(rij) dt− γχ2(rij)(vij · eij)eij dt+

√
2γ

β
χ(rij)dWij eij ,with

γ > 0, rij = |qi − qj |, eij =
qi − qj
rij

, vij =
pi
mi

− pj
mj

,

χ a weighting fun
tion (with support in a ball of radius rc, rc being some 
ut-o� radius), andwhere the standard one-dimensional Wiener pro
esses Wij are su
h that Wij = −Wji. DPD istherefore su
h that the global linear momentum and the global angular momentum are preserved(sin
e all intera
tions, in
luding fri
tion for
es and random terms, are pairwise additive).Still denoting H(q, p) = 1
2p
TMp+ V (q) with V (q) =

∑
1≤i<j≤N V(rij), it 
an be shown thatthe measure

dµ(q, p) =
1

Z
exp (−βH(q, p)) dq dp (2.46)(where Z is a normalization 
onstant) is an invariant probability measure of (5.35) sin
e it isa stationary solution of the Fokker-Plan
k equation asso
iated with (5.35) (see [98℄). However,proving the ergodi
ity of DPD is a di�
ult task. The only result to this date is due to Shardlowand Yan who showed the ergodi
ity of DPD when the 
on�guration spa
e is a one-dimensionaltorus, and under 
ertain 
onditions on the intera
tion potential, the weighting fun
tions, andprovided the density of the system is large enough.Noti
e �nally that DPD-like models may help to bridge the gap between parti
le dis
retizationsof Navier-Stokes equations (su
h as the Smoothed Parti
le Hydrodynami
s of Lu
y and Mona-ghan [217,246℄) and all-atom models. A �rst step to su
h a general formalism in the equilibrium
ase is proposed by Español and Revenga in [96℄.Intera
tion potential between parti
lesChoosing a good potential des
ribing intera
tions between the mesos
opi
 DPD parti
les is aquestion that has been addressed from di�erent viewpoints. There are three typi
al approa
hes:
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e, arising as some thermodynami
 average (the mean for
e obtainedin free-energy 
omputations) [97, 142℄, or some short-time average [109℄ of a 
ompletedynami
s. The mean for
e exerted by a parti
le lo
ated at q2 on a parti
le lo
ated at q1 isde�ned as [142℄:
−∇q1V(q1, q2) =

∫
−∇q1V (q) e−βV (q) dq3 . . . dqN
∫

e−βV (q) dq3 . . . dqN

= − 1

β
∇q1 [ln g(|q1 − q2|)] ,where g(r) is the pair distribution fun
tion. For droplets of �uids, this equation maybe extended to des
ribe intera
tions between 
enter of masses of the droplets at a �xeddistan
e (still averging the intera
tion for
es);(ii) sear
h for some optimal pair potential, �tting the parameters of a potential with a givenfun
tional form through some 
riteria (usually, a least square �t of the results to stati
equilibrium thermodynami
 properties 
omputed for some referen
e all-atom system);(iii) using more 
ompli
ated e�e
tive potentials, for instan
e anisotropi
 (to take steri
 e�e
tsinto a

ount).Many (most) studies follow the se
ond approa
h. In parti
ular, InverseMonte-Carlo te
hniques [219,279℄ aim at re
overing the radial pair distribution fun
tion g(r) (using the one-to-one mappingbetween g(r) and a pairwise potential V(r), see [155℄). Other important quantities are thermo-dynami
 
oe�
ients (su
h as the 
ompressibility), or equations of state (pressure as a fun
tionof density, see for instan
e [245℄ for a model proto
ol). Sometimes, transport 
oe�
ients are also
onsidered, in parti
ular the self-di�usion 
onstant. It is important to note that the e�e
tive po-tentials 
omputed these ways depend on the thermodynami
 regimes where the �tting was done.This is parti
ularly 
lear when the e�e
tive intera
tion for
e is the mean for
e, or is obtained fromone given radial pair distribution fun
tion.Appli
ation to sho
k and detonation wavesThere are many re�nements and variants of the DPD model (2.46). In parti
ular, it is possibleto 
onsider DPD models where the parti
les have an internal energy ǫi. These models are known asDPD models with 
onserved energy (DPDE) sin
e the evolution of the internal energy variable ispostulated in a manner that the total energy of the system H(q, p)+

∑N
i=1 ǫi is preserved (whi
h isnon-trivial sin
e the dynami
s is sto
hasti
). The idea is that the dissipated me
hani
al energy istransformed into internal energy. DPDE was proposed independently by Avalos andMa
kie [15℄and Español [95℄.In [P7℄, I have used a slightly modi�ed DPDE dynami
s to propose a mesos
opi
 model forsho
k waves. In this model, one (meso)parti
le stands for a 
omplex mole
ule, the internal energyof the parti
le being ǫ = NredkBTint/2, where Tint is the internal temperature, and Nred thenumber of degrees of freedom not expli
itely represented (for a mole
ule 
omposed of Nat atomsin dimension d, it holds Nred = 2d(Nat−1)). Repla
ing a 
omplex mole
ule by a single parti
le wasalready done in the 
ontext of sho
k waves by Stra
han and Holian [326℄, but the asso
iateddynami
s is physi
ally less attra
tive than DPD like dynami
s. Simulation results demonstratethat a good agreement with all-atom results 
an be obtained with su
h a redu
ed model (see [P7℄and Se
tion 5.2.2 for more pre
isions).The DPD formalism also allows an extension to the modeling of detonation waves. Detonationwaves are, roughly speaking, sho
k waves initiating exothermi
 
hemi
al rea
tions as they passes,the energy liberated by the 
hemi
al rea
tions enhan
ing and sustaining the sho
k. The modelingof detonation requires the introdu
tion of an additional variable, a progress variable λ des
ribingthe progress of the 
hemi
al de
omposition (seen as some progress on a free energy pro�le). Thedynami
s 
an be split into three elementary physi
al pro
esses:



44 2 Mole
ular Simulation: A Hierar
hy of Models(i) the dynami
s on (q, p, ǫ), analogous to the dynami
s of inert materials;(ii) the evolution of 
hemi
al rea
tions through some kineti
s on the progress variable;(iii) the exothermi
ity of the rea
tion: energy transfers between 
hemi
al and me
hani
al plusinternal energies have to be pre
ised.We have proposed su
h a model with J.-B. Maillet and L. Soulard (see [P2℄ and Se
tion 5.2.3),and the �rst numeri
al results obtained are en
ouraging.E�e
tive di�usion in the rea
tion 
oordinateThis last se
tion presents an interesting domain for further resear
h: the determination of someaverage or e�e
tive dynami
s on the rea
tion 
oordinate. Indeed, sin
e the rea
tion 
oordinaterepresents some ma
ros
opi
 or global variable of the system, or at least some slowly evolvingdegree of freedom, it is natural to seek an e�e
tive equation for its evolution � where the remainingdegrees of freedom would enter only in an average way, through some sto
hasti
 for
ing or memorye�e
ts. Two problems 
an be distinguished in su
h an approa
h: First, the analyti
 form of thedynami
s must be postulated or derived, and this form may vary depending on whether theunderlying dynami
s is hamiltonian or sto
hasti
; se
ond, on
e the general form of the dynami
sis obtained, some parameter estimation must usually be done in order to �t pre
isely the redu
eddynami
s to the (possibly partially) observed mi
ros
opi
 data.Redu
tion of the hamiltonian dynami
sA general pro
edure to redu
e a deterministi
 dynami
s to obtain an e�e
tive dynami
s fora subset of the initial degrees of freedom is to use a proje
tion operation introdu
ed by Moriand Zwanzig [250, 379℄. The idea is to integrate exa
tly (though only formally) the undesireddegrees of freedom, whi
h appear in the dynami
s of the remaining degrees of freedom throughsome memory term and a random for
ing (related to un
ertainties on the initial 
onditions).We present the general lines of the Mori-Zwanzig pro
edure following Givon, Kupferman andStuart [134℄, in the 
ase when q = (x, y) with x ∈ Rm, y ∈ RdN−m. For the general 
ase ofrea
tion 
oordinates ξ : RdN → Rm, additional geometri
 di�
ulties are introdu
ed, but ananalogous derivation 
an be performed (see [136℄). We denote by p = (px, py) the momentumasso
iated with q.For (x, y) ∈ X × Y evolving a

ording to the dynami
s
{
Ẋ = f(X,Y ),

Ẏ = g(X,Y ),
(2.47)whi
h is assumed to have dρ(X,Y ) as an invariant (positive, bounded) measure, the followingproje
tion operators 
an be introdu
ed:

Π(X,Y ) = X, Pf(X) =

∫

Y
f(X,Y ) dρ(X,Y )

∫

Y
dρ(X,Y )

.The solution of (2.47) 
an then be rewritten as
Ẋ(t) = Pf(X(t)) +

∫ t

0

K(X(t− s), s) ds+ n(X(0), Y (0), t).The for
ing term n and the memory term K are related through a �u
tuation/dissipation relation,and are de�ned respe
tively by the equation
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∂tn = (Id − P )Ln, n(X,Y, 0) = f(X,Y ) − Pf(X),and the relation

K(X, t) = PLn(X,Y, t),where L is the Liouville operator L = f(X,Y ) · ∇X + g(X,Y ) · ∇Y .When (2.47) is the hamiltonian dynami
s, initial 
onditions 
an be assumed to be distributeda

ording to the 
anoni
al measure, whi
h determines the measure to be used for the proje
tionoperator P . This leads to the following proje
ted dynami
s de�ned on R2m:
d

dt

(
x

px

)
=

(
M−1
x px

−∇xV (x)

)
+

∫ t

0

K((x, px)(t− s), s) ds+ n(x(0), px(0), y(0), py(0), t), (2.48)where Mx is the mass matrix asso
iated with the variable px, and V (x) is the potential of meanfor
e:
V (x) = − 1

β
ln

∫

RdN−m

e−βV (x,y) dy. (2.49)The e�e
tive dynami
s is therefore a hamiltonian dynami
s, with two additional terms: a memoryterm, and a for
ing term arising from the undetermination on the initial 
onditions. The latterterm is a random for
ing term when the initial 
onditions are random (and in the limit N → +∞,see for instan
e [199℄ for a rigorous proof in a simple 
ase).However, it is important to note that the limiting equation (2.48) obtained by this proje
-tion te
hnique is not simpler than the original hamiltonian equation posed in RdN . In pra
ti
e,it is nevertheless a 
onvenient starting point to propose approximate dynami
s on the rea
tion
oordinate.Redu
tion of sto
hasti
 dynami
sCertain redu
tion of all-atom dynami
s are done starting from a sto
hasti
 dynami
s. Wepresent here a 
lassi
al derivation in the simple 
ase q = (x, y) with x ∈ Rm, y ∈ RdN−m, for thedynami
s
dqt = −∇V (qt) dt+

√
2β−1 dWt,

Wt being a standard dN -dimensional brownian motion. When the variables of the system 
an bepartitioned into slowly evolving variables x and rapidly evolving variables y, the variables y arepresent only through some mean a
tion on the variables x. This idea 
an be made rigourous usingsome �
titious res
aling of the time in the y variables a

ording to (ǫ > 0)




dxǫt = −∇xV (xǫt , y
ǫ
t) dt+

√
2β−1 dW x

t ,

dyǫt = −1

ǫ
∇yV (xǫt , y

ǫ
t) dt+

√
2β−1

ǫ
dW y

t ,where W x
t , W y

t are independent standard brownian motions, of dimensions m and dN −m res-pe
tively. In the limit ǫ→ 0, an e�e
tive dynami
s on x is obtained as
dXt = −∇xV (Xt) dt+

√
2β−1 dWt, (2.50)

Wt being a standard m-dimensional brownian motion, and V (x) the potential of mean for
e (2.49)(see Papani
olaou [266℄ and the pedagogi
al book by Pavliotis and Stuart [268, Chapters 10and 11℄ for more pre
isions on the meaning and the validity of this limit). This approa
h 
an beextended to general rea
tion 
oordinates (see [91, Se
tion 10℄). In this 
ase, the limiting dynami
sis of the general form
dXt = f(Xt) dt+ σ(Xt) dt, (2.51)
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ular Simulation: A Hierar
hy of Modelsthe fun
tions f and σ depending on the 
hoi
e of the rea
tion 
oordinate.An alternative derivation of the dynami
s (2.51) relies on the work of Gyöngy [144℄. Indeed,for a rea
tion 
oordinate ξ : RdN → R, It� 
al
ulus using (2.50) shows that
dξ(qt) = (−∇V (qt) · ∇ξ(qt) + β−1∆ξ(qt)) dt+

√
2β−1 |∇ξ(qt)|

∇ξ(qt) · dWt

|∇ξ(qt)|
.Introdu
ing the dynami
s

dXt = f(t,Xt) dt+ σ(t,Xt) dBt, dBt =
∇ξ(qt) · dWt

|∇ξ(qt)|with
f(t, z) = E

(
−∇V (qt) · ∇ξ(qt) + β−1∆ξ(qt) | ξ(qt) = z

)
, σ(t, z) = E (|∇ξ(qt)| | ξ(qt) = z ) ,the results of [144℄ show that the laws of Xt and ξ(qt) are identi
al. A dynami
s of the form (2.51)
an be obtained under the assumption that the 
onditional distributions of qt are independent oftime, and are in fa
t 
onditioned 
anoni
al measures. In this 
ase, the above 
onditional expe
ta-tions 
an indeed be 
omputed as

E(h(qt) | ξ(qt) = z ) =

∫

ξ−1(z)

h(q) e−βV (q)|∇ξ(q)|−1 dq

∫

ξ−1(z)

e−βV (q)|∇ξ(q)|−1 dq

.Parameter estimation for the limiting equationDepending on whether the starting dynami
s is deterministi
 or sto
hasti
, it is possible toobtain redu
ed dynami
s of generalized Langevin type su
h as (2.48), or dynami
s with a multipli-
ative noise su
h as (2.51). In both 
ases, to simulate in pra
ti
e su
h dynami
s, some preliminaryparameter estimation must be performed.For dynami
s of Mori-Zwanzig type (2.48), a usual approa
h is to postulate some fun
tionalform for the potential of mean for
e V , the memory term and the noise term. The 
orrespondingparameter estimation 
an then be performed starting from a sample of observed values of therea
tion 
oordinate and using statisti
al te
hniques su
h as maximum likelihood estimations (seefor instan
e the review paper by Bibby and Sorensen [30℄ on parameter estimation for ellipi
di�usions, or the work of Pokern, Stuart and Wiberg [271℄ in the hypoellipti
 
ase). Thesestatisti
al estimations 
an also validate or invalidate the fun
tional form postulated a priori forthe di�erent terms.Statisti
al te
hniques 
an of 
ourse also be used for dynami
s of the form (2.51) (see for ins-tan
e Hummer [176℄). For the moment however, most approa
hes rely rather on the so-
alledequation-free te
hniques (see, in the 
ontext of e�e
tive dynami
s, Kopelevi
h, Panagioto-poulos and Kevrekidis [196℄, as well as [373℄). These methods start from an ensemble of inde-pendent mi
ros
opi
 
on�gurations asso
iated with a �xed value of the rea
tion 
oordinate, andstudy the short-time evolution of the distribution of the values of the rea
tion 
oordinate to obtainapproximations of the drift term f and the multipli
ative noise term σ in (2.51).
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Sampling Te
hniques in Mole
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s





3Phase-spa
e sampling te
hniques
3.1 Purely sto
hasti
 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.1.1 Reje
tion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.1.2 Reje
tion 
ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.1.3 Metropolized independen
e sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.1.4 Importan
e sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2 Sto
hasti
ally perturbed Mole
ular Dynami
s methods . . . . . . . . . . . 583.2.1 General framework for NVE Mole
ular Dynami
s . . . . . . . . . . . . . . . . . . 593.2.2 Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.2.3 Biased Random-Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713.2.4 Langevin dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.3 Deterministi
 mole
ular dynami
s sampling . . . . . . . . . . . . . . . . . . . . . 793.3.1 The Nosé-Hoover and Nosé-Hoover 
hains methods . . . . . . . . . . . . . . . . . 793.3.2 The Nosé-Poin
aré and the Re
ursive Multiple Thermostat methods . . 803.4 Numeri
al illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.4.1 Des
ription of the linear alkane mole
ule . . . . . . . . . . . . . . . . . . . . . . . . . . 823.4.2 Dis
repan
y of sample points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.4.3 Choi
e of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.4.4 Numeri
al results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893.4.5 Improvement of the 
onvergen
e rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903.4.6 Computation of 
orrelation fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923.5 Sto
hasti
 boundary 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923.5.1 Review of some 
lassi
al sto
hasti
 boundary 
onditions . . . . . . . . . . . . . 933.5.2 An example of thermal boundary 
onditions . . . . . . . . . . . . . . . . . . . . . . . 953.6 Some ba
kground on 
ontinuous state-spa
e Markov 
hains andpro
esses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013.6.1 Some ba
kground on 
ontinuous state-spa
e Markov 
hains . . . . . . . . . . 1013.6.2 Some 
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hapter, we present and 
ompare, from both a theoreti
al and a numeri
al point ofview, sampling methods to 
ompute phase spa
e integrals of the form

〈A〉 =

∫

T∗M
A(q, p) dµ(q, p), (3.1)or time-dependent properties
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hniques
〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ, (3.2)where Φt is the Hamiltonian �ow. In the above expression, M denotes the position spa
e (also
alled the 
on�guration spa
e), and T ∗M its 
otangent spa
e. A generi
 element of the positionspa
e M will be denoted by q = (q1, · · · , qN ) and a generi
 element of the momentum spa
e R3Nby p = (p1, · · · , pN). The mass matrix is M = Diag(m1, . . . ,mN ). The measure µ is the 
anoni
alprobability measure:

dµ(q, p) = Z−1 exp(−βH(q, p)) dq dp, (3.3)where β = 1/kBT (T denotes the temperature and kB the Boltzmann 
onstant) and where Hdenotes the Hamiltonian of the mole
ular system:
H(q, p) =

1

2
pTM−1p+ V (q). (3.4)Re
all that the measure dµ(q, p) 
an be written as dµ(q, p) = dπ(q) dκ(p) with

dκ(p) = P(p) dp = Z−1
p exp

(
−β

2
pTM−1p

)
dp, (3.5)and

dπ(q) = f(q) dq = Z−1
q e−βV (q) dq. (3.6)Sin
e it is straightforward to sample from the momentum distribution (3.5) (it is a produ
t ofindependent Gaussian densities), the a
tual issue is to sample e�
iently from the (position spa
e)measure π given by (3.6).In this 
hapter, new 
onvergen
e results on the Hybrid Monte-Carlo sampling s
heme are stated(see Se
tion 3.2.2) and various numeri
al methods to 
ompute integrals su
h as (3.1) or (3.2), arereviewed and their e�
ien
ies are 
ompared on a ben
hmark system (simple alkane mole
ule).More pre
isely, we 
onsider the issue of sampling from the 
anoni
al measure (3.3).All the methods 
onsidered in this 
hapter 
onsist in generating a sequen
e of points (qn)n∈Nin the position spa
e. These methods 
an be 
lassi�ed in four 
ategories:Type 1. (qn)n∈N is a sequen
e of independent realizations of a given random variable of density

f(q) =
1

Zq
e−βV (q); this is the 
ase for the standard Reje
tion and for the Reje
tion 
ontrolmethods;Type 2. (qn)n∈N is a realization of a 
ontinuous state-spa
e Markov 
hain, for whi
h π is aninvariant measure; this is the 
ase for the Metropolized independen
e sampler and for theHybrid Monte Carlo method;Type 3. (qn)n∈N is an approximation of (qtn)n∈N where (qt)t≥0 (resp. (qt, pt)t≥0) is a sample pathof a sto
hasti
 pro
ess on M (resp. on T ∗M), for whi
h π (resp. µ) is an invariantmeasure; this is the 
ase for the biased Random-Walk (resp. for the Langevin dynami
s);Type 4. (qn)n∈N is an approximation of (q(tn))n∈N where (q(t), p(t), x(t))t≥0 is a traje
tory ofa deterministi
 extended dynami
al system (q and p are the physi
al variables, while

x represents some additional variables; see Se
tion 3.3 for more details); this extendeddynami
al system is su
h that it preserves a measure dρ whose proje
tion on the physi
alvariables q, p is the measure dµ given by (3.3); this is the 
ase for Nosé-Hoover, Nosé-Poin
aré and Re
ursive Multiple Thermostat methods.The �rst two questions we will adress are relevant for all the methods mentioned above:



3 Phase-spa
e sampling te
hniques 51Question 1.An observableA(q) onM being given, does the empiri
al mean 1

N

N−1∑

n=0

A(qn) 
onvergeto the spa
e average ∫
M
A(q) dπ(q)?Question 2. If so, 
an the speed of 
onvergen
e be estimated?For methods of Type 1, the answers to Questions 1 and 2 are obviously positive and are dire
t
onsequen
es of the Law of Large Number (LLN) and of the Central Limit Theorem (CLT) forindependent identi
ally distributed (i.i.d.) random variables. For the methods of Type 2, Ques-tions 1 and 2 
an be positively answered, at least for 
ompa
t position spa
es M and under someassumptions on the potential energy V . For Question 1, the point is to 
he
k (see Theorem 3.1and Se
tion 3.6 below) that

π is an invariant probability measure of the Markov 
hain, (3.7)and that the probability transition kernel P (q, ·) of the Markov 
hain1 satis�es the a

essibility
ondition
∀q ∈ M, ∀B ∈ B(M), µLeb(B) > 0 ⇒ P (q,B) > 0, (3.8)where B(M) is the Borel σ-algebra of M and µLeb is the Lebesgue measure on M. Turning toQuestion 2, a 
onvergen
e rate of N−1/2 
an be obtained when the transition kernel P has someregularity properties, and provided some Lyapunov 
ondition holds true (see Theorem 3.2 and
ondition (3.11) below).For the methods of Type 3, analogous results 
an be stated at the 
ontinuous level (for theunderlying Markov pro
esses). In 
omputations, dis
rete-time approximations are used, and onere
overs the 
ase of a Markov 
hain, and the same kind of results as for methods of Type 2 holdtrue. For methods of Type 4, no general 
onvergen
e result is known.In the 
ase when the sequen
e (qn)n∈N originates from a Markov 
hain on M or from adis
retized sto
hasti
 pro
ess on M or on T ∗M (methods of Types 2 and 3), additional questionsarise. Indeed, instead of 
onsidering one realization starting from a given initial data, it is alsopossible to generate samples with the same 
omputational 
ost by 
onsidering several shorterrealizations starting either all from the same point or from di�erent points (whi
h 
onstitute apre-existing initial distribution). In this 
ase, typi
al 
onvergen
e results involve weighted totalvariation norms for the probability measures that are generated. In the sequel, we will often referto this kind of 
onvergen
e as the "
onvergen
e of densities" sin
e, when the n-step probabilitytransition kernel2 Pn(q, ·) of the Markov 
hain and the invariant probability measure both admitdensities with respe
t to the Lebesgue measure, the 
onvergen
e in total variation norm impliesthe L1 
onvergen
e of the densities. We 
an thus formulate the following two questions:Question 3. Does ‖Pn(q, ·) − π‖ 
onverge to zero when n goes to in�nity for some (weighted)total variation norm?Question 4. If so, 
an the speed of 
onvergen
e be estimated?Again, if π is an invariant probability measure and if the a

essibility 
ondition (3.8) holds true,the answer to Question 3 is positive (see Theorems 3.3 and 3.4 below). A geometri
 
onvergen
erate in ρn for some ρ ∈ (0, 1) in some weighted total variation norm 
an also be obtained when the

1 If q ∈ M and B is a Borel set of M, P (q,B) is the probability for the Markov 
hain to be in B whenstarting from q.
2 For q ∈ M and B a Borel set of M, Pn(q,B) is the probability for the Markov 
hain to be in B whenstarting from q after exa
tly n steps. It is indu
tively de�ned from P by P 0(q,B) = 1B(q) and theindu
tion rule

Pn(q,B) =

Z

M
P (q, dq′)Pn−1(q′, B).
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e sampling te
hniquestransition kernel P has some weak regularity properties and provided some Lyapunov 
onditionholds true (namely 
ondition (3.31) below, see Theorem 3.8). Let us point out that the Lyapunov
ondition (3.31) providing geometri
 
onvergen
e of the densities is not of the same nature as the
ondition (3.11) providing a 
onvergen
e rate of the average along one sample path.Let us mention that, in some appli
ations, integrals su
h as (3.1) are sometimes 
omputed usingBlue Moon sampling te
hniques [54, 65, 370℄. In this 
ase, integrals over submanifolds (generallyhypersurfa
es) of M have to be estimated. For su
h 
omputations, the theoreti
al analysis isthe same as the one presented here. From the numeri
al viewpoint, algorithms adapted to the
onstraint of sampling a hypersurfa
e (and not the whole spa
e) have to be used, namely proje
tedalgorithms for sto
hasti
 dynami
s (see e.g. [66℄ and Se
tion 4.1.3) and SHAKE or RATTLEalgorithms for deterministi
 evolutions (see [146, Chap. VII.1.4℄).This 
hapter is organized as follows. We �rst des
ribe and 
ompare from a theoreti
al pointof view the most popular methods to sample from the 
anoni
al distribution. In Se
tion 3.1,we 
onsider purely sto
hasti
 methods; sto
hasti
ally perturbed Mole
ular Dynami
s methodsand deterministi
 thermostatting methods are presented in Se
tion 3.2 and 3.3 respe
tively. Inparti
ular, in Se
tion 3.2.2, we present some new 
onvergen
e results for the Hybrid Monte Carlos
heme (see Theorems 3.7, 3.9 and 3.10). A summary of the main known results is presented inTable 3.1. We refer to the 
orresponding se
tions for notations and further explanations, and toSe
tion 3.6 for some theoreti
al ba
kground on Markov 
hains and pro
esses.We then turn to a pra
ti
al appli
ation of those methods in the 
ase of linear alkane mole
ulesin Se
tion 3.4. The fa
t that some methods may work better than others, and that this dependson the situation at hand, is 
ommonly a

epted. However, these beliefs are usually only basedon some qualitative 
omparisons, or on 
omparison with experimental data. In the latter 
ase,dis
repan
ies between numeri
al results and experimental results 
an 
ome both from numeri
aland modelling approximations, so it is not easy to draw 
on
lusions spe
i�
ally on the numeri
almethods. Comparing the methods in a quantitative way is one of the main purpose of this study.Finally, an appli
ation of the previous sampling methods to 
ompute time-dependent propertiesusing sto
hasti
 boundary 
onditions is presented in Se
tion 3.5.3.1 Purely sto
hasti
 methodsPurely sto
hasti
 methods 
onsist in generating points in the position spa
e a

ording to themeasure dπ(q) = f(q) dq given by (3.6), without refering to any physi
al dynami
s of the system.We brie�y re
all here four methods, the Reje
tion, Reje
tion 
ontrol, Importan
e sampling, andMetropolized sampling methods. They all make use of a referen
e positive probability distribution
g(q), su
h that (i) it is easy to generate samples from g, and (ii) g is a �good� approximation of f ,in a sense that will be made pre
ise below.3.1.1 Reje
tion methodThe Reje
tion method [215℄ requires the knowledge of a probability density g whi
h bounds ffrom above up to a multipli
ative fa
tor c > 0:

f ≤ cg, (3.9)and from whi
h it is easy to generate samples. For instan
e, when M = T3N (mole
ular systemwith periodi
 boundary 
onditions) and the potential energy V is bounded from below, a uniformdensity g may be used (but its e�
ien
y is likely to be very poor). The idea of the method is todraw proposals a

ording to the density g and to a

ept them with probability f/(cg).
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Table3.1.Summaryofthedi�erentsamplingmethodsandtheirproperties.Thefollowingshortenings
havebeenused:MH(Metropolis-Hastingss
heme),MD(Mole
ularDynami
s),i.i.d.r.v.(independently
andidenti
allydistributedrandomvariables),LLN(usualLawofLargeNumbers,i.e.fori.i.d.variables),
MCLLN(LLNforMarkov
hains),MPLLN(LLNforMarkovpro
esses).

Reje
tion and Metropolized Hybrid Biased Langevin Deterministi
Name Reje
tion 
ontrol independen
e Monte-Carlo Random-Walk dynami
s dynami
ssampler (MIS) (HMC)Sampling from MH with MH with Ellipti
 Hypoellipti
 ExtendedMethod the true independent MD proposals di�usion di�usion MD systemdensity proposalsType i.i.d Markov Markov Markov Markov ODEvariables 
hain 
hain pro
ess pro
essMC LLN MC LLN MP LLN MP LLNQuestions 1, 2 LLN (
onditions on the (
onditions on the (Lyapunov (Lyapunov Openproposal fun
tion) potential energy) 
ondition) 
ondition) questionAny textbook Se
tion 3.1.3 and [237℄ Se
tion 3.2.2 Se
tion 3.2.3 Se
tion 3.2.4Uniform ergodi
ity Geometri
 ergodi
ity Geometri
 ergodi
ityQuestions 3, 4 - when a bounding Ergodi
ity (Lyapunov (Lyapunov Openfun
tion exists 
ondition) 
ondition) questionSe
tion 3.1.3 Se
tion 3.2.2 Se
tion 3.2.3 Se
tion 3.2.4Numeri
al MH with Euler-Maruyama BBK algorithm or Operatordis
retization - - velo
ity-Verlet or MALA higher order s
hemes splittingSe
tion 3.2.2 Se
tion 3.2.3 Se
tion 3.2.4 Se
tion 3.3Type - - Markov Markov Markov ODE
hain 
hain 
hain dis
retizationSame te
hniques Classi
al No result for usualConvergen
e - - and results as for the MC te
hniques s
hemes / results for Open
ontinuous s
heme spe
i�
 s
hemes questionSe
tion 3.2.2 Se
tion 3.2.3 and [283℄ Se
tion 3.2.4Free Sampling Proposal Time step ∆t, Time step ∆t Time step ∆t, Number/values ofparameters fun
tion g fun
tion g Integration time τ Fri
tion 
oe�
ient ξ thermostat masses,time step ∆tRule g "
lose to" f g "
lose to" f �Not too mu
h reje
tion� A

eptan
e rate ≃ 0.5 ξ∆t �small� (0.01)
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e sampling te
hniquesA
tually, a bound on the (non-normalized) distribution f̃(q) = Zqf(q) = e−βV (q) is su�
ientto run the algorithm. Su
h a bound reads f̃ ≤ c̃g, and is mu
h easier to establish in pra
ti
e sin
ethe normalization 
onstant Zq is unknown and very di�
ult to estimate. The proposals are thena

epted with probability f̃/(c̃g).Finding a fun
tion g su
h that the 
onstant c appearing in (3.9) is as small as possible is veryimportant. It is indeed well-known [215℄ that, on average, generating one sample point requires cdraws, that is c evaluations of the potential energy V , whi
h is by far the most 
omputationallyexpensive part of the 
al
ulation. This 
onstant c is therefore of paramount importan
e. Whenthe system dimension is small, it is usually possible to �nd g su
h that c is not too large, andtherefore the method is very e�
ient. But when c is very large, the method is totally ine�
ient.In mole
ular simulation, it is usually very di�
ult to 
onstru
t e�
ient sampling fun
tions g forsystems involving more than a few atoms. This 
an however still be done for some spe
i�
 systems,su
h as 
rystals at low temperature, using Taylor expansions around the equilibrium position, and
ontrolling the relevan
e of the expansion by Reje
tion 
ontrol te
hniques (see Se
tion 3.1.2 below).Sin
e the points generated by the Reje
tion algorithm are independent realizations of somerandom variable, usual 
onvergen
e results su
h as the Law of Large Numbers and the CentralLimit Theorem apply [137℄. Let A be some observable over the position spa
e, (qn)0≤n≤N−1 bethe sample generated by the method, and let us set
SN (A) =

N−1∑

n=0

A(qn). (3.10)If π(|A|) < +∞, then the Law of Large Numbers holds true:
lim
N→∞

1

N
SN (A) =

∫

M
A(q)f(q) dq =

∫

M
Adπ a.s.If π(|A|2) < +∞, then the Central Limit Theorem holds true. There exists γA > 0 (in fa
t,γA =

π(|A|2) − π(|A|)2) su
h the following 
onvergen
e in law holds:
(NγA)−1/2SN (Ā) →

N→∞
N (0, 1),where Ā = A−

∫

M
Adπ and N (0, 1) is the standard Gaussian random variable.3.1.2 Reje
tion 
ontrolIt is often tri
ky to �nd a fun
tion g su
h that (3.9) is satis�ed everywhere in M. However, itis sometimes possible to �nd a sampling fun
tion g for whi
h (3.9) is satis�ed for most proposals

q̃ generated from g. In this 
ase, the Reje
tion method presented in the previous se
tion 
an besomewhat modi�ed so that the non-global 
hara
ter of the bound is taken into a

ount.The Reje
tion 
ontrol s
heme [64,215℄ allows one to handle proposals that violate the inequa-lity (3.9) by an appropriate a posteriori reweighting. Let us just note here that this s
heme 
anbe re
ast [64℄ as an Importan
e sampling s
heme, a method we will re
all in Se
tion 3.1.4.3.1.3 Metropolized independen
e samplerWhen c is large, the Reje
tion method may require many evaluations of the potential energy V .As c is unknown in pra
ti
e, it is di�
ult to estimate a priori the 
omputational e�
ien
y ofthe method. Therefore, a sto
hasti
 method with a �xed 
omputational 
ost 
ould provide aninteresting alternative.
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hasti
 methods 55TheMetropolized independen
e sampler (MIS), presented e.g. in [215, Se
tion 5.4.2℄, is one su
hmethod. Basi
ally, it is a Metropolis-Hastings algorithm [153,238℄ with i.i.d. proposals. Therefore,the generated sequen
e of points forms a Markov 
hain (see [240℄ for some de�nitions and propertiesof 
ontinuous state-spa
e Markov 
hains).Metropolis-Hastings algorithmWe �rst re
all the general idea of the Metropolis algorithm [238℄, whi
h was later generalized byHastings [153℄ to provide a general purpose sampling method (see also Se
tion 4.3 and Se
tion 6.1.1for non trivial appli
ations of the Metropolis-Hastings algorithm to the 
ase of path sampling andVariational Monte Carlo respe
tively). We present it here on the 
on�gurational spa
e M, and
onsider that we have a rule to generate proposal 
on�gurations q′ starting from the 
urrent
on�guration q, and that this proposal fun
tion is 
hara
terized by the probability density P(q, q′)(It is also 
alled 'generation probability' or 'transition density' in the �eld of mole
ular simulation).Metropolis-Hastings algorithmAlgorithm 3.1. Starting from some initial 
on�guration q0, and for n ≥ 1,(1) Propose a move from qn to q̃n+1 a

ording to the transition density P(qn, q̃n+1);(2) Compute the a

eptan
e rate
αn = min

(
f(q̃n+1)P(q̃n+1, qn)

f(qn)P(qn, q̃n+1)
, 1

)
;(3) Draw a random variable Un uniformly distributed in [0, 1] (Un ∼ U [0, 1]);(i) if Un ≤ αn, a

ept the move and set qn+1 = q̃n+1;(ii) if Un > αn, reje
t the move and set qn+1 = qn.(4) go to Step (1).We denote by P the transition kernel of this Markov 
hain. It is easily seen that

P (q, dq′) = r(q, q′)P(q, q′) dq′ +

(
1 −

∫
r(q, q′′′)P(q, q′′) dq′′

)
δq,where the density r(q, ·) is given by

r(q, q′) = min

(
1,
f(q′)P(q′, q)

f(q)P(q, q′)

)
.By 
onstru
tion, dπ(q) = f(q) dq is an invariant measure [215℄.The key point in all Metropolis-Hastings s
hemes is to �nd an e�
ient proposal fun
tion.In parti
ular, there is always a trade-o� between the a

eptan
e and the de
orrelation rate ofthe Markov 
hain. Indeed, if the a

eptan
e rate is low, the obtained sample is degenerate, andnot statisti
ally 
on�dent. On the other hand, to in
rease the a

eptan
e rate, more 
orrelatediterations 
an be used. In this 
ase the method is more likely to remain trapped in lo
al minima,and the numeri
al ergodi
ity rate may be slow.Metropolized independen
e samplerWe assume that the potential energy V is 
ontinuous. Considering an everywhere positiveprobability density g, let us set P(q, q′) = g(q′) and w(q) =

f(q)

g(q)
. This version of the Metropolis-
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e sampling te
hniquesHastings is 
alled the Metropolized independen
e sampler (MIS). The algorithm we will use istherefore as follows: Metropolized independen
e samplingAlgorithm 3.2. Consider an initial point q0. For n ≥ 1,(1) generate a point q̃ in M from the density g;(2) generate a random number Un ∼ U [0, 1];(3) if Un ≤ min

{
1,

w(q̃)

w(qn)

}, set qn+1 = q̃, otherwise, set qn+1 = qn;(4) repla
e n by n+ 1 and go ba
k to step (1).Convergen
e of the average along one sample pathLet us now re
all some 
onvergen
e results for Markov 
hains, whi
h, applied to the spe
i�

ases of the Metropolized independen
e sampling, will provide 
onvergen
e results. Let us denoteby A some observable on the position spa
e and by (qn)n∈N one realization of the MIS Markov
hain starting from a given q0. The question under examination is that of the 
onvergen
e of theempiri
al mean 1

N
SN (A) toward ∫

M
A(q) dπ(q) where π is the 
anoni
al measure de�ned by (3.6)and SN (A) is de�ned by (3.10).First, π is an invariant measure due to general results on Metropolis-Hastings algorithms [215℄.Therefore, 
ondition (3.7) is satis�ed. Condition (3.8) is also trivially satis�ed whenever the supportof f is a subset of the support of g. This is the 
ase here sin
e we have 
hosen a fun
tion g whosesupport is the whole position spa
e M.Sin
e 
onditions (3.7) and (3.8) are satis�ed, a Law of Large Numbers (LLN) holds for almostall starting points, and Question 1 
an therefore be answered positively. Indeed, re
all the followingtheorem:Theorem 3.1 ( [240, Theorem 17.1.7℄). Suppose 
onditions (3.7) and (3.8) are satis�ed. Then,for any measurable fun
tion A ∈ L1(π),

lim
N→∞

1

N
SN (A) =

∫

M
Adπ a.s.for almost all starting points q0 ∈ M, where SN (A) is de�ned by (3.10).To obtain a 
onvergen
e rate on SN (A), an additional 
ondition is needed, su
h as:There exist two measurable fun
tions L ≥ min{1, A} and W ≥ 0, a real number band a petite set C su
h that

∆W (q) ≤ −L(q) + b1C(q), π(W 2) < +∞,

(3.11)where A is the observable under 
onsideration and ∆W (q) is de�ned by
∀q ∈ M, ∆W (q) = (PW )(q) −W (q) =

∫

M
P (q, dy)W (y) −W (q). (3.12)The de�nition of petite sets 
an be found in [240℄. Let us make the following remark, whi
hwill be very useful:
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hasti
 methods 57Remark 3.1. Under some regularity 
onditions that will always be met here (in
luding the fa
tthat the 
hain is weak Feller [240, Chap. 6℄), all 
ompa
t subsets of M are petite sets and theMarkov 
hain is Doeblin [89℄. As a 
onsequen
e, when the state spa
e M is 
ompa
t, the 
ondition(3.11) holds true (
hoose C = M, W and L arbitrary smooth fun
tions and take b large enough).Condition (3.11) allows one to obtain a Central Limit Theorem (CLT). For a given measurablefun
tion A su
h that π(|A|) < +∞, let us formally de�ne the fun
tion Â by the following Poissonequation:
−∆Â = A− π(A), (3.13)where ∆ is de�ned as in (3.12). It is not 
lear in general whether Â is well-de�ned. This turns outto be the 
ase when 
ondition (3.11) is satis�ed, and allows to state a CLT:Theorem 3.2 ( [240, Theorem 17.5.3℄). Assume 
onditions (3.7), (3.8) and (3.11) hold true,and let A be a fun
tion su
h that |A| ≤ L. Let SN (A) be de�ned by (3.10). There exists a fun
tion

Â whi
h satis�es (3.13), and the 
onstant γ2
A := π(Â2 − (PÂ)2) is well-de�ned, non-negative and�nite. If γ2

A > 0, then, de�ning Ā = A− π(A),
(Nγ2

A)−1/2SN (Ā) →
N→∞

N (0, 1),this 
onvergen
e being in law.Sin
e 
onditions (3.7), (3.8) and (3.11) are satis�ed for the MIS 
hain, Question 2 
an beanswered positively for almost all starting points q0.Convergen
e of the densitiesTo handle 
onvergen
e of densities, it is ne
essary to introdu
e the total variation norm for asigned Borel measure ν, de�ned as
||ν|| = sup

h measurable, |h|≤1

|ν(h)| = sup
A∈B(M)

ν(A) − inf
A∈B(M)

ν(A). (3.14)Noti
e that 
onvergen
e in total variation implies weak 
onvergen
e.De�nition 3.1. A 
hain on M is ergodi
 when
∀q ∈ M, lim

n→∞
||Pn(q, ·) − π|| = 0where π is the invariant measure and Pn is the n-step probability transition kernel.Re
all the following theorem:Theorem 3.3 ( [240, Theorem 13.3.4℄). If 
onditions (3.7) and (3.8) hold true, then

||Pn(q, ·) − π|| → 0 as n→ ∞for π-almost all starting points q.The 
onvergen
e in total variation norm implies 
onvergen
e of the expe
tations only for boun-ded observables A. It is therefore not su�
ient in pra
ti
e. Fortunately, the ergodi
ity results 
anbe strengthened in a straightforward way. For a given measurable non-negative fun
tion W ≥ 1,let us de�ne the W -total variation norm for a signed Borel measure µ as
||µ||W = sup

h measurable, |h|≤W
|µ(h)|. (3.15)Then Theorem 3.3 
an be readily extended to π-integrable fun
tions A.
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e sampling te
hniquesTheorem 3.4 ( [240, Theorem 14.0.1℄). Suppose that A ≥ 1 is measurable and π(|A|) < +∞.If 
onditions (3.7) and (3.8) hold true, then for π-almost all q ∈ M,
||Pn(q, ·) − π|||A| → 0 as n→ ∞.Sin
e 
onditions (3.7) and (3.8) are satis�ed, the MIS Markov 
hain is ergodi
 and Theorems 3.3and 3.4 hold true. This answers Question 3.Under an assumption whi
h is reminis
ent of the Reje
tion method setting, a simple uniform
onvergen
e rate (independent of the starting point q0) 
an be obtained:Theorem 3.5 ( [237, Theorem 2.1℄). If the probability density g used in the metropolized in-dependen
e sampling s
heme is su
h that

∃c, ∀q ∈ M, f(q) ≤ cg(q),then the s
heme is geometri
ally ergodi
 with a uniform bound. In this 
ase, for all q0 ∈ M,
||Pn(q0, ·) − π|| ≤ (1 − c−1)n.This theorem gives an answer to Question 4. Note that in the parti
ular 
ase when c = 1 (thatis when f = g sin
e both fun
tions are probability densities), the 
onvergen
e is already a
hievedfor n = 1. This is a
tually 
lear sin
e in this 
ase the MIS s
heme samples from the true density!3.1.4 Importan
e samplingImportan
e sampling is a well-known general sto
hasti
 integration method. The underlyingidea is to re
ast the integral Eπ(A) =

∫

M
A(q) f(q) dq as

Eπ(A) =

∫

M

(
A(q)

f(q)

g(q)

)
g(q) dqand to approximate the latter integral through a random sample (qn)0≤n≤N−1 drawn a

ordingto the density g (see e.g. [215, Se
tion 2℄).The 
hoi
e of the trial fun
tion g is 
ru
ial for the overall e�
ien
y of the method. It should bea good approximation of f or, better, of f(q)A(q). Sin
e f is typi
ally of exponential or Gaussianform, and A is most often bounded by a polynomial, f is usually the most important term in theprodu
t f(q)A(q) as far as sampling issues are 
on
erned. Besides, in appli
ations, it is often the
ase that several integrals have to be 
omputed, with di�erent fun
tions A. So g is often lookedfor as a good approximation of f .Let us note that, for the 
omputation of stati
 quantities, the importan
e sampling methodbased on a density g outperforms the Reje
tion method based on the same density g [64℄.3.2 Sto
hasti
ally perturbed Mole
ular Dynami
s methodsWe �rst present in Se
tion 3.2.1 the general framework of deterministi
 mi
ro
anoni
al (NVE)MD. In Se
tion 3.2.2, we des
ribe the Hybrid Monte Carlo (HMC) method, from both the theo-reti
al and the numeri
al viewpoints, and give some new 
onvergen
e results (see Theorems 3.7,3.9, 3.10). We then present the biased Random-Walk (BRW) in Se
tion 3.2.3, and the Langevindynami
s in Se
tion 3.2.4.We assume in the sequel that T ∗M is globally di�eomorphi
 to M×R3N , and a
tually identifythe two sets for simpli
ity. We also assume thatM is globally di�eomorphi
 to R3N in Se
tions 3.2.3



3.2 Sto
hasti
ally perturbed Mole
ular Dynami
s methods 59and 3.2.4, and identify the two sets as well. Straightforward modi�
ations allow to handle theother 
ases (su
h as systems with periodi
 boundary 
onditions or isolated systems parametrizedby rigid-body motions and internal 
oordinates).3.2.1 General framework for NVE Mole
ular Dynami
sThe equations of motion




dq(t)

dt
=

∂H

∂p
(q(t), p(t)) = M−1p(t),

dp(t)

dt
= −∂H

∂q
(q(t), p(t)) = −∇V (q(t)),

(3.16)asso
iated with the Hamiltonian (3.4) 
an be numeri
ally integrated e.g. by the 
elebrated velo
ity-Verlet algorithm [360℄ 



pn+1/2= pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1),

(3.17)where ∆t is the time step. The velo
ity-Verlet s
heme is an expli
it integrator: re
all that inStatisti
al Physi
s one often 
onsiders systems with a large number of parti
les, making impli
italgorithms untra
table. The numeri
al �ow asso
iated with the velo
ity-Verlet algorithm sharestwo qualitative properties with the exa
t �ow of (3.16): it is time reversible and symple
ti
, whi
hare very important properties as far as the long time numeri
al integration of Hamiltonian dyna-mi
s is 
on
erned (see [146, Chap. VIII and IX℄ and [205℄). This algorithm also asks for a uniqueevaluation of the for
es F = −∇V per time step. For all these reasons, it is the most 
ommonlyused algorithm in mole
ular dynami
s.The dynami
s (3.16) 
annot be used to generate points a

ording to the 
anoni
al measure,be
ause the energy (3.4) is preserved by the �ow. Hen
e, the traje
tory of the system remains onthe submanifold of 
onstant energy
T ∗M(E0) = {(q, p) ∈ T ∗M;H(q, p) = E0}where E0 = H(q0, p0) is the energy of the initial data. Under some assumptions, the dynami
s(3.16) 
an be used to 
ompute mi
ro
anoni
al (NVE) ensemble averages, that is, averages over

T ∗M(E0). The numeri
al analysis of this method (in the very simple 
ase of 
ompletely integrablesystems) 
an be read in [48,49,203℄. To generate points a

ording to the 
anoni
al measure, thereis a need for sto
hasti
 perturbations to ensure that di�erent energy levels will be explored, andeventually all of them. These 
onsiderations straightforwardly extend to the numeri
al 
ase sin
esymple
ti
 methods su
h as (3.17) almost preserve the energy over extremely long times [146, Chap.IX℄.3.2.2 Hybrid Monte CarloPresentation of the methodThe Hybrid Monte Carlo method allows one to generate points in the position spa
e distribu-ted a

ording to the 
anoni
al measure (3.6). It aims at 
ombining the advantages of mole
ulardynami
s (that approximates the physi
al dynami
s of the system) and of Monte Carlo methods(that explore the position spa
e more globally). It is in fa
t a Metropolis-Hastings algorithm, inwhi
h proposals are 
onstru
ted using the NVE Hamiltonian �ow of the system. This method has
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e sampling te
hniquesbeen �rst introdu
ed by Duane et al. in [88℄ and partially analyzed from a mathemati
al viewpointby S
hütte in [301℄. This method 
an be seen as a generalization of the Andersen thermostat me-thod [7℄. It has been used in [302,303℄ to identify the metastable 
onformations of some biologi
alsystems.In the standard HMC setting, the sequen
e of generated positions forms a Markov 
hain oforder one de�ned as follows: Hybrid Monte CarloAlgorithm 3.3. Consider an initial 
on�guration q0 ∈ M and τ > 0. For n ≥ 0,(1) generate momenta pn a

ording to the 
anoni
al distribution (3.5) and 
ompute theenergy En = H(qn, pn) of the 
on�guration (qn, pn);(2) 
ompute Φτ (qn, pn) = (pn,τ , qn,τ ), that is, integrate the NVE equations of motion (3.16)on the time interval [0, τ ] starting from the initial data (qn, pn);(3) 
ompute the energy En,τ = H(qn,τ , pn,τ ) of the new phase-spa
e 
on�guration. A

eptthe proposal qn,τ with probability
αn = min

(
1, e−β(En,τ−En)

)
;more pre
isely, generate a random number Un ∼ U [0, 1], and set qn+1 = qn,τ if Un ≤ αnand qn+1 = qn otherwise;(4) repla
e n by n+ 1 and go ba
k to step (1).Let us emphasize that the proposal qn,τ would always be a

epted at step (3) if the NVEequations of motion, that are energy 
onserving, were integrated exa
tly. In pra
ti
e, the time-step ∆t used in the numeri
al integrator (3.17) 
an be 
hosen larger than in standard appli
ationsof MD sin
e the dynami
s of the system used to generate proposals is not 
onstrained to a

uratelyreprodu
e the physi
al dynami
s of the system. On the other hand, it should not be too large;otherwise, the reje
tion rate would be large and the e�
ien
y of the method would be low.Let us noti
e that in the standard HMC method, only the end points of the MD traje
tories arepart of the sample. It is not 
ompletely 
lear whether taking into a

ount the intermediate pointsof the generated MD traje
tories in the sample would bias the sampling, e.g. if the �nal point isreje
ted, should these intermediate points be kept? See [256℄ for some work in this dire
tion.Let us also mention that there exist several re�nements of the standard HMC s
heme. In orderto improve the a

eptan
e rate, one 
ould use a 
riterion based on a shadow Hamiltonian toa

ept or reje
t the new point [150, 184℄. The idea is that this shadow Hamiltonian is preservedmore a

urately than the Hamiltonian (3.4) by the numeri
al traje
tory. The bias introdu
ed bythis modi�
ation is 
orre
ted by a 
onvenient reweighting, in the spirit of importan
e sampling.Another improvement 
onsists in generating, after ea
h NVE traje
tory of length τ , some newmomenta whi
h are 
orrelated with the previous ones [173, 191℄. Of 
ourse, both approa
hes 
anbe 
ombined [2℄.Convergen
e of the average along one realizationAs above, let us denote by A some observable on the position spa
e and by (qn)n∈N onerealization of the HMC Markov 
hain starting from a given q0. Let Π1 be the �rst 
oordinate �eldof the phase-spa
e: Π1(q, p) = q.Convergen
e results for the HMC s
heme have been published by S
hütte in [301℄. In this proof,the NVE Hamiltonian �ow is assumed to satisfy two 
onditions:
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ular Dynami
s methods 61(A) a mixing 
ondition, whi
h reads as follows (see [301, Assumption 4.27℄): for every pair ofopen subsets B,C ⊂ M, there exists n0 ∈ N su
h that
∀n ≥ n0,

∫

B

T n1C(q)f(q) dq > 0,where f is given by (3.6) and the fun
tion Tu is de�ned for any fun
tion u : M → R by
Tu(q) =

∫

R3N

u (Π1Φ−τ (q, p)) P(p) dp, (3.18)where Φτ is the Hamiltonian �ow. This 
ondition amounts to a 
ertain a

essibility of thewhole position spa
e when starting from any point;(B) a so-
alled momentum invertibility of the �ow 
ondition (see [301, De�nition 4.1℄). The�ow Φτ is 
alled momentum-invertible if the two following 
onditions hold true:(i) for almost every q ∈ M, there is an open set M(q) ⊂ R3N su
h that the fun
tion
yq : p 7→ Π1Φ−τ (q, p) is lo
ally invertible in M(q), that is, det∇pyq 6= 0 for p ∈
M(q).(ii) there is an η > 0 su
h that ess-inf

q∈M

∫

M(q)

P(p) dp = η.This 
ondition states that the transition probabilities are bounded from below in somesense.The following 
onvergen
e result is given in [301℄:Theorem 3.6 ( [301, Lemma 4.31 and Theorem A.24℄). Under the assumptions (A) and(B) re
alled above, for any measurable fun
tion A ∈ L1(π), it follows
lim
N→∞

1

N

N−1∑

n=0

A(qn) =

∫

M
Adπ a.s. (3.19)for almost all starting points q0 ∈ M, where (qn)n∈N is the sequen
e of points generated by theHMC Algorithm 3.3 where, at step (2), the NVE equations of motion (3.16) are exa
tly integrated.Note that ergodi
ity results have also been proved [301, Corollary 4.33℄, as well as 
onvergen
eresults on the numeri
al �ow [301, page 96℄ (in this latter 
ase, (qn)n∈N in (3.19) is the sequen
e ofpoints generated by the HMC Algorithm 3.3 where the NVE equations of motion (3.16) are nownumeri
ally integrated).The 
onditions (A) and (B) re
alled above are di�
ult to 
he
k in pra
ti
e, and furthermore,it is not 
lear whether they are ne
essary. We present here a new 
onvergen
e result, that doesnot require these assumptions.Let us �rst 
onsider the 
ase when the NVE equations of motion are integrated exa
tly. Thetransition kernel P of the HMC Markov 
hain is de�ned by

∀(q,B) ∈ M×B(M), P (q,B) =

∫

R3N

1{Π1Φτ (q,p)∈B}P(p)dp, (3.20)where the density P is the 
anoni
al distribution on the momentum spa
e given by (3.5).As the phase-spa
e 
anoni
al measure µ = π⊗κ is an invariant measure for Φτ , it is 
lear thatthe position-spa
e 
anoni
al measure π is an invariant measure for the HMC Markov 
hain (seee.g. [215, Se
tion 9.3℄ for details). Therefore, 
ondition (3.7) holds true.
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e sampling te
hniquesWe now 
onsider the a

essibility 
ondition (3.8). This 
ondition is not satis�ed in general, forany potential energy. Consider for example a one-dimensional parti
le (M = R) of mass m = 1subje
ted to the potential energy V (q) =
1

2
q2. Then the solution q(t) starting from q0 withmomentum p0 is given by

q(t) = q0 cos(t) + p0 sin(t).As already noti
ed by Ma
kenzie in [221℄, taking τ = 2π leads to q(τ) = q0 whatever the 
hoi
eof p0. The 
ondition (3.8) is therefore 
learly not satis�ed, and the Markov 
hain is not ergodi
.Of 
ourse this spurious e�e
t only arises for spe
ial 
hoi
es of τ . It is also linked to the fa
t thatthe period of the traje
tory of the harmoni
 os
illator does not depend on the initial momentum.To prove the a

essibility 
ondition (3.8), a �rst way is to make the additional assumption thatthe potential energy is bounded from above. We a
knowledge that this assumption is often notsatis�ed in pra
ti
e. Nevertheless, for some potential energies that do not satisfy this assumption,it is still possible to prove an a

essibility 
ondition by some expli
it 
onstru
tions, spe
i�
 to thesystem at hand (espe
ially in the 
ase of a singular 
entral potential energy, see below). We willalso 
onsider in Se
tion 3.2.2 another possibility, based on random integration times τ , that 
anbe used for a larger 
lass of potentials.We now turn to proving the a

essibility 
ondition (3.8) under the assumption that V isbounded from above. This is the result of the following Lemmas.Lemma 3.1 (HMC a

essibility - exa
t �ow). Let τ > 0. Assume that V is in C1(M) andis bounded from above. Then for any q, q′ ∈ M and any neighborhood V ′ of q′, there holds
P (q,V ′) > 0.Proof. The proof is based on the least a
tion prin
iple (LAP). Let us denote by

S(φ) =

∫ τ

0

(
1

2
φ̇T (t)Mφ̇(t) − V (φ(t))

)
dtthe a
tion asso
iated with the path φ ∈ H = {φ ∈ H1([0, τ ],M) | φ(0) = q, φ(τ) = q′}. Sin
e Vis bounded from above, there exists E0 su
h that V (q) ≤ E0 for all q ∈ M. Thus, S is boundedfrom below:

S(φ) ≥ −
∫ τ

0

V (φ(t)) dt ≥ −E0τ.Therefore, there exists a minimizing sequen
e (φn)n∈N ∈ H su
h that S(φn) → infφ∈H S(φ) = s >

−∞. Without restri
tion, it 
an be assumed that s ≤ S(φn) ≤ s+ 1 for all n ∈ N. Thus,
∫ τ

0

φ̇Tn (t)Mφ̇n(t) dt = 2S(φn) + 2

∫ τ

0

V (φn(t)) dt ≤ 2S(φn) + 2τE0 ≤ 2(s+ 1) + 2τE0.Therefore, (φ̇n)n∈N is bounded in L2([0, τ ],M). The sequen
e (φn)n∈N is then bounded in thespa
e H1([0, τ ],M). Let φ ∈ H1([0, τ ],M) su
h that (up to extra
tion) φn ⇀ φ in H1([0, τ ],M)-weak and φn → φ almost everywhere. Sin
e H is 
onvex and 
losed in H1([0, τ ],M), the limit φ isa
tually in H. Besides, it is easy to 
he
k that lim infn→∞ S(φn) ≥ S(φ) (by lower semi-
ontinuityon the kineti
 energy and Fatou lemma on the potential energy), and this gives immediately
inf
ψ∈H

S(ψ) = min
ψ∈H

S(ψ) = S(φ).Thus φ minimizes S on H. Therefore, the equation
M φ̈ = −∇V (φ) (3.21)
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ular Dynami
s methods 63holds true on (0, τ) in the distributions sense. By standard regularity results, φ ∈ C2([0, τ ],M)and (3.21) holds true in the sense of 
ontinuous fun
tions. Hen
e the fun
tion φ is simply thesolution of the Hamiltonian dynami
s with φ(0) = q, φ(τ) = q′ and initial velo
ity φ̇(0).Consider eventually a neighborhood V ′ of q′. Then P (q,V ′) > 0 is a straightforward 
onse-quen
e of the 
ontinuity of the solutions of (3.21) with respe
t to the initial velo
ity φ̇(0). ⊓⊔Lemma 3.1 gives a

essibility from any point to any open set. It is therefore not enough for
ondition (3.8) to hold true sin
e it requires a

essibility from one point to any arbitrary Borel setof positive Lebesgue measure. This asks for some regularity of the transition kernel, and in fa
t,some regularity of the dynami
s, inferred from stronger assumptions on the potential energy V .More pre
isely, we have the following lemma:Lemma 3.2 (HMC irredu
ibility - exa
t �ow). Assume that V ∈ C1(M) is bounded fromabove and ∇V is a globally Lips
hitz fun
tion. Then the transition kernel of the HMC Markov
hain satis�es
∀q ∈ M, ∀B ∈ B(M), µLeb(B) > 0 ⇒ P (q,B) > 0.Proof. Consider B ∈ B(M) su
h that µLeb(B) > 0, and q ∈ M. We want to show that P (q,B) > 0for P de�ned by (3.20). For the sake of simpli
ity, we assume here that all parti
le masses areequal to 1.The proof is based on volume 
onservation in the phase spa
e: any Borel set of �nal positions ofstri
tly positive measure 
an be rea
hed from q and a set of momenta of stri
tly positive measure.Denote IB(q) = {p ∈ R3N | Π1Φτ (q, p) ∈ B}, and 
onsider the fun
tion θ : IB(q) 7→ B su
h that

θ(p) = Π1Φτ (q, p). This fun
tion is surje
tive a

ording to the proof of the a

essibility Lemma 3.1,so that θ(IB(q)) = B. Moreover, P (q,B) =

∫

IB(q)

P(p) dp. Therefore, sin
e P is positive and
ontinuous, it is enough to show that µLeb(IB(q)) > 0 in order to get P (q,B) > 0.We pro
eed by 
ontradi
tion. Suppose µLeb(IB(q)) = 0. We �rst note that θ is Lips
hitz (of
onstant Lip(θ)) sin
e ∇V is 
ontinuous and globally Lips
hitz by assumption, and τ > 0 is �xed.Indeed, denote C the Lips
hitz 
onstant of ∇V and note that a solution of the equations of motion
an be written as
q(τ) = q + pτ −

∫ τ

0

(τ − s)∇V (q(s)) ds.For two di�erent initial momenta p1 and p2, we have
|q1(t) − q2(t)| ≤ |p1 − p2|t+ C

∫ t

0

(t− s)|q1(s) − q2(s)|ds.By Gronwall lemma, there exists cτ < +∞ su
h that
|q1(τ) − q2(τ)| ≤ cτ |p1 − p2|,hen
e θ is Lips
hitz.Sin
e the Lebesgue measure and the Hausdor� measure H3N agree on R3N (see [101, Se
-tion 2.2, Theorem 2℄), and sin
e the behavior of the Hausdor� measure under Lips
hitz mappingsis known [101, Se
tion 2.4, Theorem 1℄, we obtain

µLeb(B) = µLeb(θ(IB(q))) = H3N (θ(IB(q))) ≤ Lip(θ)3NH3N (IB(q)) = Lip(θ)3NµLeb(IB(q)) = 0.This gives µLeb(B) = 0, in 
ontradi
tion with the assumption µLeb(B) > 0. ⊓⊔Sin
e 
onditions (3.7) and (3.8) are satis�ed, a Law of Large Numbers (LLN) holds true foralmost all starting points (see Theorem 3.1). We 
an therefore answer positively to Question 1:
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e sampling te
hniquesTheorem 3.7. Assume that V ∈ C1(M) is bounded from above and ∇V is a globally Lips
hitzfun
tion. Let (qn)n∈N be the sequen
e of points generated by the HMC Algorithm 3.3 where, atstep (2), the NVE equations of motion (3.16) are exa
tly integrated. Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.Convergen
e of the HMC s
heme has been established above for smooth potentials, possiblyunder 
ertain boundedness assumptions on the potential V or its derivatives. However, in many ap-pli
ations, non-globally smooth potentials are used. Central potentials, su
h as the Lennard-Jonesor the Coulomb potential, are some famous examples of singular potentials 
ommonly 
onsideredin biology or physi
s. We present here some results 
on
erning the 
onvergen
e of the HMC s
hemefor a single parti
le in a 
entral potential de
aying su�
iently fast at in�nity (su
h as |q|−α for αlarge enough). Only the a

essibility properties of the 
hain are stated expli
itely, the rest of theproof following the same lines as for the usual HMC s
heme.In view of the reversibility of the NVE equations of motion, to show that any point q2 
an berea
hed in two steps from a point q1, is equivalent to showing that the end points of the traje
toriesstarting from q1 and q2 
oin
ide. This is the followingProposition 3.1 (HMC a

essibility for one parti
le in a de
reasing 
entral potential).Consider a 
entral potential V (q) = V (|q|) ∈ C1(R3 \ {0}) su
h that q · V ′(q) ≤ 0, ∇V is lips
hitzon R3 \Ba(0) for all a > 0 with a 
onstant Ca su
h that lima→∞ Ca = 0, and |∇V | is bounded on

R3 \Ba(0) for all a > 0. Consider q1, q2 ∈ R3 \ {0} su
h that q1, the singularity 0 and q2 are notaligned in this order (there is no λ > 0 su
h that q01 = −λq02). Then there exist p1, p2 su
h that thesolutions of the equations of motion
z̈ = −∇V (z)starting respe
tively from q1, q2 with momenta p1, p2 
oin
ide at the time τ .The proof is based on an expli
it two-step 
onstru
tion. If q1, 0 and q2 are aligned in this order,then an additional 
on�guration q3 not aligned with the previous ones should be 
onsidered. Hen
e,one 
an go from q1 to q2 by four traje
tories of time length τ . These results 
an be extended tomore general potentials su
h as the Lennard-Jones potential in a simple way.Proof. We 
onsider two points q01 , q02 and the 
orresponding initial momenta p0

1, p
0
2. The two par-ti
les are assumed to be of identi
al masses 1, the general result following after straightforwardmodi�
ations. Then,

q1(t) = q01 + p0
1t−

∫ t

0

(t− s)∇V (q1(s)) ds,and, setting p0
2 = p0

1 − q02−q01
τ + p (using a �small� parameter p),

q2,p(t) = q02 +

(
p0
1 −

q02 − q01
τ

)
t+ pt−

∫ t

0

(t− s)∇V (q2,p(s)) ds. (3.22)We look for p su
h that q2,p(τ) = q1(τ). This 
ondition 
an be rewritten as
p =

1

τ

∫ τ

0

(τ − s)[∇V (q2,p(s)) −∇V (q1(s))] ds = F (p).Under this form, we re
ognize a �xed-point equation, trivially veri�ed by p = 0 in the 
ase∇V = 0.The idea is then solve this equation for ∇V small. This 
an be done if the traje
tories move away
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s methods 65from the singularity in 0. To this end, the momentum p0
1 has to be taken large enough, and p hasto be small 
ompared to p0

1.We now formalize these heuristi
 
onsiderations. Noti
e �rst that the initial momentum p0
1 
anbe 
hosen so that the parti
le moves out from 0. Indeed, using polar 
oordinates (r, θ) for theparti
le position q ∈ R3,

∂tt(r
2) = ∂tt(x · x) = 2(|q̇|2 − q · ∇V (q)) ≥ −2rV ′(r).By integration,

∂t(r
2)(t) − ∂t(r

2)(0) ≥ −
∫ t

0

2r(t)V ′(r(t))dt ≥ 0. (3.23)So, if the initial 
onditions are su
h that ∂t(r2)(0) > 0, the distan
e r of a parti
le to the origin isin
reasing. Let us set
M = sup

|q|≥min(|q01|,|q02|)
|∇V (q)|, K = Mτ. (3.24)Sin
e

∂t(q1 · q1)(0) = 2q01 · p0
1,

∂t(q2,p · q2,p)(0) = 2q02 ·
(
p0
1 + p− q02 − q01

τ

)
,and 
onsidering p and p0

1 su
h that
|p| ≤ K, q02 · p0

1 ≥ q02 · q
0
2 − q01
τ

+K|q02 |, q01 · p0
1 ≥ 0, (3.25)it follows ∂t(q1 · q1)(0) ≥ 0 and ∂t(q2,p · q2,p)(0) ≥ 0. Let us note that, be
ause q01 , the singularity0 and q02 are not aligned, su
h p0

1 exist. Therefore,
∀t ≥ 0, ∀|p| ≤ K, |q2,p(t)| ≥ |q02 |, |q1(t)| ≥ |q01 |. (3.26)Next, we show that there exists t∗ small enough su
h that p 7→ q2,p(t) is Lips
hitz with uniformbound on [0, t∗]. Indeed, from the expression (3.22), and sin
e ∇V is lips
hitz of 
onstant C = C|q02 |on R3 \B|q02 |(0), we obtain

|q2,p(t) − q2,p′(t)| ≤ |p− p′|t+ C

∫ t

0

(t− s)|q2,p(t) − q2,p′(t)| ds.This Gronwall inequality implies
|q2,p(t) − q2,p′(t)| ≤ |p− p′|

∫ t

0

s exp(C(t− s))ds.Taking t∗ ≤ τ small enough, we get for all 0 ≤ t ≤ t∗,
|q2,p(t) − q2,p′(t)| ≤

1

4C
|p− p′|. (3.27)This time t∗ is now �xed in the remainder of this proof.Thus, p0

1 being �xed, the distan
e between two traje
tories 
an be 
ontrolled for small times.For larger times, we use the fa
t that we 
an go arbitrary far from the origin by an appropriate
hoi
e of the initial momentum. Indeed,
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|q2,p(t)| ≥

∣∣∣∣q02 +

(
p0
1 + p− q02 − q01

τ

)
t

∣∣∣∣− τ2 sup
|q|≥|q02 |

|∇V (q)|. (3.28)Let ǫ > 0. Sin
e ∇V is lips
hitz on R3 \ Ba(0) with a 
onstant Ca su
h that lima→∞Ca = 0,there exists R(ǫ) su
h that CR(ǫ) < ǫ. If view of (3.28), there exists an momentum p0
1 large enoughsatisfying (3.25) su
h that

∀p, |p| ≤ K, ∀t ≥ t∗, |q2,p(t)| ≥ R(ǫ). (3.29)Considering two momenta |p|, |p′| ≤ K, a Gronwall inequality 
an again be obtained. There existsa 
onstant Cτ (that does not depend on ǫ ≤ 1) su
h that
∀t, t∗ ≤ t ≤ τ, |q2,p(t) − q2,p′(t)| ≤ Cτ |p− p′|. (3.30)The proof 
an now be 
on
luded. Re
all that we look for a �xed-point of the fun
tion
F (p) =

1

τ

∫ τ

0

(τ − s)[∇V (q2,p(s)) −∇V (q1(s))]ds.The mapping F maps BK = {|p| ≤ K} into itself when p0
1 satis�es (3.25). Indeed, the bound (3.26)is veri�ed in this 
ase, so that (3.24) implies

|F (p)| ≤ 1

τ

∫ τ

0

(τ − s)2M ds = Mτ = K.Pi
ard theorem 
an then be applied provided F is 
ontra
tive. Choosing momenta su
h that (3.25)holds true and su
h that ǫ < min{1, 1
4Cττ

},
|F (p) − F (p′)| ≤ C

∫ t∗

0

|q2,p(s) − q2,p′(s)| ds+

∫ τ

t∗

|∇V (q2,p(s)) −∇V (q2,p′(s))| ds.Using (3.27) for the �rst term and, (3.29), the fa
t that ∇V is lips
hitz on R3 \ BR(ǫ)(0) with a
onstant CR(ǫ) < ǫ, and (3.30) for the se
ond term, there holds
∀|p|, |p′| ≤ K, |F (p) − F (p′)| ≤ 1

2
|p− p′|.The fun
tion F is then 
ontra
tive on the ball {|p| ≤ K}. There is therefore a �xed point p = F (p)with |p| ≤ K. ⊓⊔Convergen
e of the densitiesSin
e 
ondition (3.7) is satis�ed, and 
ondition (3.8) holds true under the assumptions ofLemma 3.2 on the potential energy (V is C1, bounded from above and ∇V is globally Lips
hitz),the HMC Markov 
hain is ergodi
 (see Theorem 3.3). In parti
ular,

∣∣∣∣Pn(q0, ·) − π
∣∣∣∣→ 0for almost all starting points q0 ∈ M, where || · || denotes the total variation norm (3.14). We alsoget 
onvergen
e in the |A|-total variation norm (3.15) provided π(|A|) < +∞ and |A| ≥ 1 (seeTheorem 3.4). This answers Question 3.
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hasti
ally perturbed Mole
ular Dynami
s methods 67Convergen
e ratesWe have not been able to state more sophisti
ated 
onvergen
e results (Central Limit Theorem,geometri
 ergodi
ity) in the general HMC framework sin
e they require stronger results on theMarkov 
hain su
h as a drift 
ondition (3.11) or a Lyapunov 
ondition su
h asThere exist a measurable fun
tion W ≥ 1, real numbers c > 0 and b,and a petite set C su
h that
∀q ∈ M, ∆W (q) ≤ −cW (q) + b1C , (3.31)where ∆W (q) is de�ned by (3.12). Let us however make the following remark:Remark 3.2. Under some regularity 
onditions that will always be met here (in
luding the fa
tthat the 
hain is weak Feller [240, Chap. 6℄), and when M is 
ompa
t, 
ondition (3.31) is straight-forwardly satis�ed with the 
hoi
e C = M (in view of Remark 3.1, M is a petite set and the Markov
hain is Doeblin [89℄) for any arbitrary smooth fun
tion W (taking b large enough).When the state spa
e is 
ompa
t, 
onditions (3.11) and (3.31) hold true (in view of Remarks 3.1and 3.2). We thus obtain a positive answer to Question 2 (see Theorem 3.2). We also obtain apositive answer to Question 4, in view of the following theorem:Theorem 3.8 ( [240, Theorem 15.0.1℄). Assume 
onditions (3.7), (3.8) and (3.31) hold true.Then there exist ρ < 1 and R < +∞ su
h that, for all q satisfying W (q) < +∞,

‖Pn(q, ·) − π‖W ≤ RW (q) ρn,where Pn is the n-step probability transition kernel and ‖ · ‖W is the norm de�ned by (3.15).Numeri
al implementation: Method and 
onvergen
e resultsIt is standard to use the velo
ity-Verlet s
heme (3.17) to integrate numeri
ally the traje
toriesover times τ = k∆t for some integer k. Let us point out that the a

eptan
e/reje
tion step (3)in Algorithm 3.3 ensures that the HMC Markov 
hain 
orre
tly samples the 
anoni
al measure π,so that no bias is introdu
ed by the numeri
al dis
retization. The situation will be di�erent forthe Biased Random-Walk and the Langevin equation (see Se
tions 3.2.3 and 3.2.4). We denoteby P∆t the transition kernel of the Markov 
hain using the velo
ity-Verlet integrator (3.17) withtime-step ∆t.The theoreti
al proof of 
onvergen
e for the numeri
al version of HMC follows the same linesas the proof of 
onvergen
e for the exa
t version using the Hamiltonian �ow. The only di�eren
elies in the additional a

eptan
e/reje
tion step whi
h does not modify the stru
ture of the 
hain(for it does not 
hange the a

essibility properties of the 
hain). We only pre
ise here the 
hangesthat have to be 
onsidered for the a

essibility Lemma.Lemma 3.3 (HMC a

essibility - numeri
al �ow). Let τ > 0. Assume that V is in C1(M)and is bounded from above on M, and 
onsider the numeri
al dis
retization s
heme (3.17). Thenfor any q, q′ ∈ M and any neighborhood V ′ of q′, there holds
P∆t(q,V ′) > 0.Proof. The proof of Lemma 3.1 is based on the minimization of the a
tion S over some spa
e H.Here, we extend this proof to the dis
retized 
ase using a 
onvenient approximation of this varia-tional problem. There are several ways to dis
retize the variational problem, leading to di�erentnumeri
al s
hemes. In parti
ular, the velo
ity-Verlet algorithm 
an be derived by minimizing thedis
retized a
tion [226℄
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S∆t(Φ) = ∆t

k−1∑

i=0

[
1

2

(
qi+1 − qi

∆t

)2

− V (qi+1) + V (qi)

2

]
, (3.32)where τ = k∆t (we again assumed here that all parti
le masses are equal to 1).The minimization is performed on the sequen
es Φ = {q0, q1, . . . , qk} with the 
onstraints

q0 = q and qk = q′. The quantity S∆t is still bounded from below for a potential energy boundedfrom above. Hen
e, there exists a minimizing sequen
e (Φn)n∈N = ({q0,n, q1,n, . . . , qk,n})n∈N. Ea
hdi�eren
e qi+1,n − qi,n is easily seen to be bounded, thus ea
h 
omponent qi,n is in fa
t bounded.We 
an 
onsider Φ̄ = (q̄0, . . . , q̄k) su
h that, upon extra
tion, we have qi,n → q̄i when n → ∞ forea
h i. Moreover, S(Φ̄) = minΦ S(Φ). The optimality 
onditions then read
q̄i+1 = 2q̄i − q̄i−1 −∆t2∇V (q̄i)for 1 ≤ i ≤ k−1. We re
ognize the Verlet s
heme. As in addition q̄0 = q and q̄k = q′, this shows thatgiven two points q, q′, there is a path 
onne
ting them using a numeri
al velo
ity-Verlet traje
torywith initial velo
ity p̄0 =

q̄1 − q̄0

∆t
+
∆t

2
∇V (q̄0). By 
ontinuity, for initial velo
ities 
lose to p̄0, theendpoint of the resulting traje
tory remains in a neighborhood of q′. ⊓⊔We 
an now state a Law of Large Number theorem (see Theorem 3.1):Theorem 3.9. Assume that V ∈ C1(M) is bounded from above and ∇V is globally Lips
hitz. Let

(qn)n∈N be the sequen
e of points generated by the HMC Algorithm 3.3 where, at step (2), theNVE equations of motion (3.16) are numeri
ally integrated by (3.17). Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.Random Time Hybrid Monte CarloIn order to prove 
onvergen
e of the 
lassi
al HMC s
heme, we have assumed in the previousse
tion that the potential energy is bounded from above. As explained in the dis
ussion just aboveLemma 3.1, another possibility is to modify the HMC s
heme as in [221℄. The modi�
ation 
onsistsin transforming the �xed parameter τ into a random variable, distributed with a density T (τ).This ensures that resonan
e e�e
ts are avoided. We 
all this s
heme "Random Time Hybrid MonteCarlo" (RTHMC).The only property required on T is that T is 
ontinuous and positive on R+. The 
orrespondingMarkov transition kernel reads, for q ∈ M and B ∈ B(M),

P (q,B) =

∫

R3N×R+

1{Π1Φτ (q,p)∈B}P(p)T (τ) dp dτ. (3.33)Noti
e that π is still an invariant probability measure for this Markov 
hain, so 
ondition (3.7)holds true. Therefore, to get 
onvergen
e results, we only need to show 
ondition (3.8). This isdone in two steps, as for the 
lassi
al HMC s
heme.The �rst lemma states that there is a positive probability to go from one state q to anyneighborhood of any state q′ in one RTHMC iteration.Lemma 3.4 (RTHMC a

essibility). Assume that V ∈ C1(M) and D2V ∈ L∞(R3). Then forany q0, q1 ∈ M, and there exists τ∗ > 0 su
h that, for all 0 < τ ≤ τ∗, there exists p ∈ R3N with
Π1Φτ (q0, p) = q1.
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ally perturbed Mole
ular Dynami
s methods 69Proof. A similar idea is used in [301℄ in a slightly di�erent 
ontext. If V is identi
ally equalto zero, then going from q0 to q1 is possible through the 
hoi
e of (say) the initial momenta
p∗ = M(q1 − q0)/τ for some evolution time τ > 0. We then 
onsider the res
aled equation

Mq̈ǫ(t) = −ǫ∇V (qǫ(t)) (3.34)and the asso
iated �ow φǫ. Setting
F (ǫ, p) = φǫ(τ, q0, p) − q1,the fun
tion F is C1(R × R3N ) (we use here the assumption D2V ∈ L∞(R3)), F (0, p∗) = 0 and

∂pF (0, p∗) = τM−1 is invertible. In view of the impli
it fun
tion theorem, there exists ǫ∗ > 0 su
hthat for all 0 ≤ ǫ ≤ ǫ∗, there exists pǫ su
h that F (ǫ, pǫ) = 0.This shows (by the 
hange of variables t→ ǫt in (3.34) for 0 < ǫ ≤ ǫ∗) that Π1Φǫτ (q0, pǫ/ǫ) =

q1. ⊓⊔Condition (3.8) 
an then be obtained in the same way as for the 
lassi
al HMC s
heme, theproof following the same lines as for Lemma 3.2.Lemma 3.5 (RTHMC irredu
ibility). Provided that V ∈ C1(M) and D2V ∈ L∞(M), thetransition kernel (3.33) of the RTHMC Markov 
hain satis�es 
ondition (3.8).Proof. Consider B ∈ B(M) su
h that µLeb(B) > 0, and q ∈ M. We want to show that P (q,B) > 0for P de�ned by (3.33). For the sake of simpli
ity, we assume here that all parti
le masses areequal to 1.The proof relies on the fa
t that, for a given q and for τ > 0 small enough, the mapping
p 7→ Π1Φτ (q, p) is invertible. Denote JB(q, τ) = {p ∈ R3N | Π1Φτ (q, p) ∈ B}, and 
onsider
ψτ : JB(q, τ) → B su
h that ψτ (p) = Π1Φτ (q, p).We �rst show that ψτ is an inje
tive fun
tion for τ > 0 small enough. From the equations ofmotion,

ψτ (p) = q + pτ −
∫ τ

0

(τ − s)∇V (ψs(p)) ds.Hen
e
∇pψτ (p) = τ Id −

∫ τ

0

(τ − s)D2V (ψs(p)) · ∇pψs(p) ds. (3.35)Set αR(s) = sup
|p|≤R

||∇pψs(p) − sId||∞. Sin
e ∇V is a globally Lips
hitz fun
tion, we have
αR(τ) ≤ C

(∫ τ

0

(τ − s)αR(s) ds+
τ3

6

) (3.36)with C = ‖D2V ‖L∞(M). We now 
onsider τRc = sup{τ ′; αR(τ) ≤ τ/2 for all τ ∈ [0, τ ′]}. From(3.36), we obtain that τRc ≥
√

2/C. Hen
e, we have
∀τ ∈

[
0,
√

2/C
]
, αR(τ) ≤ τ

2
.Inserting this inequality in (3.36), we also obtain that

∀τ ∈
[
0,
√

2/C
]
, αR(τ) ≤ C

τ3

4
.It follows that

α(s) = sup
p∈R3N

||∇pψs(p) − sId||∞ ≤ C
τ3

4
. (3.37)
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e sampling te
hniquesNow,
(ψτ (p1) − ψτ (p2)) · (p1 − p2) =

∫ 1

0

(p1 − p2) · ∇pψτ (p2 + s(p1 − p2)) · (p1 − p2) ds

=

∫ 1

0

(p1 − p2) · (∇pψτ (p2 + s(p1 − p2)) − τId) · (p1 − p2) ds

+ τ |p1 − p2|2Let us suppose that ψτ (p1) = ψτ (p2). Then
τ |p1 − p2|2 ≤ α(τ) |p1 − p2|2 ≤ τ

2
|p1 − p2|2and we obtain p1 = p2. Hen
e, the mapping JB(q, τ) ∋ p 7→ ψτ (p) ∈ B is an inje
tive fun
tion for

τ ≤
√

2/C.We now show that this mapping is onto. We 
onsider, for q′ ∈ B, the C1 fun
tion
G(τ, p, q′) = ψτ (p) − q′.Let us �x q∗ ∈ B su
h that, for all ǫ > 0, µLeb(B ∩ Bǫ(q

∗)) > 0. Lemma 3.4 shows that thereexists τ∗ > 0 su
h that
∀τ, 0 < τ < min(τ∗,

√
2/C), ∃p ∈ R3N s.t. G(τ, p, q∗) = 0.Sin
e ∂pG = ∂pψτ is invertible (using (3.35) and the bound (3.37)), we obtain from the impli
itfun
tion theorem that there exists a neighborhood Vτ (p) of p and a neighborhood Vτ (q∗) of q∗su
h that, for any q′ ∈ Vτ (q∗), there exists p′ ∈ Vτ (p) with G(τ, p′, q′) = 0. This gives the desiredresult.Thus, for 0 < τ < min(τ∗,

√
2/C), the mapping ψτ is one-to-one from Vτ (p) onto Vτ (q∗).Using (3.37), we also have Det(∇pψτ (p)) = τ3N (1 + o(1)) uniformly in p. Hen
e, the mapping ψτis invertible and Det(∇pψ

−1
τ (q)) = τ−3N (1 + o(1)).We are now in position to show that P (q,B) > 0. By 
ontradi
tion, assume P (q,B) = 0. Then∫

R3N

1{Π1Φτ (x,p)∈B}P(p) dp = 0 for almost all τ . Therefore, for almost all 0 < τ < min(τ∗,
√

2/C),we have ∫
R3N

1{Π1Φτ (x,p)∈B∩Vτ(q∗)}P(p) dp = 0. Thus, a 
hange of variable shows that
∫

B∩Vτ (q∗)

P(ψ−1
τ (q)) |Jac(ψ−1

τ (q))| dq = 0for almost all 0 < τ < min(τ∗,
√

2/C). This is however not possible sin
e P is 
ontinuous andpositive, µLeb(B ∩ Vτ (q∗)) > 0, and |Jac(ψ−1
τ (q))| ∼ τ−3N when τ → 0 so that |Jac(ψ−1

τ (q))| > 0for τ small enough.We then get 
onvergen
e of the average along a sample path (see Theorem 3.1):Theorem 3.10. Assume that V ∈ C2(M) and D2V ∈ L∞(M). Let (qn)n∈N be the sequen
e ofpoints generated by the RTHMC algorithm where the NVE equations of motion (3.16) are exa
tlyintegrated. Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.
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ally perturbed Mole
ular Dynami
s methods 71We also obtain ergodi
ity and 
onvergen
e of the densities as for the 
lassi
al HMC s
hemeunder the assumptions of Lemma 3.5 (see Theorem 3.3).For the numeri
al dis
retization, we have to 
onsider times τn = n∆t, and a probability T on
N su
h that T (n) > 0 for all n (a Poisson law for instan
e). The time-step ∆t has to be 
hosensmall enough su
h that no resonan
e e�e
t 
an appear.3.2.3 Biased Random-WalkThe so-
alled biased Random-Walk, also known as the Brownian dynami
s, or the overdampedLangevin dynami
s, is de�ned by the �
titious dynami
s

dqt = −∇V (qt) dt+ σ dWt, (3.38)where (Wt)t≥0 is a 3N -dimensional standard Wiener pro
ess and σ = (2/β)1/2. The term �biased�refers to the fa
t that the brownian traje
tories are a�e
ted by the drift term −∇V whi
h tendsto draw them toward the lo
al minima of V . The in�nitesimal generator A asso
iated with thebiased Random-Walk (3.38) is de�ned by
Ag = −∇V · ∇g +

σ2

2
∆g, (3.39)for g ∈ C2(R3N ). We denote by P t the Markov semigroup asso
iated with (3.38). Traje
torialexisten
e and uniqueness for (3.38) is 
lassi
al for globally Lips
hitz for
e-�elds [152,224℄, namelyfor potential energies V satisfying for some positive 
onstant L

∀(x, y) ∈ R3N × R3N , |∇V (x) −∇V (y)| ≤ L |x− y|. (3.40)When this 
ondition is not satis�ed, it is possible to 
on
lude to traje
torial existen
e and uni-queness for lo
ally Lips
hitz for
e-�elds under the following hypothesis [152, 224℄: there exist afun
tion W (q) ∈ C2(R3N ) that goes to in�nity at in�nity and a positive 
onstant c su
h that
AW ≤ cW. (3.41)Besides, under assumption (3.40) or (3.41), one 
an prove that the Markov pro
ess (3.38) isFeller [241℄.From the Fokker-Plan
k equation asso
iated with (3.38), it is easy to 
he
k that

π is an invariant probability measure of (3.38), (3.42)where π is the 
anoni
al position spa
e distribution (3.6).Convergen
e of the time average along one sample pathLet us 
onsider the time average
ST (A) =

1

T

∫ T

0

A(qxt ) dt, (3.43)where qxt is a sample path of (3.38) with the deterministi
 initial 
ondition q0 = x. Convergen
eresults analogous to the results obtained for Markov 
hains 
an be extended to Markov pro
esses,with an average (3.43) still taken only over one realization of the pro
ess (see [335℄ for a seminal
ontribution (that also 
onsiders dis
retization issues), [336,337℄ for improvements and re�nements,and [265℄ for a re
ent review).
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e sampling te
hniquesTo obtain an almost sure 
onvergen
e of ST (A) to the position spa
e average (and thus apositive answer to Question 1), the following theorem 
an be used:Theorem 3.11 ( [241, Theorem 8.1℄). Assume that the pro
ess qt de�ned by (3.38) is Feller,that 
ondition (3.42) holds true as well as the following 
ondition:for all t, for all q ∈ R3N and all open sets O ⊂ R3N , P t(q,O) > 0. (3.44)Then, for π-almost every q ∈ R3N and for any A ∈ L1(π),
lim
T→∞

ST (A) =

∫

R3N

A(q)dπ a.s.If ∇V is globally Lips
hitz, then (3.44) holds true by standard results [287℄. In other 
ases, a simpleway to 
he
k 
ondition (3.44) is to use a 
ontrollability argument inspired from [231, Lemma 3.4℄.Central Limit Theorems (whi
h would provide a 
onvergen
e rate of ST (A) towards its limit andthus provide an answer to Question 2) 
an also be stated. We refer for example to [172℄.Convergen
e of the densitiesErgodi
ity holds true whenever 
onditions (3.42) and (3.44) are satis�ed (see [241, Theo-rem 6.1℄). Question 3 
an therefore be answered positively. To get an exponential 
onvergen
erate (in the W -total variation norm (3.15)), that is, to answer Question 4, one needs to show thestronger 
ondition
AW (q) ≤ −cW (q) + b1C(q), (3.45)where W ≥ 1 is a measurable fun
tion going to in�nity at in�nity, c > 0, b ∈ R and C is a
ompa
t set (
ompare this 
ondition with 
ondition (3.31) for Markov 
hains). We do not addressthis question in the present here (see [231,336,337℄ for examples of su
h studies).Numeri
al implementationThe Euler-Maruyama numeri
al s
heme asso
iated to (3.38) reads, when taking integrationsteps h = ∆t2/2:

qn+1 = qn − ∆t2

2
∇V (qn) + β−1/2∆tRn, (3.46)where (Rn)n∈N is a sequen
e of i.i.d. 3N -dimensional standard Gaussian random ve
tors.For globally Lips
hitz for
e-�elds, the Euler-Maruyama s
heme (3.46) 
onverges: if the pro
ess

qt de�ned by (3.38) is ergodi
, then the numeri
al Markov 
hain is ergodi
 and its invariant measureis 
lose to the invariant measure of the original pro
ess (for ∆t small enough) [231, Theorem 7.3℄.However, for non-globally Lips
hitz for
e-�elds, it is not su�
ient to 
onsider the dis
retiza-tion (3.46) of the di�usion pro
ess alone. Indeed, examples of non-globally Lips
hitz for
e-�eldsare known for whi
h the Euler-Maruyama s
heme fails [231, 283℄. There are two ways out ofthis situation. First, 
onvenient dis
retizations of (3.46) using some impli
it integration 
an beused. Under some assumptions on the potential energy V , the 
orresponding numeri
al s
heme
onverges: (i) there exists an invariant probability measure for the Markov 
hain formalizing thealgorithm; (ii) empiri
al averages of observables (with at most polynomial growth) 
onverge to po-sition spa
e averages up to O(∆t) terms (see [337℄). However, impli
it methods be
ome untra
tablefor large systems. Another approa
h may then be 
onsidered, the so-
alled �Metropolis-adjustedLangevin3 algorithm� (MALA), proposed by Roberts and Tweedie in [283℄, whi
h 
orre
ts the
3 The term �Langevin� does not refer here to the Langevin dynami
s as known in the Physi
s literature(see Se
tion 3.2.4). In the Probability and Statisti
s �elds, it is, for some authors, the name for thebiased Random-Walk.
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hasti
ally perturbed Mole
ular Dynami
s methods 73Euler-Maruyama dis
retization (3.46) by an additional a

eptan
e/reje
tion step in a Metropolis-Hastings fashion. Therefore, there is no bias in the measure sampled. The algorithm 
onsists ingenerating proposal steps using (3.46), and a

epting or reje
ting them a

ording to a Metropolis-Hastings rule with the proposal density
P(q, q′) =

√
β

2π∆t2
exp

(
− β

2∆t2

∣∣∣∣q′ − q +
∆t2

2
∇V (q)

∣∣∣∣
2
)
.In the 
ase of the MALA algorithm, using a potential energy V ∈ C1(R3N ) is enough tosatisfy 
ondition (3.8). Sin
e π is by 
onstru
tion an invariant probability measure (and therefore
ondition (3.7) holds true), the Markov 
hain formalizing the algorithm is ergodi
 for almost allstarting points, and the 
onvergen
e results stated in Theorems 3.1 and 3.3 apply. On the otherhand, 
onditions ensuring the Central Limit Theorem and geometri
 ergodi
ity (
onditions (3.11)and (3.31), see Theorems 3.2 and 3.8) are not easy to 
he
k. We refer to [283,285℄ for su
h studies.The only adjustable parameter of the algorithm is the time-step ∆t. The reje
tion rate is agood indi
ator of e�
ien
y. It is indeed well-known that a good sampling is a trade-o� betweende
orrelation (to this end, larger time-steps are required) and a

eptan
e rate (the larger thetime-step, the larger the reje
tion rate). We refer for example to [284℄ where it is shown that,for tensorized distributions, the asymptoti
al optimal a

eptan
e rate, when the dimension ofthe position spa
e M goes to in�nity, is 0.574. This theoreti
al result does not extend to more
ompli
ated situations. However, numeri
al experiments show that an a

eptan
e/reje
tion rateabout 50% leads to a rather e�
ient method.In Se
tion 3.4, we present numeri
al results obtained both with the Euler-Maruyama s
hemeand with the MALA s
heme.Comparison of MALA and the one-step HMC s
hemeNote that 
hoosing the time step h of the MALA algorithm su
h that h = ∆t2/2 makes the
omparison between the MALA algorithm and the one-step Hybrid Monte Carlo methods easiersin
e both s
hemes use (3.46) to generate a proposal. Indeed, when τ = ∆t andM = I3N , the HMCvelo
ity is randomized every time-step and thus formally reads pn =

√
1
βMRn, where Rn is a 3N -dimensional standard Gaussian random variable. Noti
e however that the a

eptan
e/reje
tionsteps di�er sin
e the HMC a

eptan
e/reje
tion step involves the 
omparison of total energiesand the Biased Random-Walk a

eptan
e/reje
tion step involves the 
omparison of the potentialenergies alone. As far as the a

eptan
e/reje
tion step is 
on
erned, the MALA s
heme uses thea

eptan
e rate

rMALA(qn, q̃n+1) = min

{
1, exp

(
−β
[
1

2
∆t(q̃n+1 − qn) · (∇V (qn) −∇V (q̃n+1)) + O(∆t2)

])}
,and q̃n+1 − qn =

√
1
βR

n + O(∆t2). On the other hand, 
onsidering Algorithm 3.3, the a

ep-tan
e/reje
tion rate of the hybrid Monte Carlo algorithm reads
rHMC(qn, q̃n+1) = min



1,

exp
(
−βH̃n+1

)

exp (−βHn)



 ,where Hn is the initial energy and H̃n+1 is the energy at the end of the traje
tory. If a Velo
ity-Verlet s
heme is used to 
ompute the traje
tory,

rHMC(qn, q̃n+1) = min

{
1, exp

(
−β
[
∆t

2
M−1pn · (∇V (qn) −∇V (q̃n+1)) + O(∆t2)

])}
.
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e sampling te
hniquesSo the a

eptan
e/reje
tion steps of the MALA algorithm on the one hand and of the HMCalgorithm on the other are the same up to se
ond order terms.3.2.4 Langevin dynami
sThe paradigm of Langevin dynami
s is to introdu
e in the Newton equations of motion (3.16)some �
titious brownian for
es modelling �u
tuations, balan
ed by vis
ous damping for
es model-ling dissipation. More pre
isely, the equations of motion read here
{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− ξM−1pt dt+ σ dWt,
(3.47)where (Wt)t≥0 is a 3N -dimensional Wiener pro
ess. The parameters ξ and σ represent the ma-gnitude of the �u
tuations and of the dissipation respe
tively, and are linked by the �u
tuation-dissipation relation:

σ = (2ξ/β)1/2, (3.48)where β = 1/kBT . Therefore, there remains one adjustable parameter in the model. Let us remarkthat the biased Random-Walk (3.38) is obtained from the Langevin dynami
s (3.47) by lettingthe mass matrix M go to zero and by setting ξ = 1, whi
h amounts here to res
aling the time.The in�nitesimal generator A asso
iated to the SDE (3.47) reads:
Ag(q, p) = M−1p · ∇qg(q, p) − (ξM−1p+ ∇V (q)) · ∇pg(q, p) +

σ2

2
∆pg(q, p), (3.49)for g ∈ C2(Rd × R3N ). The proof of traje
torial existen
e and uniqueness follows the same linesas for the biased Random-Walk 
ase, with the same kind of assumptions (globally Lips
hitz for
e�elds ∇V or a Lyapunov 
ondition analogous to (3.41)). It is straightforward to show that the
anoni
al probability measure (3.3) is a steady state of the Fokker-Plan
k equation asso
iatedwith (3.47).Convergen
e resultsThe same results hold true for the Langevin pro
ess as the ones stated in Se
tions 3.2.3 and 3.2.3for the biased Random-Walk, the proofs following the same lines. We refer to [231℄ for furtherdetails 
on
erning 
ondition (3.44) (where R3N is to be repla
ed by R3N ×R3N and P t is now theMarkov semigroup asso
iated with the Langevin dynami
s). We also refer to [159℄ for a remarkablework allowing, under some assumptions of lo
al regularity and growth at in�nity on the potentialenergy V , to obtain geometri
al 
onvergen
e of the density P t(q, ·) toward the invariant measure,in some weighted Sobolev norms. In parti
ular, estimates of the 
onvergen
e rate involving M , ξ,

β and V , 
an be expli
itely derived.Questions 1 and 3 
an therefore be answered positively. Question 4 
an also be answeredpositively when a 
onvenient drift 
ondition 
an be stated (
ondition (3.45) where A is now thein�nitesimal generator asso
iated to (3.47)).Numeri
al implementationThere are several ways to 
ompute numeri
ally an invariant distribution using a Langevindynami
s:(i) with a Metropolized s
heme as for the biased Random-Walk 
ase (see [298℄ and Se
-tion 6.1.2 for an appli
ation to Variational Monte-Carlo);(ii) with 
onvenient dis
retizations and a step-size ∆t su�
iently small ensuring the samplingfrom an invariant measure 
lose to the 
anoni
al measure (3.3);
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hasti
ally perturbed Mole
ular Dynami
s methods 75(iii) by extending usual NVE s
hemes used in deterministi
 MD simulations to the 
ase of theLangevin dynami
s (the quasi-symple
ti
 s
hemes of [242℄);(iv) by using splitting ideas borrowed from integration methods for deterministi
 �ows (seee.g. [146℄).It is not 
ompletely understood whi
h integration s
heme is the most e�
ient [244, 311, 369℄,espe
ially be
ause the 
omparison ben
hmarks vary from one �eld to another. The last two waysare the most 
onvenient in many appli
ations, and allows usually to take larger time steps thanfor pure NVE simulations sin
e the s
heme is intrinsi
ally more stable in view of its dissipativeproperties. Unfortunately, to our knowledge, there is no theoreti
al proof of 
onvergen
e for theresulting s
hemes. Let us now detail su

essively the last three approa
hes.First-order s
hemes with invariant probabilityGeneral results of error analysis hold true for the numeri
al dis
retization of the Langevinequation for globally Lips
hitz for
e �elds [231℄. In this 
ase, the resulting numeri
al Markov
hain is ergodi
 for usual dis
retization s
hemes (in
luding the Euler-Maruyama disretization)and their invariant measures are 
lose to the invariant measure of the original pro
ess (for ∆tsmall enough).The results are not the same for only lo
ally Lips
hitz for
e �elds. Some 
lasses of dis
retizeds
hemes however behave properly under additional assumptions on the potential energy. This isthe 
ase for the so-
alled split-step Ba
kward Euler-method proposed in [231℄. Applied to theLangevin equation (3.47), this algorithm reads



qn+1= qn +∆t M−1p∗

p∗ = pn − ξ∆tM−1p∗ −∆t∇V (qn+1)

pn+1= p∗ + σ
√
∆tGn

(3.50)where (Gn)n∈N is a sequen
e of 3N -dimensional i.i.d. Gaussian random ve
tors. Unfortunately,this method is impli
it (see the �rst two equations, to be solved for (qn+1, p∗)), therefore not
onvenient for MD simulations of large systems. The following expli
it s
heme is therefore prefered




p∗ = pn − ξ∆tM−1p∗ −∆t∇V (qn)

qn+1= qn +∆tM−1p∗

pn+1= p∗ + σ
√
∆tGn

(3.51)where (Gn)n∈N is a sequen
e of 3N -dimensional i.i.d. Gaussian random ve
tors.We now turn to the numeri
al analysis of (3.51). Let us denote by Fn the σ-algebra of events upto and in
luding the n-th iteration. We need to prove 
ondition (3.7) and 
ondition (3.8) to statea Law of Large Number theorem (see Theorem 3.1). The a

essibility 
ondition (3.8) is easily seento be satis�ed (by arguments similar to those of Se
tion 3.2.3 in this time dis
rete 
ase). We nowprove 
ondition (3.7), that is, the existen
e of an invariant probability measure. For this purpose,we need to make some assumptions on the potential energy V , similar to those of [231℄, to statea Lyapunov inequality for the dis
retized pro
ess. Indeed, we want to make use of the followingtheorem:Theorem 3.12 ( [231, Theorem 2.5℄). Denote by P the transition kernel asso
iated with theMarkov 
hain formalizing (3.51), assumed to be Feller. Assume that (3.8) is satis�ed and thatthere exist a fun
tion W∆t(q, p) ≥ 1, going to in�nity at in�nity, and two real numbers b ∈ (0, 1)and c > 0 su
h that
E(W∆t(q

n+1, pn+1) | Fn) ≤ b E(W∆t(q
n, pn)) + c, (3.52)where (qn, pn) is the dis
rete traje
tory given by (3.51). Then there exists an invariant probabilitymeasure µ∆t, and 
ondition (3.7) holds true.
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e sampling te
hniquesThe numeri
al s
heme then 
onverges (with respe
t to the measure dµ∆t) in the sense ofQuestions 1 to 4. The question of estimating the distan
e between µ∆t and the 
anoni
al measure
µ has been addressed in e.g. [231,337℄.Let us now �nd W∆t, b and c satisfying (3.52). We assume that the potential energy V is in
C2(R3N ) and satis�es a one-sided Lips
hitz 
ondition: there exists C > 0 su
h that

∀a, b ∈ R3N , (∇V (a) −∇V (b)) · (a− b) ≤ C|a− b|2. (3.53)We also assume that there exist A,B > 0 su
h that
∀q ∈ R3N , −∇V (q) ·M−1q ≤ A−B

(
V (q) +

ξ2

4
qTM−1q

)
. (3.54)These 
onditions are satis�ed for example for potential energies growing quadrati
ally at in�nity.The following result, strongly inspired from [231℄, 
an then be stated:Lemma 3.6. Let (qn, pn) be the dis
rete traje
tory given by (3.51). Let us assume that V is boun-ded from below and let us set m = max {m1, . . . ,mN},

W (q, p) = 1 +
1

2
pTM−1p+

ξ2

4
qTM−1q + V (q) − inf V +

ξ

2
pTM−1q (3.55)and W∆t(q, p) = W (q, p) +

ξ

4m2
∆t|p|2. When (3.53) and (3.54) are satis�ed, and that

0 ≤ ∆t ≤ ξ

ξ2/m+ 4C
. (3.56)Then W∆t satis�es (3.52) for some c > 0, 0 < b < 1.Proof. Consider the numeri
al s
heme (3.51). Some 
omputations give

W (qn+1, p∗) −W (qn, pn) ≤ − ξ∆t

2m2

(
1 − ξ∆t

2m

)
|p∗|2 − ξ∆t

2
∇V (qn) ·M−1qn

+ V (qn +∆tM−1p∗) − V (qn) −∆t∇V (qn) ·M−1p∗.The one-sided Lips
hitz 
ondition (3.53) allows to handle the term V (qn +∆tM−1p∗) − V (qn) −
∆t∇V (qn) ·M−1p∗. The 
ondition (3.54) allows to handle the term −ξ∆t

2
∇V (qn) ·M−1qn. When(3.56) is satis�ed, it then follows

W (qn+1, p∗) −W (qn, pn) ≤ A
ξ∆t

2
−B

ξ∆t

2

(
V (qn) +

ξ2

4
qn ·M−1qn

)
− ξ

4m2
∆t|p∗|2. (3.57)Re
alling W∆t(q, p) = W (q, p) +

ξ

4m2
∆t|p|2, we obtain

W∆t(q
n+1, p∗) −W∆t(q

n, pn) ≤ A
ξ∆t

2
−B

ξ∆t

2

(
V (qn) +

ξ2

4
qn ·M−1qn

)
− ξ

4m2
∆t|pn|2

≤ A
ξ∆t

2
−B′W∆t(q

n, pn)for some B′ > 0. The �nal step pn+1 = p∗ + σ
√
∆tGn leads to

E(W∆t(q
n+1, pn+1) | Fn) = E(W∆t(q

n+1, p∗)) + E|σ
√
∆tGn|2,
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hasti
ally perturbed Mole
ular Dynami
s methods 77so that
E(W∆t(q

n+1, pn+1) | Fn) ≤ b E(W∆t(q
n, pn)) + c (3.58)for some c > 0, 0 < b < 1.Algorithms derived from the Verlet s
hemeLet us now turn to the se
ond approa
h, and des
ribe algorithms generalizing the Verlet algo-rithm, and therefore widely used in pra
ti
e; on the other hand, there are no 
onvergen
e results atthis date to our knowledge (only 
onsisten
y results are known). One su
h algorithm is the BBK al-gorithm, proposed by Brünger, Brooks and Karplus [45℄. Another example is the quasi-symple
ti
algorithm of [242℄.We fo
us in the sequel on the BBK algorithm, whi
h is well-suited only for small values of ξ [244,299℄ (otherwise, algorithms from [4℄ or the Langevin impulse s
heme [310℄ (see below) shouldbe used). It is a modi�
ation of the usual velo
ity-Verlet s
heme obtained by adding a term

−ξ pi
mi

+
σi√
∆t

Gni to the for
e fi exerted on parti
le i (the relation between ξ and σi will bemade pre
ise below). This may explain its popularity sin
e it only asks for slight modi�
ations ofstandard MD 
odes. The random for
ing terms Gni (i ∈ {1, . . . , N} is the label of the parti
les, nis the iteration index) are standard i.i.d. Gaussian random variables. The s
heme reads:




p
n+1/2
i = pni +

∆t

2

(
−∇qiV (qn) − ξ

pni
mi

+
σi√
∆t

Gni

)
,

qn+1
i = qni +∆t

p
n+1/2
i

mi
,

pn+1
i =

1

1 + ξ∆t
2mi

(
p
n+1/2
i − ∆t

2
∇qiV (qn+1) + σi

√
∆t

2
Gn+1
i

)
.

(3.59)We now make pre
ise the relation between ξ and σi by 
onsidering the 
ase when there are nofor
es. When ∇V = 0, the BBK algorithm reads
(

1 +
ξ

2mi
∆t

)
pn+1
i =

(
1 − ξ

2mi
∆t

)
pni + σi

√
∆t

2

(
Gni +Gn+1

i

)
. (3.60)We see that, if E(pni ) = 0, then E(pn+1

i ) = 0. Choosing p0
i su
h that E(p0

i ) = 0, we have E(pni ) = 0for all n. Let us now denote by Kn
i = E((pni )2) the varian
e of pni . Setting γi =

ξ∆t

2mi
, one has

Kn+1
i =

(
1 − γi
1 + γi

)2

Kn
i +

3σ2
i∆t

(1 + γi)3
.The above re
ursion is of the general form xn+1 = axn + b, and has a �xed point provided a < 1,whi
h is always the 
ase here sin
e γi > 0. This �xed point K∞

i is su
h that
1

mi
K∞
i =

3σ2
i

2ξ(1 + γi)
. (3.61)Setting σi to the value

σ∆ti =

√
2ξ(1 + γi)

β
=

√
2ξ

β

(
1 +

ξ∆t

2mi

)
, (3.62)we see that K∞

i =
3mi

β
, whi
h is indeed the expe
ted value (the kineti
 temperature is 
orre
t).Note that (3.62) gives the magnitude of the random for
ing that should be used in numeri
al
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e sampling te
hniquessimulations if one wants the kineti
 temperature to be 
orre
t. Otherwise, if σ is 
hosen a

ordingto (3.48), the time-averaged kineti
 temperature is lower than the target temperature T , and theerror is of order ∆t, as 
an be seen from (3.61). This is 
onsistent with the results obtained in [369℄from a modi�ed equation approa
h. Note that using (3.62) instead of (3.48) does not improve the
on�gurational sampling a

ura
y (the error on the 
on�gurational sampling is of order ∆t withboth 
hoi
es (3.48) and (3.62)).Another modi�
ation of the BBK algorithm has been proposed in [306℄. It amounts to usingthe same Gaussian random variables in the �rst and the third lines of (3.59). In this 
ase, there isno bias on the kineti
 temperature with the 
hoi
e (3.48).S
hemes based on splittingA third approa
h, more re
ent, is to design algorithms based on a operator splitting method.The Langevin Impulse algorithm, proposed in [310℄, is su
h an algorithm. When ∇V = 0 and
M = Id, the Langevin dynami
s

{
dqt = pt dt,

dpt = −γpt dt+ σ dWt,
(3.63)
an be integrated expli
itely by integrating �rst the Ornstein-Uhlenbe
k pro
ess on the momentum,and integrating on
e again to obtain the evolution of the positions. It holds

pt = e−γtp0 + σ

∫ t

0

e−γ(t−s) dWs = e−γtp0 + Pt,where Pt is a gaussian pro
ess su
h that
E(P 2

t ) = σ2

∫ t

0

e−2γ(t−s) ds =
1 − e−2γt

β
.Then,

qt = q0 +

∫ t

0

ps ds = q0 +
1 − e−γt

γ
p0 + σ

∫ t

0

∫ s

0

e−γ(s−u) dWu ds = q0 +
1 − e−γt

γ
p0 +Qt,where the random variable Qt 
an be rewritten as

Qt =

∫ t

0

∫ t

u

σe−γ(s−u) ds dWu.Therefore, Qt is a 
entered gaussian pro
ess of varian
e
E(Q2

t ) =

∫ t

0

[∫ t

u

σe−γ(s−u) ds

]2
du =

σ2

γ2

∫ t

0

(
1 − e−γ(t−u)

)2

du =
1

βγ

[
2t− 3 − 4e−γt + e−2γt

γ

]
.However, the variables Qt and Pt are 
orrelated sin
e

E(PtQt) = E

[(∫ t

0

σ

γ

(
1 − e−γ(t−u)

)
dWu

)(∫ t

0

e−γ(t−u) dWu

)]
.Therefore

E(PtQt) =
σ

γ

∫ t

0

(
1 − e−γ(t−u)

)
e−γ(t−u) du =

1

γβ

(
1 − e−γt

)2
.Combining the integration of the �ow (3.63) with the straightforward integration of the �ow
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{
dqt = 0,

dpt = −∇V (qt) dt,the dis
retization proposed in [311℄ is re
overed. Other dis
retizations of Langevin dynami
s wereobtained using splitting ideas (see e.g. [107, 280℄ and Se
tion 4.3.1 for a pre
ise statement of the
orresponding s
heme).This approa
h is more rigorous than other 
lassi
al algorithms to integrate the Langevin dy-nami
s su
h as the ones des
ribed in [4℄. The idea of those algorithms is to exa
tly integrate thedynami
s when the for
es vary linearly with respe
t to time. In pra
ti
e, for
es are interpolatedin time between two su

essive time steps.3.3 Deterministi
 mole
ular dynami
s samplingWe now turn in this se
tion to purely deterministi
 methods. These methods rely on thefollowing idea: a system in the 
anoni
al ensemble 
an be 
onsidered as a system intera
tingwith an external heat bath, the intera
tion being su
h that, at equilibrium, the physi
al systemvariables are distributed a

ording to the 
anoni
al measure (3.3). Thus, the idea is to 
onsideran extended system 
omposed of the physi
al variables and some additional variables modellingthe bath. Various dynami
s have been proposed in this vein.In this se
tion, we �rst 
onsider the Nosé-Hoover dynami
s and its generalization to the Nosé-Hoover 
hains [171, 229, 260, 346℄. Then, we 
onsider the Nosé-Poin
aré method [35℄ and the Re-
ursive Multiple Thermostats method, whi
h has been re
ently proposed in [206℄.3.3.1 The Nosé-Hoover and Nosé-Hoover 
hains methodsThe Nosé-Hoover (NH) method, proposed by Hoover, 
onsists in des
ribing the heat bath bytwo s
alar variables, its �position� η and its �momentum� ξ, and to postulate the following dynami
sfor the extended set of variables [171,260℄:




dqi
dt

=
pi
mi

,

dpi
dt

= −∇qiV − piξ

Q
,

dη

dt
=

ξ

Q
,

dξ

dt
=

N∑

i=1

p2
i

mi
− gkBT,

(3.64)
where V is the potential energy of the system, g is a parameter we will �x later and T is the targettemperature. The parameter Q represents the mass of the thermostat; it is a free parameter thatthe user has to 
hoose. The quantity

H̃NH =
N∑

i=1

p2
i

2mi
+ V (q) +

ξ2

2Q
+ gkBTη (3.65)is an invariant of the dynami
s (3.64), whi
h also preserves the measure

dµNH = exp(3Nη) dq dp dη dξ. (3.66)
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e sampling te
hniquesWe refer to [113℄ for details on the origin of this dynami
s. Let us just note here that (3.64) is nota Hamiltonian dynami
s4. Sin
e the dynami
s preserves (3.65), it 
annot be ergodi
 with respe
tto dµNH. Let us introdu
e the manifold MNH(E0) =
{
(q, p, η, ξ) ∈ R6N+2 | H̃NH(q, p, η, ξ) = E0

}and the measure
dρNH =

dσNH

‖∇H̃NH‖2

, (3.67)where dσNH is the area measure indu
ed onMNH(E0) by the measure (3.66),∇H̃NH is the gradientof (3.65) with respe
t to all variables and ‖ · ‖2 is the Eu
lidian norm. Then dρNH is an invariantmeasure for the Nosé-Hoover dynami
s (3.64).Suppose now that the dynami
s is ergodi
 with respe
t to dρNH (note that this implies that
H̃NH is the unique invariant of (3.64)). Let us set g = 3N , where N is the number of parti
les.An easy 
omputation (see [204, 346℄) shows that the dynami
s (q(t), p(t)) is ergodi
 with respe
tto the 
anoni
al measure (3.3), and thus provides a sampling of the phase spa
e a

ording to the
anoni
al measure (at least before numeri
al dis
retization).We emphasize the fa
t that, to the best of the authors knowledge, there is no rigorous proofin the literature showing that (3.64) is ergodi
 with respe
t to dρNH. Furthermore, it has beennumeri
ally observed that, for some systems, the dynami
s (q(t), p(t)) does not seem to samplethe phase spa
e a

ording to the 
anoni
al measure. For instan
e, this is the 
ase with the one-dimensional harmoni
 os
illator, for whi
h it is a
tually observed that the traje
tory stays in aring, namely that there exist c, C > 0 su
h that c ≤ q2(t) + p2(t) ≤ C for all t (see [229, 346℄).Some mathemati
al analysis of this fa
t 
an be read in [204℄.To 
ir
umvent this di�
ulty, a generalization of the Nosé-Hoover dynami
s (3.64) has beenproposed by Martyna et al. in [229℄. The idea 
onsists in 
oupling the physi
al variables with a�rst thermostat as in (3.64), and to 
ouple this thermostat with a se
ond one, whi
h 
an be 
oupledto a third one, and so on. The variables now in
lude 2M additional s
alar variables ηj and ξj ,
j = 1, . . . ,M , where the number M of thermostats is arbitrary. The 
orresponding dynami
s isthe so-
alled Nosé-Hoover 
hain dynami
s (NHC) [229℄, in whi
h there are M free parameters,
Q1, . . . , QM , representing the masses of the M thermostats. The dynami
s preserves an invariant
H̃NHC and a measure dµNHC (whi
h are the generalization of (3.65) and (3.66)).As for the Nosé-Hoover dynami
s, if the NHC dynami
s is ergodi
 with respe
t to a measure
dρNHC built in the same way as dρNH, then the dynami
s (q(t), p(t)) is ergodi
 with respe
t tothe 
anoni
al measure. Provided that the number M of thermostats is large enough (M ≥ 3 or 4in pra
ti
e), numeri
al simulations seem to show that this dynami
s samples the phase spa
e a
-
ording to the 
anoni
al measure, even for systems su
h as the harmoni
 os
illator. Again, thereis no rigorous proof showing that the NHC dynami
s is a
tually ergodi
 with respe
t to dρNHC.Regarding numeri
al integration, it seems interesting to work with algorithms that preservethe qualitative stru
ture of the dynami
s, that is time reversibility and measure preservation.Reversible-in-time and measure-preserving algorithms have been proposed in [230℄ (let us justmention here that they are based on a splitting of the dynami
s). Simulation results dis
ussed inSe
tion 3.4 have been obtained with these algorithms.3.3.2 The Nosé-Poin
aré and the Re
ursive Multiple Thermostat methodsBoth the Nosé-Hoover and the Nosé-Hoover 
hain dynami
s su�er from not being Hamiltoniandynami
s. As a 
onsequen
e, the quasi-
onservation by the numeri
al �ow of the invariants H̃NH

4 The Nosé-Hoover dynami
s 
an be re
ast, after 
hanging variables and time, as a Hamiltonian dynami
s,the so-
alled Nosé dynami
s [259℄. However, the time of this dynami
s does not 
orrespond anymore tothe physi
al time.
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al illustrations 81(see (3.65)) and H̃NHC is not guaranted. On the 
ontrary, when working with a Hamiltoniandynami
s, it is known that the energy 
an be preserved by the numeri
al �ow over very longtimes, provided symple
ti
 algorithms are used (see [146, Chap. IX℄ and [278℄). Another problemwith Nosé-Hoover 
hains is the 
hoi
e of the number of thermostats as well as their masses Qj ,whi
h seem to have an in�uen
e on the results.The Re
ursive Multiple Thermostat method (RMT) has been re
ently proposed by Leimkuhlerand Sweet [206℄ to solve the di�
ulties that have just been highlighted. It is a Hamiltonian dyna-mi
s whi
h, like the Nosé-Hoover or Nosé-Hoover 
hains dynami
s, 
ouples the physi
al variableswith a heat bath. This dynami
s is a generalization of the Nosé-Poin
aré (NP) method [35℄, whi
his also a Hamiltonian method. The Nosé-Poin
aré method 
onsists in adding a single thermostat,whereas the RMT method 
onsists in adding an arbitrary number M of thermostats, whi
h areall 
oupled together and to the physi
al parti
les. This is not the 
ase in the Nosé-Hoover 
haindynami
s, where only the �rst thermostat is 
oupled to the physi
al parti
les (and not the otherthermostats).The Nosé-Poin
aré method is based on the following Hamiltonian:
HNP(q, p, η, ξ) = η

(
H

(
q,
p

η

)
+
ξ2

2Q
+ gkBT ln η −H0

)
, (3.68)where H is given by (3.4), H0 is 
hosen su
h that HNP = 0 for the initial 
onditions, and where

Q is some free parameter. Sampling properties and numeri
al algorithms are dis
ussed in [35℄. Letus just mention here that, as for the Nosé-Hoover dynami
s, one has to set g = 3N if the onlyinvariant of the dynami
s is HNP.The motivation for introdu
ing the RMT method is the observation that, at least for somesystems, numeri
al results seem to depend mu
h less on the thermostat masses (whi
h are user-
hosen parameters) than with the Nosé-Poin
aré method (see [206,333℄).The numeri
al results that are presented in Se
tion 3.4 have been obtained with the algorithmsproposed in [35℄ and [206℄. Let us note that di�erent algorithms may have di�erent numeri
alstabilities, and so di�erent abilities to adequately sample the phase spa
e with a traje
tory ofa given number of time steps. A new algorithm for the RMT dynami
s has been proposed veryre
ently in [20℄.3.4 Numeri
al illustrationsThe di�erent methods presented above 
an be used to 
ompute numeri
al approximations ofphase spa
e integrals. In some 
ases, theoreti
al 
onvergen
e rates 
an be obtained. Typi
ally,when a CLT holds true, the error is bounded by Cn−1/2 (where n is the number of evaluations ofthe potential energy and/or of the for
es; see the Central Limit Theorem 3.2) for some unknownprefa
tor C, depending on both the system and the observable A. An important issue is the valueof the prefa
tor in numeri
al 
omputations, whi
h 
an greatly vary from one method to anotherone.However, sin
e this prefa
tor depends on A, it is not easy to 
ompare the di�erent methodsin a general way. After a brief des
ription of the alkane model in Se
tion 3.4.1, we present inSe
tion 3.4.2 an abstra
t 
riterion de�ned without any expli
it dependen
e on an observableA. The
riterion measures the deviation between the empiri
al distributions and the 
anoni
al distribution.This 
omparison 
an be performed for a �xed sample size (bearing in mind the 
omputationof auto
orrelation fun
tions with a �xed 
omputational 
ost for example), or, more fairly, ata �xed 
omputational 
ost. Some improvements 
an also be a
hieved when 
ombining di�erentsampling te
hniques, or when resorting to strategies di�erent from the 
omputation of a single longtraje
tory. This is made pre
ise in Se
tion 3.4.5. In Se
tion 3.4.6, we 
onsider a spe
i�
 
ase of atime-dependent observable A, whi
h 
orresponds to a 
orrelation fun
tion. The numeri
al results
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e sampling te
hniquesthat are obtained with this physi
al 
hoi
e illustrate the 
on
lusions drawn from the abstra
t
riterion in Se
tion 3.4.2.3.4.1 Des
ription of the linear alkane mole
uleLinear alkanes are 
hemi
al 
ompounds of the form CH3-(CH2)n-CH3. In this study, the so-
alled united-atom model [294℄ is used, in whi
h the 
onformation of the mole
ule is 
ompletely
hara
terized by the positions of the Carbon atoms. The presen
e of the Hydrogen atom is impli-
itely taken into a

ount in the de�nition of the intera
tion potential energy the Carbon atomsare subje
ted to. The Carbon atoms of the linear alkane mole
ule are indexed from 1 to N , andtheir positions are des
ribed by the ve
tor q = (q1, . . . , qN ) ∈
(
R3
)N . We set ri,j = qj − qi and wedenote by di,j = |ri,j | the distan
e between the Carbon atoms i and j.In the model presented here, the interatomi
 potential energy involves two-, three-, and four-body intera
tions :(1) two Carbon atoms 
onne
ted by a 
ovalent bond intera
t via a harmoni
 potential energy

V2(d) =
1

2
k0(d− d0)

2; (3.69)(2) two Carbon atoms that are separated by three 
ovalent bonds or more intera
t via a Lennard-Jones potential energy
VLJ(d) = 4ǫ

((σ
d

)12

−
(σ
d

)6
)
.The parameters ǫ and σ depend on the atoms that intera
t, and 
an have three values:

ǫCH3−CH3 and σCH3−CH3 when two CH3 groups intera
t (the end groups), ǫCH3−CH2 and
σCH3−CH2 when an interior group intera
ts with an end group, and ǫCH2−CH2 and σCH2−CH2when two CH2 groups intera
t;(3) three 
onse
utive Carbon atoms Ci-Ci+1-Ci+2 intera
t via the three-body intera
tion po-tential energy

V3(θi) =
1

2
kθ(θi − θ0)

2, (3.70)where
θi = ar

os( ri,i+1 · ri+1,i+2

|ri,i+1| · |ri+1,i+2|

) (3.71)is the bending angle of the Ci-Ci+1-Ci+2 
hain;(4) lastly, four 
onse
utive Carbon atoms Ci-Ci+1-Ci+2-Ci+3 experien
e the four-body intera
-tion potential energy
V4(φi) = utors(cosφi), (3.72)where φi is the dihedral angle de�ned by

cosφi = − (ri,i+1 × ri+1,i+2) · (ri+1,i+2 × ri+2,i+3)

|(ri,i+1 × ri+1,i+2)| · |(ri+1,i+2 × ri+2,i+3)|
(3.73)and where the fun
tion utors is given by

utors(x) = c1(1 − x) + 2c2(1 − x2) + c3(1 + 3x− 4x3).The potential energy of the linear alkane mole
ule eventually reads
V (q) =

N−1∑

i=1

V2(di+1,i) +
N−2∑

i=1

V3(θi) +
N−3∑

i=1

V4(φi) +
N−4∑

i=1

N∑

j=i+3

VLJ(di,j), (3.74)
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al illustrations 83where the term VLJ depends on the type of intera
tion 
onsidered.The values of the parameters d0, ǫ, σ, kθ, θ0, c1, c2 and c3 are taken from [228℄. In the systemof units where the length unit is l0 = 1.53 × 10−10 m and the energy unit is su
h that kBT = 1at T = 300 K, the time unit is t̄ = 364 fs, and the numeri
al values of the parameters are d0 = 1,
ǫCH3−CH3 = 0.294, ǫCH3−CH2 = 0.241, ǫCH2−CH2 = 0.198, σCH3−CH3 = σCH3−CH2 = σCH2−CH2 =

2.55, kθ = 208 rad−2, θ0 = 1.187 rad, c1 = 1.18, c2 = −0.23 and c3 = 2.64. Noti
e that for thesevalues of the parameters ci, the fun
tion utors has a unique global minimum (at φ = 0) and twolo
al non-global minima. As far as the parameter k0 is 
on
erned, we set k0 = 1000 (anotherpossibility [228℄ is to 
onstrain the C-C 
ovalent bond length to be equal to d0). We set the unitof mass su
h that the mass of ea
h parti
le is equal to 1.We note that ∑N
i=1 ∇qiV = 0, and that ∑N

i=1 qi × ∇qiV = 0. As a 
onsequen
e, the Newtonequations (3.16) not only preserve the energy, but also preserve the linear momentum∑N
i=1 pi andthe angular momentum∑N

i=1 qi×pi. Similarly, the Nosé-Hoover dynami
s (3.64) also has additionalinvariants: besides (3.65), it preserves eη∑N
i=1 pi and eη∑N

i=1 qi× pi. As a 
onsequen
e, it 
annotbe ergodi
 with respe
t to (3.67). One 
an nevertheless re
over 
orre
t sampling properties in the
q variables by� starting from an initial 
ondition that satis�es ∑N

i=1 pi(0) = 0 and ∑N
i=1 qi(0) × pi(0) = 0,so that the linear and angular momenta are always equal to 0;� setting g = 3N−Nc, whereNc is the number of 
onservation laws (besides the energy (3.65)).In the 
ase under study here, Nc = 6. The same kind of remarks also hold true for the Nosé-Hoover
hain dynami
s, the Nosé-Poin
aré dynami
s and the RMT method. The simulation results thatwe present below have been obtained with these 
hoi
es. Note that there is no need for anymodi�
ation for the sto
hasti
ally perturbed MD methods.The linear pentane CH3-(CH2)3-CH3 is the shortest linear alkane for whi
h a two-bodyLennard-Jones intera
tion (
oupling the variables di,i+1, θi and φi all together) has to be ta-ken into a

ount. In addition, it involves only two dihedral angles and these two angles essentiallydetermine the 
onformation of the mole
ule. Indeed, the 
ovalent stret
hing and bending potentialenergies (namely, V2 and V3) are sti� and 
onsequently the bond lengths and bending angles arestatisti
ally 
lose to their equilibrium values at room temperature. Therefore, the linear pentanemole
ule is a good test 
ase for it allows a simple redu
ed representation of the 
onformation whilebeing a non-trivial model in whi
h the internal degrees of freedom are 
oupled all together. For
ompleteness, tests on longer mole
ules are performed in order to investigate the robustness of thenumeri
al methods with respe
t to in
reasing 
on�gurational spa
e dimensions.Some referen
e empiri
al densities for the dihedral angles obtained through Importan
e sam-pling te
hniques are presented in Figure 3.1. They 
orrespond to pentane, with N = 109 samplepoints.3.4.2 Dis
repan
y of sample pointsIn order to quantitatively assess the quality of the samples generated by the various methodsdes
ribed above, we use a dis
repan
y 
riterion. Re
all that the dis
repan
y Dn of a sequen
e

x = {xm}0≤m≤n−1 with values in [0, 1]d is de�ned as (see [200℄)
Dn(x) = sup

y∈[0,1]d

∣∣∣∣∣
1

n

n−1∑

m=0

1{xm∈[0,y]} −Volume([0, y])∣∣∣∣∣ , (3.75)where, for d-dimensional ve
tors y, z, we write y ≤ z when yi ≤ zi for all 1 ≤ i ≤ d, and note
[0, y] = {z ∈ [0, 1]d, z ≤ y}. The fa
t that Dn(x) → 0 when n→ ∞ is equivalent (see [200, p.15℄)to the fa
t that, for any Riemann integrable fun
tion A de�ned on [0, 1]d,
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Fig. 3.1. Empiri
al probability distribution of the dihedral angles (φ1, φ2) of the pentane mole
ulegenerated with Importan
e sampling, for β = 1 (Left) and β = 2 (Right), with sample size N = 109 and
ǫCH3−CH3 = 0.29, ǫCH3−CH2 = 0.

lim
n→∞

1

n

n−1∑

m=0

A(xm) =

∫

[0,1]d
A(x) dx.In addition, for fun
tions A whi
h have bounded variations VHK(A) in the sense of Hardy andKrause [257℄, the following error estimate holds true:

∣∣∣∣∣
1

n

n−1∑

m=0

A(xm) −
∫

[0,1]d
A(x) dx

∣∣∣∣∣ ≤ VHK(A)Dn(x). (3.76)If A ∈ Cd([0, 1]d), then its variation VHK(A) has a simple expression (see [257, page 19℄). If d = 2,whi
h is the 
ase we will be interested in below, then
VHK(A) =

∫

[0,1]2

∣∣∣∣
∂2A

∂x1∂x2

∣∣∣∣ dx+

∫ 1

0

∣∣∣∣
∂A

∂x1
(x1, 1)

∣∣∣∣ dx1 +

∫ 1

0

∣∣∣∣
∂A

∂x2
(1, x2)

∣∣∣∣ dx2.As a 
onsequen
e of (3.76), the 
onvergen
e of Dn(x) toward 0 implies the Law of Large Numbers,and the rate of 
onvergen
e ofDn(x) gives information about the 
onvergen
e rate of the observableaverage.In this framework, we intend for example to 
hara
terize the repartition of sample points inthe subset [−π, π]2 of the (φi, φj)-plane for two of the dihedral angles φi, φj . This 
an be a
hievedby 
onsidering the marginal νij of the 
anoni
al density π with respe
t to the other degrees offreedom. Unfortunately, there is no simple exa
t expression of this marginal. We therefore 
onsiderthe situation when all ǫ = 0 (that is when the Lennard-Jones intera
tions are all turned o�), inwhi
h 
ase the marginal has the simple expression
dνij(φi, φj) = Z−2

φ e−βV4(φi)e−βV4(φj) dφidφj , (3.77)with V4 given by (3.72).We then introdu
e the dis
repan
y 
riterion
Dn({qm}) = sup

(φi,φj)∈[−π,π]2

∣∣∣∣∣
1

n

n−1∑

m=0

1{φm
i ≤φi,φm

j ≤φj} −
∫

{ψi≤φi,ψj≤φj}
dνij(ψi, ψj)

∣∣∣∣∣ , (3.78)
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al illustrations 85whi
h provides a bound on the L∞ distan
e between the empiri
al distribution fun
tions and theexa
t ones. Noti
e that the se
ond integral fa
torizes as
∫

{ψi≤φi,ψj≤φj}
dνij(ψi, ψj) = Z−2

φ

∫

ψi≤φi

e−βV4(ψi) dψi

∫

ψj≤φj

e−βV4(ψj) dψj ,and 
an therefore easily be 
omputed using standard numeri
al te
hniques.Numeri
ally, we 
ompute an approximate value of Dn as follows. Suppose that we have par-tioned the (φi, φj)-plane into K2 boxes Bkl = [Φk, Φk+1[×[Φl, Φl+1[ with Φk = −π + 2kπ
K for

0 ≤ k ≤ K − 1. The supremum in (3.78) is now taken over a �nite set of elements:
DK
n (q) = sup

1≤k,l≤K

∣∣∣∣∣
1

n

n−1∑

m=0

1{φm
i ≤Φk,φm

j ≤Φl} −
∫

{ψi≤Φk,ψj≤Φl}
dνij(ψi, ψj)

∣∣∣∣∣ . (3.79)We then 
ompute the dis
repan
ies for the sample points obtained by di�erent methods with a�xed 
omputational 
ost. The 
omputational 
ost measures here the number of for
e or energyevaluations.3.4.3 Choi
e of parametersWe des
ribe here how we 
hoose the parameters of the numeri
al methods for a �xed 
omputa-tional 
ost in the 
ase of pentane. The 
ost has to be understood with respe
t to for
es or energiesevaluations. Noti
e that there is no parameter to tune for purely sto
hasti
 method su
h as theReje
tion method and Importan
e sampling. For the Metropolized independen
e sampler, the onlyimprovement that 
ould be done is an undersampling. However, the quality of the samples is not
hanged by some reasonable undersampling (in the range 1 − 100).Sto
hasti
 methodsFor the purely sto
hasti
 methods, we have worked with g(q) = Z̃−1
q exp(−βṼ (q)), where

Ṽ (q) =

N−1∑

i=1

V2(di+1,i) +

N−2∑

i=1

V3(θi)and Z̃q is a normalization 
onstant. When expressed in internal 
oordinates (with the 
hange ofvariables R = (d2,1, . . . , dN,N−1, θ1, . . . , θn−2) = h(q)), the fun
tions V2 and V3 are quadrati
 (see(3.69) and (3.70)), whi
h makes it possible to a
tually sample from g(R) dR (and so, from g(q) dqup to a Ja
obian term).Hybrid Monte CarloThe only relevant parameters are the time τ = k∆t and the time-step ∆t. We generate severalsamples of size N with a 
omputational 
ost equal to 106 for
es or energies evaluations. Therefore,the produ
t kN is a 
onstant equal to 106. We 
ompute the dis
repan
y (3.79) for ea
h parametervalues, averaging over 10 realizations (see Table 3.2). We found no systemati
 improvement usingan undersampling pro
edure. We present the results under the form m (σ) where m is the meanof the dis
repan
ies and σ the square-root of the varian
e.The optimal 
hoi
e within this set of parameters is ∆t = 0.025 and τ = 10. This 
orrespondsto an a

eptan
e rate of 0.7. When β 6= 1 and/or the mole
ule is longer, we 
hoose a new timestep ∆t su
h that the a

eptan
e/reje
tion rate is still around 0.7. A
tually, the 
hoi
e ∆t = 0.025remains 
onvenient (though maybe not optimal) for a broad range of temperatures and sizes.
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e sampling te
hniquesTable 3.2. Dis
repan
y results for the HMC algorithm.
∆t τ Dis
repan
y (ǫ = 0)0.02 1 0.106 (0.0310)5 0.0750 (0.0143)10 0.0532 (0.0141)20 0.400 (0.0107)50 0.0389 (0.00869)100 0.0550 (0.0163)0.025 1 0.103 (0.0406)5 0.467 (0.0249)10 0.0389 (0.0183)20 0.0447 (0.0114)50 0.0481 (0.0201)100 0.0524 (0.0181)

∆t τ Dis
repan
y (ǫ = 0)0.01 1 0.0224 (0.0894)10 0.0692 (0.0352)100 0.0690 (0.0242)0.03 1 0.0860 (0.0322)5 0.0486 (0.00875)10 0.503 (0.00704)20 0.410 (0.0111)50 0.0563 (0.0176)100 0.0540 (0.0157)0.035 1 0.130 (0.0458)10 0.0478 (0.195)100 0.561 (0.347)Biased Random-WalkThe only relevant parameter is ∆t. We study the quality of the sampling for di�erent valuesof this parameter for samples of size N = 106 (there is one 
omputation of for
es and energies pertime step), see Table 3.3. We found no systemati
 improvement using an undersampling pro
edure.Table 3.3. Dis
repan
y results for the biased random-walk.
∆t Reje
tion rate Dis
repan
y (ǫ = 0)0.01 0.022 0.190 (0.466)0.02 0.18 0.125 (0.0298)0.025 0.33 0.0920 (0.0362)0.028 0.45 0.104 (0.0446)0.03 0.53 0.110 (0.0362)0.035 0.73 0.112 (0.0544)The 
hoi
e ∆t = 0.025 or ∆t = 0.028 seem reasonable. Noti
e that a

ording to the dis
ussionin Se
tion 3.2.3, the optimal 
hoi
e of ∆t at β = 1 (giving the best symmetry estimate and thelowest dis
repan
y) is indeed expe
ted to 
orrespond to a reje
tion rate 
lose to to the asymptoti
optimal reje
tion rate for tensorized distributions (whi
h is 0.426 [284℄). When β 6= 1 and/or themole
ule is longer, we 
hoose a new time step ∆t su
h that the a

eptan
e/reje
tion rate is stillaround 0.5. A
tually, the 
hoi
e ∆t = 0.025 remains 
onvenient (though maybe not optimal) fora broad range of temperatures and sizes.Dis
retized Langevin pro
essThe only relevant parameters are the fri
tion 
oe�
ient ξ and the time-step ∆t. We study thequality of the sampling for di�erent values of this parameter for samples of size N = 106 (thereis one 
omputation of for
es and energies per time step), see Table 3.4. We found no systemati
improvement using an undersampling pro
edure.The results show that too small values of ξ have to be avoided (the random �u
tuations arenot large enough to 
ross barriers) as well as large values of ξ (where the sto
hasti
ity prevents thesystem to follow the physi
al dynami
s). We set ξ = 1 and ∆t = 0.02 in the sequel. This 
hoi
eremains 
onvenient (though maybe not optimal) for a broad range of temperatures and sizes.
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al illustrations 87Table 3.4. Dis
repan
y results for the Langevin dynami
s.
∆t ξ Dis
repan
y (ǫ = 0)0.01 0.1 0.0582 (0.0175)0.5 0.0580 (0.0208)1 0.0689 (0.0219)5 0.0548 (0.0232)10 0.0427 (0.00849)

∆t ξ Dis
repan
y (ǫ = 0)0.02 0.1 0.0529 (0.0144)0.5 0.0354 (0.00740)1 0.0339 (0.0142)5 0.0350 (0.0106)10 0.0441 (0.0161)
∆t ξ Dis
repan
y (ǫ = 0)0.03 0.1 0.0487 (0.0134)0.5 0.0376 (0.00937)1 0.0311 (0.0120)5 0.0488 (0.0140)10 0.0575 (0.0155)Nosé-Hoover 
hainsThe parameters are the number M of thermostats, their masses, and the integration time step

∆t. We set ∆t = 0.003, whi
h ensures a 
onservation of the energies up to a few per
ents ingeneral. We use the two above statisti
al indi
ators of the quality of the sampling, as well as thetime average of
A2 =

1

3N

N∑

i=1

∑

α=x,y,z

p2
i,α, A4 =

1

3N

N∑

i=1

∑

α=x,y,z

p4
i,α.In the long time limit, they should 
onverge to 1/β and 3/β2. We also display △H̃/H̃, whi
h isthe relative 
onservation of energies. We have observed that, in the 
ase ǫ = 0, the invariant ispreserved with a mu
h better a

ura
y than in the 
ase ǫ = 0.29 (this is due to the fa
t that, when

ǫ 6= 0, the end atoms of the 
hain should not be too 
lose; we thus have to handle 
ollisions, whi
hlower the energy 
onservation a

ura
y). The results are presented in Table 3.5 for N = 1, 000, 000and β = 1 (the values for △H̃/H̃, 〈A2〉 and 〈A4〉 have been 
omputed in the 
ase ǫ = 0.29).Table 3.5. Dis
repan
y results for the Nosé-Hoover dynami
s.
M Q △H̃/H̃ 〈A2〉 〈A4〉 Dis
repan
y (ǫ = 0)1 0.1 6 % 0.999981 3.06987 0.1271.0 4 % 0.999962 3.01696 0.07410.0 0.3 % 0.999922 4.37835 0.2382 0.05; 0.05 1.5 % 1.00007 2.95343 0.0800.1; 0.1 1.2 % 1.00009 2.91847 0.1430.3; 0.3 3 % 1.00043 2.95486 0.1691.0; 1.0 0.4 % 0.999555 2.88511 0.23210.0; 10.0 0.1 % 0.997356 2.92125 0.1890.15; 0.01 3.7% 0.998261 2.92262 0.2170.75; 0.05 3.3% 0.998902 2.95794 0.1631.5; 0.1 0.1 % 0.993824 2.92667 0.2424.5; 0.3 0.2 % 0.995765 2.89965 0.27715.0; 1.0 0.2 % 0.971896 2.80145 0.338150.0; 10.0 0.15 % 0.988531 2.89529 0.352We �rst see that the Nosé-Hoover 
hain dynami
s is more stable than the Nosé-Hoover dy-nami
s (for a given time step and given values of the thermostats, the drift of the invariant issmaller). The best results in term of dis
repan
y and 
loseness of 〈A2〉 and 〈A4〉 to their targetvalues (1 and 3 here) are obtained here forM = 1 with Q = 1 orM = 2 with Q1 = Q2 = 0.05. We
hoose to work with the latter 
hoi
e be
ause the 
onservation of the invariants is better in this
ase. Note that di�erent initial 
onditions lead to di�erent dis
repan
y results. However, making
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e sampling te
hniquesagain the same test with di�erent initial 
onditions (but still with ∆t = 0.003), we have observedthat the 
hoi
e Q1 = Q2 = 0.05 seems to give better results than other 
hoi
es.On the other hand, if we set the time step to ∆t = 0.001, it seems that the best 
hoi
esare now Q1 = Q2 = 0.1 and Q1 = 0.15, Q2 = 0.01. In the following, when appropriate, we will
omment the results obtained with these two di�erent 
hoi
es. Unless otherwise stated, we workwith Q1 = Q2 = 0.05.The Nosé-Poin
aré and RMT methodsThe parameters are the number M of thermostats, their masses, and the integration timestep ∆t. We set ∆t = 0.001, whi
h ensures a 
onservation of the hamiltonian up to a few per
entsin general. Note that we have de
reased the time step in 
omparison to the Nosé-Hoover typemethod. This de
rease is not due to energy 
onservation problems (the hamiltonian is preservedwith a reasonnable a

ura
y when ∆t = 0.003), but be
ause it is quite hard, from the numeri
alresults at ∆t = 0.003, to sele
t parameter values. In parti
ular, dis
repan
y results vary in a largerange for di�erent initial 
onditions, so it is hard to assess that one parameter 
hoi
e is betterthan another one. Sele
ting parameters has proved to be easier when working with ∆t = 0.001.We use the two above statisti
al indi
ators of the quality of the sampling, as well as the timeaverage of A2 and A4 given above. As with the NHC method, we have observed that, in the 
ase
ǫ = 0, the invariant is preserved with a mu
h better a

ura
y than in the 
ase ǫ = 0.29. The resultsare presented in Table 3.5 for N = 1, 000, 000 and β = 1 (the values for △H̃/H̃, 〈A2〉 and 〈A4〉have been 
omputed in the 
ase ǫ = 0.29).Table 3.6. Dis
repan
y results for the Nosé-Poin
aré dynami
s.

M Q △H̃/H̃ 〈A2〉 〈A4〉 Dis
repan
y (ǫ = 0)1 0.1 0.02 % 0.999981 3.21418 0.2691.0 0.08 % 1.0 2.69515 0.30410.0 0.2 % 1.00024 4.98638 0.3502 0.05; 0.05 0.15 % 1.0059 2.46228 0.3200.1; 0.1 0.2 % 1.00905 2.63986 0.4600.3; 0.3 0.3 % 1.01655 3.35365 0.3601.0; 1.0 0.06 % 1.01059 3.03896 0.37310.0; 10.0 4 % 1.0292 2.85634 0.3280.15; 0.01 1 % 1.00538 3.09675 0.3440.75; 0.05 0.3 % 1.00799 2.82565 0.2971.5; 0.1 0.1 % 1.01253 3.00398 0.2814.5; 0.3 0.1 % 0.996809 2.84965 0.22515.0; 1.0 0.6 % 1.03506 3.16739 0.377150.0; 10.0 0.03 % 1.02456 3.26963 0.3100.05; 0.1 1 % 1.00577 2.91749 0.2770.1; 0.2 1 % 1.00094 2.87149 0.2920.3; 0.6 2 % 1.02247 3.34102 0.3471.0; 2.0 0.03 % 0.999142 2.73679 0.26310.0; 20.0 1.2 % 1.02031 3.15916 0.341The best result in terms of dis
repan
y leads to sele
t Q1 = 4.5, Q2 = 0.3. This 
hoi
e seemsrobust with respe
t to the initial 
ondition. Depending on the numeri
al results at hand, other
hoi
es 
ould be made. For a traje
tory length of 106 steps, Q1 = 1.0, Q2 = 2.0 seems to give alsogood results. However, when the traje
tory length is in
reased to 107 steps, the two more robusts
hoi
es seem to be Q1 = 4.5, Q2 = 0.3, that we sele
ted above, and Q1 = 0.1, Q2 = 0.2. We will
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omment in the following the results obtained with the latter 
hoi
e. Unless otherwise stated, wework now with Q1 = 4.5, Q2 = 0.3.3.4.4 Numeri
al resultsThe results are presented in Tables 3.7 to 3.9. For ea
h method, 10 di�erent simulations havebeen performed, and we give in the Tables the mean and the square-root of the varian
e (inbra
kets) of the 10 di�erent results.Table 3.7. Numeri
al results for the dis
repan
y (3.79) for the pentane (φ1, φ2) distribution in the 
ase
β = 1 and K = 100.Method Parameters Dis
repan
y Dis
repan
yfor 106 evaluations for 107 evaluationsImportan
e sampling - 0.00428 (0.00114) 0.00115 (1.60.10−4)Reje
tion - 0.00856 (0.00204) 0.00256 (4.98.10−4)MIS - 0.0228 (0.00416) 0.0225 (7.75.10−4)HMC τ = 10∆t, ∆t = 0.025 0.0389 (0.0183) 0.0119 (4.87.10−4)BRW (Euler-Maruyama) ∆t = 0.028 0.0791 (0.0265) 0.0231 (0.00619)BRW (MALA) ∆t = 0.028 0.104 (0.0446) 0.0343 (0.0139)Langevin ∆t = 0.02, ξ = 1 0.0339 (0.0142) 0.0157 (0.00393)NHC Q1 = Q2 = 0.05, ∆t = 0.0025 0.103 (0.036) 0.0456 (0.0117)RMT Q1 = 5, Q2 = 7.5, ∆t = 0.0025 0.196 (0.142) 0.178 (0.177)Table 3.8. Numeri
al results for the dis
repan
y (3.79) for the (φ1, φ3) distribution for C9H20 in the
ase β = 1 and K = 100. The 
omputational 
ost is �xed to 107 for
e or energy evaluations.Method Parameters Dis
repan
yImportan
e sampling - 0.0205 (0.00544)Reje
tion - 0.192 (0.0379)MIS - 0.521 (0.0151)HMC τ = 10∆t, ∆t = 0.02 0.0261 (0.00846)BRW (Euler-Maruyama) ∆t = 0.025 0.0402 (0.0229)BRW (MALA) ∆t = 0.025 0.0477 (0.0129)Langevin ∆t = 0.025, ξ = 1 0.0144 (0.00544)NHC Q1 = 0.15, Q2 = 0.01, ∆t = 0.0025 0.0292 (0.0102)NP Q = 5, ∆t = 0.0025 0.0386 (0.0095)One 
an see that purely sto
hasti
 methods are very e�
ient for small alkane 
hains, butrapidly loose their e�
ien
y when the length of the 
hain in
reases. Thus, the Langevin dynami
sand the HMC method seem to be the most e�
ient methods, although other non purely sto
hasti
methods also give good results. The Langevin, the HMC and the BRW (with Euler-Maruyamaalgorithm) methods keep the same e�
ien
y whatever the length of the 
hain. This seems also tobe the 
ase for the NHC method. The e�
ien
y of the BRW (with the MALA algorithm) de
reaseswhen the 
hain length in
reases. There seems to be a problem with the RMT method applied tothe pentane mole
ule. A 
areful analysis of the results show that the numeri
al dihedral angledistribution 
orresponds to (3.77) but with a temperature signi�
antly di�erent from the targettemperature. If longer 
hains are 
onsidered, this problem disappears and the RMT method resultsare of the same order of magnitude as the results from other methods (see Tables 3.8 and 3.9).
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e sampling te
hniquesTable 3.9. Numeri
al results for the dis
repan
y (3.79) for the (φ1, φ3) distribution for C12H26 in the
ase β = 1 and K = 100. The 
omputational 
ost is �xed to 107 for
e or energy evaluations.Method Parameters Dis
repan
yImportan
e sampling - 0.102 (0.0436)Reje
tion - 1.0 (0.0)MIS - 0.493 (0.222)HMC τ = 10∆t, ∆t = 0.02 0.0207 (0.00730)BRW (Euler-Maruyama) ∆t = 0.023 0.0312 (0.0102)BRW (MALA) ∆t = 0.023 0.0610 (0.0201)Langevin ∆t = 0.025, ξ = 1 0.0173 (0.00726)NHC Q1 = 0.15, Q2 = 0.01, ∆t = 0.0025 0.0350 (0.00865)RMT Q1 = 5, Q2 = 7.5, ∆t = 0.0025 0.0428 (0.0194)We 
an also see that, for short 
hains, the biased Random-Walk (MALA) is more e�
ient thanthe NHC method. However, for 
hains of 9 and 12 parti
les, the NHC method is more e�
ient.The biased Random-Walk with the Euler-Maruyama algorithm always seems to be a little moree�
ient than the biased Random-Walk with the MALA algorithm.3.4.5 Improvement of the 
onvergen
e ratesConvergen
e rate improvements using several shorter realizationsWe already mentionned that, instead of running a single long traje
tory, it might be moree�
ient, for a given 
omputational 
ost, to run several shorter traje
tories. This 
an be donefor methods of Type 2 to 4. For methods of Type 2 and 3, this strategy relies on the followingnumeri
al approximation. Assuming that the methods are ergodi
, it follows
Ex(A(qN1)) →

∫

M
A(q) dπ (3.80)when N1 → +∞. In some 
ases, this 
onvergen
e is exponentially fast. The term Ex(A(qN1)) isthe expe
tation of the realizations of the 
hain 
onditioned at starting from x ∈ M. It 
an beapproximated by N2 independent realizations of the Markov 
hain. Ea
h realization is labelled byan index k ∈ {1, . . . , N2}, and the asso
iated sample path is (q0,k, . . . , qN−1,k). Noti
e that, for allsamples, q0,k = x. An approximation of Ex(A(qN1)) is then obtained as

Ex(A(qN1)) ≃ IN1

N2
(x) =

1

N2

N2∑

k=1

A(qN1,k). (3.81)Noti
e that we expe
t the error between IN1

N2
(x) and the spa
e average ∫

M
A(q) dπ to be of theform C(x)ρN1 + C(x,N1)N

−1/2
2 for some 0 < ρ < 1.When a short traje
tory of length N1 is 
omputed for N2 realizations starting from a giveninitial point x, we 
an also 
onsider the following approximation of the position spa
e average

∫

M
A(q) dπ ≃ 1

N1

N1−1∑

m=0

ImN2
(x), (3.82)where the right hand side is the Cesaro average of (3.81).The results are presented in Table 3.10 in the 
ase of a Langevin sampling for the pentanemole
ule at β = 1. As 
an be seen, there is a slight improvement when generating several shorter
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al illustrations 91traje
tories, provided these traje
tories remain long enough. Note however that su
h an improve-ment is not always observed. But we emphasize that there is no degradation of the results either.This is an interesting point sin
e it allows a straightforward parallelization of the method.Table 3.10. Numeri
al results for the dis
repan
y (3.79) for the pentane (φ1, φ2) distribution in the 
ase
β = 1 and K = 100, using a Langevin method with ξ = 1 and ∆t = 0.02. The dis
repan
y has been
omputed with all points appearing in (3.82) (that is all points of the N2 traje
tories of length N1), witha 
omputational 
ost �xed to 107 for
e or energy evaluations.Number N2 of realizations Dis
repan
y1 0.0157 (0.00393)5 0.0117 (0.00388)10 0.0132 (0.00210)20 0.0149 (0.00701)50 0.0120 (0.00330)100 0.0112 (0.00263)200 0.0130 (0.00419)500 0.0308 (0.00834)1000 0.0528 (0.00740)Convergen
e rate improvements at �xed 
omputational 
ost, using an appropriateinitial distributionAnother improvement is as follows. Instead of 
onsidering a �xed initial point, we 
an make a�rst approximation of the 
anoni
al distribution. Let us denote by πN3 the following approximationof π:

πN3 =
1

N3

N3∑

i=1

δxi .For ea
h initial point xi (1 ≤ i ≤ N3), an approximation (3.82) 
an be 
omputed, for N2 realiza-tions of the Markov 
hain with traje
tories of length N1. The total number of points generated inthis way is therefore N1N2N3. The important issue is then to optimize the 
hoi
es of N1, N2 and
N3 in order to have the best a

ura
y for a given total 
ost.For the method to be e�
ient, the empiri
al measure πN3 has to be a good approximation of π.To this end, the points xi are 
hosen as follows. We �rst generate N tot points (y1, . . . , yN

tot

) withweights (w1, . . . , wNtot), using (say) an Importan
e sampling method. We then generate N3 pointsfrom this list with repla
ement with probabilities (w1

W
, . . . ,

wNtot

W

) whereW =
∑Ntot

i=1 wi, and runone or several traje
tories for ea
h starting point. This 
an improve the rate of 
onvergen
e of somemethods. An example is the biased Random Walk at β = 1 with ∆t = 0.028 for 106 operations.We 
onsider N tot = 104, N3 = 99, N1 = 104 and N2 = 1. The dis
repan
y is lowered from
0.104 (0.0446) (with N1 = 106, N2 = 1 and N3 = 1, see Table 3.7) to 0.0430 (0.0144). In general,it is observed that 
onvergen
e o

urs faster when starting from an approximate distribution.E�e
t of undersamplingAs a �nal improvement, we 
an test the in�uen
e of a systemati
 undersampling, whi
h 
onsistsin pi
king only some of the points generated instead of 
onsidering all of them. Indeed, somete
hniques generate points (q0, . . . , qN−1) that may be very mu
h 
orrelated, and it 
an happenthat the sequen
e (q0, qr, . . . , qsr), the undersampling rate r being su
h that N − 1 = rs, is betterdistributed than the original sequen
e.
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e sampling te
hniquesThe results are presented in Table 3.11 in the 
ase of a Langevin sampling for pentane at β = 1.As 
an be seen, the e�
ien
y of the method remains stable when undersampling the data. This isparti
ularly interesting when 
omputing auto
orrelation fun
tions or time-dependent integrals ofthe form (3.2) sin
e a NVE traje
tory has to be 
omputed for ea
h starting point generated fromthe 
anoni
al distribution.Of 
ourse, it is still possible to try to improve the quality of a single realization by �ltering outthe 
orresponding sequen
e of 
on�gurations, as is done for NVE simulations in [48, 49℄, but wewill not detail this strategy any further.Table 3.11. Numeri
al results for the dis
repan
y (3.79) for the pentane (φ1, φ2) distribution in the 
ase
β = 1 and K = 100, using a Langevin method with ξ = 1 and ∆t = 0.02. The 
omputational 
ost is �xedto 106 for
e or energy evaluations.Undersampling rate Dis
repan
y1 0.0339 (0.0142)5 0.0369 (0.0121)10 0.0350 (0.00996)50 0.0391 (0.0194)100 0.0385 (0.0169)500 0.0343 (0.0102)1000 0.0539 (0.0173)3.4.6 Computation of 
orrelation fun
tionsWe present, as a �nal appli
ation, the 
omputation of some 
orrelation fun
tion, namely thetransition rate from the set A = {q ∈ M ; |φ1| ≥ 1, |φ2| ≥ 1} (both dihedral angles are not intheir ground states) to the set B = {q ∈ M ; |φ1| ≤ 1, |φ2| ≤ 1} (both dihedral angles are in theirground states). This transition rate is expressed as

C(t) =
〈1A(q0) 1B(Π1Φt(q, p))〉

〈1A(q0)〉 . (3.83)We pro
eed as follows. We �rst sample M = 104 initial 
onditions a

ording to the 
anoni
almeasure dµ (at β = 1) using 106 for
e evaluations and the parameters given in Table 3.7 (i.e. in all
ases ex
ept for the HMC algorithm, we undersample at rate 100 a single traje
tory that alwaysstarts from the same equilibrium position; the HMC traje
tory is undersampled at rate 10 onlysin
e τ = 10∆t). We then integrate the Newton equations of motion from ea
h initial 
onditionusing the velo
ity Verlet s
heme (3.17), for a time t = 100 (with ∆t = 0.005). This pro
edure isrepeated 100 times. The results are presented in Figure 3.2, and are 
ompared with a referen
eresult obtained starting from 106 initial 
onditions sampled with a reje
tion method.As 
an be seen from the results, the methods yielding large dis
repan
ies (su
h as Nosé-Hooverand BRW) predi
t a 
orrelation C(t) quite di�erent from the referen
e result. On the other hand,the HMC and Langevin methods give mu
h better results, espe
ially HMC.3.5 Sto
hasti
 boundary 
onditionsThe vast majority of mole
ular dynami
s simulations use periodi
 boundary 
onditions to si-mulate bulk 
onditions (see Se
tion 2.2.1). When averages at �xed temperature are 
omputed,Newton's equation of motion (asso
iated with 
onstant energy simulations) are modi�ed so that
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Fig. 3.2. Plot of the 
orrelation fun
tion C(t) starting from initial 
onditions generated with the reje
tionmethod (solid line), BRW/EM (x), Langevin/BBK (+), HMC (*) and Nosé-Hoover 
hain (⋄).the resulting dynami
s is (hopefully) ergodi
 with respe
t to the 
anoni
al measure. Examples ofsu
h modi�
ations are the Nosé-Hoover or the Langevin dynami
s (see respe
tively Se
tion 3.3and 3.2.4). However, the quantities to 
ompute may be time-dependent quantities, su
h as 
orre-lation fun
tions:
〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ,where µ is the 
anoni
al measure and Φt the �ow of the dynami
s. It is not 
lear whi
h dynami
sshould be used in this de�nition. It turns out that the results depend in general of the spe
i�tiesof the 
hosen dynami
s. For instan
e, the response of the system to an in
reased thermostattemperature depends on the parameters 
hosen for the Nosé-Hoover dynami
s [113℄.The system under study is usually a small system whi
h should be embedded in a mu
hlarger mi
ro
anoni
al system. The larger system a
ts as an energy reservoir whi
h ensures thatthe temperature is 
orre
t (this is a
tually the usual derivation of the 
anoni
al ensemble [61℄).Some ways to obtain su
h a 
oupling between the simulated subsystem and the ideal energyreservoir (whi
h should not be expli
itely simulated, due to its size), present through some meana
tion, have been proposed. Se
tion 3.5.1 reviews the most important ones (to our knowledge). InSe
tion 3.5.2, a very simple model of sto
hasti
 boundary 
onditions (already used in [82℄, but onlyroughly des
ribed) is presented pre
isely: the 
ore region of the simulated system is governed byNVE dynami
s, while the parts of the system 
lose to the boundary follow a Langevin dynami
swith random perturbations de
reasing as the distan
e to the boundary in
reases. In this way, aseamless 
oupling 
an be a
hieved.3.5.1 Review of some 
lassi
al sto
hasti
 boundary 
onditionsThe �rst steady-state nonequilibrium mole
ular dynami
s simulations were performed in the70s by Ashurst and Hoover (see e.g. [12℄). Their model uses perturbations limited to the boundaryof the system (external for
e �eld or thermal �u
tuations). This idea of partitioning the systembetween inner region (governed by Newton's equation of motion) and outer region (the surfa
e ofthe system, or some small region around the surfa
e), where the e�e
ts of the environment are takeninto a

ount, has been widely used. It is possible to propose a somehow arbitrary 
lassi�
ation ofsto
hasti
 boundary 
onditions:� thermal boundary 
onditions;� me
hani
al boundary 
onditions;
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e sampling te
hniques� mixed thermal and me
hani
al boundary 
onditions;� �grand-
anoni
al� boundary 
onditions to model system whose number of parti
les may vary.Let us also noti
e that some dire
tions of the system 
an still be modelled using periodi
 boundary
onditions, while the remaining ones are treated with sto
hati
 boundary 
onditions.Thermal boundary 
onditionsThe methods presented in this se
tion take into a

ount the thermal �u
tuations of a systemthrough its ex
hanges with its environment. These ex
hanges 
an be modelled� by 
onstraining the kineti
 temperature in the regions 
lose to the boundaries;� by using �thermal walls�, whi
h lead, mathemati
ally speaking, to jump pro
esses (pertur-bations of the momenta of the impa
ting parti
les);� by using a Langevin dynami
s for the region of the system 
lose to the boundary, and theusual Hamiltonian dynami
s elsewhere, so that the resulting pro
ess is a di�usive pro
ess,whi
h is (hopefully, but not trivially) hypoellipti
.Velo
ity renormalizationIn the �rst studies [12℄, the kineti
 temperature in the regions 
lose to the boundaries waskept �xed. This was done by velo
ity res
aling. Some re�nings were proposed (see e.g. [27, 133℄),res
aling only some 
omponents of the velo
ities (in one dire
tion, typi
ally), or by in
ludingthe renormalization step dire
tly in the equations of motion. This method is not used anymorenowadays.Thermal wallsFollowing a work of Lebowitz and Spohn [201℄, Ci

otti and Tenenbaum introdu
e thermalwalls modelling the 
onta
t of impa
ting parti
les with a heat reservoir [67℄. The system has freeboundary 
onditions, but when a parti
le leaves the simulation domain, another one enters at thesame pla
e where the leaving parti
le went out, with a momentum generated from the probabilitydistribution C−1(e · p)fT (p)1e·p>0, where e is the lo
al normal ve
tor, fT the distribution of themomenta at equilibrium at the temperature T (maxwellian distribution) and C is a normalization
onstant. Therefore, the momenta of the entering parti
les are not drawn a

ording to a maxwelliandistribution of momenta. A numeri
al study for an ideal gas or a hard sphere gas 
on�rms thatthe model of [67, 201℄ is indeed the right strategy [339℄.The �rst simulations relying on thermal walls [67, 340℄ with di�erent temperatures on bothsides of the system have shown that dynami
al properties 
ould be 
omputed, but that surfa
ee�e
ts were important near the thermal walls (espe
ially the lo
al density and the temperature).This is why su
h a strategy asks for additional me
hani
al boundary 
onditions (see Se
tion 3.5.1)to limit surfa
e e�e
ts.Coupling with a Langevin dynami
sOne of the �rst simulation 
oupling a Hamiltonian and Langevin dynami
s is due to Adelmanand Doll [1℄. The aim of this 
oupling was to redu
e the number of degrees of freedom in thesimulation by repla
ing the environing parti
les by some mean a
tion, modelled by a randomfor
ing term and a fri
tion with memory (in the Mori-Zwanzig way). The �rst study were onlya part of the system is governed by a Langevin dynami
s, whereas the remaining part obeysHamiltonian dynami
s was proposed by Berkowitz et Ma
Cammon [28℄, with a me
hani
al for
ingto 
on�ne the system (some sli
es of a 
rystalline latti
e at rest). To redu
e surfa
e e�e
ts, the ideaof 
oupling Langevin and Hamiltonian dynami
s was re�ned by Brooks et Karplus [43, 45℄, usingespe
ially some averaged 
on�ning for
e. Some studies also mention the use of a Langevin dynami
swith a fri
tion depending on the distan
e to the boundary of the system [82℄. Similar ideas were
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 boundary 
onditions 95used in the framework of Nosé-Hoover dynami
s [165, 209℄; a seamless 
oupling is however less
lear (Nosé masses depending on the distan
e to the boundary should be 
onsidered). These ideaswere developed in the �eld of biology and the referen
e textbooks for 
ondensed matter mole
ulardynami
s (su
h as [113℄) do not mention it.Me
hani
al boundary 
onditionsFree boundary 
onditions and some thermal boundary 
onditions (su
h as thermal walls) may
reate surfa
e e�e
ts (lo
al density variations, or temperature di�eren
es). Periodi
 boundary
onditions are a 
onvenient way to redu
e surfa
e e�e
ts, though numeri
al studies [223℄, and thentheoreti
al studies [273, 274℄, have shown that periodi
 boundary 
onditions also have spuriouse�e
ts, espe
ially for small systems. More importantly, PBC are problemati
 when long-rangeintera
tions are 
onsidered - su
h as 
oulombi
 for
es for non-neutral systems (
harged defe
ts insolids) or solvant e�e
ts (dipole 
orre
tions) for biologi
al systems. As an alternative to PBC to
on�ne free boundary systems, one may 
onsider� for
es or 
onstraints arising from short-ranged intera
tions;� mean-for
e e�e
ts arising from avarges over a large number of (non-simulated) degrees offreedom.The se
ond approa
h was developed in the �eld of biology. For example, in [192℄, the sys-tem is split into three regions, a 
ore region (Hamiltonian dynami
s and averaged ele
trostati
potential), a bu�er region (thermal �u
tuations through some Langevin dynami
s, for
es on theboundaries and averaged ele
trostati
 potential), and an outer region (not expli
itely simulated)whi
h determines the averaged ele
trostati
 potential. Su
h a modelling is re�ned in [181℄.The �rst approa
h, more used for me
hani
al studies of solids, 
an be implemented in severalways. For instan
e, a given (ma
ros
opi
) displa
ement 
an be modelled by layers of surfa
e atomsfollowing rigidly the displa
ement, and kept �xed for the simulation [68, se
tion II.2.C℄."Grand-
anoni
al" boundary 
onditionsThere are two general strategies to deal with systems whose number of parti
les varies:� 
onsider that the system is open and spe
ify a �ux of ingoing parti
les to 
ompensate parti
lelosses;� use grand-
anoni
al sampling te
hniques.The �rst approa
h is used in [123℄ for a model 
ase of non-intera
ting parti
les, in whi
h 
aseparti
le �uxes 
an be derived. The extension to intera
ting parti
les requires additional for
ingterms on the boundaries, as well as density-dependent ingoing parti
le �uxes.The se
ond approa
h was presented in [182℄, for a model system of ioni
 
hannel, and re�nedin [372℄ to deal with protein solvatation. In a bu�er region aroung the boundary, parti
les areinserted and deleted a

ording to the lo
al 
hemi
al potential, using standard grand-
anoni
alsampling te
hniques [113℄. Therefore, the number of parti
les is preserved in average, and the 
oreregion is not perturbed.3.5.2 An example of thermal boundary 
onditionsWe present more pre
isely in this se
tion a seamless 
oupling between a Langevin and a Ha-miltonian dynami
s (in the spirit of [28, 43, 45, 82℄), with periodi
 boundary 
onditions. The aimof this 
oupled model is therefore only to provide interesting thermal boundary 
onditions, sothat time-dependent observables 
an be 
omputed by averages performed in the 
ore region of thesystem.
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e sampling te
hniquesDes
ription of the modelWe 
onsider a simulation box Ω ⊂ Rd (d = 2 or 3) with periodi
 boundary 
onditions (the
on�guration spa
e therefore has the geometry of a torus). The simulation box Ω is de
omposedinto two non-overlapping domains Ωi and Ωe (see Figure 3.3), the outer region Ωe being forexample the set
Ωe = {x ∈ Ω | d(x, ∂Ω) < rc},where d(x, ∂Ω) is the distan
e from x ∈ Ω to the boundary ∂Ω, and rc some positive 
ut-o�radius.

Fig. 3.3. De
omposition of the simulation box Ω into two non-overlapping domains Ωi and Ωe.The dynami
s we propose is as follows. The parti
les that are lo
ated in Ωi are only subje
tedto the for
es that derive from the intera
tion potential V , whereas the parti
les that are lo
atedin Ωe also experien
e some random for
ing. More pre
isely, we 
onsider the dynami
s
{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− Γ (qt)M
−1pt dt+Σ(qt) dWt,

(3.84)where (Wt)t≥0 is a dN -dimensional Wiener pro
ess, and where the matri
es Σ and Γ representthe magnitude of the �u
tuations and of the dissipation respe
tively. They are linked by the�u
tuation-dissipation relation:
Σ(qt)Σ(qt)

T =
2

β
Γ (qt). (3.85)In this expression, β = (kBT )−1 is the inverse temperature of the bath. In the sequel, we 
hoosea diagonal matrix for Γ (q):

Γ (q) = Diag(γ(q1), . . . , γ(qN )),where the fun
tion γ is taken to be a smooth de
reasing fun
tion of d(x, ∂Ω) su
h that γ(x) = 0in Ωi and γ(x) > 0 in Ωe. We also 
onsider
Σ(q) = Diag(σ(q1), . . . , σ(qN )), with σ(·) =

√
2γ(·)
β

. (3.86)It is easy to 
he
k that the 
anoni
al probability measure (3.3) is an invariant probability measurefor (3.84) sin
e it is a stationary solution of the asso
iated Fokker-Plan
k equation.It is not 
lear whether the sto
hasti
 di�erential equation (3.84) is ergodi
 sin
e Σ = 0 in
Ωi. However, in the following numeri
al simulations, it is observed that, whatever the startingdistribution, the 
orre
t kineti
 temperature is qui
kly attained.



3.5 Sto
hasti
 boundary 
onditions 97In the numeri
al examples presented in Se
tion 3.5.2 and 3.5.2, we have used the followingnumeri
al implementation of (3.84), inspired from the 
lassi
al BBK s
heme used to integrate theLangevin equation [45℄:




p
n+1/2
i = pni +

∆t

2

(
−∇qiV (qn) − γ(qni )

mi
pni +

σ(qni )√
∆t

Gni

)

qn+1
i = qni +

∆t

mi
p
n+1/2
i

pn+1
i = p

n+1/2
i +

∆t

2

(
−∇qiV (qn+1) − γ(qn+1

i )

mi
pn+1
i +

σ(qn+1
i )√
∆t

Gn+1
i

)
(3.87)where σ is still given by (3.86), and {Gni }1≤i≤N,n∈N are identi
al and independently distributed(i.i.d.) standard gaussian random variables.Thermal 
ondu
tivity of Lennard-Jones systemsWe �rst des
ribe the Lennard-Jones system and the thermalization pro
edure we have 
onsi-dered. The NVE-NVT heating and 
ooling pro
esses are then dealt with in Se
tion 3.5.2, andalternative approa
hes to determine the thermal 
ondu
tivity are brie�y reviewed. Some simula-tion results are �nally provided.Des
ription of the systemWe 
onsider a three-dimensional (d = 3) Lennard-Jones system, with standard periodi
 boun-dary 
onditions. The potential energy is given by

V (q) =
∑

1≤i<j≤N
VLJ(|qi − qj |) +

1

2

N∑

i,j=1

∑

k∈R\{0}
VLJ(|qi − qj + k|), (3.88)where R is the Bravais latti
e and VLJ the usual Lennard-Jones potential

VLJ(r) = 4ǫ

((a
r

)12

−
(a
r

)6
)
, (3.89)with ǫ > 0 and a > 0.The system is �rst thermalized at an inverse temperature β using a full Langevin dynami
s(that is, Γ (q) = γ0I3N in (3.84)) for a time tinit large enough, starting from an equilibrium positionsu
h as a FCC latti
e for solid state simulations, or a square latti
e for liquid phase simulations,5and generating the momenta of the parti
les from the kineti
 part of the 
anoni
al measure.Computation of the thermal 
ondu
tivityThe thermal 
ondu
tivity λ of a system 
an be 
omputed either at equilibrium, using a Green-Kubo formula [113℄, or in a non-equilibrium setting. The former method relies on the integrationof the heat �ux 
orrelation fun
tion, and often requires long simulation times for the time integralto 
onverge. Non-equilibrium mole
ular dynami
s (NEMD) approa
hes assume a linear responseregime, so that the heat �ux depends linearly on the temperature gradient. To spe
ify this linearrelation, external �
titious me
hani
al for
es 
an be added [100, 128℄ to the NVE dynami
s, or atemperature gradient 
an be spe
i�ed, while the heat �ux is then measured. Sin
e these methodsalso su�er from slow 
onvergen
e, a di�erent approa
h has been proposed, where the heat �ux isspe
i�ed, and the temperature �eld is measured [251℄.

5 This initial 
on�guration is mu
h less stable than a FCC latti
e, and thermalization is therefore expe
tedto o

ur faster.
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e sampling te
hniquesA re
ent interesting alternative method [175℄ relies on transient simulations. A small fra
tionof the system is instantaneously heated, and the kineti
 temperature relaxation is monitored.The thermal 
ondu
tivity 
an then be 
omputed by 
omparison with the Fourier law. However,the approa
h of [175℄ is based on NVE simulations of relatively small systems, so that 
ompleterelaxation toward the 
anoni
al ensemble 
annot be observed.We now show that the NVE-NVT model (3.84) is fairly suited for thermal 
ondu
tivity 
ompu-tations. Let us 
onsider a Lennard-Jones system modeled by (3.84) initially at thermal equilibriumwith temperature T1 (su
h an equilibrium state is obtained as des
ribed in Se
tion 3.5.2) and let ussuddently 
hange the temperature of the thermostat to T2. The inner system Ωi is then heated or
ooled down through energy ex
hanges with Ωe, itself thermostated by the environing heat-bath,and the kineti
 temperature of Ωi as a fun
tion of time 
an be monitored. To redu
e statisti
alerrors, several independent relaxations must be performed, starting from initial 
on�gurationssampled independently from the 
anoni
al measure.The thermal 
ondu
tivity 
an then be re
overed as follows. Assuming that the Fourier lawholds in the domain Ωi =]0, L[3, the lo
al temperature obeys the heat equation
ρCv∂tT = λ∆T,where ρ denotes the density of the system (expressed in mol/m3), Cv the spe
i�
 heat 
apa
ity(in J/K/mol), and λ the thermal 
ondu
tivity (in W/m/K). For variations in a small temperaturerange, it 
an indeed be assumed that Cv and λ remain 
onstant in spa
e and time. The spe
i�
heat 
apa
ity 
an be found in thermodynami
 tables, or 
omputed as a time-independent 
anoni
alaverage a

ording to

Cv =
Na

NkBT 2
(〈H2〉 − 〈H〉2),where Na is the Avogadro number and 〈·〉 denotes a 
anoni
al average.Setting σ =

λ

ρCv
, it follows

∂tT = σ∆T.Consider the heating or 
ooling of the sytem from T1 to T2 = T1 + δT with |δT | ≪ T1, T2. Setting
u = (T2 − T )/δT , the evolution of u is governed by the Cau
hy problem





∂tu = σ ∆u in Ωi,
u|t=0 = 1 in Ωi,
u = 0 on ∂Ωi. (3.90)The initial 
ondition u0 
an be expanded on the Fourier modes

φklm(x, y, z) =

(
2

L

)3/2

sin

(
kπx

L

)
sin

(
lπy

L

)
sin
(mπz

L

)as
u0(x, y, z) =

16
√

2L3/2

π3

∑

k,l,m≥0

1

(2k + 1)(2l+ 1)(2m+ 1)
φ2k+1,2l+1,2m+1(x, y, z).Let us denote by

h(t, x) =
∑

k≥0

1

(2k + 1)
exp

(
−σ (2k + 1)2π2

L2
t

)
sin

(
(2k + 1)πx

L

)
.Sin
e ∆φklm = − (k2 + l2 +m2)π2

L2
φklm, it follows,
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u(t, x, y, z) =

64

π3
h(t, x)h(t, y)h(t, z).The deviation to the target temperature T2 is therefore, on average on the domain Ωi,

ū(t) =
1

L3

∫

]0,L[3
u(t, x, y, z) dx dy dz =

512

π6
k(t)3,where, setting A = σπ2L−2,

k(t) =
∑

k≥0

1

(2k + 1)2
exp

(
−σ (2k + 1)2π2

L2
t

)
= e−At

(
1 +

1

9
e−8At +

1

25
e−24At + . . .

)
. (3.91)It then holds

ū(t)

ū(t0)
=

(
k(t)

k(t0)

)3

∼ e−3A(t−t0)for t ≥ t0 and t0 large enough. Therefore, the value of A (and thus of λ provided Cv is known)
an be 
omputed by �tting ū(t)/ū(t0) to an exponential fun
tion.Numeri
al resultsThe kineti
 temperature for a given number Ni of parti
les is de�ned as
Tkin =

2

3NikB

Ni∑

n=1

p2
n

2mn
.We also de�ne, in analogy with the previous se
tion, ukin = (T2 − Tkin)/δT .Figure 3.4 shows a plot of the instantaneous kineti
 temperature in Ωi in the 
ase of a heatingpro
ess for �uid Argon from T1 to T2, and the 
orresponding plot of ūkin/ūkin(t0) (with t0 = 5 ps),averaged over 30 realizations of the heating pro
ess 
ondu
ted from independent initial 
onditions.The parameters of the model are N = 64, 000, ǫ/kB = 119.8 K, a = 3.405 × 10−10 m, T1 = 400 K,

T2 = 420 K, ∆t = 2.5 × 10−15 s. We use a trun
ated Lennard-Jones potential with a 
ut-o� radius
rc = 2.5 a. The molar mass is M = 39.95 × 10−3 kg/mol, and the density is ρ = 35044 mol/m3.The simulation 
ell Ω is then a 
ubi
 box of edge length L = 37.51 a. The parameters used for thethermalization are γ0/m = 1012 s−1 and tinit = 20 ps. Then, the independent initial 
on�gurationsare obtained from this thermalized 
on�guration by running an additional Langevin dynami
s for15 ps before ea
h realization of the heating pro
ess.For the 
oupled NVE-NVT dynami
s, we have used

γ(·) = γ1 cos

(
π·
2rc

) (3.92)with γ1/m = 5 × 1012 s−1. We have 
he
ked that the thermal response is not sensitive to thespe
i�
 shape of the fri
tion fun
tion nor to the value of γ1 in a broad range.As 
an be seen from Figure 3.4 (Left), the kineti
 temperature in the inner region of thesystem 
onverges toward the target value determined by the temperature of the thermostat. Thefun
tion ūkin/ūkin(t0) is plotted on the time interval [t0, t1] with t0 = 5 ps and t1 = 75 ps.Noti
e that, as we dis
ard the initial relaxation, the higher order exponential terms in (3.91)
an be negle
ted, so that we 
an indeed approximate ūkin/ūkin(t0) by e−3A(t−t0). A least-square�t gives A = 0.01438 s−1. A numeri
al 
omputation of Cv at T = 400 K (using a LangevinNVT sampling with 6 × 105 time-step as des
ribed in [51℄) gives Cv = 18.01 J/K/mol, in good
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Fig. 3.4. Left: Kineti
 temperature in Ωi as a fun
tion of time. Right: Plot of ūkin/ūkin(t0) as a fun
tionof time with t0 = 5 ps (solid line), as well as its exponential �tting fun
tion (dashed line). Noti
e that theexponential approximation seems to be justi�ed.agreement with the experimental value Cv = 18.12 J/K/mol6. Therefore, the 
omputed value of λis λ = 0.1509W/m/K, whi
h is in good agreement with the experimental value λ = 0.1557W/m/Kat T = 400 K.Thermal relaxation of a displa
ement 
as
ade in PuWe �nally present in this se
tion some simulation results on the irradiation indu
ed displa
e-ment 
as
ades in metalli
 
rystals. When an atom of a 
rystal ('the primary kno
k-on atom', PKA)undergoes a nu
lear rea
tion or is hit by a high-energy parti
le, its kineti
 energy is dramati
allyin
reased. This will give rise to a 
as
ade of 
ollisions between the neighboring atoms, togetherwith a sudden in
rease of the lo
al kineti
 temperature. These 
as
ades result in the produ
tionof numerous defe
ts in the latti
e (su
h as interstitial atoms or va
an
ies), the so-
alled 'primarydamage state'. A large fra
tion of the defe
ts qui
kly disappear due to the re
ombination betweeninterstitial atoms and va
an
ies, while the system returns to its original temperature (the kineti
energy in ex
ess is dissipated). This �rst stage of relaxation lasts about a nanose
ond. An experi-mental investigation of these phenomena is di�
ult, sin
e the time and length s
ales involved aretoo small for a dire
t observation, but it 
an be simulated by MD. The remaining defe
ts 
reatedby the various 
as
ade relaxations will then intera
t on mu
h larger time s
ales (from a se
ondto several years) to form 
lusters of defe
ts, that will alter the ma
ros
opi
 me
hani
al behaviorof the material. This is the sour
e of the ageing of radioa
tive and irradiated materials. Kineti
Monte-Carlo (KMC) models [77℄ are ne
essary to deal with su
h long time s
ales; these models
an be parametrized by the results of MD simulations of the �rst stage of the 
as
ade relaxation.Our purpose is to model the thermalization o

uring in this �rst stage. It is important todes
ribe 
orre
tly this pro
ess, sin
e it has an in�uen
e on the distribution of the remainingdefe
ts, hen
e on the parametrization of the KMC model. More spe
i�
ally, we fo
us on theexample of a FCC Pu 
rystal (re
all that Pu undergoes alpha de
ay). Sin
e the PKA is laun
hedwith a large kineti
 energy, the kineti
 temperature of the system in
reases at the beginning of thesimulation. Therefore, unless the system is in�nitely large (in whi
h 
ase the temperature in
reaseis negligible, and the initial energy ex
ess 
on
entrated in the 
enter of the 
rystal di�uses overthe whole system), there is a need for some dissipation, in order to ensure thermal relaxation.The MD model of [77℄ 
onsiders a 
rystal with PBC, where the atoms in the unit 
ells 
loseto the boundary obey a full Langevin dynami
s, while the other atoms experien
e a pure NVE
6 The experimental values used in this se
tion are taken from the NIST Chemistry Webbook,http://webbook.nist.gov/
hemistry/fluid/
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kground on 
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e Markov 
hains and pro
esses 101dynami
. We propose here to 
onsider a Langevin for
ing of de
reasing magnitude as explainedin Se
tion 3.5.2. This 
an heuristi
ally a

ount for the �nite size of the 
rystal, dissipation beingthen understood as energy transfer from the simulated box to the rest of the 
rystal.Simulations have been 
arried out for a FCC Pu latti
e of 13,500 atoms at T0 = 300 K,using a MEAM potential [21,22,24℄ for Pu [23℄. An initial thermalization is performed for a time
t0 = 10 ps, using a full Langevin dynami
s. The PKA is then laun
hed with an energy of 100 eVin the dire
tion 〈5 1 3〉. The �rst stage of the simulation is performed during the time t1 = 4 pswith the time step ∆t = 5.10−5 ps. The se
ond part is performed during the time t2 = 35 ps. Thefri
tion fun
tion used in this simulation is still given by (3.92), with γ0/m = 2 × 1012 s−1 and
rcut = 4.5 × 10−10 m (this is the 
ut-o� range used for the MEAM potential). The evolutions ofthe kineti
 energy of the whole system as a fun
tion of the iteration step are displayed in Figure 3.5for both simulation stages.
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Fig. 3.5. Kineti
 temperature as a fun
tion of the iteration step for a FCC Pu system experien
inga self-de
ay-indu
ed 
as
ade of 100 eV. The time-step is ∆t = 5 × 10−5 ps for the pi
ture on the left(�rst stage of the simulation), and ∆t = 5 × 10−4 ps for the pi
ture on the right (se
ond stage of thesimulation).At the end of the se
ond stage of the simulation, the kineti
 temperature of the system hasreturned to the desired value T = T0.3.6 Some ba
kground on 
ontinuous state-spa
e Markov 
hains andpro
esses3.6.1 Some ba
kground on 
ontinuous state-spa
e Markov 
hainsThis se
tion is intented to give a qui
k overview of the most important notions and results for
ontinuous state-spa
e Markov 
hains. We refer the interested reader to [240℄, and to [127, Chap-ter 4℄ for a simple short introdu
tion to 
ontinuous state-spa
e Markov 
hains. The arti
le [349℄is also a beautiful introdu
tion to the topi
, making remarkable parallels between the 
ountable
ase and the 
ontinuous state-spa
e 
ase.Di�erent levels of stability for Markov 
hains.We �rst present in an informal manner the spirit of the 
hara
terization of stability for Markov
hains {Φn}n∈N on a general state spa
e X (in parti
ular, we do not restri
t ourselves to 
ountablespa
es). This general introdu
tion is strongly inspired from [240, Se
tion 1.3℄. A useful 
on
ept isthe �rst hitting time from a point to a set. De�ne



102 3 Phase-spa
e sampling te
hniques
τB = inf {n ≥ 1 | Φn ∈ B},the �rst time when the 
hain rea
hes the set B. The weakest form of stability is that the spa
ea

essible to the 
hain does not dramati
ally 
hange when taking another initial 
ondition, sothat all �reasonably sized� sets 
an be rea
hed from any starting point. This is the 
on
ept of

φ-irredu
ibility, whi
h 
an be stated as follows, for x ∈ X ,
φ(B) > 0 ⇒ Px(τB <∞) > 0,where Px is the probability indu
ed by the Markov 
hain starting at x (i.e. the probability ofevents 
onditional on the 
hain starting from x). The measure φ pre
ises the 
lass of sets that 
anbe �reasonably� rea
hed.A strengthening of this 
ondition is that not only all sets 
an be rea
hed, but in fa
t they areattained almost surely, in the sense that

∀x ∈ X, φ(B) > 0 ⇒ Px(τB <∞) = 1.This 
an be further strenghtened by requiring the expe
ted hitting time to be �nite:
φ(B) > 0 ⇒ Ex(τB) <∞,where Ex is the expe
tation under Px. This level of stability is refered to as re
urren
e. Heuristi
ally,it ensures that the 
hain does not drift, but returns often enough to �
entral� parts of the spa
e.This kind of behaviour already implies some 
onvenient behaviour along sample paths (Φ0, Φ1, . . . ),leading to a Law of Large Numbers (LLN).The last level of stability is relevant for re
urrent 
hains, and deals with 
onvergen
e to alimiting regime independently of the initial 
ondition. This is known as ergodi
ity, and is linkedto the 
onvergen
e of the distribution of the 
hain. In this 
ase, Central Limit Theorems (CLT)
an be stated to pre
ise the behaviour along one sample path.The di�erent levels of stability introdu
ed are summarized in Figure 3.6, together with 
ondi-tions ensuring them. Denoting by B(X) the Borel σ-algebra of X and by µLeb the Lebesguemeasure on X , these 
onditions read(C1) ∀x ∈ X, ∀B ∈ B(X), µLeb(B) > 0 ⇒ P (x,B) > 0,(C2) π is an invariant probability measure,There exist measurable fun
tions L ≥ min{1, A}, W ≥ 0, a real number b(C3) and a petite set C su
h that∫

X

P (x, dy)W (y) −W (x) ≤ −L(x) + b1C(x), π(W 2) < +∞.There exist a measurable fun
tion W ≥ 1, real numbers c > 0 and b,(C4) and a petite set C su
h that
∆W (x) ≤ −cW (x) + b1C .The notion of petite set C will be pre
ised below. Noti
e that Conditions (C1) and (C2) areusually quite easy to show in a MD setting, already giving ergodi
ity (without 
onvergen
e ratehowever). Conditions (C3) and (C4) 
an be easily shown when the state spa
e X is 
ompa
t (whenit is a d-dimensional torus for example, as in MD with periodi
 boundary 
onditions), under 
ertainregularity 
onditions on the transition kernel.These 
on
epts are pre
ised below, and presented in a more rigorous way. We end this se
tionwith a simple example, the Random Walk on a (half-)line, in order to see the theory of generalstate-spa
e Markov 
hains at work.
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Fig. 3.6. The di�erent levels of stability for Markov 
hains.Some fundamental results.We �rst pre
ise the probability stru
ture indu
ed by a Markov 
hain on the state spa
e. We
onsider a 
ontinuous state-spa
e Markov 
hain given by its transition probability kernel
P = {P (x,B), x ∈ X, B ∈ B(X)}where B(X) is the set of Borel sets of X . The transition probability kernel is su
h that P (·, B) isa non-negative measurable fun
tion on X for all B ∈ B(X), and P (x, ·) is a probability measureon B(X) for all x ∈ X . Given a transition probability kernel, one 
an de�ne a time-homogeneousMarkov 
hain Φ = (Φ0, Φ1, . . . ) with initial distribution µ. This 
hain is de�ned on Ω =

∏∞
i=1Xi(where ea
h Xi is a 
opy of X), and is measurable with respe
t to the produ
t σ-�eld F =

⊗∞
i=1B(Xi). There exists a probability measure Pµ on F su
h that, for any any n ∈ N and anymeasurable Bi ∈ B(Xi) (1 ≤ i ≤ n),

Pµ(Φ0 ∈ B0, . . . , Φn ∈ Bn) =

∫

y0∈B0

. . .

∫

yn−1∈Bn−1

µ(dy0)P (y0, dy1) . . . P (yn−1, Bn).If an event o

urs Px = Pδx-a.s. for all x ∈ X , we say that it o

urs P∗-a.s. We also indu
tivelyde�ne Pn, the n-step transition probability by P 0(x,B) = δx(B) and the indu
tion rule
Pn(x,B) =

∫

X

P (x, dy)Pn−1(y,B).We then su

essively turn to the three important notions presented in the introdu
tion of thisse
tion.
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e sampling te
hniquesIrredu
ibility.De�nition 3.2. The 
hain Φ is said to be φ-irredu
ible if there exists a measure φ on B(X) su
hthat, for all x ∈ X and B ∈ B(X) su
h that φ(B) > 0, there exists some n (possibly depending on
x and B) su
h that Pn(x,B) > 0.Noti
e that the Condition (C1) above implies µLeb-irredu
ibility. When a 
hain is φ-irredu
ible,there exists a maximal irredu
ibility measure ψ (see [240, Theorem 4.2.2℄). The maximality is tobe understood with respe
t to the domination relation for two measures, denoted as φ ≺ ψ,and de�ned through ψ(B) = 0 ⇒ φ(B) = 0. Any other irredu
ibility measure is absolutely
ontinuous with respe
t to ψ. The equivalen
e of maximal irredu
ibility measures allows then tode�ne B+(X) = {B ∈ B(X) | ψ(B) > 0}.De�nition 3.3. A set B is full if ψ(Bc) = 0 and absorbing if P (x,B) = 1 for all x ∈ B.Re
urren
e.As in the 
ountable 
ase, irredu
ible 
ontinuous state-spa
e 
hains have essentially two possiblebehaviours: they may drift to in�nity (transient behaviour) or remain almost always in a boundedregion of spa
e (re
urren
e). The o

upation time ηB is de�ned as the number of visits of Φ to aset B ∈ B(X):

ηB =

∞∑

n=1

1{Φn∈B}.Re
all that Ex denotes the expe
tation under Px = Pδx , that is, the expe
tation under the proba-bility generated by the 
hain starting from x.De�nition 3.4. A 
hain Φ is 
alled re
urrent if it is ψ-irredu
ible and Ex(ηB) =
∑∞
n=1 P

n(x,B) =

+∞ for all x ∈ B and B ∈ B+(X).Let us pre
ise some 
riteria ensuring that a Markov 
hain is re
urrent. A simple 
ase is whenan invariant probability measure exists for the system. Let us emphasize that the existen
e of a(non-normalized) invariant measure is not su�
ient, sin
e this measure may be non-normalizable(see an example below).De�nition 3.5. A ψ-irredu
ible 
hain Φ is said to be positive if it admits an invariant probabilitymeasure π.It is heuristi
ally 
lear in this 
ase that the 
hain 
annot be transient. The following propositionholds:Proposition 3.2 ( [240℄, Proposition 10.1 and Theorem 10.4.9 ). If a 
hain Φ is positivethen it is re
urrent and admits a unique invariant probability measure equivalent to ψ.Noti
e that Conditions (C1) and (C2) above imply positive re
urren
e for the 
hain. When noinvariant probability measure is known, stronger 
onditions are needed to get re
urren
e, su
h asdrift 
riteria [240, Chapter 8℄. In statisti
al physi
s however, it is often the 
ase that an invariantprobability measure is known.Law of Large Numbers.The 
on
ept of re
urren
e 
an (and has to) be somewhat strengthened to get 
onvergen
eresults su
h as the Law of Large Numbers (LLN).
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esses 105De�nition 3.6. A set B ∈ B(X) is 
alled Harris re
urrent if Px(ηB = ∞) = 1 for all x ∈ B. Aset B is 
alled maximal Harris if it is a maximal absorbing set su
h that Φ restri
ted to B is Harrisre
urrent. A 
hain Φ is 
alled Harris re
urrent if it is ψ-irredu
ible and if every set in B+(X) isHarris re
urrent. A Harris re
urrent and positive 
hain Φ is 
alled a positive Harris 
hain.A
tually, any re
urrent 
hain is already almost a Harris re
urrent 
hain. Indeed, the followingtheorem holds:Theorem 3.13 ( [240℄, Theorem 9.1.5 ). If Φ is re
urrent, then X = H ∪ N where H is anon-empty maximal Harris set, and N is ψ-null.Therefore, starting from an initial value x ∈ H , a positive 
hain remains in H and is positiveHarris on H . This amounts to repla
ing the whole spa
e X by its full subset H . Note that π isalso an invariant measure for the 
hain on H .We now turn to the 
onvergen
e of the average along one sample path. Consider the sum
SN (A) =

∑N
i=1 A(Φn). We re
all a Law of Large Numbers (LLN) result:Theorem 3.14 ( [240℄, Theorem 17.1.7 ). Suppose Φ is positive Harris. Then, for any mea-surable fun
tion A ∈ L1(π),

lim
n→∞

1

N
SN (A) =

∫

X

Adπ a.s. [P∗].Remark 3.3. Therefore, sin
e the 
hain starting from H remains in H and is positive Harris on
H, the LLN holds true for any 
hain {Φn}n∈N starting from Φ0 = x ∈ H. Therefore, it holds fora.e. starting point, H being a subset of full measure by Theorem 3.13. This result 
an a
tually beextended to all starting points [239,241℄. It holds whenever Conditions (C1) and (C2) are veri�ed.Small sets and petite setsThe following de�nitions of small and petite sets are used for the 
onvenien
e of other de�nitionsand are parti
ularly well-suited for general proofs in the Markov 
hain setting. However, they willnot be used as su
h in this 
hapter, for we will be able to work with 
ompa
t sets, that are smallor petite under 
ertain regularity 
onditions on the Markov transition kernel. We also warn thereader that the terms 'small' and 'petite' do not refer to the size of the spa
es involved. Theymerely refer to some useful uniform lower bounds on the transition kernel.De�nition 3.7. A set C ∈ B(X) is 
alled a νm-small set if there exist m > 0 and a non-trivialmeasure νm su
h that for all x ∈ C and B ∈ B(X),

Pm(x,B) ≥ νm(B).Though it is far from obvious from this de�nition, any ψ-irredu
ible 
hain has small sets C ⊂ Bfor any B ∈ B(X)+ (see [240, Theorem 5.2.2℄). In fa
t, the whole spa
e X 
an be re
overed bya 
ountable union of small sets (see [240, Proposition 5.2.4℄). This allows many properties of
ontinuous state spa
e Markov 
hains to be stated in the same manner as for 
ountable statespa
e Markov 
hains.The notion of small sets is generalized with the notion of petite sets. Setting Ka(x,B) =∑∞
n=0 P

n(x,B)a(n) for x ∈ X,B ∈ B(X) and with a = {a(n)}n∈N a probability measure on N,the expression Ka de�nes a transition kernel.De�nition 3.8. Let νa be a non-trivial measure on B(X). A set C ∈ B(X) is νa-petite if
Ka(x,B) ≥ νa(B)for all x ∈ C and all B ∈ B(X).
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e sampling te
hniquesNoti
e that a νm-small set is νδm-petite. We will now see that 
ompa
t sets are petite, under
ertain regularity 
onditions on the transition kernel.De�nition 3.9. If x 7→ P (x,O) is a lower semi-
ontinuous fun
tion for any open set O ∈ B(X),then the 
hain is said to be weak Feller.Noti
e that the lower semi-
ontinuity 
ondition is usually easy to 
he
k in pra
ti
e. It will evenoften be the 
ase that P (·, B) is a 
ontinuous fun
tion for any Borel set B. We then have thefollowingTheorem 3.15. If the ψ-irredu
ible 
hain Φ is weak Feller and if supp ψ has a non-empty interior,then all 
ompa
t subsets of X are petite.Ergodi
ity.We �rst introdu
e the total variation norm for a signed Borel measure µ. It is given by
||µ|| = sup

h measurable, |h|≤1

|µ(h)| = sup
{A∈B(X)}

µ(A) − inf
{A∈B(X)}

µ(A).Noti
e that 
onvergen
e in total variation implies weak 
onvergen
e.De�nition 3.10. A 
hain Φ is ergodi
 when
∀x ∈ X, lim

n→∞
||Pn(x, ·) − π|| = 0.In parti
ular, ergodi
ity implies Ex(A(Φn)) →
∫
X A(Φ) dπ when n → +∞ for any boundedmeasurable fun
tion A.Ergodi
ity is a
tually quite easy to get on
e the 
hain has been shown to be re
urrent. It issu�
ient to show that the 
hain is aperiodi
. We need here the notion of small and petite setsto state the de�nition of aperiodi
ity, though in pra
ti
e mu
h simpler 
riteria will be used. Weintrodu
e the set EC asso
iated with a νM small set C:

EC = {n ≥ 1 | the set C is νn-small with νn = κnνM for some κn > 0}.We see that M ∈ EC . Let us denote by d the greatest 
ommon divisor of the set EC . In fa
t d isindependent of the initial small set 
hosen. Therefore, the following de�nition makes sense:De�nition 3.11. Suppose that Φ is a ψ-irredu
ible Markov 
hain. If d = 1, the 
hain is 
alledaperiodi
. If there exists a ν1-small set C with ν1(C) > 0, the 
hain is 
alled strongly aperiodi
.It is often easy to 
he
k strong aperiodi
ity in the MD setting using some global a

essibilityresults. In parti
ular, Condition (C1) implies aperiodi
ity (see [240, Theorem 5.4.4℄). The followingtheorem then states the ergodi
ity of re
urrent aperiodi
 
hains.Theorem 3.16 ( [240℄, Theorem 13.3.4). If Φ is positive re
urrent and aperiodi
, then for everyinitial distribution λ su
h that λ(N) = 0 (where N is the π-null set de�ned in Theorem 3.13),
∣∣∣∣
∣∣∣∣
∫
λ(dx)Pn(x, ·) − π

∣∣∣∣
∣∣∣∣→ 0 as n→ ∞.In parti
ular, the 
ase λ = δx 
an be 
onsidered for a.e. point x (i.e. for x ∈ H). This result holdsas soon as 
onditions (C1) and (C2) are veri�ed.The 
onvergen
e in total variation norm implies 
onvergen
e of the expe
tations for boundedobservables A. It is therefore not su�
ient in pra
ti
e for non-bounded observables A (see forinstan
e the examples presented in the Introdu
tion). Fortunately, the ergodi
ity results 
an be
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tion W , let usde�ne the W -total variation norm for a signed Borel measure µ as
||µ||W = sup

h measurable, |h|≤W
|µ(h)|.Then Theorem 3.16 
an be readily extended to integrable fun
tions A.Theorem 3.17 ( [240℄, Theorem 14.0.1). Suppose that A ≥ 1 is measurable and π(|A|) < +∞.If Φ is positive re
urrent and aperiodi
, then for π-a.e. x ∈ X,

∣∣∣∣
∣∣∣∣
∫
λ(dx)Pn(x, ·) − π

∣∣∣∣
∣∣∣∣
A

→ 0 as n→ ∞.Rate of 
onvergen
e for the LLN: a Central Limit Theorem.Additional 
onditions are required to get not only a LLN, but a CLT, pre
ising the rate of
onvergen
e of a sample path average toward its limit. The drift ∆W is de�ned, for x ∈ X , as
∆W (x) =

∫

X

P (x, dy)W (y) −W (x).We then 
onsider the followingCriterion 3.1. Assume Φ is ergodi
, and there exist a measurable fun
tion L : X → [1,∞[, apetite set C ∈ B(X), b < +∞ and a �nite-valued measurable fun
tion W su
h that
∆W (x) ≤ −L(x) + b1C(x), ∀x ∈ X.Denoting by π the invariant measure of the 
hain, we also assume π(W 2) <∞.Heuristi
ally, this drift 
ondition ensures that ∆W is de
reasing outside a petite set C (in pra
ti
e,a 
ompa
t set). Therefore, we expe
t the 
hain to spend most of its time in the set C. The dynami
sof the 
hain is then almost that of a 
hain in a 
ompa
t set. That is why we 
an expe
t somestronger re
urren
e properties and some better 
onvergen
e results.For a given measurable fun
tion A su
h that π(|A|) < ∞, we formally de�ne the fun
tion Âby the following Poisson equation:

Â− PÂ = A− π(A).It is not 
lear in general whether Â is well-de�ned. This turns out to be the 
ase when Criterion 3.1is veri�ed, and allows to state a CLT (see [240, Theorem 17.5.3℄):Theorem 3.18 (CLT). Assume Criterion 3.1 holds, and let A be a fun
tion su
h that |A| ≤ L.Then the 
onstant γ2
A := π(Â2 − (PÂ)2) is well-de�ned, non-negative and �nite. If γ2

A > 0, then,de�ning Ā = A− π(A), it holds
(nγ2

A)−1/2Sn(Ā) → N (0, 1),this 
onvergen
e being in law.Noti
e that we get 
onvergen
e results only for observables |A| ≤ L, while the LLN applies forany integrable fun
tion. Theorem 3.18 holds true as soon as Conditions (C1), (C2) and (C3) areveri�ed.Remark 3.4. In parti
ular, under the assumptions of Theorem 3.15, the whole state spa
e is petitewhen it is 
ompa
t. Therefore, Condition (C3) is straightforwardly veri�ed with the 
hoi
e C = Xand W and L arbitrary smooth fun
tions (taking b large enough).
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 ergodi
ity.The ergodi
ity property implies the 
onvergen
e Ex(A(Φn)) →
∫
X A(q) dπ for measurableintegrable fun
tions A. A 
onvergen
e rate 
an be obtained by resorting to the stronger notion ofgeometri
 ergodi
ity, generalizing the notion of ergodi
ity. The following Criterion, analogous tothe drift 
ondition for Criterion 3.1, is of paramount importan
e.Criterion 3.2. There exist a fun
tion W ≥ 1 �nite at some x0 ∈ X, a petite set C ∈ B(X), and

b < +∞, c > 0 su
h that
∆W (x) ≤ −cW (x) + b1C(x), ∀x ∈ X. (3.93)This drift 
riterion 
an be heuristi
ally interpreted in the same way as Criterion 3.1. We then getthe followingTheorem 3.19 ( [240℄, Theorem 15.0.1). Assume Criterion 3.2 holds. Then there exist ρ < 1and R < +∞ su
h that, for all x ∈ {y ∈ X | W (y) < +∞},

||Pn(x, ·) − π||W ≤ RW (x)ρn.In parti
ular, we get ∣∣∣∣Ex(A(Φn)) −
∫

X

A(Φ) dπ

∣∣∣∣ ≤ RW (x)ρnfor any starting point x ∈ X su
h that W (x) < +∞. This result holds as soon as Conditions (C1),(C2) and (C4) are veri�ed.Remark 3.5.When X is 
ompa
t, Condition (C4) is straightforwardly veri�ed with the 
hoi
e
C = X for any arbitrary smooth fun
tion W (taking b large enough). When X is not bounded andthe 
hain is weak Feller (with an irredu
ibily measure of non-empty interior), Condition (C4) issatis�ed when (3.93) holds for a 
ompa
t set C and for a smooth fun
tion W su
h that W (x) →
+∞ when |x| → +∞.A simple example: The Random-Walk on a (half-)line.We now present a simple example, taken from [240℄. We hope that it illustrates relevantlymany of the notions introdu
ed in this se
tion. The setting is the following. Consider a 
olle
tionof real-valued random variables Φ = {Φ0, Φ1, . . .}, de�ned as

Φk+1 = Φk +Wk+1,where {Wk} are independent and identi
ally distributed (i.i.d.) random variables, that we do notpre
ise further for the moment. The distribution of Φ0 
an be 
hosen arbitrarily. A 
onvenient
hoi
e is for example to initialize the 
hain with a deterministi
 point x0 ∈ R, whi
h amounts to
onsidering the initial measure δx0 . The so-de�ned Markov 
hain is 
alled a �random-walk� (RW).We 
an also 
onsider a random-walk on the half-line (RWHL), de�ned as
Φk+1 = [Φk +Wk+1]+ ,where [a]+ = max(a, 0). We examine su

essively to the questions of irredu
ibility, re
urren
e andergodi
ity for those two Markov 
hains.
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ibility.Under reasonable assumptions on the in
rements {Wk}, irredu
ibility is easy to 
he
k, andasks only for little 
omprehension of the behaviour of the system.Consider �rst the 
ase of random-walk when the Wk have values in Q and are su
h that
P(Wk = x) > 0 for all x ∈ Q. Starting then from x0 ∈ Q, it is easily seen that Q is absorbing. Ifthe 
hain was irredu
ible, any irredu
ibility measure φ would be supported by Q. For x0 6∈ Q, the
hain has values in x0 + Q. So, 
onsidering the 
hain starting from x0, we see that Pn(x0,Q) = 0for all n ∈ N. This shows that φ 
annot be an irredu
ibility measure. The 
hain is not irredu
iblein this 
ase, and it has an un
ountably in�nite number of absorbing sets.In the 
ase when Wk has a smooth positive density γ, the 
hain is seen to be irredu
ible withrespe
t to the Lebesgue measure µLeb (more general 
onditions 
ould also be 
onsidered [240℄).Indeed, for any x ∈ R and B ∈ B(R) su
h that µLeb(B) > 0

P (x,B) = P (W1 ∈ B − x) =

∫

B−x
γ(y)dy > 0.In addition, there exists δ, η > 0 su
h that γ(x) ≥ δ > 0 for |x| ≤ 2η. Setting C = {|x| ≤ η}, and
onsidering x ∈ C and B ⊂ C, one has

P (x,B) = P (W1 ∈ B − x) =

∫

B−x
γ(y)dy ≥ δµLeb(B) > 0. (3.94)Setting for example φ = (µLeb(C))−11C(·), the relation (3.94) shows that C is a φ-small set.For the random-walk on the half-line, we assume that P(W1 < 0) > 0. It is then straightforwardto show that, for all x ∈ R+, there exists n su
h that Pn(x, {0}) > 0. This shows that δ0 is anirredu
ibility measure for RWHL.Re
urren
eIn the 
ase of RWHL, it is intuitive that the 
hain will be re
urrent when the mean displa
ementis negative. In the 
ase when the mean displa
ement is positive, we expe
t on the 
ontrary the
hain to drift to in�nity without 
oming ba
k (ex
ept maybe a �nite number of times in average).We now pre
ise these heuristi
 arguments. Set m =

∫

R

xγ(x)dx. When m > 0, Proposition 9.5.1in [240℄ shows that the 
hain is transient (the proof uses a 
omparison with a 
onvenient Markov
hain on 
ountable state-spa
e). When m < 0, a drift 
riterion 
an be stated, ensuring re
urren
eof the 
hain (see [240℄, Se
tion 8.5). Indeed, 
onsider x∗ < 0 su
h that ∫ +∞

x∗

xγ(x)dx ≤ m

2
, andtake W (x) = x. Then, for x in [0,−x∗],

∆W (x) =

∫

R

P (x, dy)(y − x) =

∫

y≥0

P (x, dy)(y − x) =

∫

y≥0

(y − x)γ(y − x)dy ≤ m

2
≤ 0.This shows that a drift 
riterion holds with C = [0,−x∗]. Heuristi
ally, this means that the valuesof W 
annot grow too mu
h, whi
h implies that the 
hain remains in a vi
inity of the origin. Weresort to Theorem 8.0.2 in [240℄ to prove that the 
hain is re
urrent. It then has a unique invariantmeasure (see below for 
onditions ensuring that this invariant measure is �nite).For the random-walk on the full line, it is still quite 
lear that non-zero mean in
rements willlead to a transient behaviour. Conditions for re
urren
e in the 
ase when the mean in
rement is zero
an be pre
ised when the in
rements have bounded range. We refer to [240, Se
tion 9.5℄. However,the 
hain 
an never be positive re
urrent sin
e the Lebesgue measure is invariant (see [240, Se
tion
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e sampling te
hniques10.5℄), and is therefore at best null re
urrent. Ergodi
ity does not make sense for the general RWmodel.Ergodi
ity for the Random-Walk on the half-lineWe still assume that the mean drift m =

∫

R

xγ(x)dx is negative in order to ensure re
urren
eof the 
hain, and the existen
e of an invariant measure. We need however a better drift 
riterionto ensure that the invariant measure is a probability measure (that is, a �nite measure) and to getergodi
ity. To this end, we assume in addition that ∫ +∞
0

estγ(t)dt < +∞ for 0 < s ≤ η for some
η > 0. Noti
e that this 
an be interpreted as su�
ient fast de
rease in the in
rements. Then, for
0 < s < η, and L(x) = esx,

1

s

∫
R
P (x, dy)(L(y) − L(x))

L(x)
=

∫

R

γ(x)
esx − 1

s
dx→ mwhen s → 0 by dominated 
onvergen
e. There exists 0 < s0 < η su
h that, setting W (x) =

exp(s0x),
∆W (x) ≤ m

2
s0W (x) + b1C(x)for some b > 0 and with C = [0, c] for some c > 0 large enough (see [240, page 399℄ for pre
isions).The 
hain is therefore W -uniformly ergodi
, in the sense that there exists R > 0 and 0 < r < 1su
h that

∀x ∈ R+, ||Pn(x, ·) − π||W ≤ RW (x)r−n.3.6.2 Some 
onvergen
e results for Markov pro
esses.We extend here the results of Appendix 3.6.1, stated for Markov 
hains, to Markov pro
esses.We will fo
us on di�usion equations of the form
dΦt = b(Φt)dt+ΣdWt, (3.95)where Φt is a sto
hasti
 pro
ess with values in X , b is a C∞ fun
tion, Σ is a matrix of dimension

d = dim(X), and Wt is a d-dimensional standard Wiener pro
ess.We assume that traje
torial existen
e and uniqueness hold true for (3.95). This is 
lassi
al forglobally Lips
hitz drifts [152, Theorem III.3.2℄, namely for fun
tions b satisfying for some positive
onstant D
∀(x, y) ∈ X2, |b(x) − b(y)| ≤ D |x− y|. (3.96)When this 
ondition is not satis�ed, it is possible to 
on
lude to traje
torial existen
e and unique-ness under the following hypothesis (see [152, Theorem III.4.1℄): there exist a C2 fun
tion W (x)that goes to in�nity at in�nity and a positive 
onstant c su
h that

AW ≤ cW. (3.97)Besides, under assumption (3.96) or (3.97), one 
an prove that the Markov pro
ess (3.95) is Feller.That means that, for ea
h bounded measurable fun
tion g : X → R, the mapping
x 7→ Ex(g(Φ

x
t ))is 
ontinuous, where Φxt is the solution of (3.95) with initial 
ondition Φx0 = x. We assume in thesequel that either (3.96) or (3.97) is satis�ed. Some extensions for less smooth fun
tions b and

Σ ≡ Σ(x) 
an be found in [328℄.The transition kernel P t is de�ned, for t > 0 and B ∈ B(X), as
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P t(x,B) = Px(Φt ∈ B),where Px is the probability generated by the pro
ess starting at x. The in�nitesimal generator Aasso
iated with (3.95) is

Ag(x) = b(x) · ∇g(x) +
1

2
[ΣΣT ]ij

∂2g

∂xi∂xj
(x) (3.98)for g ∈ C2(X).Main 
onvergen
e results.

(positive)

uniqueness of an
invariant probability

measure
Recurrence

Existence and

Uniqueness
of invariant measure

Irreducibility(C1’)

Convergence along a sample path

Ergodicity

Aperiodicity

Geometric

(C3’)

for a.e. starting point
Positive Harris recurrence

(C2’)

Ex(A(ΦT )) → R
X A(Φ) dπ

|Ex(A(ΦT ))− R
X A(Φ) dπ| ≤ A(x)Rρ−N

ergodicity

1
T

R T
0 A(Φt)dt → R

X A(Φ) dπa.s.

Fig. 3.7. The di�erent levels of stability for Markov pro
esses.Figure 3.7 summarizes the main results, as in the dis
rete time 
ase. The de�nitions of thedi�erent 
on
epts and the proofs of the impli
ations 
an be found in the remainder of this Se
tion.Re
all that we made the following general assumption throughout this Se
tion(C0') Condition (3.96) or (3.97) holds.The 
onditions (C1'), (C2'), and (C3') read:(C1') For all q ∈ X and open set O ∈ B(X), P t(q,O) > 0,(C2') π is an invariant probability measure for the pro
ess,There exist a measurable fun
tions W ≥ 1 going to in�nity at in�nity,(C3') real numbers c > 0, b ∈ R and a 
ompa
t set C su
h that
AW (x) ≤ −cW (x) + b1C .



112 3 Phase-spa
e sampling te
hniquesNoti
e that 
onditions (C1') and (C2') are usually quite easy to show in a MD setting, alreadygiving ergodi
ity (without 
onvergen
e rate however). Conditions (C3') 
an be easily shown whenthe state spa
e X is 
ompa
t (when it is a d-dimensional torus for example).Stability 
on
epts.We �rst pre
ise the 
on
epts of irredu
ibility, Harris re
urren
e and ergodi
ity in the 
ontinuoustime setting, whi
h are quite analogous to the 
orresponding dis
rete time 
on
epts [86, 241℄.Consider, for B ∈ B(X), the random variables
τB = inf{t ≥ 0 | Φt ∈ B}, ηB =

∫ +∞

0

1{Φt∈B} dt.De�nition 3.12. A Markov pro
ess is said to be φ-irredu
ible if for a σ-�nite measure φ,
∀x ∈ X, ∀B ∈ B(X), φ(B) > 0 ⇒ Ex(ηB) > 0.A pro
ess is Harris re
urrent if, for a σ-�nite measure ψ,

∀x ∈ X, ∀B ∈ B(X), ψ(B) > 0 ⇒ Px(τB < +∞) = 1.When a Harris re
urrent pro
ess has a �nite invariant measure (whi
h 
an be normalized into aprobability measure), it is 
alled positive Harris re
urrent.Note also that a Harris re
urrent pro
ess is irredu
ible.Irredu
ibility 
an be 
he
ked in two steps. First, one 
an show open set irredu
ibility, whi
his usually easy to 
he
k using 
ontrollability arguments (see e.g [231, 336, 337℄). We then getirredu
ibility using the 
ontinuity of the transition kernel (resulting from the Feller property).When an invariant probability measure for the sto
hasti
 di�erential equation (3.95) exists,and when the pro
ess is irredu
ible, it is also re
urrent, sin
e there is also a di
hotomy betweenre
urren
e and transien
e as in the dis
rete-time 
ase [348, Theorem 2.3℄. When Φ is re
urrent,we also have existen
e of a maximal absorbing Harris set of full measure, and uniqueness ofthe invariant measure [348℄. Therefore, the results of the dis
rete-time 
ase 
an be 
ompletelytransposed.(Weak) Regularity of the transition kernel.In 
ontradi
tion with the Markov 
hain 
ase, we often need some (weak) regularity propertieson the transition kernel in the 
ontinuous-time setting. The minimal assumption that has to bemade is that the pro
ess is a T -pro
ess.De�nition 3.13. The Markov pro
ess is a T -pro
ess if there exists a probability measure a on R+and a kernel T su
h that T (·, B) is lower semi-
ontinuous for all B ∈ B(X) and
Ka =

∫ +∞

0

a(dt)P t ≥ T.In parti
ular, this property holds whenever the pro
ess is Feller sin
e in this 
ase, for all t0 > 0and all B ∈ B(X), P t0(·, B) is 
ontinuous.Convergen
e of the average along one sample path.The 
on
epts introdu
ed above allow us to state a result 
on
erning the asymptoti
 behaviourof the average
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ST (A) =

1

T

∫ T

0

A(Φt) dt,for some observable A ∈ L1(π). Noti
e that this average is in fa
t a random variable.Theorem 3.20 ( [241℄, Theorem 8.1). Suppose that Φ is a positive re
urrent T -pro
ess. Thenfor any π-a.e. x ∈ X and A ∈ L1(π),
ST (A) →

∫

X

A(q) dπ Px − a.s.Therefore, as in the dis
rete time 
ase, we obtain 
onvergen
e over a single sample path reali-zation. Noti
e that this result 
an be extended to all starting points in X , and not only for startingpoints in the full maximal Harris subset [241℄. Some results also exist for non-irredu
ible Markovpro
ess [241℄, but we restri
t here to positive re
urrent pro
esses, whi
h is the natural MD setting.Central Limit Theorems 
an also be stated for the 
onvergen
e of ST (A). However, the settingis not as 
lear as in the dis
rete time 
ase. We refer for example to [172℄.(Geometri
) Ergodi
ity.As for the dis
rete time 
ase, 
onvergen
e of the expe
tations Ex(A(Φt)) to the state spa
eaverage ∫X A(Φ) dπ 
an be stated under 
ertain 
onditions. This is pre
isely the notion of ergodi-
ity. As in Appendix 3.6.1, || · || denotes the total variation norm, and || · ||W the W -total variationnorm.De�nition 3.14. The Markov pro
ess is 
alled ergodi
 if an invariant probability π exists and
∀x ∈ X, ||P t(x, ·) − π|| → 0when t→ +∞.The fa
t that the pro
ess is Harris re
urrent and that some skeleton 
hain is irredu
ible isenough to ensure ergodi
ity. A skeleton 
hain is a Markov 
hain obtained by sampling the pro
essat times ∆ > 0, and is thus the Markov 
hain with the asso
iated transition kernel P∆.Theorem 3.21 ( [241℄, Theorem 6.1). Suppose that Φ is positive Harris re
urrent. Then Φ isergodi
 if and only if some skeleton 
hain is irredu
ible.Noti
e that Condition (C1') immediately gives the irredu
ibility of the skeleton 
hain. There-fore, ergodi
ity holds whenever (C1') and (C2') are veri�ed. This gives the 
onvergen
eEx(A(Φt)) →∫

X A(Φ) dπ for bounded measurable fun
tions A.A rate of 
onvergen
e 
an also be obtained and extensions to non-bounded fun
tions 
an bestated, as in the time-dis
rete 
ase, using drift 
riteria. These 
riteria have to be 
he
ked on thegenerator A given by (3.98). We still need the pro
ess to be aperiodi
. The de�nition of thisnotion for Markov pro
esses is quite analogous to the 
orresponding dis
rete-time de�nition. Wetherefore refer to [86, 241℄ for more pre
isions, and simply note that the Feller property of the
hain and (C1') are su�
ient to 
on
lude to aperiodi
ity. The de�nition of petite sets is also astraightforward extension of the dis
rete-time 
ase, so we also refer to [86, 241℄ for example for amore formal de�nition. The following result shows that it is often enough to 
onsider 
ompa
t setsin appli
ations.Theorem 3.22 ( [241℄, Theorem 4.1). For a Harris re
urrent T -pro
ess, every 
ompa
t set ispetite.We then have the following
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hniquesTheorem 3.23 ( [86℄, Theorem 5.2). Consider a ψ-irredu
ible aperiodi
 Markov pro
ess, andassume there exist a measurable fun
tion W ≥ 1 su
h that
AW ≤ −cW + b1C (3.99)for c > 0, b < +∞ and a petite set C ∈ B(X). Then the pro
ess is W -geometri
ally ergodi
 in thesense that there exist R > 0 and 0 < ρ < 1 su
h that for every t ≥ 0,

||P t(x, ·) − π||W ≤ RW (x)ρt.Together with 
onditions (C1') and (C2'), Condition (C3') then gives geometri
 ergodi
ity.As in the time-dis
rete 
ase, Condition (C3') holds whenever the state spa
e is 
ompa
t. Another
ommon situation is when the drift 
ondition (3.99) is veri�ed for some smoothW going to in�nityat in�nity and for some 
ompa
t set C.
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e method . . 175The free energy of a system is a quantity of paramount importan
e in statisti
al physi
s. It isde�ned as

F = − 1

β
lnZ, Z =

∫

T∗M
e−βH .The 
onstant Z is the partition fun
tion of the system, and the spa
e T ∗M is phase-spa
e (seeSe
tion 2.2 for notations). In many appli
ations, the quantity of interest is the free energy di�eren
ebetween an initial and a �nal state. These di�eren
es are related to transitions from an initial toa �nal state, and 
an be 
lassi�ed in two 
ategories:(i) the so-
alled al
hemi
al 
ase 
onsiders transitions indexed by an external parameter λ.The system is then governed by a Hamiltonian Hλ (or a potential Vλ), su
h as Hλ(q, p) =

(1 − λ)H0(q, p) + λH1(q, p). The 
orresponding free energy di�eren
e is
∆F = −β−1 ln




∫

T∗M
e−βH1(q,p) dq dp

∫

T∗M
e−βH0(q,p) dq dp


 ,



116 4 Computation of free energy di�eren
es(ii) in the rea
tion 
oordinate 
ase, the transition is indexed through some level set fun
-tion ξ(q) indexing disjoint submanifolds of the 
on�guration spa
e, and
∆F = −β−1 ln




∫

T∗M
e−βH(q,p) δξ(q)−z1 dq dp

∫

T∗M
e−βH(q,p) δξ(q)−z0 dq dp


 .Therefore, free energies 
an be expressed in both 
ases as

F = −β−1 lnZ, Z =

∫

Σ

exp(−βV ) dν (4.1)where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann 
onstant). The Boltzmann-Gibbs measure exp(−βV )dν is de�ned for a referen
e positive measure dν, whi
h has support Σ.We will 
onsider here that Σ is a submanifold of R3N , but all the results extend to the 
ase when
Σ is a submanifold of T3N (the 3N -dimensional torus, whi
h arises when using periodi
 boun-dary 
onditions). The statisti
s of the system are 
ompletely de�ned by (V, ν). We 
onsider herethat (V, ν) is labeled using a d-dimensional parameter z (with d≪ 3N) whi
h 
hara
terizes the sys-tem at some 
oarser level. Examples of su
h parameters are ξ(q) or λ with the above notations. Inthe al
hemi
al 
ase, the parameter z = λ is independent of the 
urrent 
on�guration of the system.This 
hapter is organized as follows. In Se
tion 4.1, we re
all the usual Jarzynski equality when
omputing free-energy di�eren
es using nonequilibrium dynami
s (stated for al
hemi
al transi-tions), and present an extension to the rea
tion 
oordinate 
ase. We then present, in Se
tion 4.2,an equilibration of the nonequilibrium dynami
s, whi
h ensures that the sample is always 
anoni-
ally distributed even for fast swit
hings. In Se
tion 4.3, we present a new algorithm for samplingpaths governed by sto
hasti
 dynami
s. Sampling paths 
an be useful to 
ompute free energydi�eren
es, and in any 
ases, uses te
hniques reminis
ent from free energy 
omputation s
hemes.Finally, we present adaptive dynami
s in Se
tion 4.4, proposing a uni�ed framework, new parallelimplementations and a proof of 
onvergen
e using entropy estimates in a spe
i�
 
ase.4.1 Nonequilibrium 
omputation of free energy di�eren
es4.1.1 The Jarzynski equality (The al
hemi
al 
ase)Markovian nonequilibrium simulationsThe usual way to a
hieve a nonequilibrium swit
hing is to perform a time inhomogeneousirredu
ible Markovian dynami
s

t 7→ Xt, X0 ∼ µ0, (4.2)for t ∈ [0, T ], and a smooth s
hedule t 7→ λ(t) verifying λ(1) = 0 and λ(T ) = 1. The variable x
an represent the whole degrees of freedom (q, p) of the system, or only the 
on�guration part q.Depending on the 
ontext, the invariant measure µ will therefore be the 
anoni
al measure
dµλ(q, p) =

1

Zλ
e−βHλ(q,p) dq dp, (4.3)with Zλ =

∫
T∗M e−βHλ(q,p) dq dp or its marginal with respe
t to the momenta, whi
h reads

dµ̃λ(q) =
1

Z̃λ
e−βVλ(q) dq,
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∫
M e−βVλ(q) dq. When we do not wish to pre
ise further the dynami
s, we simply 
all

x the 
on�guration of the system, Hλ(x) its energy and dµλ(x) the invariant measure. The a
tualinvariant measure should be 
lear from the 
ontext.The dynami
s is su
h that for a �xed λ ∈ [0, 1], the Boltzmann distribution dµλ is invariant.For example, the Langevin dynami
s (3.47) or its overdamped limit (3.38) 
an be 
onsidered. Inthis last 
ase, Xt = qt and the evolution of the system is given by
dqt = −∇V (qt) dt+ σ dWt,with σ2 = 2/β and Wt a standard Wiener pro
ess.Denoting by ps,t(x, y)dy = E (Xt ∈ dy|Xs = x) the density kernel of the pro
ess, the evolutionof the pro
ess law is 
hara
terized by the ba
kward Kolmogorov equation (t and y being given):

∂sps,t(., y) = −Lλ(s) (ps,t(., y)) ,or its forward version (s and x being given):
∂tps,t(x, .) = L∗

λ(t) (ps,t(x, .)) .The operator Lλ(t) is 
alled the in�nitesimal generator of the dynami
s, and L∗
λ(t) is its dual. Theinvarian
e of µλ(t) under the instantaneous dynami
 
an then be expressed through the balan
e
ondition:

∀ϕ,
∫
Lλ(t)(ϕ)dµλ(t) = 0. (4.4)When the s
hedule is su�
iently slow, the dynami
s is said quasi-stati
, and the law of thepro
ess Xt is assumed to stay 
lose to its lo
al steady state throughout the transformation. Thisis out of rea
h at low temperature (more pre
isely, large deviation results [112℄ ensure that thetypi
al es
ape time from metastable states grows exponentially fast with β, whi
h 
ompells quasi-stati
 transformations to being exponentially slow with β). It is therefore interesting to 
onsiderapproa
hes built on swit
hed Markovian dynami
s, but able to deal with reasonably fast transitions
hemes.Importan
e weights of non equilibrium simulations.For a given nonequilibrium run Xt we denote by

Wt =

∫ t

0

∂Hλ(s)

∂λ
(Xs)λ

′(s) dsthe out of equilibrium virtual work indu
ed on the system during the time interval [0, t]. Thequantity Wt gives the importan
e weights of nonequilibrium simulations with respe
t to the targetequilibrium distribution. Indeed, it was shown in [187℄ that
E(e−βWt) = e−β(F (λ(t))−F (0)). (4.5)This �u
tuation equality is known as the Jarzynski's equality, and 
an be derived through aFeynman-Ka
 formula [177℄, as follows: 
onsider the Feynman-Ka
 density kernel de�ned by

∫
ϕ(y)pws,t(x, y)dy = E

(
ϕ(Xt)e

−β(Wt−Ws)|Xs = x
)
, (4.6)and 
hara
terized by the following extended ba
kward Komogorov evolution:
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∂sp

w
s,t(., y) = −Lλ(s)

(
pws,t(., y)

)
+ β

∂Hλ(s)

∂λ
λ′(s)pws,t(., y).Using this identity and the balan
e equation (4.4) gives:

∂s

∫
pws,t(x, y)e

−βHλ(s)(x)dx = 0and thus after integration on [0, t], we get the fundamental Feynamn-Ka
 �u
tuation equality:
Zt
Z0

∫
ϕdµλ(t) = E

(
ϕ(Xt)e

−βWt
)
. (4.7)Therefore, taking ϕ = 1, it follows

E(e−βWt) = e−β(F (λ(t))−F (0)),and Jensen's inequality then gives
E(Wt) ≥ F (λ(t)) − F (0).This inequality is an equality if and only if the transformation is quasi-stati
 on [0, t]; in this 
asethe random variable Wt is a
tually 
onstant and equal to ∆F . When the evolution is reversible,this means that equilibrium is maintained at all times.As an improvement, we will see how to avoid the exponential importan
e weights of the none-quilibrium paths by a sele
tion rule between repli
as (see Se
tion 4.3.3).4.1.2 The Jarzynski equality (The rea
tion 
oordinate 
ase)Nonequilibrium 
omputations of free energy di�eren
es in the rea
tion 
oordinate setting usingsto
hasti
 dynami
s 
ould be performed using soft 
onstraints to swit
h between the initial state
entered on the submanifold {ξ(q) = z0} and the �nal state 
entered on {ξ(q) = z1}. Steeredmole
ular dynami
s te
hniques use for example a penalty term K(ξ(q) − z)2 in the energy of thesystem [267℄ (with K large) to 'softly' 
onstraint the system to remain 
lose to the submanifold

{ξ(q) − z = 0}, and varying the value z from 0 to 1 in a �nite time T . It is shown in [177℄ how touse su
h a biasing potential to exa
tly 
ompute free energy di�eren
es (even for a �nite K), whi
his of parti
ular interest for experimental studies. From a 
omputational viewpoint however, it isexpe
ted that large values of K require small integration time steps. Moreover, it is observed inpra
ti
e that the statisti
al �u
tuations in
rease with larger K (see [267℄). Instead, we propose torepla
e the sti� 
onstraining potential K(ξ(q)− z)2 by a proje
tion onto the submanifold {ξ(q)−
z = 0}. This situation is reminis
ent of the 
ase of mole
ular 
onstraints, that 
an be enfor
edusing a sti� penalty term, or more elegantly and often more e�
iently, using some proje
tionof the dynami
s involving Lagrange multipliers. This is the spirit of the well known SHAKEalgorithm [295℄.We present here a nonequilibrium sto
hasti
 dynami
s and an equality that allow to 
omputefree energy di�eren
es between states de�ned by di�erent values of a rea
tion 
oordinate. Thedynami
s relies on a proje
tion onto the 
urrent submanifold at ea
h time step, and we use theLagrange multipliers asso
iated with this proje
tion to estimate the free energy di�eren
e. Morepre
isely, we use the di�eren
e between these Lagrange multipliers and the external for
ing termrequired for the �nite time swit
hing (see for example the dis
retization (4.43)). The main resultsof this se
tion are the Feynman-Ka
 equality of Theorem 4.1 (whi
h extends the proof of [177℄ tohard 
onstraints), as well as the asso
iated dis
retizations (4.45) and (4.46).We �rst present the equilibrium 
omputation of free energy di�eren
es using proje
ted sto-
hasti
 di�erential equations, before turning to the extension to the non-equilibrium 
ase.
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es 119Equilibrium 
omputation of free energy di�eren
es in the rea
tion 
oordinate 
aseThe aim of this se
tion is to introdu
e the de�nitions of the free energy and the mean for
e in therea
tion 
oordinate setting, and to re
all how thermodynami
 integration is used to 
ompute freeenergy di�eren
es. The 
omputation of the mean for
e is based on proje
ted sto
hasti
 di�erentialequations (SDE). The presentation is done for a one-dimensional rea
tion 
oordinate (the extensionto the multi-dimensional 
ase being postponed until the end of this se
tion) and the dynami
s usedis an extension of the overdamped Langevin dynami
s.Free energy and mean for
eThe state of the system is 
hara
terized by the value of a rea
tion 
oordinate ξ : M → [0, 1].The fun
tion ξ is supposed to be smooth and su
h that ∇ξ(q) 6= 0 for all q ∈ M. For a given value
z ∈ [0, 1], we denote by Σz the submanifold

Σz = { q ∈ M, ξ(q) = z } (4.8)and we assume that ⋃z∈[0,1]Σz ⊂ M. For ea
h point q ∈ Σz, we also introdu
e the orthogonalproje
tion operator P (q) onto the tangent spa
e to Σz at point q de�ned by:
P (q) = Id − ∇ξ ⊗∇ξ

|∇ξ|2 (q), (4.9)where ⊗ denotes the tensor produ
t. The orthogonal proje
tion operator on the normal spa
e to
Σz at point q is de�ned by P⊥(q) = Id − P (q).The free energy is then de�ned as

F (z) = −β−1 ln (Zz) , (4.10)with
Zz =

∫

Σz

exp(−βV ) dσΣz , (4.11)where for any submanifold Σ of R3N , σΣ denotes the Lebesgue measure indu
ed on Σ as asubmanifold of R3N . The asso
iated Boltzmann probability measure is
dµΣz = Z−1

z exp(−βV ) dσΣz . (4.12)Remark 4.1 (On the de�nition of the free energy). Two 
omments are in order aboutformula (4.10). First, this formula is valid up to an additive 
onstant, whi
h is not importantwhen 
onsidering free energy di�eren
es. Se
ond, the potential V in (4.11) may be a potentialdi�erent from the a
tual potential seen by the parti
les. More pre
isely, if the parti
les evolve ina potential V , the standard de�nition of the free energy in the physi
s and 
hemistry literatureis (4.10) with
Zz =

∫
exp(−βV ) δξ(q)−z ,where δξ(q)−z is a measure supported by Σz and de�ned by: for all test fun
tions φ,

∫
φ(q)δξ(q)−z =

∫

Σz

φ|∇ξ|−1 dσΣz .This amounts to 
onsidering (4.10)�(4.11) with V repla
ed by an e�e
tive potential V +β−1 ln |∇ξ|(see Remark 4.2 for the 
ase of a multi-dimensional 
onstraint). With this de�nition,
∫

M
A(ξ(q))e−βV (q) dq =

∫

M
A(z)e−βF (z) dz,
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esbut the free energy di�eren
es F (z1)−F (z2) depend on the 
hoi
e of the rea
tion 
oordinate (andnot only on the level sets Σz).Sin
e the results we present here hold irrespe
tive of the physi
al signi�
ation of the poten-tial V , we may assume without loss of mathemati
al generality that the free energy is indeed givenby (4.10)�(4.11), and the 
hoi
e of the de�nition of the free-energy is left to the user. Let usemphasize that, in pra
ti
e, the 
umbersome 
omputation of the gradient of the additional term
β−1 ln |∇ξ| in the modi�ed potential (whi
h intervenes in the proje
ted SDEs we use, see (4.39)�(4.40) or (4.41)�(4.42)) 
an be avoided resorting to some �nite di�eren
es, as explained in [66℄.Using the 
o-area formula (see (4.33) and Proposition 4.3 for a proof in the multi-dimensional
ase), it is possible to derive the following expression of the derivative of the free energy F withrespe
t to z (the so-
alled mean for
e) (see [83, 320℄):

F ′(z) = Z−1
z

∫

Σz

∇ξ
|∇ξ|2 · (∇V + β−1H) exp(−βV )dσΣz , (4.13)where

H = −∇ ·
( ∇ξ
|∇ξ|

) ∇ξ
|∇ξ| (4.14)is the mean 
urvature ve
tor �eld of the surfa
e Σz. The free energy 
an thus be expressed as anaverage with respe
t to µΣz :

F ′(z) =

∫

Σz

f(q)dµΣz(q), (4.15)where f is the lo
al mean for
e de�ned by:
f =

∇ξ
|∇ξ|2 · (∇V + β−1H). (4.16)We explain next how it is possible to 
ompute this average with respe
t to µΣz , without expli
itly
omputing f , by using proje
ted SDEs. This avoids in parti
ular the 
omputation of the mean
urvature ve
tor H whi
h involves se
ond-order derivatives of ξ.The prin
iple of thermodynami
 integration is to re
ast the free energy di�eren
e

∆F (z) = F (z) − F (0) (4.17)between two rea
tion 
oordinates 0 and z as an integral over the mean for
e:
∆F (z) =

∫ z

0

F ′(y) dy. (4.18)Therefore, in pra
ti
e, thermodynami
 integration 
omputation of free-energy is as follows. First,the free energy di�eren
e ∆F (z) is estimated using quadrature formulae for the integral in (4.18),su
h as for example a Gauss-Lobatto s
heme:
∆F (z) ≃

K∑

i=0

ωiF
′(yi)where the points {y0, y1, . . . , yK} are in [0, z] and {ω0, ω1, . . . , ωK} are their asso
iated weights.Se
ond, the derivatives F ′(yi) are 
omputed as 
anoni
al averages over the submanifolds Σyi ,using proje
ted SDEs (see next se
tion).To obtain a free-energy pro�le (and not only a free-energy di�eren
e for a �xed �nal state),it is possible to approximate the fun
tion ∆F (z) on the interval [0, 1] by a polynomial. This 
an
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tion (
onsistently with the normalization ∆F (0) = 0).Proje
ted sto
hasti
 di�erential equationsWe now explain how to 
ompute the mean for
e F ′(z) de�ned by (4.13) using proje
ted SDEs,for a �xed parameter z. We 
onsider the solution Qt to the following SDE:
{
Q0 ∈ Σz,

dQt = −P (Qt)∇V (Qt) dt+
√

2β−1P (Qt) ◦ dBt,
(4.19)where Bt is the standard 3N -dimensional Brownian motion and ◦ denotes the Stratonovi
h pro-du
t. It is possible (see [66℄) to 
he
k that µΣz is an invariant probability measure asso
iatedwith the SDE (4.19). Under suitable assumptions, whi
h we assume in the rest of the se
tion, onthe potential V and the surfa
e Σz, the pro
ess Qt is ergodi
 with respe
t to µΣz . Moreover, theSDE (4.19) 
an be rewritten in the following way:

dQt = −∇V (Qt) dt+
√

2β−1dBt + ∇ξ(Qt)dΛt, (4.20)where Λt is a real valued pro
ess, whi
h 
an be interpreted as the Lagrange multiplier asso
ia-ted with the 
onstraint ξ(Qt) = z (see the dis
retization in Se
tion 4.1.3). This pro
ess 
an bede
omposed into two parts:
dΛt = dΛm

t + dΛf
t. (4.21)The so-
alled martingale part Λm

t (whose �u
tuation is of order √∆t over a timestep ∆t) is
dΛm

t = −
√

2β−1
∇ξ

|∇ξ|2 (Qt) · dBt, (4.22)where · impli
itly denotes the It� produ
t. The so-
alled bounded variation part Λf
t (whose �u
-tuation is of order ∆t over a timestep ∆t) is

dΛf
t =

∇ξ
|∇ξ|2 (Qt) · ∇V (Qt) dt+ β−1 ∇ξ

|∇ξ|2 (Qt) ·H(Qt) dt = f(Qt) dt, (4.23)
f being the lo
al mean for
e de�ned above by (4.16). Thus, sin
e Qt is ergodi
 with respe
t to
µΣz the mean for
e 
an be obtained as a mean over the Lagrange multiplier Λt:Proposition 4.1. The mean for
e is given by:

F ′(z) = lim
T→∞

1

T

∫ T

0

dΛt = lim
T→∞

1

T

∫ T

0

dΛf
t. (4.24)Noti
e that the martingale part dΛm

t , whi
h has the largest �u
tuations, has zero mean. In orderto redu
e the varian
e, it is thus numeri
ally 
onvenient to perform the mean over the boundedvariation part dΛf
t rather than over the whole Lagrange multiplier dΛt (see Se
tion 4.1.3).We refer to [66℄ for a proof of Proposition 4.1, as well as for formulae involving higher di-mensional rea
tion 
oordinates. Su
h ideas have been used for a long time in the framework ofHamiltonian dynami
s (see [83, 320℄).The interest of Equation (4.24) is that the SDE (4.20) 
an be very naturally dis
retized asexplained in Se
tion 4.1.3 below. Then, the average over a dis
retized traje
tory of the pro
ess Λt
onverges to F ′(z). This is parti
ularly 
onvenient for numeri
al purposes sin
e it does not ask forexpli
itly 
omputing the lo
al for
e f . For further details, we refer to [66℄ and to Se
tion 4.1.3. Inthe next se
tion, we use these ideas for the 
omputation of the free energy di�eren
e given throughthe Jarzynski equality.
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esNonequilibrium sto
hasti
 methods in the rea
tion 
oordinate 
aseWe wish here to extend the Feynman-Ka
 formula derived in [177℄ (see Se
tion 4.1.1) for aparameter z whi
h appears only in the potential V , to the rea
tion 
oordinate 
ase, where z labelssubmanifolds Σz (de�ned by Equation (4.8)) of the state spa
e. To this end, we need to makepre
ise the evolution of the 
onstraints.We 
onsider a C1 path z : [0, T ] → [0, 1] of values of the rea
tion 
oordinate ξ, with z(0) = 0,and z(T ) = 1. Re
all that the asso
iated family of submanifolds of admissible 
on�gurations isdenoted by
Σz(t) = {q ∈ M, ξ(q) = z(t)} ,and that the asso
iated Boltzmann probability measures are
dµΣz(t)

= Z−1
z(t) exp(−βV )dσΣz(t)

.We 
onstru
t a di�usion (Qt)t∈[0,T ] so that Qt ∈ Σz(t) for all t ∈ [0, T ] and (Qt)t∈[0,T ] satis�es thefollowing properties:� Q0 ∼ µΣz(0)
,� For all t ∈ [0, T ], Qt+dt is the orthogonal proje
tion on Σz(t+dt) of the position obtained bythe un
onstrained displa
ement: Qt −∇V (Qt)dt+

√
2β−1dBt.More pre
isely, the 
onsidered di�usion reads, in the Stratonovi
h setting:





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt + ∇ξ(Qt) dΛext
t ,

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

(4.25)With a view to the dis
retization of Qt, let us noti
e that Qt 
an be 
hara
terized by the followingproperty:Proposition 4.2. The pro
ess Qt solution to (4.25) is the only It� pro
ess satisfying for somereal-valued adapted It� pro
ess (Λt)t∈[0,T ]:




Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt + ∇ξ(Qt) dΛt,
ξ(Qt) = z(t).Moreover, the pro
ess (Λt)t∈[0,T ] 
an be de
omposed as

Λt = Λm
t + Λf

t + Λext
t , (4.26)with the martingale part

dΛm
t = −

√
2β−1

∇ξ
|∇ξ|2 (Qt) · dBt,the lo
al for
e part (see (4.16) for the de�nition of f)

dΛf
t =

∇ξ
|∇ξ|2 (Qt) ·

(
∇V (Qt) dt+ β−1H(Qt)

)
dt = f(Qt) dt, (4.27)and the external for
ing (or swit
hing) term

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.
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onsists in 
omputing dξ(Qt) by It�'s 
al
ulus andidentifying the bounded variation and the martingale parts of the sto
hasti
 pro
esses.The di�eren
e with the proje
ted sto
hasti
 di�erential equation (4.19) 
onsidered in the ther-modynami
 integration setting is that the out-of-equilibrium evolution of the 
onstraints z(t)
reates a drift ∇ξ(Qt) dΛext
t along the rea
tion 
oordinate. This drift 
an be interpreted as anexternal for
ing required for the swit
hing to take pla
e at a �nite rate, and must be subtra
tedfrom the Lagrange multiplier Λt in order to obtain a 
orre
t expression for the work W(t) involvedin the Feynman-Ka
 �u
tuation equality (see Equations (4.43) and (4.45) below). This 
orre
tionis quantitatively important when the swit
hing is not slow.The Feynman-Ka
 �u
tuation equalityLet us de�ne the nonequilibrium work exerted on the di�usion (4.25) by:

W(t) =

∫ t

0

f(Qs) z
′(s) ds, (4.28)where f is the lo
al mean for
e de�ned above by (4.16). Noti
e that, at least formally, in thelimit of an in�nitely slow swit
hing from z(0) = 0 to z(T ) = 1, Formula (4.30) 
orresponds to thethermodynami
 integration formula (4.18). Formula (4.30) enables the 
omputation of free energydi�eren
es at arbitrary rates, through a 
orre
tion 
onsisting in a reweighting of the nonequilibriumpaths.In pra
ti
e, the nonequilibrium work W(t) 
an be 
omputed by using the lo
al for
e part dΛf

t(see (4.27)), as in the thermodynami
 integration method (see (4.24)). Thus, the formula we useto 
ompute W(t) is rather:
W(t) =

∫ t

0

z′(s) dΛf
s, (4.29)sin
e Λf

t 
an be obtained by a natural numeri
al s
heme (see Se
tion 4.1.3), avoiding the 
umber-some 
omputations of the mean 
urvature ve
tor H in the expression of f (as already explainedabove).We 
an now state the generalization of the Jarzynski nonequilibrium equality to the 
ase whenthe swit
hing is parameterized by a rea
tion 
oordinate.Theorem 4.1 (Feynman-Ka
 �u
tuation equality). For any test fun
tion ϕ and ∀t ∈ [0, T ],it holds
Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
.In parti
ular, we have the work �u
tuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (4.30)As in the al
hemi
al 
ase [177℄, the proof follows from a Feynman-Ka
 formula (see Theorem 4.2for a proof in the general multi-dimensional 
ase ).Extension to the general multi-dimensional 
ase and proofsIn this se
tion, we generalize the previous results for nonequilibrium 
omputation of free energydi�eren
es presented for a one-dimensional rea
tion 
oordinate to the 
ase of multi-dimensionalrea
tion 
oordinates.
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esGeometri
 setting and basi
 notation and formulae.We 
onsider a d-dimensional system of smooth rea
tion 
oordinates ξ = (ξ1, . . . , ξd) : R3N →
Rd, non-singular on an open domain M ⊂ R3N

∀q ∈ M, range(∇ξ1(q), . . . ,∇ξd(q)) = d,and a smooth path of asso
iated 
oordinates
z = (z1, . . . , zd) : [0, T ] → Rd.A

ordingly, we de�ne for all t ∈ [0, T ] a smooth submanifold of 
odimension d 
ontained in M:

Σz(t) =
{
q ∈ R3N , ξ(q) = z(t)

}
⊂ M.In the 
onstraints spa
e Rd, 
oordinates are labeled by Greek letters and we use the summation
onvention on repeated indi
es. In the 
on�guration spa
e R3N , 
oordinates are labeled by Latinletters and we also use the summation 
onvention on repeated indi
es. We denote by X ·Y = XiYithe s
alar produ
t of two ve
tor �elds of R3N , by M : N = Mi,jNi,j the 
ontra
tion of two tensor�elds of R3N , and by (X ⊗ Y )i,j = XiYj the tensor produ
t of two ve
tor �elds of R3N .The d× d matrix

Gα,γ = ∇ξα · ∇ξγis the Gram matrix of the 
onstraints. It is symmetri
 and stri
tly positive on M. We denote by
G−1
α,γ the (α, γ) 
omponent of G−1, the inverse matrix of G. At ea
h point q ∈ M, we de�ne theorthogonal proje
tion operator

P⊥ = G−1
α,γ∇ξα ⊗∇ξγonto the normal spa
e to Σξ(q) and the orthogonal proje
tion operator

P = Id − P⊥onto the tangent spa
e to Σξ(q). The mean 
urvature ve
tor �eld of the submanifold is de�ned by:
H = −∇ ·

(
(detG)1/2G−1

α,γ∇ξγ
)

(detG)−1/2∇ξα (4.31)and satis�es:
Hi = Pj,k∇jPi,k.We re
all the divergen
e theorem on submanifolds: for any smooth fun
tion φ : R3N → R3Nwith 
ompa
t support, ∫

Σz

divΣ(φ) dσΣz = −
∫

Σz

H · φdσΣz (4.32)where divΣ(φ) = Pi,j∇iφj denotes the surfa
e divergen
e, and σΣz is the indu
ed Lebesgue mea-sure on the submanifold Σz of R3N . We will also use the 
o-area formula: for any smooth fun
tion
φ : R3N → R, ∫

R3N

φ(q)(detG(q))1/2dq =

∫

Rd

∫

Σz

φdσΣz dz. (4.33)These de�nitions and formulae are provided with more details in [66℄.Free energy and 
onstrained di�usions for multi-dimensional rea
tion 
oordinatesAs in the one-dimensional 
ase, the Boltzmann-Gibbs distribution restri
ted on the submanifold
Σz is de�ned by:
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dµΣz = Z−1

z exp(−βV )dσΣz ,with
Zz =

∫

Σz

exp(−βV )dσΣz .The asso
iated free energy is:
F (z) = −β−1 ln (Zz) .Remark 4.2 (On the de�nition of the free energy: the multi-dimensional 
ase). As inthe one-dimensional 
ase (see Remark 4.1), if the parti
les initially evolve in a potential V , the
lassi
al de�nition of the free energy is as above, but with V repla
ed by an e�e
tive potential

V + β−1 ln
(
(detG)1/2

). The 
omputation of the gradient of this potential in the dynami
s theninvolves se
ond-order derivatives of ξ, whi
h 
an be approximated in pra
ti
e by �nite di�eren
es(see [66℄).For any 1 ≤ α ≤ d, we now introdu
e the lo
al mean for
e along∇ξα (whi
h generalizes (4.16)):
fα = G−1

α,γ∇ξγ ·
(
∇V + β−1H

)
. (4.34)As in the one-dimensional 
ase (see Equation (4.15)), we obtain the derivative of the mean for
eby averaging the lo
al mean for
e:Proposition 4.3. The derivative of the free energy F with respe
t to zα is given by:

∇αF (z) =

∫

Σz

fα dµΣz .Proposition 4.3 is a 
orollary ofLemma 4.1. For any test fun
tion ϕ with 
ompa
t support in M, we have:
∇α

(∫

Σz

ϕ exp(−βV )dσΣz

)
=

∫

Σz

(
G−1
α,γ∇ξγ · ∇ϕ− βfαϕ

)
exp(−βV )dσΣz .Proof. It is enough to prove the formula in the 
ase V = 0, up to a modi�
ation of the testfun
tion ϕ. For any test fun
tion g : R → R with 
ompa
t support, we have (using su

essively anintegration by parts on R, the 
o-area formula (4.33), an integration by parts on R3N , and �nallyagain (4.33)):

∫

Rd

g(zα)∇α

(∫

Σz

ϕdσΣz

)
dz = −

∫

Rd

∫

Σz

g′(zα)ϕdσΣzdz,

= −
∫

R3N

g′ ◦ ξα ϕ (detG)
1/2

dq,

= −
∫

R3N

G−1
α,γ∇ξγ · ∇(g ◦ ξα) ϕ (detG)

1/2
dq,

=

∫

R3N

g ◦ ξα∇ ·
(
G−1
α,γ ∇ξγ ϕ (detG)

1/2
)
dq,

=

∫

Rd

g(zα)

∫

Σz

∇ ·
(
G−1
α,γ∇ξγ ϕ (detG)

1/2
)

(detG)
−1/2

dσΣz dz,whi
h gives the result using the expression (4.31) of the mean 
urvature ve
tor H .We now de�ne the 
onstrained di�usion (whi
h generalizes (4.25)):




Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt + ∇ξα(Qt)dΛ
ext
α,t,

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt, ∀1 ≤ α ≤ d.

(4.35)
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esThe sto
hasti
 pro
ess Qt 
an be 
hara
terized by the following property:Proposition 4.4. The pro
ess Qt solution to (4.35) is the only It� pro
ess satisfying for someadapted It� pro
esses (Λ1,t, . . . , Λd,t)t∈[0,T ] with values in Rd:




Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt + ∇ξα(Qt)dΛα,t,

ξ(Qt) = z(t).Moreover, the pro
ess (Λα,t)t∈[0,T ] 
an be de
omposed as
Λα,t = Λm

α,t + Λf
α,t + Λext

α,t,with the martingale part
dΛm

α,t = −
√

2β−1G−1
α,γ∇ξγ(Qt) · dBt,the lo
al for
e part (see (4.34) for the de�nition of fα)

dΛf
α,t = fα(Qt)dt,and the external for
ing (or swit
hing) term

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt.The proof 
onsists in 
omputing dξ(Qt) by It�'s 
al
ulus and identifying the bounded variationand the martingale parts of the sto
hasti
 pro
esses.The Feynman-Ka
 �u
tuation equalityTheorem 4.1 is generalized as:Theorem 4.2 (Feynman-Ka
 �u
tuation equality). Let us de�ne the nonequilibrium workexerted on the di�usion Qt solution to (4.35) by:

W(t) =

∫ t

0

fα(Qs)z
′
α(s) ds =

∫ t

0

z′α(s)dΛf
α,s.Then, we have the following �u
tuation equality: for any test fun
tion ϕ, and ∀t ∈ [0, T ],

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
. (4.36)In parti
ular, we have the work �u
tuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (4.37)Proof. For any s ∈ [0, T ] and x ∈ M, let us introdu
e (Qs,xt )t∈[s,T ], the sto
hasti
 pro
ess satisfyingthe SDE (4.35), starting from x at time s:





Qs,xs = x,

dQs,xt = −P (Qs,xt )∇V (Qs,xt )dt+
√

2β−1P (Qs,xt ) ◦ dBt + ∇ξα(Qs,xt )dΛext
α,t,

dΛext
α,t = G−1

α,γ(Q
s,x
t )z′γ(t)dt, ∀1 ≤ α ≤ d.

(4.38)Noti
e that for any s ∈ [0, T ], there is an open neighborhood (s−, s+)×Ms of (s,Σz(s)) in R×Msu
h that the di�usion (Qs,xt )t∈[s,T ] remains in M almost surely. This holds sin
e this pro
ess
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es 127satis�es dξ(Qs,xt ) = z′(t) dt and therefore ξ(Qs,xt ) = ξ(x) + z(t) − z(s). This gives usual regularityassumptions su�
ient to get a ba
kward semi-group (t being from now on �xed in (0, T ) and svarying in [0, t]):
u(s, x) = E

(
ϕ(Qs,xt ) exp

(
−β
∫ t

s

fα(Qs,xr )z′α(r) dr

))
,satisfying the following partial di�erential equation (PDE) on (s−, s+) ×Ms:

∂su = −Ls(u(s, .)) + βz′α(s)fαu,where Ls is the generator of the di�usion Qt solution to (4.35):
Ls = β−1P : ∇2 − P∇V · ∇ + β−1H · ∇ + z′γ(s)G

−1
α,γ∇ξα · ∇.Now, using Lemma 4.1, we have:

d

ds

∫

Σz(s)

u(s, .) exp(−βV )dσΣz(s)

=

∫

Σz(s)

(
−Ls(u(s, .)) + z′α(s)G−1

α,γ∇ξγ · ∇u(s, .)
)
exp(−βV )dσΣz(s)

,

= −
∫

Σz(s)

(
β−1P : ∇2u(s, .) − P∇V · ∇u(s, .) + β−1H · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −β−1

∫

Σz(s)

(
divΣ (∇u(s, .) exp(−βV )) +H · ∇u(s, .) exp(−βV )

)
dσΣz(s)

,

= 0,by the divergen
e theorem (4.32). Therefore
∫

Σz(t)

u(t, .) exp(−βV )dσΣz(t)
=

∫

Σz(0)

u(0, .) exp(−βV )dσΣz(0)
,whi
h yields

∫

Σz(t)

ϕ exp(−βV )dσΣz(t)
= Zz(0)E

(
ϕ(Qt) exp

(
−β
∫ t

0

fα(Qr)z
′
α(r) dr

))
,where Qt satis�es (4.35). This proves (4.36), and (4.37) is obtained by taking ϕ = 1. ⊓⊔4.1.3 Pra
ti
al 
omputation of free energy di�eren
esWe present in this se
tion numeri
al strategies suited for the rea
tion 
oordinate 
ase, thenumeri
al dis
retization of the al
hemi
al 
ase being trivial.Dis
retization of the proje
ted dynami
sThe main interest of the above formulae (4.18)�(4.24) and (4.29)�(4.30) is that they admitnatural time dis
retizations. The prin
iple is to use a predi
tor-
orre
tor s
heme for the asso
iateddynami
s (4.19) and (4.25), and to use the Lagrange multiplier Λt to 
ompute the lo
al meanfor
e f .Dis
retization of the proje
ted di�usion (equilibrium 
ase)For the proje
ted SDE (4.20) onto a submanifold Σz = {ξ(q) − z = 0}, two dis
retizations ofthe dynami
s, extending the usual Euler-Maruyama s
heme, are proposed in [66℄. These numeri
al
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ess
hemes for 
onstrained Brownian dynami
s are in the spirit of the so-
alled RATTLE [8℄ andSHAKE [295℄ algorithms 
lassi
al used for 
onstrained Hamiltonian dynami
s, and also relatedwith the algorithms proposed in [6, 262,358℄.The �rst one is:
{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn+1),where ∆Λn+1 is su
h that ξ(Qn+1) = z, (4.39)where ∆t is the time step and Un is a 3N -dimensional standard Gaussian random ve
tor. Noti
ethat (4.39) admits a natural variational interpretation, sin
e Qn+1 
an be seen as the 
losest pointon the submanifold Σz to the predi
ted position Qn−∇V (Qn)∆t+

√
2∆tβ−1 Un. The real ∆Λn+1is then the Lagrange multiplier asso
iated with the 
onstraint ξ(Qn+1) = z.Another possible dis
retization of (4.20) is

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn),where ∆Λn+1 is su
h that ξ(Qn+1) = z. (4.40)Although this s
heme is not naturally asso
iated with a variational prin
iple, it may be morepra
ti
al sin
e its formulation is more expli
it. Noti
e also that we use the same notation ∆Λn forthe Lagrange multipliers for both (4.39) and (4.40) (and later for (4.41) and (4.42)), sin
e all theformulas we state in terms of ∆Λn are veri�ed whatever the 
onstrained dynami
s.To solve Equation (4.39), 
lassi
al methods for optimization problems with 
onstraints 
an beused. We refer to [135℄ for a presentation of the 
lassi
al Uzawa algorithm, and to [36℄ for moreadvan
ed methods. Problem (4.40) 
an be solved using 
lassi
al methods for nonlinear problems,su
h as the Newton method (see [36℄). We also refer to Chapter 7 of [205℄ where similar problemsare dis
ussed, for the 
lassi
al RATTLE and SHAKE s
hemes used for Hamiltonian dynami
s with
onstraints.Both s
hemes are 
onsistent (the dis
retization error goes to 0 when the time step ∆t goes to

0) with the proje
ted di�usion (4.20) (see [66℄). A

ordingly, ∆Λn+1 is a 
onsistent dis
retizationof ∫ tn+1

tn
dΛt and therefore, it 
an be proven [66℄:

lim
T→∞

lim
∆t→0

1

T

T/∆t∑

n=1

∆Λn = F ′(z)whi
h is the dis
rete 
ounterpart of the traje
tory average (4.24). In [66℄, a varian
e redu
tionte
hnique is proposed, whi
h 
onsists in extra
ting the bounded variation part ∆Λf
n of ∆Λn(resorting lo
ally to reversed Brownian in
rements). We give some details of an adaptation ofthis method for evolving 
onstraints in next se
tion.Dis
retization with evolving 
onstraintsWhen nonequilibrium dynami
s are 
onsidered, the 
onstraint is stated as ξ(Qt) = z(t). Therea
tion 
oordinate path is �rst dis
retized as {z(0), . . . , z(tNT )} where NT is the number oftimesteps. For example, equal time in
rements 
an be used, in whi
h 
ase ∆t = T

NT
and tn = n∆t(we refer to Remark 4.3 below for some re�nements). The initial 
onditions Q0 are sampleda

ording to µΣ0 . A way to do that is to subsample a long traje
tory of the proje
ted SDE on Σ0(using the s
hemes (4.39) or (4.40)).The proje
ted SDE on evolving 
onstraints (4.25) is then dis
retized with the s
heme (4.39)or (4.40), taking into a

ount the evolution of the 
onstraint:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn+1),where ∆Λn+1 is su
h that ξ(Qn+1) = z(tn+1), (4.41)
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es 129or {
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn),where ∆Λn+1 is su
h that ξ(Qn+1) = z(tn+1). (4.42)It remains to extra
t the for
e part ∆Λf

n+1 from the dis
retized Lagrange multiplier ∆Λn+1(
onsistently with (4.26)). We propose two methods. First, this 
an be done by simply subtra
tingthe drift and the martingale part
∆Λf

n+1 = ∆Λn+1 −
z(tn+1) − z(tn)

|∇ξ(Qn)|2 +
√

2∆tβ−1
∇ξ(Qn)

|∇ξ(Qn)|2
· Un. (4.43)Another possibility in the spirit of the varian
e redu
tion te
hniques used in [66℄ 
an also be used.Consider the following 
oupled dynami
 with lo
ally time-reversed 
onstraint evolution (writtenhere for the s
heme (4.41)):

QR
n+1 = Qn −∇V (Qn)∆t−

√
2∆tβ−1 Un +∆ΛR

n+1 ∇ξ(QR
n+1),with ∆ΛR

n+1 su
h that:
1

2
(ξ(QR

n+1) + ξ(Qn+1)) = ξ(Qn).The positionQR
n+1 is 
omputed asQn+1 in (4.41), but with a proje
tion on Σ2ξ(Qn)−ξ(Qn+1) insteadof Σz(tn+1), and using the Brownian in
rement −√

∆tUn instead of √∆tUn. Noti
e that in 
aseof a 
onstant in
rement for the 
onstraints, we have ξ(QR
n+1) = 2ξ(Qn)− ξ(Qn+1) = z(tn−1). Thefor
e part ∆Λf

n+1 is then obtained through
∆Λf

n+1 =
1

2
(∆Λn+1 +∆ΛR

n+1) (4.44)whi
h 
an be shown to be a 
onsistent time dis
retization of ∫ tn+1

tn
dΛf

t.Computation of free energy using a Feynman-Ka
 equalityThe 
onsistent dis
retization of Qt, and more pre
isely of ∫ tn+1

tn
dΛf

t, we have obtained in theprevious se
tion 
an now be used to approximate the work W(t) de�ned by (4.29) by




W0 = 0,

Wn+1 = Wn +
z(tn+1) − z(tn)

tn+1 − tn
∆Λf

n+1,
(4.45)using either the dynami
s (4.41) or (4.42), and the lo
al for
e part of the Lagrange multiplier
omputed by (4.43) or (4.44). Averaging overM independent realizations (the 
orresponding worksbeing labeled by an upper index 1 ≤ m ≤M), an estimator of the free energy di�eren
e ∆F (z(T ))is, using Theorem 4.1,

∆̂F (z(T )) = −β−1 ln

(
1

M

M∑

m=1

e−βW
m
NT

)
. (4.46)The estimator ∆̂F (z(T )) 
onverges to ∆F (z(T )) as ∆t → 0 and M → +∞. It is 
lear that theestimation of ∆F (z(T )) by (4.46) is straightforward to parallelize sin
e the (Wm

NT
)1≤m≤M areindependent.For a �xedM < +∞, noti
e that, even in the limit ∆t→ 0, ∆̂F (z(T )) is a biased estimator. In-deed,

exp(−β∆̂F (z(T ))) is an unbiased estimator of exp(−β∆F (z(T ))), and therefore, using the 
on
a-vity of ln, E(∆̂F (z(T ))) ≥ ∆F (z(T )). Re
ent works propose 
orre
tions to this systemati
 biasusing asymptoti
 expansions in the limit M → +∞ (see for instan
e [286,378℄).
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esRemark 4.3 (On pra
ti
al implementation). Noti
e that it may be useful to adaptively re�nethe time step over ea
h sto
hasti
 traje
tories, using for example the work evolution rate (Wn −
Wn−1)n≥1 as a re�nement 
riterion. As noti
ed in [286℄, it is also possible to optimize the evolutionof the 
onstraint z(t), for example by minimizing the varian
e of the results obtained for a prioris
hedules for the evolving 
onstraint on a small set of preliminary runs.The numeri
al s
heme in the multi-dimensional 
aseThe adaptation of the algorithm we propose for the one-dimensional 
ase to the multi-dimensional 
ase is straightforward. Indeed, the generalizations of s
hemes (4.41) and (4.42) tothe multi-dimensional 
ase are, respe
tively:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λα,n+1 ∇ξα(Qn+1),where (∆Λα,n+1)1≤α≤d is su
h that ξ(Qn+1) = z(tn+1),

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λα,n+1 ∇ξα(Qn),where (∆Λα,n+1)1≤α≤d is su
h that ξ(Qn+1) = z(tn+1).The for
e part∆Λf

α,n of∆Λα,n is obtained by similar pro
edures as those des
ribed in Se
tion 4.1.3.For example, the generalization of (4.43) is:
∆Λf

α,n+1 = ∆Λα,n+1 −G−1
α,γ(Qn) (zγ(tn+1) − zγ(tn)) +

√
2∆tβ−1G−1

α,γ∇ξγ(Qn) · Un.The generalization of (4.44) is also straightforward.Now, the estimator ∆̂F (z(T )) of the free energy di�eren
e ∆F (z(T )) is given by (4.46), withthe following approximation of the work W(t):




W0 = 0,

Wn+1 = Wn +
zα(tn+1) − zα(tn)

tn+1 − tn
∆Λf

α,n+1,whi
h generalizes (4.45). Noti
e that Remark 4.3 also holds for a multi-dimensional rea
tion 
o-ordinate.4.1.4 Numeri
al resultsWe present in this se
tion some illustrations of the algorithm we have des
ribed above to
ompute free energy di�eren
es through nonequilibrium paths. In Se
tion 4.1.4, a two-dimensionaltoy potential V is used, for whi
h we 
an 
ompare the results with analyti
al pro�les. A morerealisti
 test 
ase in Se
tion 4.1.4 demonstrates the ability of the method to 
ompute free energypro�les in presen
e of a free energy barrier.Our aim in this se
tion is not to 
ompare the numeri
al e�
ien
y of the thermodynami
integration method presented (or any other method) with nonequilibrium 
omputations, sin
e itis di�
ult to draw general 
on
lusions about su
h 
omparisons. However, we 
ompare on a simpleexample in Se
tion 4.1.4, the numeri
al e�
ien
y of out-of-equilibrium 
omputations using a fewlong traje
tories or many short traje
tories, at a �xed 
omputational 
ost.A two-dimensional toy problemWe 
onsider the two-dimensional potential introdu
ed in [365℄:
V (x, y) = cos(2πx)(1 + d1y) + d2y

2, (4.47)
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x axisFig. 4.1. Plot of some probability densities 
orresponding to the potential (4.47) for β = 1, d2 = 2π2,and d1 = 0 on the left or d1 = 10 on the right.where d1 and d2 are two positive 
onstants. Some 
orresponding Boltzmann-Gibbs probabilitydensities are depi
ted in Figure 4.1.We want to 
ompute the free energy di�eren
e pro�le between the initial state x = x0 = −0.5and the transition state x = x1 = 0. Noti
e that the saddle point is (x1, y1) = (0, 0) for d1 = 0, butis in
reasingly shifted toward lower values of y1 as d1 in
reases. We parameterize the transitionalong the x-axis, either with the rea
tion 
oordinate
ξ(x, y) =

x− x0

x1 − x0
, (4.48)or with the rea
tion 
oordinate (n ≥ 2)

ηn(x, y) =
1

2n − 1

[(
1 +

x− x0

x1 − x0

)n
− 1

]
. (4.49)For these rea
tion 
oordinates, the initial state (resp. the transition state) 
orresponds to a value ofthe rea
tion 
oordinate z = 0 (resp. z = 1). The analyti
al expression of the free energy di�eren
ethat we 
onsider here is, for a rea
tion 
oordinate ν(x, y) (su
h as ξ or ηn de�ned above)

∆Fν(z) = −β−1 ln

(∫
R2 e−βV (x,y)δν(x,y)−z∫

R2 e−βV (x,y)δν(x,y)

)
,where the distribution δν(x,y)−z is de�ned in Remark 4.1 above. Noti
e that even though the initialstate Σ0 = {x = −0.5} and the �nal state Σ1 = {x = 0} are the same for the rea
tion 
oordinates

ξ and ηn, the asso
iated free energy di�eren
es di�er. This is due to the fa
t that ∇ξ 6= ∇ηn, andtherefore δξ(x,y)−z 6= δηn(x,y)−z. More pre
isely,
∆Fξ(z) = − cos(2πx0) + cos(2πxξ(z)) +

(d1)
2

4d2
(cos2(2πx0) − cos2(2πxξ(z))),with

xξ(z) = x0 + z(x1 − x0),and



132 4 Computation of free energy di�eren
es
∆Fηn(z) = − cos(2πx0) + cos(2πxηn(z)) +

(d1)
2

4d2
(cos2(2πx0) − cos2(2πxηn(z)))

+
n− 1

β
ln

(
1 +

xηn(z) − x0

x1 − x0

)
,with

xηn(z) = x0 + ((2n − 1)z + 1)1/n − 1)(x1 − x0).Free energy pro�les for the two rea
tion 
oordinates 
onsidered here 
an then be 
omputedusing the dis
retization proposed in Se
tion 4.1.3. Averaging over several realizations, error esti-mates 
an be proposed: in parti
ular, the standard deviation 
an be 
omputed for all intermediatepoints z ∈ [0, 1], so that, for all values z, a 
on�den
e interval around the empiri
al mean 
anbe proposed. We represent on Figure 4.2 the analyti
al pro�les, and the lower and upper boundsof the 95 % 
on�den
e interval for M = 103 and M = 104, using here and hen
eforth a linears
hedule: z(t) = t/T . The initial 
onditions are 
reated by subsampling a traje
tory 
onstrainedto remain on the initial submanifold Σ0. As announ
ed above, the pro�les obtained with ηn and ξare not exa
tly the same, though the general shape is preserved. These �gures also show that thevarian
e in
reases with z. Therefore, to further test the 
onvergen
e of the method, it is enoughhere to 
hara
terize the 
onvergen
e of the value for the end point at z = 1.
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Fig. 4.2. Free energy pro�les using the potential (4.47) with β = 1, d1 = 30 and d2 = 2π2, and therea
tion 
oordinate (4.48) on the left, or the rea
tion 
oordinate (4.49) with n = 5 on the right. Analyti
alreferen
e pro�les are in dotted lines. The dashed lines (resp. the solid lines) represent the upper and lowerbound of the 95 % 
on�den
e interval (obtained over 100 independent realizations) for nonequilibrium
omputations with M = 103 repli
as (resp. with M = 104 repli
as). The swit
hing time is T = 1 and thetime step is ∆t = 0.005 on the left and ∆t = 0.0025 on the right.We study the 
onvergen
e of the end value ∆F (1) 
omputed with the out-of-equilibrium dy-nami
s with respe
t to the number of repli
asM and the time step ∆t, using the rea
tion 
oordi-nate (4.48) as an example. The results are presented in Table 4.1. The time step ∆t does not seemto have any noti
eable in�uen
e on the �nal result, as long as it remains in a reasonable range. Asexpe
ted, the error gets smaller as M in
reases.In Table 4.1, we also show that, in this parti
ular 
ase, for a �xed 
omputational 
ost andprovided that the swit
hing time is large enough1, 
omputing many short traje
tories is as e�
ientas 
omputing a few longer ones (the mean and the varian
e are essentially un
hanged). This
on
lusion also holds for the more realisti
 test 
ase presented in next se
tion. The 
omputationof many traje
tories 
an be straightforwardly and very e�
iently parallelized.
1 Of 
ourse, this threshold time depends on the system under study.
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es 133We �nally mention that we are able to exhibit the bias of the Jarzynski estimator in thisparti
ular 
ase (see Se
tion 4.1.3 and [378℄). We observe that the estimator ∆̂F (z(T )) is generallygreater than ∆F (z(T )). More pre
isely, averaging over 104 realizations, with the parameters T = 1and ∆t = 0.005, we obtain the following 95 % 
on�den
e intervals for ∆̂F (z(T )), for various valuesof M : ∆̂F (z(T )) = 2.0576 ± 0.0059 for M = 103, ∆̂F (z(T )) = 2.0095 ± 0.0026 for M = 104, and
∆̂F (z(T )) = 2.00075± 0.0010 for M = 105. As expe
ted, the bias goes to zero when M → ∞.Table 4.1. Free energy di�eren
es ∆F (1) obtained by nonequilibrium 
omputations for the rea
-tion 
oordinate (4.48) with β = 1, d1 = 1 and d2 = 30. The results are presented as follows:
E

“
d∆F (z(T ))

” „r
Var

“
d∆F (z(T ))

”« (the estimates of these quantities are obtained by averages over100 independent runs). The exa
t value is ∆F (1) = 2.
∆t T M ∆̂F (z(T ))0.001 1 103 2.056 (0.274)0.0025 1 103 2.033 (0.259)0.005 1 103 2.076 (0.286)0.01 1 103 2.073 (0.278)0.005 1 103 2.076 (0.286)0.005 1 104 2.014 (0.116)0.005 1 105 2.001 (0.045)

∆t T M ∆̂F (z(T ))0.005 1 104 2.014 (0.116)0.005 10 103 1.999 (0.029)0.005 100 102 2.001 (0.025)0.005 1000 101 1.997 (0.022)
Model system for 
onformational 
hanges in�uen
ed by solvationWe 
onsider a system 
omposed of N parti
les in a periodi
 box of side length l, intera
tingthrough the purely repulsive WCA pair potential [79, 329℄:

VWCA(r) =





4ǫ

[(σ
r

)12

−
(σ
r

)6
]

+ ǫ if r ≤ r0,

0 if r > r0,where r denotes the distan
e between two parti
les, ǫ and σ are two positive parameters and
r0 = 21/6σ. Among these parti
les, two (numbered 1 and 2 in the following) are designated toform a dimer while the others are solvent parti
les. Instead of the above WCA potential, theintera
tion potential between the two parti
les of the dimer is a double-well potential

VS(r) = h

[
1 − (r − r0 − w)2

w2

]2
, (4.50)where h and w are two positive parameters. The potential VS exhibits two energy minima, one
orresponding to the 
ompa
t state where the length of the dimer is r = r0, and one 
orrespondingto the stret
hed state where this length is r = r0 + 2w. The energy barrier separating both statesis h. Figure 4.3 presents a s
hemati
 view of the system.The rea
tion 
oordinate used is

ξ(q) =
|q1 − q2| − r0

2w
, (4.51)where q1 and q2 are the positions of the parti
les forming the dimer. The 
ompa
t state (resp. thestret
hed state) 
orresponds to a value of the rea
tion 
oordinate z = 0 (resp. z = 1).The parameters used for the simulations are: β = 1, ǫ = 1, σ = 1, h = 1, w = 0.5 and

N = 16. We still use a linear s
hedule: z(t) = t/T . The side length l of the simulation box
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Fig. 4.3. S
hemati
 views of the system, when the dimer is in the 
ompa
t state (Left), and in thestret
hed state (Right). The intera
tion of the parti
les forming the dimer is des
ribed by a double wellpotential. All the other intera
tions are of WCA form.takes two values: l = 1.3 (high density state) and l = 3 (low density state). Figure 4.4 presentssome plots of the free energy di�eren
e pro�les 
omputed using nonequilibrium dynami
s, as wellas thermodynami
 integration referen
e pro�les. The results show that nonequilibrium estimatesare 
onsistent with thermodynami
 integration. Our experien
e on this parti
ular example alsoshows that it is 
omputationally as e�
ient to simulate several short nonequilibrium traje
tories(provided the swit
hing time is not too small, say, T ∼ 1 in the units used here, so that thedi�usion pro
ess 
an take pla
e), or one single long traje
tory where the swit
hing is done slowly(as already observed in the previous example).The free energy pro�les highlight the relative stabilities of the two 
onformations of the dimer:at low densities (Figure 4.4, Left) the stret
hed 
onformation has a lower free energy and is thusexpe
ted to be more stable (this 
an indeed be veri�ed by running long mole
ular dynami
straje
tories and monitoring the time spent in ea
h 
onformation). When the density in
reases,the 
ompa
t 
onformation be
omes more and more likely. At the density 
onsidered in Figure 4.4(Right), the 
ompa
t state already has a free energy slightly smaller than the stret
hed state.Noti
e also that the free energy barrier in
reases as the density in
reases, so that spontaneoustransitions are less and less frequent. But sin
e we know here a rea
tion 
oordinate, we 
an enfor
ethe transition. This prevents us from running and monitoring long traje
tories to get su�
ientstatisti
s to 
ompare relative o

urren
es of both states.4.2 Equilibration of the nonequilibrium 
omputation of free energydi�eren
esWe present in this se
tion a 
omplementary approa
h to the above nonequilibrium strategies inthe Jarzynski way, to prevent the degenera
y of weights. It is similar to the method of [174℄, knownas "population Monte-Carlo", in whi
h multiple repli
as are used to represent the distributionunder study. A weight is asso
iated to ea
h repli
a, and resamplings are performed at dis
rete�xed times to avoid degenera
y of the weights. This methodology is widely used in the �elds ofQuantum Monte Carlo [13,289℄ or Bayesian Statisti
s, where it is referred to as Sequential MonteCarlo [84,85℄. Note that in the probability and statisti
s �elds, ea
h simulation is 
alled a 'walker'or 'parti
le'; we use here the name 'repli
a', whi
h is more apppropriate to the Mole
ular Dynami
s
ontext.The method used here extends the population Monte-Carlo method to the time-
ontinuous
ase. It 
onsists in running M repli
as of the system in parallel, resorting typi
ally to a sto
hasti
dynami
, and 
onsidering ex
hanges between them, a

ording to a 
ertain probabiliti
 rule depen-ding on the work done on ea
h system. This pro
edure 
an be seen as automati
 time 
ontinuous
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Fig. 4.4. Comparison of free energy di�eren
e pro�les using the rea
tion 
oordinate (4.51), at low densities(l = 3) on the left, and high densities (l = 1.3) on the right. The double well potential VS is representedin dashed line. The referen
e free energy di�eren
e pro�le 
omputed with a very pre
ise thermodynami
integration is represented in dotted line. We used NTI = 101 thermodynami
 integration points (uniformlydistributed over (0, 1)) and averaged the mean for
e over MTI = 107 
on�gurations for ea
h �xed value of
z. The upper and lower bounds of the 95 % 
on�den
e interval (obtained over 50 independent realizations)for out-of-equilibrium 
omputations are represented with solid lines. We used M = 1000 nonequilibriumtraje
tories, a swit
hing time T = 1, and a timestep ∆t = 0.0005 (left) or ∆t = 0.00025 (right).resampling, and all repli
as have the same weight at any time of the simulation. This methoddrasti
ally in
reases the number of signi�
ative transitions paths in nonequilibrium simulations.The set of all repli
as (or walkers) is 
alled an 'Intera
ting Parti
le System' (IPS) [248℄, and 
anbe seen as a geneti
 algorithm where the mutation step is the sto
hasti
 dynami
s 
onsidered.This method also allows to end up the simulation with a well distributed sample of 
on�gura-tions. It is therefore a way to perform simulated annealing [193℄ rigorously: the idea is to swit
hslowly from an initial simple sampling problem, to the target sampling problem, through a well
hosen interpolation. This allows to attain deeper lo
al minima, but, due to its nonequilibriumnature, is not e�
ient as su
h to sample a

urately the target measure. We mention that varia-tions have been proposed, espe
ially tempering methods (see [180℄ for a review), the most famousbeing parallel tempering [225℄. These methods 
onsider an additional parameter des
ribing the
on�guration system (e.g. the temperature), and sample those extended 
on�gurations a

ordingto some sto
hasti
 rules. However, these methods asks for a prior distribution of the additionalparameters (for example a temperature ladder in parallel tempering method), whi
h are usuallyestimated through some preliminary runs [180℄.We �rst present the IPS approximation (in the al
hemi
al 
ase for simpli
ity, though theresults 
an easily be extended to the rea
tion 
oordinate 
ase), as well as 
onvergen
e results ofthe dis
retized measure to the target measure. A justi�
ation through a mean-�eld interpretationis then proposed in Se
tion 4.2.2. The numeri
al implementation of the IPS method is eventuallydis
ussed.4.2.1 The IPS and its statisti
al propertiesWe use here the notations and de�nitions of Se
tion 4.1.1. Re
all that the potential of meanfor
e de�ned in the al
hemi
al 
ase by

Fλ(t) =

∫
∂Hλ

∂λ
(x) dµλ(t)(x)is the average for
e applied to the system during an in�nitely slow transformation. The �rst step isto rewrite the Feynman-Ka
 formula (4.7) by introdu
ing a di
hotomy when a repli
a is re
eiving
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eseither ex
ess or de�
it work 
ompared to the potential of mean for
e. To this end, we de�nerespe
tively the ex
ess and de�
it for
e, and the ex
ess and de�
it work as
f ex
t (x) =

(
∂Hλ(t)

∂λ
−Fλ(t)

)+

(x), fde
t (x) =

(
∂Hλ(t)

∂λ
−Fλ(t)

)−
(x)

Wex
t =

∫ t

0

f ex
s (Xs)λ

′(s) ds, Wde
t =

∫ t

0

fde
s (Xs)λ

′(s) ds, (4.52)where x+ = max{x, 0} and x− = max{−x, 0} (so that x = x+ − x−). We then rewrite
µλ(t)(ϕ) =

E

(
ϕ(Xt)e

−β(Wex
t −Wde

t )
)

E
(
e−β(Wex

t −Wde
t )
) . (4.53)We now present the parti
le interpretation of (4.53) enabling a numeri
al 
omputation throughthe use of empiri
al distributions. Consider M Markovian systems des
ribed by variables Xk

t(1 ≤ k ≤M). We approximate the virtual for
e and the Boltzmann distribution by their empiri
al
ounterparts, whi
h read respe
tively
FM
λ(t) =

1

M

M∑

k=1

∂Hλ(t)

∂λ
(Xk

t ), dµMλ(t)(x) =
1

M

M∑

k=1

δXk
t
(dx).This naturally gives from de�nitions (4.52) empiri
al approximations of ex
ess/de�
it for
es

f
M,ex/de
t and works Wk,ex/de

t . The repli
as evolve a

ording to a bran
hing pro
ess with the follo-wing sto
hasti
 rules (see [289,290℄ for further details):Intera
ting parti
le system pro
essPro
ess 4.1. Consider an initial distribution (X1
0 , . . . , X

M
0 ) generated from dµ0(x). Generateindependent times τk,b1 , τk,d1 from an exponential law of mean β−1 (the uppers
ripts b and drefer to 'birth' and 'death' respe
tively), and initialize the jump times T b/d as T k,d0 = 0, T k,b0 =

0.For 0 ≤ t ≤ T ,(1) Between ea
h jump time, evolve independently the repli
as Xk
t a

ording to the dyna-mi
s (4.2);(2) At random times T k,dn+1 de�ned by

Wk,ex

Tk,d
n+1

−Wk,ex

Tk,d
n

= τk,dn+1,an index l ∈ {1, . . . ,M} is pi
ked at random, and the 
on�guration of the k-th repli
ais repla
ed by the 
on�guration of the l-th repli
a. A time τk,dn+2 is generated from anexponential law of mean β−1;(3) At random times T k,bn+1 de�ned by
Wk,de

Tk,d
n+1

−Wk,de

Tk,d
n

= τk,bn+1,an index l ∈ {1, . . . ,M} is pi
ked at random, and the 
on�guration of the l-th repli
ais repla
ed by the 
on�guration of the k-th repli
a. A time τk,bn+2 is generated from anexponential law of mean β−1.
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es 137The sele
tion me
hanism therefore favors repli
as whi
h are sampling values of the virtual work
Wt lower than the empiri
al average. The system of repli
as is 'self-organizing' to keep 
loser to aquasi-stati
 transformation.In [248, 289℄, several 
onvergen
e results and statisti
al properties of the repli
as distributionare proven. They are summarized in the followingProposition 4.5. Assume that (t, x) 7→ ∂Hλ(t)

∂λ (x) is a 
ontinuous bounded fun
tion on [0, T ] ×
T ∗M (or [0, T ]×M in the 
ase of overdamped Langevin dynami
s), and that the dynami
s (4.2)is ergodi
. Then for any t ∈ [0, T ],(i) The estimator

exp

(
−β
∫ t

0

FM
λ(s)λ

′(s) ds

) (4.54)is an unbiased estimator of e−β(F (λ(t))−F (0));(ii) For all test fun
tion ϕ, the estimator ∫ ϕ dµMλ(t) is an asymptoti
ally normal estimator of∫
ϕ dµλ(t), with bias and varian
e of order M−1.The proof follows from Lemma 3.20, Proposition 3.25 and Theorem 3.28 of [248℄ (see also [289,290℄ for further details). The unbiased estimation of un-normalized quantities is a very usual pro-perty in parti
le system methods. It 
omes from the fundamental property that at ea
h �time step�,ea
h repli
a may bran
h with a number of o�springs equal in average to its relative importan
eweight.Let us emphasize that the sample (Xk

t )1≤k≤M is in parti
ular an empiri
al approximation ofthe 
anoni
al measure dµλ(t) for all t, and that no exponential reweighting of the works needs to bedone at the end of the simulation to obtain the free energy di�eren
es. In the 
ase of intera
tingrepli
as, the exponential reweighting of the Jarzynski equality (4.5) is repla
ed by the simpleaverage
∆F̂IPS =

∫ T

0

FM
λ(t)λ

′(t) dt =
1

M

M∑

k=1

∫ T

0

∂Hλ(t)

∂λ
(Xk

t )λ′(t) dt,whi
h, by Proposition 4.5, is asymptoti
ally normal with bias and varian
e of orderM−1, and theestimator e−β∆F̂IPS is unbiased estimator of e−β∆F . De�ning the work along one traje
tory as
Wt =

∫ T

0

∂Hλ(t)

∂λ
(Xt)λ

′(t) dt,it therefore holds in the limit M → +∞,
E(Wt) = F (λ(t)) − F (0), (4.55)whi
h should be 
ompared to (4.5). Noti
e however that the notion of a single traje
tory is onlyformal and has no meaning sin
e all traje
tories intera
t 
ontinuously. The above equality hasonly a pedagogi
al purpose.4.2.2 Consisten
y through a mean-�eld limitIn order to prove the 
onsisten
y of the IPS approximation, we 
onsider the ideal setting wherethe number of repli
as goes to in�nity (M → +∞). This point of view is equivalent to a mean-�eldor M
 Kean interpretation of the IPS (denoted by the supers
ript 'mf'). In this limit, the behaviorof any single repli
a, denoted by Xmf
t , is then independent from any �nite number of other ones.We shall 
onsider the mean �eld distribution
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esLaw(Xmf
t ) = dµmft = µmf

t (x)dx,and the mean-�eld for
e
Fmf
t =

∫
∂Hλ(t)

∂λ
dµmf

t .The asso
iated mean �eld ex
ess/de�
it for
e f
mf,ex/de
t and works Wmf,ex/de

t are de�ned asin (4.52). In view of Pro
ess 4.1, the sto
hasti
 pro
ess Xmf
t is a jump-di�usion pro
ess whi
hevolves a

ording to the following sto
hasti
 rules:Mean-field jump-diffusion pro
essPro
ess 4.2. Generate Xmf

0 from dµ0(x). Generate idependent 
lo
ks (τbn, τ
d
n)n≥1 from anexponential law of mean β−1, and initialize the jump times T b/d as T d0 = 0, T b0 = 0.For 0 ≤ t ≤ T ,(1) Between ea
h jump time, t 7→ Xmf

t evolves a

ording to the dynami
s (4.2);(2) At random times T dn+1 de�ned by
Wmf,ex

Td
n+1

−Wmf,ex
Td

n
= τdn+1,the pro
ess jumps to a 
on�guration x, 
hosen a

ording to the probability measure

dµmf
Td

n+1
(x);(3) At random times T bn+1 de�ned by

E(Wmf,de
t )|t=T b

n+1
− E(Wmf,de

t )|t=T b
n

= τbn+1,the pro
ess jumps to a 
on�guration x, 
hosen a

ording to the probability measureproportional to fmf,de

T b
n+1

(x)dµλ(T b
n+1)(x).Remark 4.4. Note that, in the treatment of the de�
it work, we take in Pro
ess 4.2 the point ofview of the jumping repli
a; whereas in Pro
ess 4.1, we take the point of view of the attra
tingrepli
a whi
h indu
es a bran
hing.From the above probabilisti
 des
ription, we 
an derive the Markov generator of the mean-�eldpro
ess, given by the sum of a di�usion and a jump generator:
Lmf
t = Lλ(t) + Jt,µmf

t
,where the jump generator Jt,µmf

t
is de�ned as

Jt,µmf
t

(ϕ)(x) = βλ′(t)

∫
(ϕ(y) − ϕ(x))(fmf,ex

t (x) + fmf,de
t (y))dµmf

t (y).A straightforward integration gives the fundamental balan
e identity of the jump generator:
J∗
t,µmf

t
(µmft ) = β

(
Fmf
t − ∂Hλ(t)

∂λ

)
λ′(t)µmftwhi
h implies, by forward Kolmogorov,

∂tµ
mf
t = L∗

λ(t)(µ
mf
t ) + β

(
Fmf
t − ∂Hλ(t)

∂λ

)
λ′(t)µmf

t
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es 139so that �nally
∂t

(
µmf
t e−β

R
t
0
Fmf

s ds
)

= L∗
λ(t)

(
µmf
t e−β

R
t
0
Fmf

s ds
)
− β

∂Hλ(t)

∂λ
λ′(t)µmf

t e−β
R

t
0
Fmf

s ds.The latter is exa
tly the forward evolution equation of the Feynamn-Ka
 kernel pw0,t de�ned in (4.6),and thus ∫ pw0,t(x, .)dµ0(x) = µmft e−β
R

t
0
Fmf

s ds. Using (4.7), this gives the identities:
µmf
t = µλ(t), Fmf

t = Fλ(t), f
mf,ex/de
t = f

ex/de
λ(t) .and proves the 
onsisten
y of the IPS approximation s
heme.4.2.3 Numeri
al implementationIn the previous se
tion, we dis
retized the measure by 
onsidering an empiri
al approxima-tion. For a numeri
al implementation to be tra
table, it remains to dis
retize the time evolution.Noti
e already that the IPS method indu
es no extra 
omputation of the for
es, and is thereforeunexpensive to implement. However, although the IPS 
an be parallelized, the pro
essors have toex
hange informations at the end of ea
h time step, whi
h 
an slow down the simulation.For the dis
retization of the dynami
s, we refer to the 
orresponding se
tions in Chapter 3. Itonly remains to pre
ise the dis
retization of the sele
tion operation. We 
onsider for example thefollowing dis
retization of the for
e exerted on the k-th repli
a on the time interval [i∆t, (i+1)∆t]:

∂Hk,∆t
λi+1/2

∂λ
=

1

2

(
∂Hλ(i∆t)

∂λ
(xi,k) +

∂Hλ((i+1)∆t)

∂λ
(xi+1,k)

)
.The mean for
e is then approximated by

FM,∆t
λi+1/2

=
1

M

M∑

k=1

∂Hk,∆t
λi+1/2

∂λ
.To get a time di
retization of the IPS, Pro
ess 4.1 is mimi
ked using the following rules:� the time integrals are 
hanged into sums;� the sele
tion times are de�ned as the �rst dis
rete times ex
eeding the exponential 
lo
ks

τb/d.Further details about the numeri
al implementation 
an be found in [291℄. Note that one 
an �ndmore elaborate methods of dis
retization of the IPS (see [290℄), but this one seems to be su�
ientin view of the intrinsi
 errors introdu
ed by the dis
retization of the dynami
s.4.2.4 Appli
ations of the IPS methodComputation of 
anoni
al averagesThe most obvious appli
ation of the IPS method is the 
omputation of phase-spa
e integrals,sin
e an unweighted sample of all Boltzmann distributions (µλ(t))t∈[0,T ] is generated. The sampleobtained 
an of 
ourse be improved by some additional sampling pro
ess (a

ording to a dynami
sleaving the target 
anoni
al measure invariant). This will de
orrelate the repli
as and may in
reasethe quality of the sample.We 
onsider for example a pentane mole
ule, and a 
ooling pro
ess from β = 1 to β = 2, inthe 
ase when the Lennard-Jones intera
tions involve only extremal atoms in the 
hain, so that
ǫCH3-CH3 = 0.29 and ǫCH3-CH2 = 0 (see Se
tion 3.4.1 for more pre
isions on the model). Thesimulations are done as follows. We �rst generate an initial distribution of 
on�gurations from
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esthe 
anoni
al measure at inverse temperature β = 1 using a 
lassi
al reje
tion method so thatno initial bias is introdu
ed. We then �rst perform a bare simulated annealing from β = 1 to
β = 2, using a Langevin dynami
s. We then 
ompare the resulting empiri
al distribution for thedihedral angles with the one arising from an IPS simulation. Figure 4.5 presents the results for
M = 10, 000, ∆t = 0.01 and T = 1, with a linear s
heme λ(t) = t/T .

Fig. 4.5. Empiri
al probability distribution of the dihedral angles (φ1, φ2) at β = 2 of the pentanemole
ule generated from a sample at β = 1, using simulated annealing (Left), and IPS (Right), withsample size M = 10, 000. The referen
e distribution is drawn in Figure 3.1 (Right).As 
an be seen in Figure 4.5, the distribution generated with IPS is mu
h 
loser to the referen
edistribution than the distribution generated with simulated annealing. Of 
ourse, as the time T isin
reased, the di�eren
e between both methods is redu
ed. However, this simple appli
ation showsthe interest of IPS for 
omputing distributions at low temperature starting from distributions ata higher temperature, even if the driving s
heme is quite fast. This is indeed almost always the
ase in pra
ti
e when there are several important metastable states.Initial guesses for path samplingThe problem of free energy estimation is deeply linked with the problem of sampling meaningfultransition paths (see also Se
tion 4.3). In the IPS method, one 
an asso
iate to ea
h repli
a Xk
t agenealogi
al 
ontinuous path (Xk,gen

s )s∈[0,t]. The latter is 
onstru
ted re
ursively as follows for arepli
a k (for 0 ≤ t ≤ T ):� at ea
h time t, set Xk,gen
t = Xk

t ;� at ea
h random time Tn when the repli
a jumps and adopts a new 
on�guration (say ofrepli
a l), set (Xk,gen
s )[0,Tn] = (X l,gen

s )[0,Tn].This path represents the an
estor line of the repli
a, and is 
omposed of the past paths sele
ted fortheir low work values. For the study of the set of genealogi
al paths, see [247℄ for a dis
ussion in thedis
rete time 
ase. However, let us mention that for a given t ∈ [0, T ], the set of genealogi
al pathsis sampled, in the limit M → ∞, a

ording to the law of the non-equilibrium paths (Xs)s∈[0,t]weighted by the fa
tor e−βWt (with statisti
al properties analogous to those of proposition 4.5).These paths are thus typi
al among non-equilibrium dynami
s of those with non-degenerate work.Therefore, they might be fruitfully used as non-trivial initial 
onditions for more spe
ialized pathsampling te
hniques (as e.g. [374℄).
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es 141A toy example of exploration abilitiesConsider the following family of Hamiltonians (Hλ)λ∈[0,1]:
Hλ(x) =

x2

2
+ λQ1(x) +

λ2

2
Q2(x) +

λ3

6
Q3(x) +

λ4

24
Q4(x) (4.56)with

Q1(x) =
−1

8x2 + 1
, Q2(x) =

−4

8(x− 1)2 + 1
,

Q3(x) =
−18

32(x− 3/2)2 + 1
, Q4(x) =

−84

64(x− 7/4)2 + 1
.Some of those fun
tions are plotted in Figure 4.6. This toy one-dimensional model is reminis
entof the typi
al di�
ulties en
ountered when µ0 is very di�erent from µ1. Noti
e indeed that severaltransitional metastable states (denoted by A and B in Figure 4.6) o

ur in the 
anoni
al distri-bution when going from λ = 0 to λ = 1. The probability of presen
e in the basins of attra
tion ofthe main stable states of H1 (C and D in Figure 4.6) is only e�e
tive when λ is 
lose to 1.

H
0

H
3/5

H
4/5

H
1

A 

B 

C D 

Fig. 4.6. Plot of some Hamiltonian fun
tions, as de�ned by (4.56).Simulations were performed at β = 13 with the overdamped Langevin dynami
s, and the aboveHamiltonian family (4.56). The number of repli
as was M = 1000, the time step ∆t = 0.003, and
λ is linear: λ(t) = t/T . Figure 4.7 presents the distribution of repli
as during a slow out ofequilibrium plain dynami
: T = 30. Figure 4.8 presents the distribution of repli
as during a fasterdynami
s with intera
tion: T = 15.When performing a plain out of equilibrium dynami
s (even 'slow') from λ = 0 to λ = 1,almost all repli
as are trapped by the energy barrier of these transitional metastable states (seeFigure 4.7). In the end, a very small (almost null) proportion of repli
as have performed interesting
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Fig. 4.7. Empiri
al densities (in dots) obtained using independant repli
as.
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Fig. 4.8. Empiri
al densities (in dots) obtained using intera
ting repli
as.paths asso
iated with low values of virtual workW . When using (4.7) to 
ompute thermodynami
alquantities, these repli
as bear almost all the weight of the degenerate sample, in view of theexponential weighting. The quality of the result therefore depends 
ru
ially on these rare values.On the 
ontrary, in the intera
ting version, the repli
as 
an perform jumps in the 
on�gurationspa
e thanks to the sele
tion me
hanism, and go from one metastable basin to another. In ourexample, as new transition states appear, only few 
lever repli
as are ne
essary to attra
t theothers in good areas (see Figure 4.8). In the end, all repli
as have the same weight, and the sampleis not degenerate. Noti
e also that the �nal empiri
al distribution is fairly 
lose to the theoreti
alone.We have also made a numeri
al estimation of the error of the free energy estimation, with 40realizations of the above simulation. The results are presented in Table 4.2, and show an importantredu
tion of standard deviation and bias up to a fa
tor 2 when using the IPS method.Table 4.2. Error in free energy estimation.Method Bias Varian
ePlain +0.25 0.19Intera
ting +0.15 0.10Appli
ation to the 
omputation of free energy di�eren
esOur numeri
al 
omparisons using (4.55) often turned out to give similar free energy estimationsfor the IPS method and the standard Jarzynski method. However, we have mostly 
onsidered the
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es 143issue of pure energeti
 barriers, where the di�
ulty of sampling 
omes from over
oming a singlehigh barrier. The observed numeri
al equivalen
e may be explained by the fa
t that the sele
tionme
hanism in the IPS method does not really help to explore those regions of high potential energy.When the sampling di�
ulties also 
ome from barriers of more entropi
 nature (e.g. a su
-
ession of very many transition states separated by low energy barriers), the IPS may improvethe estimation. Indeed, the sele
tion me
hanism helps keeping a statisti
al amount of repli
a inthe areas of high probability with respe
t to the lo
al Boltzmann distribution µλ throughout theswit
hing pro
ess (see the numeri
al example in testing the explotation ability). This relaxationproperty may be 
ru
ial to ensure at ea
h time a meaningful exploration ability.Gradual Widom insertionWe present here an appli
ation to the 
omputation of the 
hemi
al potential of a soft sphere�uid. This example was 
onsidered in [156,261℄ for example. We 
onsider a two-dimensional (2D)�uid of volume |Ω|, simulated with periodi
 boundary 
onditions, and formed of N parti
lesintera
ting via a pairwise potential V . The 
hemi
al potential is de�ned, in the NVT ensemble, as
µ =

∂F

∂N
,where F is the free-energy of the system. A
tually, the kineti
 part of the partition fun
tion Z
an be straightforwardly 
omputed, and a

ounts for the ideal gas 
ontribution µid. In the large

N limit, the 
hemi
al potential 
an be rewritten as [113℄
µ = µid + µex,with

µid = −β−1 ln

( |Ω|
(N + 1)Λ3

)
,where Λ is the �thermal de Broglie wavelength� Λ = h(2πmβ−1)−1/2 (with h Plan
k's 
onstant).The ex
ess part µex is

µex = −β−1 ln

(∫
ΩN+1 exp(−βV (qN+1)) dqN+1

|Ω|
∫
Ω

exp(−βV (qN )) dqN

)
,where V (qN ) is the potential energy of a �uid 
omposed of N parti
les. We restri
t ourselves topairwise intera
tions, with an intera
tion potential Φ. Then, V (qN ) =
∑

1≤i<j≤N Φ(|qi − qj |).Setting π(qN ) = Z−1 exp(−βV (qN )) (with Z =
∫
ΩN exp[−βV (qN )] dqN ) and ∆V (qN , q) =

V (qN+1) − V (qN ) with qN+1 = (qN , q), it follows
µex = −β−1 ln

(
1

|Ω|

∫

Ω

e−β∆V (q,qN )dπ(qN ) dq

)
. (4.57)The formula (4.57) 
an be used to 
ompute the value of 
hemi
al potential using sto
hasti
 methodssu
h as the free energy perturbation (FEP) method [380℄. In this 
ase, we �rst generate a sampleof 
on�gurations of the system a

ording to π, and then evaluate the integration in the remaining

q variable by drawing positions q of the remaining variable uniformly in Ω.Another possibility is to use fast growth methods, resorting to the following parametrization
Hλ(q

N+1, pN+1) =

N+1∑

i=1

p2
i

2m
+ Vλ(q

N+1) =

N+1∑

i=1

p2
i

2m
+ V (qN ) + λ∆V (qN , q).
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esIn this 
ase, the intera
tions of the remaining parti
le with the N �rst ones are progressivelyturned on.As in [156,261℄, we use a smoothed Lennard-Jones potential in order to avoid the singularity atthe origin (Let us however note that, on
e the parti
le is inserted, it is still possible to 
hange allthe potentials to Lennard-Jones potentials, and 
ompute the 
orreponding free-energy di�eren
e).The Lennard Jones potential reads here
ΦLJ(r) = 2ǫ

(
1

2

(σ
r

)12

−
(σ
r

)6
)
,and the modi�ed potential is

Φ(r) =




a− br2, 0 ≤ r ≤ 0.8 σ,

ΦLJ(r) + c(r − rc) − d, 0.8 σ ≤ r ≤ rc,

0, r ≥ rc.The values a, b, c are 
hosen so that the potential is C1. The distan
e rc is a pres
ribed 
ut-o�radius. We 
onsider the insertion of a parti
le in a 2D �uid of 25 parti
les, at a density ρσ3 = 0.8,with rc = 2.5 σ, βǫ = 1, ∆t = 0.0005, and a s
hedule λ(t) = t/T where T is the transition time.The results are presented in Table 4.3, for di�erent transitions times, but at a �xed 
omputational
ost, sin
e MT is 
onstant. Some work distributions are also depi
ted in Figure 4.9. A referen
evalue was 
omputed using FEP, with 108 insertions, done by running M = 103 independentLangevins dynami
s for the system 
omposed of N parti
les, for a time tFEP = 50 (after an initialthermalization time to de
orrelate the systems), and inserting one parti
le at random after ea
htime-step. The referen
e value obtained is µex = 1.32 kBT (±0.01 kBT ).Table 4.3. Free energy estimation for one realization of ea
h method, depending on the swit
hing time Tand the number of repli
as M used, keeping MT 
onstant. The results are averaged over 10 realizations,and are presented under the form < µ > (
p

Var(µ)). The referen
e value obtained through FEP is
µex = 1.32 kBT (±0.01 kBT ). Noti
e that the results are quite 
omparable.Method M = 105 M = 5 × 104 M = 2 × 104 M = 104

T = 1 T = 2 T = 5 T = 10Jarzynski 1.31 (0.015) 1.33 (0.017) 1.32 (0.023) 1.32 (0.038)IPS 1.37 (0.025) 1.35 (0.040) 1.33 (0.033) 1.32 (0.037)As 
an be seen from the results in Table 4.3, the IPS algorithm has a 
omparable a

ura
y toJarzynski's estimates provided the swit
hing time is long enough. However, the work distributionis very di�erent, and has a stable gaussian shape for all swit
hing rates 
onsidered, whereas thework distribution obtained through the fast growth method are mu
h wider (see in parti
ularFigure 4.9, Left), so that the relevant part of the work distribution (the lower tail) is only of smallrelative importan
e.4.3 Path sampling te
hniquesThe Transition Path Sampling (TPS) formalism, �rst proposed in [272℄ and further developpedin [80℄ (see also [34,81℄ for extensive reviews), is a strategy to sample only those paths that lead toa transition between metastable states. It also gives some information on the transition kineti
s,su
h as the rate 
onstant as a fun
tion of time or the a
tivation energies [78℄. Re
ent pra
ti
aland theoreti
al developments (su
h as Transition Interfa
e Sampling [355,356℄) are still aiming at
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Fig. 4.9. Left: Comparison of the work distribution for T = 1. Right: Comparison of the work distributionsfor T = 10. The IPS results appear in darker 
olors. The target value is 1.32 kBT . Noti
e that the IPSwork distribution is Gaussian with low varian
e even for the fast swit
hing simulation.in
reasing the power of the method. State of the art appli
ations of path sampling, su
h as [189℄,now involve as mu
h as 3, 000 atoms with paths about 3 ns long.Re
ently, relying on the Jarzynski formula [186, 187℄ (see also Se
tion 4.1), path samplingte
hniques have also been used to 
ompute free energy di�eren
es more e�
iently [261, 331, 374℄by pre
isely enhan
ing the paths that have the larger weights (whi
h 
orrespond to the unlikelylower work values). More pre
isely,
e−β∆F =

∫
e−βW(x) dπL(x)
∫

dπL(x)

,where dπL is a measure on a dis
rete path of length L, and W(x) is the work along a given path x.In the 
ase of the overdamped Langevin dynami
s (3.38) with λ(t) = t/(L∆t), the probability toobserve the path x = (q0, q∆t, . . . , qL∆t) is
dπL(x) = Z−1

L e−βV0(q0)
L∏

i=1

exp

(
− β

4∆t

∣∣q(i+1)∆t − qi∆t −∆t∇Vi/L(qi∆t)
∣∣2
)
dx,and the work is approximated by

W∆t(x) =
1

L

L∑

i=1

∂Vλ
∂λ

∣∣∣∣
λ=i/L

(qi∆t).Importan
e sampling te
hniques 
an then be used, su
h as rewriting
e−β∆F =

∫
e−βW(x)/2 dΠL(x)

∫
eβW(x)/2 dΠL(x)

,where the paths are sampled a

ording to the modi�ed measure dΠL(x) = e−βW(x)/2dπL(x), whi
henhan
es the paths with lower work values. Methods to sample paths 
an be found in [34,81,325℄.Many path sampling studies (espe
ially TPS studies) have used deterministi
 dynami
s (Pathsampling in the NVE ensemble has already been thoroughly studied, see [81℄ for a review). However,path sampling with sto
hasti
 dynami
s is of great interest for nonequilibrium simulations [74℄.
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esBesides, some models are sto
hasti
 by nature (see e.g [5℄ where the authors 
onsider a modelsystem of protein pulling in impli
it solvent, and a 
hemi
al rea
tion simulated with kineti
 MonteCarlo). Finally, we believe that there is room for improvement in the path sampling te
hniquesfor sto
hasti
 dynami
s. We therefore restri
t ourselves to the sto
hasti
 setting in this se
tion.To this date, the usual equilibrium sampling of paths with sto
hasti
 dynami
s is done eitherwith the usual shooting dynami
s inspired from the 
orresponding algorithm for deterministi
paths [81℄; or with the so-
alled "noise history" algorithm introdu
ed in [74℄, whi
h relies on thedes
ription of paths as a starting point and the sequen
e of random numbers used to generate thetraje
tory. It is one of our aims here to relate both strategies and generalize them by introdu
inga new way to propose paths: namely by generating random numbers 
orrelated with the onesused to generate the previous path. When the 
orrelation is zero, the usual shooting dynami
s isre
overed. When the 
orrelation is one everywhere ex
ept for some index along the path where it iszero, the noise-history algorithm is re
overed. This generalization may be useful for example whenthe dynami
s are too di�usive (Langevin dynami
s in the high fri
tion limit) sin
e the shootingdynami
s are ine�
ient in this limit; or to enhan
e the de
orrelation of the paths generated usingthe noise history algorithm.We also 
onsider nonequilibrium sampling of paths, using some swit
hing dynami
s onpaths [122℄, inspired from the Jarzynski out-of-equilibrium swit
hing in phase-spa
e [186, 187℄.This swit
hing 
an be performed whatever the underlying dynami
s on paths. It 
an be used totransform a sample of un
onstrained paths to rea
tive paths (ending up in some given region).This approa
h was already followed in [122℄, and allows to 
ompute rate 
onstants. However, the�nal sample of paths is very degenerate, and 
annot be used as a reliable equilibrium sample ofrea
tive paths. In the same vein, one 
ould imagine doing simulated annealing on paths (simulatedtempering on paths has already been investigated in [363℄), in order to obtain typi
al transitionpaths at temperatures where dire
t sampling is not feasible. However, unless the annealing pro
essis very slow, the �nal sample is usually not 
orre
tly distributed. We therefore also present theappli
ation to path sampling of the IPS birth/death pro
ess of Se
tion 4.2. The 
orrespondingreequilibration is of paramount importan
e for the end sample to be distributed a

ording to the
anoni
al measure on paths. Besides, sin
e the sample of paths follows the 
anoni
al distributionat all times, the properties of interest 
an be 
omputed in a single simulation for a whole range ofvalues. For example, the rate 
onstant 
ould be obtained for a whole range of temperatures, whi
hallows to 
ompute the a
tivation energy following the method presented in [78℄.This se
tion is organized as follows. We �rst present the path ensemble in Se
tion 4.3.1, and turnto equilibrium sampling of paths in Se
tion 4.3.2. We introdu
e in parti
ular in Se
tion 4.3.2 the"brownian tube" proposal fun
tion whi
h generalizes the previous algorithms for path samplingwith sto
hasti
 dynami
s, and 
ompare this new proposal fun
tions to the previous ones usingsome two-level sampling indi
ators. Finally, we present in Se
tion 4.3.3 the swit
hing dynami
son paths, with the IPS extension enabling a reequilibration of the paths distribution at all times,even when the swit
hing is done at a �nite rate.4.3.1 The path ensemble with sto
hasti
 dynami
sThe 
anoni
al measure on dis
retized pathsWe 
onsider a system of N parti
les, with mass matrixM = Diag(m1, . . . ,mN ), des
ribed by a
on�guration variable q = (q1, . . . , qN ), and a momentum variable p = (p1, . . . , pN ). The dimensionof the spa
e is denoted by d, so that qi, pi ∈ Rd for all 1 ≤ i ≤ N . We 
onsider sto
hasti
 dynami
sof the form
dXt = b(Xt) dt+ΣdWt, (4.58)
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hniques 147where the variable Xt represents either the 
on�gurational part qt, or the full phase spa
e variables
(qt, pt). The fun
tion b is the for
e �eld, the matrix Σ is the magnitude of the random for
ing,and Wt is a standard Brownian motion (the dimension of Wt depending on the dynami
s used).We restri
t ourselves in this study to the most famous sto
hasti
 dynami
s used in pra
ti
e,namely the Langevin dynami
s

{
dqt = M−1 pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,
(4.59)where Wt denotes a standard dN -dimensional Brownian motion, and with the �u
tuation-dissipation relation σ2 = 2γ/β. In this 
ase, the variable x = (q, p) des
ribes the system andthe energy is given by the Hamiltonian E(x) = H(q, p) = V (q) + 1

2p
TM−1p. Some studies (seee.g. [374℄) however resort to the overdamped Langevin dynami
s

dqt = −∇V (qt) dt+

√
2

β
dWt,in whi
h 
ase x = q and E(x) = V (q). The ideas presented in the sequel 
an of 
ourse bestraightforwardly extended to this 
ase.In pra
ti
e, the dynami
s have to be dis
retized. Considering a time step ∆t and a traje
torylength T = L∆t, a dis
rete traje
tory is then de�ned through the sequen
e

x = (x0, . . . , xL).Its weight is
π(x) = Z−1

L ρ(x0)

L−1∏

i=0

p(xi, xi+1), (4.60)where ρ(x0) = Z−1
0 e−βE(x0) is the Boltzmann weight of the initial 
on�guration, p(xi, xi+1) is theprobability that the system is in the state xi+1 
onditionally that it starts from xi, and ZL is anormalization 
onstant. This 
onditional probability depends on the dis
retization of the dynami
sused.Denoting by 1A(x),1B(x) the indi
ator fun
tions of some sets A,B de�ning respe
tively theinitial and the �nal states, the probability of a given rea
tive path between the sets A and B isthen

πAB(x) = Z−1
AB1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1)1B(xL). (4.61)Transition Path Sampling [80,81℄ aims at sampling the measure2 πAB, using in parti
ular Monte-Carlo moves of Metropolis-Hastings type.Dis
retization of the dynami
sWe present here a possible dis
retization of the Langevin dynami
s, and the 
orrespondingtransition probability p(xi, xi+1). This dis
retization, 
alled �Langevin Impulse� [310℄, relies on anoperator splitting te
hnique, and is more appealing from a theoreti
al viewpoint than previousdis
retizations (su
h as the BBK algorithm [45℄, or s
hemes proposed in [4℄). For parti
les of equalmasses (up to a res
aling of time, M = Id; the extension to the general 
ase is straightforward),the numeri
al s
heme we use here reads [310℄:
2 Noti
e that the measure πAB ≡ πL,∆t

AB depends in fa
t expli
itely on the length of the paths, and ofthe time steps used in pra
ti
e. See [147℄ for a 
ontinuous formulation using SPDEs. In this 
ase, themeasure on paths is formulated at a 
ontinuous level.
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



pi+1/2 = pi −
∆t

2
∇V (qi),

qi+1 = qi + c1 pi+1/2 + U1,i,

pi+1 = c0 pi+1/2 −
∆t

2
∇V (qi+1) + U2,i,

(4.62)with
c0 = exp(−γ∆t), c1 =

1 − exp(−γ∆t)
γ

.The 
entered gaussian random variables (U1,i, U2,i) with Uk,i = (u1
k,i, . . . , u

dN
k,i ) are su
h that

E
[
(ul1,i)

2
]

= σ2
1 , E

[
(ul2,i)

2
]

= σ2
2 , E

[
ul1,i · ul2,i

]
= c12σ1σ2,with

σ2
1 =

∆t

βγ

(
2 − 3 − 4e−γ∆t + e−2γ∆t

γ∆t

)
, σ2

2 =
1

β

(
1 − e−2γ∆t

)
, c12σ1σ2 =

1

βγ

(
1 − e−γ∆t

)2
.In pra
ti
e, the random ve
tors (U1,i, U2,i) are 
omputed from standard gaussian random ve
tors

(G1,i, G2,i) with Gk,i = (g1
k,i, . . . , g

dN
k,i ):

ul1,i = σ1 g
l
1,i, ul2,i = σ2

(
c12 g

l
1,i +

√
1 − c212 g

l
2,i

)
. (4.63)We will always denote by G standard gaussian random ve
tors in the sequel, whereas the notation

U refers to non-standard gaussian random ve
tors.Denoting by
d1 ≡ d1((qi+1, pi+1), (qi, pi)) =

∣∣∣∣qi+1 − qi − c1 pi + c1
∆t

2
∇V (qi)

∣∣∣∣ ,

d2 ≡ d2((qi+1, pi+1), (qi, pi)) =

∣∣∣∣pi+1 − c0 pi +
∆t

2
(c0∇V (qi) + V (qi+1))

∣∣∣∣ ,the 
onditional probability p((qi+1, pi+1), (qi, pi)) to be in the state xi+1 = (qi+1, pi+1) startingfrom xi = (qi, pi) reads
p(xi+1, xi) = Z−1 exp

[
− 1

2(1 − c212)

((
d1

σ1

)2

+

(
d2

σ2

)2

− 2c12

(
d1

σ1

)(
d2

σ2

))] (4.64)where the normalization 
onstant is Z =
(
2πσ1σ2

√
1 − c212

)−dN .4.3.2 Equilibrium sampling of the path ensembleThe most popular way to sample paths is to resort to a Metropolis-Hastings s
heme [153,238℄.Other approa
hes may be 
onsidered in some 
ases , see [81℄ for a review of alternative approa
hes.Those approa
hes however require some for
e evaluation (see e.g. [80℄ for a Langevin dynami
sin phase spa
e in the 
ase of a toy two-dimensional problem). But the for
e exerted on a path isproportional to ∇(lnπ), and is di�
ult to 
ompute in general sin
e it requires the evaluation ofse
ond derivatives of the potential in 
onventional phase spa
e.We �rst pre
ise some spe
i�ties of the Metropolis-Hastings algorithm, espe
ially when samplingrea
tive paths. We then re
all a usual te
hnique to propose paths in Se
tion 4.3.2, and generalizeit in Se
tion 4.3.2. We �nally propose some ben
hmarks to 
ompare the e�
ien
ies of all theseproposal fun
tions.
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hniques 149Metropolis-Hastings sampling te
hniques for path samplingFor a general introdu
tion to the Metropolis-Hastings s
heme, we refer to Se
tion 3.1.3. In the
ase of rea
tive paths, a study of the a

eptan
e rate asks to de
ompose the a

eptan
e/reje
tionpro
edure in two su

essive steps: (i) the proposition of a path starting from A and going to B;(ii) the a

eptan
e or reje
tion of su
h a path a

ording to the Metropolis-Hastings s
heme. Thedi�
ult step is the �rst one, sin
e paths bridging A and B are only a (small) subset of the wholepath spa
e. In parti
ular, di�usive dynami
s su
h as the overdamped Langevin dynami
s areoften not 
onvenient to propose bridging paths; the situtation is however better for dynami
s withsome inertia, su
h as the Langevin dynami
s. When the paths are 
onstru
ted using deterministi
dynami
s (NVE 
ase), some studies have shown that the optimal a

eptan
e rate is about 40 %for the 
ases under 
onsideration [81℄.For path sampling with sto
hasti
 dynami
s, the "shooting" proposal fun
tion is 
lassi
allyused [81℄. However, even for moderate values of the fri
tion 
oe�
ient γ in the Langevin dynami
s,this proposal fun
tion may have low a

eptan
e rates, espe
ially if the dimension of the system ishigh or/and the barriers to 
ross are large. An alternative way of proposing paths, relying on theso-
alled �noise history� of the paths [74℄ (i.e. the sequen
e of random numbers used to generatethe traje
tory from a given starting point) is to 
hange only one of the random numbers used andto keep the others. In this 
ase, a high a

eptan
e rate is expe
ted, but the paths generated maybe very 
orrelated.A natural generalization of both approa
hes is to rely on the 
ontinuity of the dynami
s withrespe
t to the random noise for
ing, and to propose a new traje
tory by generating new randomnumbers 
orrelated with the previous one. We 
all this approa
h the �brownian tube� proposal.In this 
ase, an arbitrary a

eptan
e rate 
an be rea
hed, and there is room for optimizing theparameters in order to really tune the e�
ien
y of the sampling.The shooting proposal fun
tionThe a

eptan
e rate of the Metropolis-Hastings algorithm is
r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
.The shooting te
hnique des
ribed in [81, Se
tion 3.1.5℄ 
onsists in the three following steps, startingfrom a path xn: Shooting algorithm for path samplingAlgorithm 4.1. Starting from some initial path x0, and for n ≥ 0,(1) sele
t an index 0 ≤ k ≤ L a

ording to dis
rete probabilities (wi)0≤i≤L (for examplea uniform probability distribution 
an be 
onsidered, unless one wants to in
rease trialmoves starting from 
ertain regions, for example the assumed transition region);(2) generate a new path (yk+1, . . . , yL) forward in time, using the sto
hasti
 dynami
s (4.59),with a new set of independently and identi
ally distributed (i.i.d.) gaussian randomve
tors (Un+1

i )k+1≤j≤L−1;(3) generate a new path (yk−1, . . . , y0) ba
kward in time, using a dis
retized "ba
kward"sto
hasti
 dynami
s 
orreponding to (4.59), with a new set of i.i.d. gaussian randomve
tors (U
n+1

i )0≤j≤k−1;(4) set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn.
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esIt remains however to pre
ise how the �ba
kward� part of the traje
tory is 
omputed in Step (3),whi
h determines the 
onditional probability p̄(yj+1, yj) to go to yj from yj+1 in a ba
kward man-ner. The proposition density P(x, ·) is then also determined. Indeed, The probability of generatinga path y = (y0, . . . , yL) from x, shooting forward and ba
kward from the k-th index, is
P(x, y) = wk

k−1∏

j=0

p̄(yj+1, yj)

L∏

j=k+1

p(yj−1, yj). (4.65)Noti
e that the previous path x is present only through the term yk = xk. It then follows
r(x, y) = min (1,1A(y0)1B(yL)cexact(x, y)) ,with

cexact(x, y) =
ρ(y0)

ρ(x0)

k−1∏

j=0

p(yj , yj+1)

p̄(yj+1, yj)

p̄(xj+1, xj)

p(xj , xj+1)
. (4.66)It is 
lear that, for reasonable dis
retizations, P 2(x, y) > 0 for all paths x, y of positive probability(under mild assumptions on the potential) so that the 
orreponding Markov 
hain is irredu
ible.Sin
e the measure (4.61) is left invariant by the dynami
s (this is a 
lassi
al property of Metropolis-Hastings s
heme), the 
orresponding Markov 
hain is ergodi
 [240℄. Noti
e also that it is enough to
onsider only the forward or the ba
kward integration steps for the ergodi
ity to hold, as long asboth have a positive probability to o

ur (and that the possible asymmetry in the 
orrespondingprobabilities is a

ounted for).Ba
kward integration of the traje
toryThere are two ways to generate proposal paths ba
kward in time (whi
h are pre
ised in spe
i�

ases in the remainder of this se
tion), using either(i) a time reversal (linked to some detailed balan
e property): The forward dynami
s are usedto generate the points yi from yi+1 in a time-reversed manner. This means that variablesodd with respe
t to time reversal (su
h as momenta) are inverted, and variables even withrespe
t to time reversal (su
h as positions) are kept 
onstant. Denoting by S the reversaloperator, Syi = yi = qi for overdamped Langevin dynami
s, and Syi = (qi,−pi) when

yi = (qi, pi) for Langevin dynami
s. The usual one-step integrator Φ∆t is then 
onsideredto integrate the 
orresponding traje
tory, using S2 = Id:
yi = (S ◦ Φ∆t ◦ S)yi+1The time-reversed 
onditional probability p̄TR(yi+1, yi) to go from yi to yi+1 is then

p̄TR(yi+1, yi) = p(Syi+1,Syi).The detailed balan
e assumption reads
ρ(yi) p(yi, yi+1) = ρ(yi+1) p(Syi+1,Syi).When this 
ondition is met with a good pre
ision, some 
an
ellations o

ur in the expres-sion (4.66) of the a

eptan
e rate [81℄. In this 
ase, the a

eptan
e rate

cexact(x, y) ≃ cTR(x, y) =
ρ(yi)

ρ(xi)
. (4.67)In the 
ase when yi = xi (whi
h is often the 
ase in pra
ti
e for path sampling on sto-
hasti
 paths), cTR(x, y) = 1. However, as will be pre
ised later in this se
tion, numeri
al
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hniques 151tests suggest that the detailed balan
e is not always met with a good pre
ision when thedynami
s are dis
retized with large time steps (whi
h is useful in order to avoid too longpaths), even if it is usually the 
ase in some mean sense for usual regimes. However, evenin those 
ases, it may be the 
ase that detailed balan
e is not ful�lled along a whole path(espe
ially sin
e unlikely regions of high gradients are somewhat enhan
ed), so that the
an
ellations mentionned above are not always stri
tly valid.(ii) a ba
kward integration: in this 
ase, the 
hange of variables t 7→ −t is done dire
tly in thenumeri
al s
heme, so that
yi = Φ−∆t(yi+1).The 
orresponding ba
kward probability will be denoted by p̄bck(yi+1, yi). The ba
kwards
hemes are su
h that a reversibility 
ondition is approximately met (sin
e Φ∆t◦Φ−∆t ≃ Id)

p(yi, yi+1) ≃ p̄bck(yi+1, yi),at least in some 
onditions that 
an be pre
ised on a spe
i�
 example.Let us emphasize that the above approximations are used in some 
omputations to obtain simplerexpression for the a

eptan
e rate, but their validity should be 
arefully 
he
ked in any 
ases, aswe now do.Ba
kward overdamped Langevin dynami
s.The time reversed version of the overdamped Langevin dynami
s is still the usual overdampedLangevin dynami
s for the Euler-Maruyama dis
retization
qi+1 = qi −∆t∇V (qi) +

√
2∆t

β
Ri, (4.68)

Ri being i.i.d. dN -dimensional random ve
tors. It holds
p(qi, qi+1) =

(
β

4π∆t

)dN/2
exp

(
− β

4∆t
|qi+1 − qi +∆t∇V (qi)|2

)
, (4.69)and

p̄TR(q2, q1) = p(q2, q1). (4.70)Therefore, time reversed paths are generated using the dis
retization (4.68), and a 
orre
tion hasto be a

ounted a

ording to (4.66). The validity of the redu
ed a

eptan
e rate (4.67) 
an be
he
ked by monitoring
RTR = max

{
cTR

cexact
,
cexact

cTR

}for the rea
tive paths generated. Noti
e that the ratio cTR/cexact is exa
tly 1 when the detailedbalan
e assumption is stri
tly ful�lled, so that RTR = 1 in this 
ase. Therefore, the validity ofthis assumption along the whole path is related to the magnitude of the values of RTR > 1 (sin
e
RTR ≥ 1 in all 
ases).The dis
retized ba
kward sto
hasti
 dynami
s are, for the overdamped Langevin dynami
s

qi−1 = qi +∆t∇V (qi) + σRi, (4.71)with σ2 = 2∆t/β, and where the random variables (Ri) are i.i.d. dN -dimensional standard Gaus-sian random ve
tors. Note already that the s
heme (4.71) is unstable in general (ex
ept nearsaddle points of the energy lands
ape) sin
e the sign of the for
e has to be 
hanged in a ba
kwardintegration, so that only small time steps must be 
onsidered. The resulting ba
kward 
onditional
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esprobability to be in qi−1 starting from qi is therefore
p̄bck(qi, qi−1) =

(
β

4π∆t

)dN/2
exp

(
− β

4∆t
|qi − qi−1 +∆t∇V (qi)|2

)
. (4.72)The reversibility assumption, made for example in [374℄, 
an also be 
he
ked here by 
omputing

Rbck = max

{
cbck

cexact
,
cexact

cbck

}for the rea
tive paths generated. The behavior of Rbck should be 
lose to the behavior of RTR.To test the above assumptions, we 
onsider the following one-dimensional double well potential:
V (x) = 0.5h(x− 1)2(x+ 1)2,where h is a fa
tor allowing to modify the barrier height at the transition state x = 0.We �rst test the detailed balan
e and reversibility assumptions, for a 
ertain range of timesteps and barrier height (the inverse temperature is set to β = 1). To this end, we sample ninitial 
on�gurations (qi)1≤i≤n of the system a

ording to the 
anoni
al measure (using a reje
tionalgorithm, so that no additional bias is added to the intrinsi
 statisti
al bias arising from the�nite size of the sample) and perform a realization of the one step moves using the integrations
heme (4.68). We denote by q̃j the out
ome for a given initial 
on�guration qj . We then 
omputethe quantities

〈rDB〉 =
1

n

n∑

j=1

rDB(qj , q̃j), 〈rrev〉 =
1

n

n∑

j=1

rrev(q
j , q̃j),with

rDB(q1, q2) =
ρ(q1) p(q1, q2)

ρ(q2) p̄TR(q2, q1)
, rrev(q1, q2) =

p(q1, q2)

p̄bck(q2, q1)
,where p, p̄TR and p̄bck are given by (4.69), (4.70) and (4.72) respe
tively. We also 
ompute theasso
iated varian
es. We then turn to the path sampling algorithm, using the above mentio-ned shooting algorithm with a forward and a ba
kward shooting (the dynami
s being either thetime reversed or the ba
kward dynami
s). The a

eptan
e/reje
tion step is done using the exa
trate (4.66), and the values RTR and Rbck are 
omputed over rea
tive paths of size L = 200∆t,with the sets A = [−1−δ,−1+δ], B = [1−δ, 1+δ]with δ = 0.2, and performing n = 105 iterationsof the path sampling algorithm. The 
anoni
al averages rDB and rrev are 
omputed using n = 106points. The results are presented in Table 4.4.The reversibility assumption is veri�ed for time steps and barrier heights small enough (whi
his usually not the interesting range of study for path sampling). Moreover, we studied here thisproperty from an average point of view, and it is expe
ted that the situation will get worse whenunlikely regions will be enhan
ed through the path sampling algorithm. Besides, even if the detailedbalan
e is almost veri�ed for one integration step, it is likely that the pre
ision will deterioratewhen 
onsidering su

essive integrations.As 
an be seen from the results, the reversibility assumption along the whole path is hardlyvalid, ex
ept for low barriers and small time steps. Besides, it may be the 
ase that the reversibilityassumption 
an be 
onsidered to hold as a 
anoni
al average (i.e. rrev is indeed 
lose to 1 with asmall varian
e), but not along a path3. The errors are somewhat magni�ed by the length of thepath, and the enhan
ement of the high gradient regions. However, the detailed balan
e assumptionis more easily veri�ed in pra
ti
e than the reversibility assumption. The a

eptan
e results showsthat few paths bridging initial and �nal states are proposed. The overdamped Langevin dynami
sis too errati
 to provide e�
ient proposals (the overall a

eptan
e rates are 1-2% at most).

3 See for example the 
ase ∆t = 2.5 × 10−3 with h = 20.
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hniques 153Table 4.4. Results for the reversibility and detailed balan
e study for the dis
retization (4.68) of theoverdamped Langevin dynami
s. All the results are presented under the form "〈A〉 (
p

Var(A))".Parameters rDB rrev RTR Rbck

∆t = 0.001 h = 0.5 1.000 (0.0003) 1.002 (0.0060) 1.001 (0.0007) 1.040 (0.0559)
∆t = 0.001 h = 1 1.000 (0.0005) 1.003 (0.0096) 1.002 (0.0015) 1.096 (0.1177)
∆t = 0.001 h = 2 1.000 (0.0011) 1.006 (0.0163) 1.003 (0.0027) 1.157 (0.1863)
∆t = 0.001 h = 10 1.000 (0.0075) 1.040 (0.0770) 1.017 (0.0149) 5.864 (6.777)
∆t = 0.001 h = 20 1.000 (0.0186) 1.094 (0.1838) 1.044 (0.0362) -
∆t = 0.0025 h = 1 1.000 (0.0021) 1.009 (0.0255) 1.006 (0.0056) 1.635 (1.640)
∆t = 0.0025 h = 10 1.001 (0.0307) 1.121 (0.3174) 1.084 (0.0786) 1.584× 105 (6.047 × 105)
∆t = 0.0025 h = 20 1.006 (0.0800) 1.471 (22.09) 1.244 (0.2809) -
∆t = 0.005 h = 1 1.000 (0.0059) 1.019 (0.0577) 1.021 (0.0230) 13.46 (153.0)
∆t = 0.005 h = 10 1.007 (0.0961) 1.573 (34.04) 1.363 (0.4454) -
∆t = 0.005 h = 20 1.053 (0.7521) 9431 (2.930 × 106) 2.107 (1.709) -Langevin dynami
s.We present �rst a numeri
al study similar to the one done for the overdamped Langevin 
ase.We do not 
onsider ba
kward integration using negative time steps (whi
h is even more unstablethan in the overdamped 
ase), and limit ourselves to proposal fun
tions for Langevin paths usingthe time reversed dynami
s. More pre
isely, we use the dis
retization (4.73), whi
h is a 
lassi
alintegration s
heme [4℄, traditionally used in transition path sampling:

{
qn+1 = qn + c1∆t p

n − c2∆t
2∇V (qn) +Wn

1 ,

pn+1 = e−γ∆tpn − (c1 − c2)∆t∇V (qn) − c2∆t∇V (qn+1) +Wn
2 ,

(4.73)where the random numbers are the same as in (4.62) (only the deterministi
 part of the dynami
s ismodi�ed). The time-reversing operation amounts to reverting the momenta, integrating forward intime, and reverting the momenta again. We also test the validity of a detailed balan
e assumption,both as a stati
 property, and along paths. The 
omputed variables rDB and RTR are de�ned asfor the overdamped 
ase.We 
onsider as a toy example the two-dimensional (2D) potential
V (x, y) =

1

6

[
4(1 − x2 − y2)2 + 2(x2 − 2)2 +

(
(x+ y)2 − 1

)2
+
(
(x− y)2 − 1

)2]
, (4.74)whi
h was introdu
ed in [80℄. The numeri
al study is 
ondu
ted in the same manner as for theoverdamped 
ase, and the results are presented in Table 4.5. The detailed balan
e assumption isindeed satis�ed with a very good a

ura
y for a broad range of parameters regimes. The detailedbalan
e along paths is also satis�ed with a good a

ura
y, though dis
repan
ies of the stati
 detai-led balan
e study are still somewhat magni�ed, and it 
ould be the 
ase in some more 
ompli
atedsituations (su
h as higher dimensional dynami
s with 
onstraints) that those dis
repan
ies be
omenon negligible. Further numeri
al studies suggest that the most in�uential parameter is the timestep ∆t.We also tested those assumptions on the model system for 
onformational 
hanges of Se
-tion 4.1.4. The 
anoni
al averages rDB are 
omputed using n = 105 iterations. The values RTR are
omputed over rea
tive paths of size L = 500∆t, at β = 1, using l0 = 1.3, σ = 1, ǫ = 1, w = 0.5,

∆t = 0.0025, with the sets A = {r(q) ≤ r0 + 0.6σ}, B = {r(q) ≥ r0 + 1.4σ}, and performing
n = 104 iterations of the path sampling algorithm.
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esTable 4.5. Results for the detailed balan
e study for the dis
retization (4.73) of the Langevin dynami
s.The 
anoni
al averages rDB are 
omputed using n = 106 points. The values RTR are 
omputed overrea
tive paths of size L = 200∆t, with the sets A = {|x + 1|2 + y2 ≤ δ}, B = {|x − 1|2 + y2 ≤ δ} with
δ = 0.6, and performing n = 105 iterations of the path sampling algorithm. All the results are presentedunder the form "〈A〉 (

p
Var(A))".Parameters rDB RTR

∆t = 0.02, ξ = 1, β = 1 1.000 (0.0002) 1.002 (0.0024)
∆t = 0.01, ξ = 1, β = 10 1.000 (0.0000) 1.001 (0.0014)
∆t = 0.025, ξ = 5, β = 5 1.000 (0.0004) 1.004 (0.0033)
∆t = 0.05, ξ = 2, β = 20 1.000 (0.0023) 1.022 (0.0180)Table 4.6. Results for the detailed balan
e study for the dis
retization (4.62) of the Langevin dynami
sin the WCA 
ase. All the results are still presented under the form "〈A〉 (

p
Var(A))".Parameters rDB RTR

h = 1 1.0000 (0.0031) 1.002 (0.0653)
h = 2 1.0000 (0.0031) 1.002 (0.0721)
h = 5 1.0000 (0.0032) 1.003 (0.0772)On
e again, as 
an be seen from the results of Table 4.6, the detailed balan
e assumption holdsin average with a very good a

ura
y, but there are noti
eable deviations from the detailed balan
eassumption along the paths.Time-reversal as a ba
kward integration s
hemeIn 
on
lusion, the previous results show that it is more appropriate to resort to time reversal.We will always denote in the sequel the random ve
tors used in this pro
ess by Ū . As also shownin the previous 
omputations, the mi
ros
opi
 reversibility ratio
Rrev(yi, yi+1) =

ρ(yi) p(yi, yi+1)

ρ(yi+1) p̄(yi+1, yi)is sometimes 
lose to 1, so that cexact(x, y) ≃ 1 and the a

eptan
e/reje
tion step is greatlysimpli�ed. However, this assumption should always be 
he
ked 
arefully using some preliminaryruns sin
e it is sometimes the 
ase that, even if the reversibility ratio rDB is 
lose to 1 pointwise(with a good approximation), it may be false that cexact(x, y) ≃ 1 along the path, espe
ially if thepaths are long.The brownian tube proposal fun
tionA path 
an also be 
hara
terized uniquely by the initial point x0 and the realization of thebrownian pro
ess Wt in (4.58). When dis
retized, the paths are then uniquely determined bythe sequen
e of gaussian random ve
tors U = (U0, . . . , UL−1) used to generate the traje
toriesusing (4.62) (or any dis
retization of another SDE). This was already noted in [74℄, where a newtraje
tory was proposed sele
ting an index at random and 
hanging only the gaussian randomnumber asso
iated with this index.Sin
e the traje
tory is 
ontinuous with respe
t to the realizations of the brownian motion, any
onvenient small perturbation of the sequen
e of random ve
tors is expe
ted to generate a path
lose to the initial path. Still denoting by p(xi, xi+1) the probability to generate a point xi+1 inphase-spa
e starting from xi, using the gaussian random ve
tors Ui and Ūi obtained from standardgaussian random ve
tors Gi and Ḡi, the transition probabilities for all 
lassi
al dis
retizations we
onsider 
an be writtten as
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p(xi, xi+1) = Z−1 exp

(
−1

2
GTi ΓGi

)
,and

p̄TR(xi+1, xi) = Z−1 exp

(
−1

2
ḠTi ΓḠi

)where Z is a normalization 
onstant. In the 
ase of the dis
retization (4.62) of the Langevinequation for example, Γ = V TV where the matrix V allows to re
ast the 
orrelated gaussianrandom ve
tors Ui = (U1,i, U2,i) (or Ūi) as standard and independent gaussian random ve
tors Gi(or Ḡi) through the transformation Ui = V Gi (or Ūi = V Ḡi) with (see Eq. (4.64))
V =




σ−1
1 IddN 0
c12

σ1

√
1 − c212

IddN
1

σ2

√
1 − c212

IddN


 .The idea is then to modify the standard gaussian ve
tors Gi by an amount 0 ≤ αi ≤ 1 as

G̃i = αiGi +
√

1 − α2
iRi, (4.75)where Ri is a 2dN -dimensional standard gaussian random ve
tor. A fra
tion αi is asso
iated withea
h 
on�guration xi along the path. The usual shooting dynami
s is re
overed with αi = 0 forall i (all the Brownian in
rements are un
orrelated with respe
t to the Brownian in
rements ofthe modi�ed path), whereas the so-
alled 'noise history' algorithm proposed in [74℄ 
orrespondsto αi = 0 for all i but one i0 for whi
h αi0 = 1 (in this 
ase, all the Brownian in
rements but oneare re-used).The dynami
s we propose looks like the shooting dynami
s:Brownian tube proposalAlgorithm 4.2. Starting from some initial path x0, and for n ≥ 0,(1) sele
t an index 0 ≤ k ≤ L a

ording to dis
rete probabilities (wi)0≤i≤L (for examplea uniform probability distribution 
an be 
onsidered, unless one wants to in
rease trialmoves starting from 
ertain regions, for example the assumed transition region);(2) 
ompute a new random gaussian ve
tor starting from the previous one, using (4.75);(3) generate a new path (yk+1, . . . , yL) forward in time, using the sto
hasti
 dynami
s (4.59),with a new set of independently and identi
ally distributed (i.i.d.) gaussian randomve
tors (Un+1

i )k+1≤j≤L−1;(4) generate a new path (yk−1, . . . , y0) ba
kward in time, using a dis
retized "ba
kward"sto
hasti
 dynami
s 
orreponding to (4.59), with a new set of i.i.d. gaussian randomve
tors (U
n+1

i )0≤j≤k−1;(5) set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn.It remains to pre
ise the proposition fun
tion P(x, y). Denoting by (Ḡxi )0≤i≤k−1, (Gxi )k≤i≤L−1the standard random gaussian ve
tors asso
iated with the path x (the �rst ones arise from thetime reversed integration, the last ones from a usual foward integration), it follows
P(x, y) = wk

∏

0≤i≤k−1

pαi(Ḡ
x
i , Ḡ

y
i )

∏

k≤i≤L−1

pαi(G
x
i , G

y
i ),where wk still denotes the probability to 
hoose k as a shooting index, and
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pα(G, G̃) =

(
1√

2π(1 − α2)

)dN
exp

(
− (G̃− αG)T (G̃− αG)

2(1 − α2)

)
.A tuning of the 
oe�
ients αi 
an then be performed in order to get the best trade-o� betweena

eptan
e (whi
h tends to 1 in the limit αi = 1 for all i) and de
orrelation (whi
h arises inthe limit αi → 0). An interesting idea 
ould be that α has to be 
lose to 1 in regions where thegenerating moves have a 
haoti
 behavior (in the sense that even small perturbations to a path leadto large 
hanges to this path), and 
ould be smaller in regions where the generating moves haveless impa
t on the paths (so as to in
rease the de
orrelation). From a more pra
ti
al point of view,a possible approa
he to obtain su
h a trade-o� to propose a fun
tional form for the 
oe�
ients

αi and to perform short 
omputations to optimize the parameters with respe
t to some obje
tivefun
tion. Some simple 
hoi
es for the form of the 
oe�
ients αi, involving only one parameter (sothat the optimization pro
edure is easier), are:(i) 
onstant 
oe�
ients αi = α;(ii) set αi = 1 far from the shooting index, and αi 
lose to 0 near the shooting index. This 
anbe done by 
onsidering αi = min(1,K|i− k|) for some K ≥ 0.From our experien
e, the e�
ien
y is robust enough with respe
t to the 
hoi
e of the 
oe�
ients
αi. Noti
e also that the se
ond fun
tional form allows to re
over both the usual shooting and thenoise-history algorithm, respe
tively in the regimes K → 0 and K ≥ 1. It is therefore expe
tedthat, optimizing the e�
ien
y with respe
t to K ∈ [0, 1], both the shooting algorithm and thenoise-history algorithm should be outperformed.Intrinsi
 measure of e�
ien
yOur aim here is to propose some abstra
t measure of de
orrelation between the paths, so as tomeasure some di�usion in path spa
e. This approa
h 
omplements the 
onvergen
e tests based onsome observable of interest for the system. We refer to [81℄ for some examples of relevant quantitiesto monitor (and appli
ations to path sampling with deterministi
 dynami
s).The intrinsi
 de
orrelation is related to the existen
e of some distan
e or norm on path spa
e.Given a distan
e fun
tion d(x, y), the quantity

Dp(n) =

(∫ ∫
[d(y, x)]p Pn(x, dy) dπ(x)

)1/p(with p ≥ 1) pre
ises the average amount of de
orrelation with respe
t to the distan
e d for themeasure π on the path ensemble. Noti
e that two averages are taken: one over the initial paths x,and another over all the realizations of the Monte Carlo iterations starting from x (i.e. over allthe possible end paths y, weighted by the probability to end up in y starting from x). In pra
ti
e,assuming ergodi
ity, Dp(n) is 
omputed as
Dp(n) = lim

N→+∞

(
1

N

N∑

k=1

dp(xk+n, xk)

)1/p

.Usual 
hoi
es for p are p = 1 or p = 2. This last 
ase is 
onsidered in [59℄ sin
e a di�usive behaviorover the spa
e is expe
ted with sto
hasti
 dynami
s, the most e�
ient algorithms having thelargest di�usion 
onstants limn→+∞
√
D2(n)/n.It then only remains to pre
ise the distan
e d, whi
h depends on the system of interest. Somesimple 
hoi
es are to(i) 
onsider a (weighted) norm || · || on the whole underlying phase-spa
e (for position orposition/momenta variables) and set
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d(x, y) =

(
1

L

L∑

i=0

ωi||xi − yi||p
′

)1/p′with p′ ≥ 1;(ii) 
onsider only a proje
tion of the 
on�gurations onto some submanifold, su
h as the levelsets of a given (not ne
essarily 
ompletely relevant) rea
tion 
oordinate or order parame-ter ξ:
d(x, y) =

(
1

L

L∑

i=0

ωi|ξ(xi) − ξ(yi)|p
′

)1/p′

,with p′ ≥ 1.(iii) align the paths proje
ted onto some submanifold around a given value of the rea
tion
oordinate ξ:
d(x, y) =

(
1

2K + 1

K∑

i=−K
ωi|ξ(xI+i) − ξ(yJ+i)|p

′

)1/p′

, (4.76)with p′ ≥ 1, and I, J su
h that ξ(xI) = ξ(yJ) = ξ∗ where ξ∗ is �xed in advan
e (forexample, if A is 
hara
terized by ξ = 0 and B by ξ = 1, then ξ∗ 
ould be 1/2). The integer
K represents some maximal window frame so that the distan
e is really restri
ted to aregion around the expe
ted or assumed transition point. In the 
ase when J−K, I−K < 0or J +K, I +K > L, the sum is a

ordingly restri
ted to less than 2K + 1 points.The weights ωi should be non-negative in all 
ases.A reasonable 
hoi
e for non-trivial systems is for example to use (4.76) with p′ = 1 and ωi = 1.This approa
h ensures that the de
orrelations arising in the initial and �nal basins A and B aredis
arded, and that only the de
orrelation arising near the transition region are important. Inthis sense, we term this de
orrelation as 'lo
al de
orrelation' sin
e we measure how di�erent thetransition me
hanisms are. As a measure of 'global de
orrelation', we will 
onsider the transitiontimes. A numeri
al study based on those lines is presented below.Numeri
al resultsWe test the di�erent proposal fun
tions on the model system of 
onformational 
hanges ofSe
tion 4.1.4. We 
onsider the distan
e (4.76) for rea
tive paths (π ≡ πAB in this 
ase), using

p = p′ = 1 and ωi = 1, ξ(q) = |q1 − q2|, ξ∗ = r0 + w. We use the parameters L = 500∆t,
β = 1, N = 16 parti
les of masses 1, l0 = 1.3, σ = 1, ǫ = 1, w = 0.5, ∆t = 0.0025, with the sets
A = {ξ(q) ≤ r0 + 0.6w}, B = {ξ(q) ≥ rB = r0 + 1.4w} and averaging over a total of n = 5 × 104Monte Carlo moves. We set K = 30 sin
e the typi
al length of the transitions is about 60 timesteps with the parameters used here.We also 
onsider the 
orrelation in the transition times. We denote by τ(x) the transition indexof some path x. Here, those indexes τ are su
h that ξ(qτ∆t) = ξ∗. The 
orrelation fun
tion for thisobservable is therefore, in the 
ase of rea
tive paths,

C(n) =

∫ ∫
(τ(y) − 〈τ〉πAB )(τ(x) − 〈τ〉πAB )Pn(x, dy) dπAB(x)

∫
(τ(x) − 〈τ〉πAB )2 dπAB(x)

,with 〈τ〉πAB =
∫
τ(x)dπAB(x) This observable is in some sense 
omplementary to the measure ofde
orrelation in the transition zone de�ned above sin
e it measures some global spatial de
orrela-tion of the paths. In pra
ti
e, assuming ergodi
ity, C is approximated as
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C(n) = lim

N→+∞

1

N

N∑

k=1

τ(xn+k)τ(xk) −
(

1

N

N∑

k=1

τ(xn+k)

)(
1

N

N∑

k=1

τ(xk)

)

1

N

N∑

k=1

τ(xk)2 −
(

1

N

N∑

k=1

τ(xk)

)2 .Figures 4.10 to 4.12 present some plots of D(n) and C(n) for h = 5, 10, 15, for the usualshooting dynami
s, the noise-history algorithm, and the brownian tube proposal (with αi = 0.8for all i). The average a

eptan
e rates are also presented in Table 4.7. Noti
e that no shiftingmoves [81℄ are used in order to 
ompare the intrinsi
 e�
ien
ies of the proposal fun
tions. It islikely that these moves would help improving the de
orrelation rate of the sampling.
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Fig. 4.10. Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h = 5. Left:Plot of the 
orrelation of the transition times C(n) (related to some global sampling e�
ien
y). Right:Plot of D(n) (lo
al sampling e�
ien
y) for the brownian tube proposal with α ≡ 0.8 (solid line), usualshooting dynami
s (dashed line), and noise history (dotted line)..
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Fig. 4.11. Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h = 10..For the shooting algorithm, many paths are reje
ted so that the lo
al de
orrelation (measuredby D(n)) is rather poor, espe
ially at short algorithmi
 times and for high barriers (in any 
ases,lower than for the brownian tube proposal). But when a path is a

epted, it is already veryde
orrelated from the previous one, so that the global de
orrelation (measured by C(n)) is indeedde
reasing rapidly enough. For the noise-history algorithm, the pi
ture is somewhat inverted:sin
e the a

eptan
e rate is very high, even for high barriers, the lo
al de
orrelation is quite
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Fig. 4.12. Comparison of e�
ien
ies for di�erent Metropolis-Hastings proposal moves for h = 15..Table 4.7. A

eptan
e rate (%) as a fun
tion of h for the three proposal fun
tions 
onsidered.
h 5 10 15Shooting 24.4 18.1 15.2Noise history 96.7 85.7 81.2Brownian tube (αi = 0.8) 47.2 48.1 33.0e�
ient, but the global de
orrelation is not sin
e small lo
al 
hanges make it di�
ult to 
hangethe global features of the paths. The brownian tube approa
h tries to balan
e the lo
al and globalde
orrelations. This is also re�e
ted by a more balan
ed a

eptan
e/reje
tion rate.In 
on
lusion, the brownian tube proposal with the above 
orrelation fun
tion is the moste�
ient sampling s
heme in the 
ase 
onsidered here. The e�
ien
y 
ould be further in
reasedby a more systemati
 tuning of the parameters of the 
orrelation fa
tors αi, possibly dependingon the shooting index k. In general, sin
e the usual proposal fun
tions are spe
i�
 
ases of thebrownian tube proposal fun
tion, it is expe
ted that there is always a parameter range su
h thatthis new algorithm outperforms the previous ones.4.3.3 (Non)equilibrium sampling of the path ensembleThe previous se
tion was dealing with equilibrium sampling of paths. However, when (free)energy barriers in path spa
e are large, dire
t sampling of paths 
an be ine�
ient, sin
e theexisten
e of metastable path sets may 
onsiderably slow down the numeri
al 
onvergen
e. It istherefore appealing to perform some kind of simulated annealing on paths. A regular simulatedannealing strategy would be to �rst sample paths at a higher temperature, and then to 
ool thesample to the target temperature (see [363℄ for a simulated tempering version of su
h an idea).Rea
tive paths 
an also be otained by 
onstraining progressively the paths to end up in B. Thisapproa
h also has the ni
e feature that it does not ask for an initial guess to start sampling πAB.Finally, a byprodu
t of su
h a swit
hing is the ratio of partition fun
tions in path spa
e
C(L∆t) =

ZAB(L∆t)

ZA(L∆t)
, (4.77)where ZA, ZAB are su
h that

πA(x) = ZA(L∆t)−1
1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1),
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esand
πAB(x) = ZAB(L∆t)−1

1A(x0)ρ(x0)
L−1∏

i=0

p(xi, xi+1)1B(xL)are probability measures. The fun
tion C in (4.77) has to be 
omputed at least on
e to obtain rate
onstants in pra
ti
e [81℄. The asso
iated free-energy di�eren
e in path spa
e is ∆FA→AB(L∆t) =

− ln(C(L∆t)).We start this se
tion by re
alling the extension of the 
lassi
al swit
hing dynami
s for nonequi-librium dynami
s in phase spa
e to nonequilibrium swit
hing between path ensembles [122℄. Thismethod is 
onvenient to 
ompute free energy di�eren
es, but the �nal sample of paths obtained isvery degenerate. We therefore present the appli
ation to path sampling of a birth/death pro
essintrodu
ed in [289, 292℄ (see also Se
tion 4.2), whi
h allows to keep the sample at equilibriumat all times during the swit
hing. This equilibration may be important in some 
ases to 
om-pute the right free energy values [292℄, and allows in any 
ases to end up with a non-degeneratesample of paths and redu
e the empiri
al varian
e. We will fo
us in the sequel on swit
hing from
onstrained to un
onstrained paths, but an extension to simulated annealing (
ooling pro
ess) isstraightforward.Swit
hing between ensembles of pathsWe present in this se
tion the approa
h of [122℄, where the swit
hing from un
onstrained to
onstrained path ensembles is done by enfor
ing progressively the 
onstraint on the end pointof the path over a time interval [0, T ]. The 
onstraint is usually parametrized using some orderparameter. This order parameter is the same as the one used for usual 
omputations of rea
tionrates in the TPS framework (and even for more advan
ed te
hniques su
h as Transition Interfa
eSampling (TIS) [355,356℄). The point is that this approximate order parameter needs not to be a�good� rea
tion 
oordinate (or a 
omplete one) sin
e the general path sampling approa
h shouldhelp to get rid of some problems arising from a wrong 
hoi
e of order parameter (see e.g [354℄ fora re
ent study on this topi
).Assuming an order parameter is given, we 
an 
onsider a swit
hing s
hedule λ = (λ0, . . . , λn)su
h that λ0 = 0 and λn = 1 and a family of fun
tions hλ su
h that
h0 = 1, h1 = 1B.We also introdu
e the family of probability measures asso
iated with the fun
tions hλ:

πλ(x) = Z−1
L,λ1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1)hλ(xL). (4.78)We omit in the sequel the expli
it dependen
e of the partition fun
tions Z on L and ∆t. Anenergy Eλ(x) 
an then formally be asso
iated to a path x as
πλ(x) = Z−1

L,λe
−Eλ(x).The aim is to sample from π1 ≡ πAB, whi
h is usually a di�
ult task, and sometimes not dire
tlyfeasible. It may be easier to use a sample of π0 = πA (whi
h is mu
h easier to obtain), and totransform it through some swit
hing dynami
s into a (weighted) sample of π1. Starting from apath xk,0, the weight fa
tor for a resulting path xk,n is of the form e−W

k,n whereW k,n is the workexerted on an un
onstrained path to 
onstrain it to end in B. We now pre
ise the way the workis 
omputed.Consider an un
onstrained initial path x0 = (x0
0, . . . , x

0
L) sampled a

ording to π0, and adis
rete s
hedule (λ0, . . . , λn). The dynami
s in path spa
e is as follows:
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hniques 161Nonequilibrium swit
hing on pathsAlgorithm 4.3 (See Ref. [122℄). Consider an initial 
on�guration x0 generated from π0.Starting from W 0 and m = 0,(1) Repla
e λm by λm+1;(2) Update the work as Wm+1 = Wm + Eλm+1(xm) − Eλm(xm);(3) Do a Monte Carlo path sampling move using a Metropolis-Hastings s
heme with themeasure πλm+1 (using for example the usual shooting moves with a Langevin dynami
s,or the Monte Carlo move designed for path swit
hing presented below), so that the
urrent path xm is transformed into the new path xm+1.This pro
edure is repeated for independent initial 
onditions xk,0, so that a sample of M endpaths (x1,n, . . . , xM,n) with weights (e−W
1,n

, . . . , e−W
M,n

) is obtained. Besides, an estimation ofthe rate 
onstant is given by the exponential average
CM (L∆t) = − ln

(
1

M

M∑

k=1

e−W
k,n

)
,and it 
an be shown that CM → C when M → +∞.Sin
e the realizations of the swit
hing pro
edure are independent provided the initial 
onditionsare independent, the random variables {e−Wk,n}k are i.i.d. A 
on�den
e interval 
an be obtainedfor CM as

C−
M,σc

≤ CM ≤ C+
M,σc

,with
C±
M,σc

= − ln

(
1

M

M∑

k=1

e−W
k,n ± σc

√
VM
M

)
,where the empiri
al varian
e is

VM =
1

M − 1

M∑

k=1

(
e−W

k,n − 1

M

M∑

l=1

e−W
l,n

)2

.A 
on�den
e interval on the free energy di�eren
e is then
− lnC−

M,σc
≤ ∆FA→AB ≤ − lnC+

M,σc
.For example, the 95 % 
on�den
e interval 
orresponds to σc = 1.96.Of 
ourse, as usual for nonequilibrium swit
hings, it may the 
ase that the varian
e of the workdistribution is large, so that only very few paths are relevant (and the 
on�den
e interval for therate 
onstant is large), so that an equilibration in the vein of Se
tion 4.2 may be interesting.Enhan
ing the number of relevant pathsWe present here an extension of the IPS equilibration to the 
ase of path sampling. Then,ea
h path has weight 1 in the end, and the �nal sample (x1,n, . . . , xM,n) is distributed a

ordingto π1 ≡ πAB (provided the swit
hing is slow enough and the number of repli
as is large enough;therefore, Mn∆t should be large enough). More pre
isely, we 
onsider the
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esIPS equilibration of the nonequilibrium path swit
hingAlgorithm 4.4. Consider an initial distribution (x1,0, . . . , xM,0) generated from π0. Generateindependent times τk,b, τk,d from an exponential law of mean 1. Consider two additionalvariables Σk,b, Σk,d per repli
a, initialized at 0.(1) Repla
e λm by λm+1;(2) Update the works as W k,m+1 = W k,m + ∆Ek,m = W k,m + Eλm+1(xk,m) − Eλm(xk,m),and 
ompute the mean work update ∆Em = M−1
∑

1≤k≤M ∆Ek,m;(3) (Di�usion step) Do a Monte Carlo path sampling move using a Metropolis-Hastingss
heme with the measure πλm+1 , so that xk,m is transformed into xk,m+1.(4) (Birth/death pro
ess) Update the variables Σk,b and Σk,d as
Σk,b = Σk,b + β(∆Em −∆Ek,m)−,and
Σk,d = Σk,d + β(∆Em −∆Ek,m)+.(Death) If Σk,d ≥ τk,d, sele
t an index m ∈ {1, . . . ,M} at random, and repla
e the k-thpath by the m-th path. Generate a new time τk,d from an exponential law of mean 1,and set Σk,d = 0;(Birth) If Σk,b ≥ τk,b, sele
t an index m ∈ {1, . . . ,M} at random, and repla
e the m-thpath by the k-th path. Generate a new time τk,b from an exponential law of mean 1,and set Σk,b = 0;In this 
ase, an estimation of the rate 
onstant is given by the simple average
CM (L∆t) =

1

M

M∑

k=1

W k,n,and it 
an be shown that CM → C when M → +∞. A 
on�den
e interval for the free energydi�eren
e 
an be obtained as in Se
tion 4.3.3 as
CIPS,−
M,σc

≤ CIPS
M ≤ CIPS,+

M,σc
,with

CIPS,±
M,σc

=
1

M

M∑

k=1

W k,n ± σc

√
V IPS
M

M
,the empiri
al varian
e being

V IPS
M =

1

M − 1

M∑

k=1

(
W k,n − 1

M

M∑

l=1

W l,n

)2

.Spe
i�
 Monte-Carlo moves for swit
hing from un
onstrained to 
onstrained pathensemblesWhen an interpolating fun
tion hλ appearing in (4.78) (or, equivalently, some order parameter
ξ) is known, it is possible to in
rease the likeliness of the end point of the traje
tory by performinga move on the last 
on�guration in the dire
tion opposite to ∇hλ(q) while keeping the randomve
tors used for the transitions. These moves should of 
ourse be employed with other MC moves,
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hniques 163espe
ially MC moves relying on some traje
tory generation, in order to relax the shift towardhigher values of hλ or ξ.More pre
isely, using for example an overdamped Langevin dynami
s to update the end 
on�gu-ration, the asso
iated Metropolis-Hastings Monte-Carlo elementary step is, starting from a path xfor a parameter λ (in the Langevin dynami
s setting):Spe
ifi
 Monte-Carlo swit
hing moveAlgorithm 4.5. Starting from a path x = (x0, . . . , xL),(1) Compute the sequen
e of 2dN -dimensional random ve
tors (Ūi)0≤i≤L−1 asso
iated withthe ba
kward (time-reversed) integration from xL to x0;(2) Compute a �nal 
on�guration as qyL = qxL + δλ∇ξ(qxL) + (2δλ/β)1/2G where G is a
d-dimensional random gaussian ve
tor;(3) Integrate the path ba
kward (time-reversed) starting from yL, using the noises
(Ūi)0≤i≤L−1 to obtain a path y = (y0, . . . , yL). The probabilty P(x, y) to obtain ystarting from x is therefore the probability to obtain yL from xL, so that

P(x, y) = pswitch(xL, yL) =

(
β

4πδ2λ

)d/2
exp

(
− β

4δλ
|qyL − qxL − δλ∇ξ(qxL)|2

)
.(4) A

ept the new path y with probability

r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
= min

(
1,

1A(y0)ρ(y0)

1A(x0)ρ(x0)

pswitch(yL, xL)

pswitch(xL, yL)

)
.The magnitude δλ 
an be made to depend a priori on λ. It is then adjusted in prati
e on the�y by �rst 
omputing the values of the gradient for the endpoint of ea
h repli
a, in order to ensurethat the displa
ement is small enough.Numeri
al resultsWe 
ompute here free energy di�eren
es asso
iated with 
onstraining paths for the WCA modelsystem introdu
ed in Se
tion 4.1.4. This is done either with plain nonequilibrium swit
hing, orwith the IPS equilibration. Let us noti
e that the energy is �xed in [122℄ while we rather have to�x the temperature in the sto
hasti
 setting, so that a straightforward 
omparison of the resultsis not possible. We set β = 1 in the sequel. The other parameters are the same as in [122℄:

N = 9 parti
les, h = 6, σ = 1, ǫ = 1, the parti
le density ρ = 0.6σ−2, w = 0.25, and the sets
A = {ξ(q) ≤ ξA = 1.3σ}, B = {ξ(q) ≥ ξB = 1.45σ}. The traje
tory length is L = 320∆t and
∆t = 0.0025, so that L∆t = 0.8(mσ2/ǫ)1/2.We perform a total of n MC moves (using the brownian tube proposal fun
tion (with αi =

α = 0.8 for all 0 ≤ i ≤ L− 1). The fun
tion hλ is the one given in [122℄:
hλ(q) = e−λK(1−1B(q))(ξB−ξ(q))with K = 100. The swit
hing s
hedule is λi = (i/n)2.A typi
al free energy di�eren
e pro�le is presented in Figure 4.13 forM = 2000 and n = 10000,as well as the asso
iated weights for the plain nonequilibrium swit
hing. These weights are theJarzynski weights renormalized by the total weight (in order to de�ne a probability distribution):

wk =
e−W

k,n

∑M
l=1 e−W l,n

. (4.79)
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esTable 4.8. Free energy di�eren
es ∆FA→AB 
omputed for di�erent swit
hing lengths n, using a sampleof M = 2000 paths. The results are presented under the form "CM (C−
M,σc

−C+
M,σc

)" with σc = 1.96 (thevalue 
orresponding to a 95 % 
on�den
e interval).
M n Ba
kward Forward IPS (forward)2000 2000 4.83 (4.61-5.02) 5.43 (5.28-5.61) 4.82 (4.78-5.85)2000 5000 5.34 (5.04-5.58) 5.41 (5.32-5.50) 5.19 (5.16-5.23)2000 10000 5.45 (5.32-5.58) 5.40 (5.34-5.46) 5.40 (5.36-5.43)2000 15000 5.42 (5.35-5.49) 5.40 (5.35-5.45) 5.45 (5.42-5.48)Noti
e that the sample is very degenerate sin
e very many paths have negligible weights, and therelevant paths are exponentially rare. Re
all also that the paths all have weight 1 with the IPSalgorithm.Some free energy di�eren
es are presented in Table 4.8 for di�erent values of n (keeping M�xed). The swit
hings are slow enough when the 
on�den
e intervals for free energy di�eren
es
omputed by 
onstraining paths ('forward' swit
hing) overlap with 
on�den
e intervals for freeenergy di�eren
es obtained by starting from a sample of 
onstrained paths and removing progres-sively the 
onstraint ('ba
kward' swit
hing). This is the 
ase here for n = 5000, 10000, 15000 (butnot when n = 2000). The results show that IPS agrees with the usual Jarzynski swit
hing, the
on�den
e interval on the results being however lower.
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Fig. 4.13. Left: Free energy pro�le for a forward swit
hing, 
omputed forM = 2000 and n = 104, using aplain nonequilibrium swit
hing. Right: Histogram of the weights wk of the �nal sample as given by (4.79).We also present in Figure 4.14 a �nal sample 
omputed using a quite fast swit
hing (n = 1000)with a small sample of paths (M = 100). Noti
e that all the 100 paths generated with the IPSswit
hing are rea
tive, in 
ontrast with the paths generated by a straightforward swit
hing inthe Jarzynski way. Besides, as a 
onsequen
e of the degenera
y of paths, only 8 paths in 100have a signi�
ant weight (larger than 0.05 when normalized by the total weight, see (4.79)).This simple example shows why it is di�
ult to 
ompute averages over the �nal sample of pathswhen performing plain nonequilibrium swit
hing, and why it may be interesting to resort to somesele
tion pro
ess to prevent su
h a degenera
y.In agreement with a previous study [292℄, the results show that the IPS algorithm allows toredu
e the varian
e on the estimates and to end up the simulation with a well-distributed andnon-degenerate sample, provided the swit
hing is slow enough.
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Fig. 4.14. Comparison, for a nonequilibrium swit
hing of paths for M = 100 systems in n = 1000 stepswithout (Left) or with IPS (Right). Only the paths having a weight greater than 0.05 are plotted in solidlines when plain nonequilibrium swit
hing is used (the other paths are plotted in dotted lines).4.4 Adaptive 
omputation of free energy di�eren
esMethods relying on nonequilibrium dynami
s follow the pioneering work of Jarzynski [187℄,or use some adaptive dynami
s su
h as the Wang-Landau approa
h [368℄, the adaptive biasingfor
e (ABF) [75, 76, 157℄, or the nonequilibrium metadynami
s [46℄. These approa
hes use thewhole history of the exploration pro
ess to bias the 
urrent dynami
s in order to for
e the es
apefrom metastable sets. This is done by simultaneously estimating the free energy from an evolvingensemble of 
on�gurations of the dynami
s, and using this estimate to bias the dynami
s, so thatthe e�e
tive free energy surfa
e explored is �attened. In the long time limit, the bias exa
tly givesthe a
tual free energy pro�le. Adaptive methods 
ould therefore be seen as umbrella samplingwith an evolving potential. This was already noti
ed in a previous study presenting an adaptivedynami
s as a 'self-healing umbrella sampling' [227℄.To present the adaptive methods mentioned above in a general and unifying framework, itis 
onvenient, as is done in [46℄, to 
onsider ensemble of realizations (see Eq. (4.83)). The sys-tem is then des
ribed by the distribution of the 
on�gurations of this ensemble in the limit ofan in�nite number of repli
as simulated in parallel. The key point is to reformulate the 
ompu-tation of the bias of adaptive dynami
s, using 
onditional distributions (that is, distribution ofthe 
on�gurations for a given value of the rea
tion 
oordinate) of the latter sample. This wasalready proposed in [101℄ in the equilibrium 
ase, and is somewhat impli
it in [46℄. This 
on
ept
lari�es the presentation of adaptive methods, allows mathemati
al proofs of 
onvergen
e [207℄ orat least, existen
e of a stationary state of the dynami
s (still in the 
ase of an in�nite numberof repli
as), and suggests natural numeri
al strategies: the dis
retization may be done througha parallel implementation of several repli
as of the system, whi
h all 
ontribute to 
onstru
t thefree energy pro�le. Su
h a parallel implementation was already proposed in [275℄ in the 
ase ofmetadynami
s. We show here how an additional sele
tion pro
ess on the repli
as 
an enhan
e thesampling of the rea
tion 
oordinates in 
omparison with a straightforward parallel implementation.This se
tion is organized as follows. In Se
tion 4.4.1, we des
ribe the general formalism foradaptive dynami
s, using 
onditional probabilities, and show how to update the biasing potentialin order to 
ompute the free energy pro�le in the longtime limit, using a �xed-point strategy. Someappli
ations of this formalism are then presented, whi
h allow to re
over the usual adaptive dy-nami
s su
h as the nonequilibrium metadynami
s, the Wang-Landau s
heme or the ABF method.We then dis
uss possible parallel implementation strategies. In parti
ular, it is shown how a se-le
tion pro
ess 
an enhan
e the straightforward parallel implementation. This is �nally illustrated
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esby numeri
al results for a toy model of 
onformational 
hanges. In Se
tion 4.4.2, we then presenta rigorous proof of 
onvergen
e for a spe
i�
 adaptive dynami
s in the ABF spirit, using entropyestimates. The proof uses on a de
omposition of the entropy into a ma
ros
opi
 entropy (relatedto the distribution of the values of the rea
tion 
oordinate) and a mi
ros
opi
 entropy (dependingon the distribution of the 
onditioned measures, for a �xed value of the rea
tion 
oordinate), andrelies on the assumption that the 
onditioned measure satisfy a logarithmi
 Sobolev inequality,with a 
onstant independent of the value of the rea
tion 
oordinate.4.4.1 A general framework for adaptive methodsFor a system des
ribed by a potential V (q), the Boltzmann measure in the 
anoni
al ensembleis Z−1 exp (−βV (q)) dq (where Z is a normalization 
onstant, the so-
alled partition fun
tion).We 
onsider in this se
tion a rea
tion 
oordinate ξ, taking values in the one dimensional torus,or in the interval [0, 1]. In the latter 
ase, re�e
ting boundary 
onditions for the dynami
s on thetwo extremal values ξ(q) = 0, ξ(q) = 1 are used. Re
all that the free energy (or potential of meanfor
e (PMF)) to be 
omputed is de�ned up to an additive 
onstant by the normalization of aBoltzmann average of the 
on�gurations restri
ted to a given value of the rea
tion 
oordinate (seeSe
tion 4.1.2 for more details):
F (z) = −β−1 ln

∫

M
exp(−βV (q)) δξ(q)−z . (4.80)and the asso
iated mean for
e is

F ′(z) =

∫

M
fV (q) exp(−βV (q)) δξ(q)−z
∫

M
exp(−βV (q)) δξ(q)−z

, (4.81)with the lo
al for
e given by
fV =

∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

)
. (4.82)Here and in the sequel, we denote by F ′ the derivative of F with respe
t to z.Adaptive dynami
s are de�ned through the dynami
s used, whi
h di
tates the distribution ofthe 
on�gurations at equilibrium, a biasing potential, and the way this potential is updated (seebelow for a heuristi
 derivation in the equilibrium 
ase motivating the general setting).Traje
tories t 7→ Qt are 
omputed a

ording to some dynami
s whi
h are ergodi
 with respe
tto the Boltzmann measure when the potential is time-independent. For instan
e, the Langevindynami
s or the overdamped Langevin dynami
s may be used. We will denote by ψt(q) the distri-bution (or density) of 
on�gurations at time t. This distribution will be used to update the biasingpotential Fbias.From a pra
ti
al point of view, when M repli
as (Qi,Mt )i=1,...,M of the system are simulatedin parallel, the density of states ψt(q) is approximated by the instantaneous distribution of therepli
as

ψt(q) = lim
M→+∞

1

M

M∑

i=1

δQi,M
t −q. (4.83)In some 
ases, the density of states 
an also be approximated using the distribution of 
on�gura-tions along the traje
tory, relying on some ergodi
 assumption.The de�nition of adaptive methods requires the de�nition of two important quantities obtainedfrom the distribution ψt(q). The �rst one is the distribution ψξt of the rea
tion 
oordinate values,
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h is, from a mathemati
al perspe
tive, the marginal law of ψt with respe
t to ξ:
ψξt (z) =

∫

M
ψt(q) δξ(q)−z . (4.84)This quantity will be useful to propose a biasing potential (see Eqs. (4.91)-(4.93)). Another im-portant quantity is the 
onditional average of some fun
tion h for some �xed value of the rea
tion
oordinate:

〈h〉t,z =

∫

M
h(q)ψt(q) δξ(q)−z

∫

M
ψt(q) δξ(q)−z

. (4.85)Su
h averages are used to propose biasing for
es (see Eqs. (4.92)-(4.94)).The biasing potentialIn adaptive dynami
s, the intera
tion potential is time-dependent:
Vt(q) = V (q) − Fbias(t, ξ(q)). (4.86)The biasing potential Fbias, whose pre
ise form varies a

ording to the method under study,depends only on q through the rea
tion 
oordinate value ξ(q) and is updated using the history ofthe 
on�gurations. It is expe
ted that this biasing potential 
onverges (up to an additive 
onstant)toward the free energy F given by (4.80) in the long-time limit, so that the equilibrium distributionof the rea
tion 
oordinate is the uniform distribution.The key idea 
ommon to all adaptive methods is to resort to a �xed point strategy, in order forthe observed free energy to 
onverge to a 
onstant or the mean for
e to vanish, and the dynami
sto rea
h equilibrium (see the updates (4.88) or (4.90) in the equilibrium 
ase and (4.93) or (4.94)in the nonequilibrium 
ase).Updating the biasing potential - The equilibrium 
aseTo derive a possible form for the biasing potential, let us �rst assume that the system isinstantaneously at equilibrium with respe
t to the biased potential Vt, i.e. Qt has density ψeq

t (q) =

Z−1
t exp(−βVt(q)). In this 
ase, resorting to (4.80), the observed free energy (see (4.91) for a generalde�nition) is

−β−1 ln

∫

M
ψeq
t (q) δξ(q)−z = F (z) − Fbias(t, z) + β−1 lnZt. (4.87)Thus, for a 
hara
teristi
 time τ to be 
hosen, an update of Fbias of the form

∂tFbias(t, z) = −β
−1

τ
ln

∫

M
ψeq
t (q) δξ(q)−z (4.88)is su
h that F ′

bias(t) → F ′ when t → +∞ exponentially fast with rate 1/τ . Noti
e that we statedthe 
onvergen
e in terms of the mean for
e, be
ause, in view of the 
onstant term β−1 lnZt inEq. (4.87), the potential of mean for
e only 
onverges up to a 
onstant to the true potential ofmean for
e.Similar 
onsiderations hold for the mean for
e: repla
ing the potential V with Vt given by (4.86),and resorting to (4.81)-(4.82), the observed mean for
e (see (4.92) for a general de�nition) is
∫

M
fVt(q)ψeq

t (q) δξ(q)−z
∫

M
ψeq
t (q) δξ(q)−z

= F ′(z) − F ′
bias(t, z), (4.89)
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essin
e fVt(q) = fV (q) − F ′
bias(t, ξ(q)). An update of F ′

bias(t) of the form
∂tF

′
bias(t, z) =

1

τ

∫
M fVt(q)ψeq

t (q) δξ(q)−z(dq)∫
M ψeq

t (q) δξ(q)−z(dq)
(4.90)is therefore su
h that F ′

bias(t) → F ′ when t→ +∞ exponentially fast with rate 1/τ .Updating the biasing potential - The nonequililibrium 
aseNow, in general, the system is not at equilibrium for the potential Vt: ψt 6= ψeq
t . We use theabove pro
edure as a guideline to update the biasing potential Fbias(t, z). To derive equations forthe biasing potential, let us �rst de�ne two quantities. The �rst one is the observed free energy orthe observed potential of mean for
e, de�ned as

Fpot,obs(t, z) = −β−1 ln

∫

M
ψt(q) δξ(q)−z . (4.91)This quantity 
an be interpreted as the free energy asso
iated with the ensemble of 
on�gurationswith density of states ψt(q) (see Eq. (4.80)). The observed free energy Fpot,obs(t, z) is high whenthe number of visited states with rea
tion 
oordinate value z is small. In the long-time limit, thedistribution of the rea
tion 
oordinate is expe
ted to be uniform, so that the observed free energyis 
onstant.In the same way, the observed mean for
e is de�ned as the 
onditional average of the time-dependent biasing for
e for a given value of the rea
tion 
oordinate:

F ′
force,obs(t, z) =

∫

M
fVt(q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

=

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

− F ′bias(t, z). (4.92)This quantity 
an be interpreted as the mean for
e asso
iated with ψt(q) (see Eqs. (4.81)-(4.82)),minus the biasing for
e at time t. It is expe
ted to vanish in the long-time limit, so that the
orresponding observed free energy is also 
onstant.The �xed point strategy relies on two di�erent ways of updating the bias (the updating fun
tions
gt and Gt are in
reasing fun
tions su
h that Gt(0) = 0):(i) The �rst strategy, whi
h may be 
alled Adaptive Biasing Potential (ABP) method, is thegeneralization of (4.88) to the nonequilibrium 
ase. The bias is updated in its potentialform, preferably in
reased (resp. de
reased) for rea
tion 
oordinate values su
h that theobserved free energy is high (resp. low):(ABP) ∂tFbias(t, z) = gt(Fpot,obs(t, z)); (4.93)(ii) The se
ond strategy, the usual ABF method, generalizes (4.90). The bias is updatedthrough the mean for
e: the biasing for
e is in
reased (resp. de
reased) for rea
tion 
oor-dinate values su
h that the observed mean for
e is positive (resp. negative):(ABF) ∂tF

′bias(t, z) = Gt(F
′
force,obs(t, z)). (4.94)Let us emphasize at this point that the ABF and the ABP methods yield very di�erent biasingdynami
s, sin
e the derivative of (4.91) with respe
t to z is di�erent from (4.92) (This is not the
ase when the system is at equilibrium: the derivative of (4.88) with respe
t to z is equal to (4.90)).This di�eren
e be
omes 
riti
al for multi-dimensional rea
tion 
oordinates, where the biasing for
eno longer derives from a potential in general.
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y of the methodLet us show that within this formalism, any stationary state of the ABP or ABF methodsgives the true mean for
e F ′ to be 
omputed (and therefore the true PMF up to an additive
onstant). For a stationary state where the biasing potential has 
onverged to Fbias(∞), the ergo-di
ity property of the dynami
s ensures that samples of 
on�gurations of the system are distributeda

ording to ψ∞ = Z−1
∞ exp[−β(V − Fbias(∞, ξ))].The observed free energy or mean for
e given by Eqs. (4.91) and (4.92) then both verify

F ′
pot,obs(∞, z) = F ′

force,obs(∞, z) = F ′(z) − F ′bias(∞, z). The updating equations Eqs. (4.93)and (4.94) yield respe
tively
g∞(F (z) − Fbias(∞, z)) = 0, (4.95)
G∞(F ′(z) − F ′bias(∞, z)) = 0, (4.96)so that (taking the derivative with respe
t to z in (4.95)) F ′bias(∞) = F ′ in both 
ases thanksto the stri
t monotoni
ity of the updating fun
tions. Let us also noti
e that, at 
onvergen
e, thevalues of the rea
tion 
oordinate are distributed uniformly: ∫M ψ∞(q) δξ(q)−z = 1.However, let us emphasize that we did not give any 
onvergen
e result at this point. Wemerely showed that, if the dynami
s 
onverges, then the limiting state is the 
orre
t one. To prove
onvergen
e starting from an arbitrary initial distribution is a di�
ult task, and 
an only be donefor 
ertain dynami
s (see the 
orresponding results in Se
tion 4.4.2).Appli
ation to usual adaptive dynami
s and 
onvergen
e resultsWe present in this se
tion some appli
ations of the above formalism, and show that the usualadaptive methods 
an indeed be re
overed. This is summarized in Table 4.9, whi
h gives a 
lassi-�
ation of adaptive methods.Table 4.9. Classi�
ation of adaptive methods.Adaptive Biasing For
e (∂tF ′

bias) Adaptive Biasing Potential (∂tFbias)Dimension n (V ) ABF [75,76, 157℄ ABP [368℄Dimension n+ 1 (V µ) m-ABF m-ABP [46,275℄Metadynami
sAdaptive strategies 
an be used with metadynami
s. The 
on�guration spa
e is extended by
onsidering an additional variable z representing the rea
tion 
oordinate, and the dynami
s isdenoted t 7→ (Qt, Zt). The asso
iated extended potential in
orporates a 
oupling between this newvariable and the rea
tion 
oordinate ξ:
V µ(q, z) = V (q) +

µ

2
(z − ξ(q))2,for some (large) µ > 0. In this 
ase, the new rea
tion 
oordinate 
onsidered is ξmeta(q, z) = z andthe free energy is thus given by:

Fµ(z) = −β−1 ln

∫

M
exp(−βV µ(q, z)) dq.It is easy to 
he
k that, up to an additive 
onstant, Fµ → F as µ→ +∞, with F given by (4.80).The adaptive strategies presented above applied to this extended dynami
s allow to re
over the free



170 4 Computation of free energy di�eren
esenergy Fµ. The 
orresponding dynami
s may be 
alled meta-Adaptive Biasing Potential (m-ABP)and meta-Adaptive Biasing For
e (m-ABF) methods.Strategies relying on biasing potentials are reminis
ent of �ooding strategies [140℄ su
h as thenonequilibrium metadynami
s [46℄. The latter is an example of an m-ABP method, where thebiasing potential is applied to the extended variable. The updating fun
tion does not depend ontime and is given by gt(x) = −γ exp(−βx) for some 
onstant γ > 0. The ensemble of 
on�gurationused in the adaptive update is obtained from M repli
as (Qi,Mt , Zi,Mt ) running in parallel, so that
ψt(q, z) ≃

1

M

M∑

i=1

δ(Qi,M
t ,Zi,M

t )−(q,z).The resulting biasing potential at time t penalizes the values of the rea
tion 
oordinate alreadyvisited a

ording to (see (4.93)):
Fbias(t, z) ≃ FMbias(t, z) = − γ

M

M∑

i=1

∫ t

0

δZi,M
s −z ds. (4.97)In the 
ase of an overdamped Langevin dynami
s withM = 1 for example, the resulting equationsof motion are therefore:





dQt = −∇V (Qt) dt+ µ(Zt − ξ(Qt))∇ξ(Qt) dt+
√

2β−1 dWQ
t ,

dZt = −µ(Zt − ξ(Qt)) dt+
√

2β−1 dWZ
t − γ∇z

(∫ t

0

δZs−z ds

)
dt,where the pro
esses WQ

t , WZ
t are independent standard Brownian motions. When in the lastequation and in (4.97) the Dira
 masses δZt−z are dis
retized using Gaussian fun
tions, the no-nequilibrium metadynami
s des
ribed in [46, 275℄ are re
overed. We also refer to [46℄ for an erroranalysis.The Wang-Landau algorithmAnother famous instan
e of an ABP dynami
s, usually de�ned in dis
rete spa
es, is the Wang-Landau algorithm [368℄. The biasing potential is 
onstru
ted in a similar fashion to (4.97), withoutextending the 
on�guration spa
e and with only one repli
a. The updating fun
tion is modi�edduring time as gt(x) = −γ(t) exp(−βx), so that
Fbias(t, z) = −

∫ t

0

γ(s) δξ(Qs)−z ds. (4.98)If γ(t) → 0 slowly enough, it is possible to prove the 
onvergen
e of the dynami
s, the rate of
onvergen
e of γ(t) being 
ontrolled by the nonuniformity of the histogram of the time distributionof the rea
tion 
oordinate (see [14℄ for more pre
isions on the 
onvergen
e results).The ABF methodThe usual ABF bias [157℄ is given by averaging the lo
al for
e fV over the 
on�gurationsvisited by the system. It is re
overed in the formalism we propose by 
onsidering one repli
a of thesystem, and an updating fun
tion of the form Gt(x) = γx in the limit γ → ∞. This gives indeed:
F ′bias(t, z) =

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

. (4.99)
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e there is only one repli
a, the density ψt(s) is approximated by a traje
torial distribution,for example
ψt(q) ≃

1

T

∫ t

t−T
δQs−q ds (4.100)for some averaging time T > 0 and t > T .For a rigorous 
onvergen
e result of the ABF algorithm with the update (4.99) in the 
ase ofan overdamped Langevin dynami
s with an in�nite number of repli
as, see [207℄ and Se
tion 4.4.2.Pra
ti
al implementation strategiesRelying on the de�nition (4.83) of the distribution of 
on�gurations, adaptive dynami
s 
anbe easily parallelized by using a large number M of repli
as that intera
t through the biasingpotential or the biasing for
e. We �rst show in this se
tion how to dis
retize the dynami
s andthe biasing potential, and then, how this implementation 
an be improved using some sele
tionpro
ess.Dis
retization of the biasing potentialIn order to 
ompute in pra
ti
e the 
onditional or marginal distributions needed to updatethe biasing potential, there are basi
ally two approa
hes, relying either on ergordi
 limits or onensemble averages. Both approa
hes may be 
ombined in pra
ti
e in order to obtain smoothpro�les. For example, when only a limited number of repli
as M is used, the density ψt(q) givenby (4.83) is not regular, and some lo
al averaging is ne
essary (see e.g. Eq. (4.101)).We detail the implementation in the ABF 
ase for example. The ABP 
ase 
an be treated in asimilar way (see also [275℄). The instantaneous 
onditional average of some fun
tion h is typi
allyapproximated by

〈h〉t,z ≃ 〈h〉Mt,z =

M∑

i=1

h(Qi,Mt )δǫz(ξ(Q
i,M
t ))

M∑

i=1

δǫz(ξ(Q
i,M
t ))

,where Qi,Mt is the i-th repli
a at time t and δǫz is some approximation of the Dira
 distribution δz,su
h as a gaussian fun
tion with standard deviation ǫ or the indi
ator fun
tion of an interval ofsize ǫ. In order to regularize these averages over the repli
as, some time averagings may be used(as in (4.100)) su
h as
〈h〉t,z ≃

∫ t

0

Kτ (t− s)

[
M∑

i=1

h(Qi,Ms )δǫz(ξ(Q
i,M
s ))

]
ds

∫ t

0

Kτ (t− s)

[
M∑

i=1

δǫz(ξ(Q
i,M
s ))

]
ds

, (4.101)or
〈h〉t,z ≃

∫ t

0

Kτ (t− s)

[∑M
i=1 h(Q

i,M
s )δǫz(ξ(Q

i,M
s ))

∑M
i=1 δ

ǫ
z(ξ(Q

i,M
s ))

]
ds, (4.102)with a 
onvolution kernel Kτ (t). For instan
e, Kτ (t) = 1t≥0τ

−1e−t/τ . Many other regularizationsrelying on a (lo
al) ergodi
ity property 
ould of 
ourse be used.Enhan
ing the sampling through a sele
tion pro
essA general strategy to improve the straightforward parallel implementation (4.83) is to add asele
tion step to dupli
ate "innovating" repli
as (repli
as lo
ated in regions where the sampling of
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esthe rea
tion 
oordinate is not su�
ient), and kill "redundant" ones. One way to perform an e�
ientsele
tion is to 
onsider an additional jump pro
ess quanti�ed by a �eld S(t, z) over the rea
tion
oordinate values. Ea
h repli
a traje
tory (Qi,Ms ) is then weighted by exp(
∫ t
0
S(s, ξ(Qi,Ms )) ds),whi
h naturally gives birth/death probabilities for the sele
tion me
hanism, in the spirit of Se-quential Monte Carlo (SMC) methods [84℄ or Quantum Monte Carlo methods (QMC) [13℄ (seealso Se
tion 4.2, espe
ially for a possible numeri
al implementation using birth and death times).A possible 
hoi
e is

S = c
∂zzψ

ξ
t

ψξt
, (4.103)where c is a positive 
onstant. This method thus enhan
es repli
as in the 
onvex areas of thedensity ψξt , where free energy barriers still need to be over
ome. When 
onvergen
e has o

ured,

ψξt is uniform and the sele
tion me
hanism vanishes.Consider for example the modi�ed overdamped Langevin dynami
s
dQt = −∇(V + 2β−1 ln |∇ξ| − Fbias(t, ξ))(Qt) |∇ξ|−2(Qt) dt

+
√

2β−1 |∇ξ|−1(Qt) dWt, (4.104)with the update (4.99): F ′
bias(t, z) = 〈fV 〉t,z. The pro
ess Wt is the standard Brownian motion.This dynami
s is the usual overdamped Langevin dynami
s for the potential Vt when |∇ξ| = 1.Noti
e that in the 
ase of a metadynami
s-like implementation ('m-ABF'), the modi�ed dynami
sis a
tually the usual overdamped Langevin dynami
s sin
e ξmeta(q, z) = z and thus |∇ξmeta| = 1.For the dynami
s (4.104), the distribution ψξt of the rea
tion 
oordinate satis�es (see Se
tion 4.4.2)

∂tψ
ξ
t = β−1∂zzψ

ξ
t .When the sele
tion step is used with the overdamped Langevin dynami
s (4.104), it 
an be shownthat the distribution of the rea
tion 
oordinate values ψξt still satis�es a simple di�usion equation,but with a higher di�usion 
onstant:

∂tψ
ξ
t = (β−1 + c)∂zzψ

ξ
t .This method thus enhan
es the di�usion in the rea
tion 
oordinate spa
e, but the 
onvergen
erate is still limited by the relaxation in ea
h submanifold ξ(q) = z.Numeri
al resultsWe �nally present an appli
ation of the sele
tion strategy proposed above to the model sys-tem of 
onformational 
hange in solution of Se
tion 4.1.4. In pra
ti
e, the Dira
 distribution areapproximated by indi
ator fun
tions of intervals of size ∆z = 0.05. The parameters used for these
omputations are N = 16 parti
les, at parti
le density ρ = N/l2 = 0.25σ−2, σ = 1, w = 0.7, ǫ = 1and h = 20, β = 5. We 
onsiderM = 2000 repli
as evolving a

ording to an overdamped Langevindynami
s, with a time step ∆t = 10−4. The referen
e 
omputation is done with M = 5000 repli-
as and averaging the mean for
e pro�le on the time interval [5, 10]. The pro�les are regularizedin time by using (4.102) with τ/∆t = 100. The initial 
onditions are su
h that the dimer bondlengths of all repli
as are 
lose to r0. We 
onsider in the sequel the interval [z0, z1] = [1.1, 2.55](sin
e r0 ≃ 1.122, r0 + 2w ≃ 2.522 and ∆z = 0.05), 
ontaining n = 30 bins.We present in Figure 4.15 free energy di�eren
e pro�les (averaged over K = 100 independentrealizations) obtained with the parallel ABF dynami
s (4.99), with and without the birth/deathsele
tion term (4.103) (with c = 10), at a �xed time tfigure = 0.1. The standard deviation of thepro�les (F ′

1, . . . , F
′
K) for K independent realizations is
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σF ′(z) =

√√√√ 1

K − 1

K∑

k=1

(F ′
k(z) −F ′(z))2,where F ′(z) = 1

K

∑K
k=1 F

′
k(z) is the mean for
e averaged over all the realizations. The asso
iated95% 
on�den
e intervals (or errors bars) are

[F ′
−(z), F ′

+(z)] =

[
F ′(z) − 1.96√

K
σF ′(z), F ′(z) +

1.96√
K
σF ′(z)

]
. (4.105)The 
urves plotted in solid lines in Figure 4.15 are the averages F ′, and the 
urves plotted indashed lines are F ′

− and F ′
+. Noti
e that the mean for
e pro�le obtained when the sele
tionpro
ess is turned on is 
onverged (sin
e the 
urves F ′, F ′

−, F ′
+ and the referen
e 
urve are almostindistinguishable).
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Fig. 4.15. Free energy di�eren
e pro�les obtained with the parallel ABF algorithm (in redu
ed units), fora time tfigure = 0.1 and averaged over K = 100 independent realizations: with birth/death pro
ess (c = 10)and without birth/death pro
ess. The 
urve 
orresponding to the referen
e 
omputation 
oin
ides withthe 
urve obtained when the sele
tion is turned on. Solid line: average mean for
e; dashed lines: upperand lower bounds of the 95% 
on�den
e intervals (see Eq. (4.105)).The 
omparison with the referen
e pro�le shows that the sele
tion pro
ess improves the rateof 
onvergen
e of the algorithm and a

elerates the exploration pro
ess on the free energy surfa
e.Indeed, the pro�le obtained when the sele
tion pro
ess is turned on is very qui
kly really 
loseto the referen
e pro�le. On the other hand, with a straightforward parallelization, only a smallfra
tion of repli
as has es
aped from the initial free energy metastable state at time tfigure toexplore the free energy metastable set 
orresponding to bond lengths around r0 + 2w.To pre
ise these qualitative features, we further perform two quantitative studies for severalvalues of c:(i) Tables 4.10 and 4.11 make pre
ise the 
onvergen
e of the pro�les to the referen
e pro�lein a quantitative way. The measure of error we 
onsider is
δF = max

z0≤z≤z1
|F(z) − Fref(z)|,
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eswhere Fref is the referen
e pro�le, and F(z) =
∫ z
z1
F ′ is the averaged potential of meanfor
e, obtained as the integral of the mean for
e averaged over all the realizations. Inpra
ti
e, we 
onsider the following approximated deviation between PMF pro�les:

δFn = max
0≤i≤n

∣∣∣∣∣∣

i∑

j=1

F ′(sj) − F ′
ref(sj)

∣∣∣∣∣∣
∆z. (4.106)A 95% 
on�den
e interval is obtained as [δ−Fn, δ+Fn], with

δ±Fn = max
0≤i≤n

∣∣∣∣∣∣

i∑

j=1

F ′(sj) ±
1.96√
K
σF ′ (sj) + F ′

ref(sj)

∣∣∣∣∣∣
∆z.(ii) Figure 4.16 presents the fra
tion of repli
as whi
h have 
rossed the free-energy barrier(averaged aver the K = 100 realizations), i.e. the instantaneous fra
tion of parti
les su
hthat r ≥ r0 +w. Noti
e that we expe
t this fra
tion to 
onverge to 0.5 (up to some errorsdue to statisti
al �u
tuations and to the binning of [z0, z1]).Table 4.10. Deviation δFn from the referen
e PMF pro�le (given by Eq. (4.106)) as a fun
tion of thesele
tion parameter c (c = 0 when the sele
tion is turned o�) and the simulation time tsimu. The 95%
on�den
e interval [δ−Fn, δ

+Fn] is given in bra
kets.
 tsimu = 0.05 0.1 0.2 0.40 9.51 (7.73-11.3) 18.0 (14.8-21.2) 19.5 (18.3-20.7) 0.066 (0.056-0.075)2 20.4 (17.0-23.8) 5.69 (5.55-5.82) 0.020 (0.016-0.023) 0.034 (0.029-0.038)5 22.9 (20.9-24.9) 0.22 (0.19-0.25) 0.027 (0.022(0.032) 0.026 (0.022-0.031)10 10.4 (10.4-10.4) 0.035 (0.029-0.041) 0.028 (0.023-0.032) 0.032 (0.027-0.037)
Table 4.11. Deviation δFn from the referen
e PMF pro�le (and asso
iated error bars) when c = 10 fordi�erent number of repli
as (K = 50 realizations).number of repli
as tsimu = 0.05 0.1 0.41000 23.3 (20.4-26.3) 0.45 (0.39-0.50) 0.064 (0.054-0.074)2000 11.2 (11.2-11.2) 0.034 (0.025-0.042) 0.032 (0.024-0.039)10,000 2.05 (1.54-2.56) 0.026 (0.019-0.033) 0.022 (0.016-0.028)As 
an be seen from the di�erent es
aping pro�les of Figure 4.16, the sele
tion pro
ess reallya

elerates the transition from one free energy metastable state to the other. This is due to thefa
t that the birth and death jump pro
ess triggers non lo
al moves, as opposed to the traditionaldi�usive exploration of adaptive dynami
s. The numeri
al results of Table 4.10 show that it isvery interesting to 
onsider a sele
tion pro
ess, espe
ially at the early stages of the simulation.This sele
tion is even more e�
ient when the number of repli
as in
reases (see Table 4.11). In
on
lusion, the sele
tion pro
ess seems to be an e�
ient tool to improve the exploration power ofthe adaptive dynami
s.
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c=0Fig. 4.16. Average fra
tion of the repli
as in the region r ≥ r0 + w as a fun
tion of time, for c = 0 (nosele
tion), c = 2, c = 5, c = 10.4.4.2 Rigorous 
onvergen
e results for the Adaptive Biasing For
e methodWe present in this se
tion a proof of 
onvergen
e for the following dynami
s, whi
h is of ABFtype:
dQt = −∇(V − Fbias(t, ξ) + 2β−1 ln(|∇ξ|))(Qt) |∇ξ|−1(Qt) dt+

√
2β−1|∇ξ|−1(Qt)dWt, (4.107)using the update (4.99) for the biasing for
e, that is

F ′bias(t, z) =

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

. (4.108)We assume in this se
tion that the density ψt of the distribution of Xt is well-de�ned at all times.The proof presented here is a
tually restri
ted to the 
ase
q = (z, q̃) ∈ M = T × Rn−1, ξ(q) = z,

T denoting the one-dimensional torus R/Z. In this 
ase, Σz = {(z, q̃), q̃ ∈ Rn−1}, and |∇ξ(q)| = 1so that the dynami
s 
onsidered 
oin
ides with the usual overdamped dynami
s when the biasingterm is added. The 
ase of a general one-dimensional rea
tion 
oordinate ξ : Rn → R is treatedin [A1℄, where a 
onvergen
e result for higher dimensional rea
tion 
oordinates is also stated,provided the temperature is large enough.After a brief review on the most important results for 
onvergen
e results relying on entropyestimates, we present a mathemati
al 
onvergen
e result in the simpli�ed setting 
onsidered inthis se
tion, and �nally give the 
orresponding proof.Some ba
kground on logarithmi
 Sobolev inequalities and their appli
ations instatisti
al physi
sThe aim of this preliminary se
tion is to give some ba
kground on entropy te
hniques with afo
us on logarithmi
 Sobolev inequalities, whi
h 
an be used to show the 
onvergen
e to the equi-
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eslibrium state. More material 
an be read in the review papers by Guionnet and Zegarlinski [143℄,Ledoux [202℄ and Arnold, Markowi
h, Tos
ani and Unterreiter [10℄ (this last paper having rathera PDE approa
h).For simpli
ity, we will 
onsider an invariant measure of Boltzmann-Gibbs type, having a densitywith respe
t to the Lebesgue measure:
ψ∞(q) dq = Z−1 e−βV (q) dq, Z =

∫

M
e−βV (q) dq,and the overdamped Langevin dynami
s on the 
on�guration spa
e M:

dQt = −∇V (Qt) dt+

√
2

β
dWt. (4.109)It 
an be assumed without loss of generality that β = 1 (repla
ing the potential V by βV ). Thedensity ψ(t, ·) ≡ ψt(·) of the law of Qt evolves a

ording to the Fokker-Plan
k equation

∂tψt = ∇ ·
(
ψ∞∇

(
ψt
ψ∞

))
.Noti
e that ψt is the density of a probability measure, so that ∫M ψt = 1. Sin
e ψ∞ is a stationarysolution of the above equation, it is expe
ted that ψt(q) → ψ∞(q) as t→ +∞. This is indeed the
ase when the dynami
s is ergodi
 and an exponential rate of 
onvergen
e 
an even be obtainedwhen a 
onvenient Lyapounov fun
tion 
an be found (see Se
tion 3.2.3). However, the Lyapounov
ondition (3.45) may be di�
ult to 
he
k.An alternative way to obtain exponential 
onvergen
e of the density ψt to the target densityis to resort to entropy estimates. Consider the 
onvex fun
tion

Φ(x) = x lnx− x+ 1,and de�ne the relative entropy of ψt with respe
t to ψ∞ as
H(ψt |ψ∞) =

∫

M
Φ

(
ψt
ψ∞

)
ψ∞ =

∫

M
ln

(
ψt
ψ∞

)
ψt (4.110)sin
e ∫M ψt = 1. Jensen's inequality shows that

H(ψt |ψ∞) =

∫

M
Φ

(
ψt
ψ∞

)
ψ∞ ≥ Φ

(∫

M

ψt
ψ∞

ψ∞

)
= Φ(1) = 0.An alternative proof of the non-negativity of the entropy 
an be done by remarking that Φ ≥ 0.A
tually, Φ(x) > 0 if and only of x 6= 1, so that H = 0 if and only if ψt = ψ∞ almost everywhere.Straightforward 
omputations also show that

d

dt
H(ψt |ψ∞) = −I(ψt |ψ∞), (4.111)where I is the Fisher information of ψt with respe
t to ψ∞: Denoting ft = ψt/ψ∞,

I(ψt |ψ∞) =

∫

M

|∇ft|2
ft

ψ∞ ≥ 0.Equality (4.111) therefore implies the de
ay of the relative entropy. An exponential de
ay rate 
anbe obtained when ψ∞ satis�es a logarithmi
 Sobolev inequality (LSI) with 
onstant ρ.
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es 177De�nition 4.1. The probability measure ψ∞(q) dq satis�es a logarithmi
 Sobolev inequality with
onstant ρ > 0 (in short: LSI(ρ)) if
∀f ∈ L1(ψ∞), f ≥ 0,

∫

M
fψ∞ = 1,

∫

M
Φ(f)ψ∞ ≤ 1

2ρ

∫

M

|∇f |2
f

ψ∞. (4.112)In other words, for all probability measures absolutely 
ontinuous with respe
t to the Lebesguemeasure, with density φ(q) dq,
H(φ |ψ∞) ≤ 1

2ρ
I(φ |ψ∞).Then, 
ombining (4.111) and (4.112), it follows, using a Gronwall inequality:

0 ≤ H(ψt |ψ∞) ≤ H(ψ0 |ψ∞) e−2ρt.The 
onvergen
e ψt → ψ∞ 
an be pre
ised using the Csizár-Kullba
k inequality:
∫

M
|ψt − ψ∞| ≤ 2

√
H(ψt |ψ∞),whi
h implies an exponentially fast 
onvergen
e of ψt to ψ∞ in L1(M).Obtaining logarithmi
 Sobolev inequalitiesTo prove 
onvergen
e results for the density of the pro
ess su
h as (4.109), it therefore su�
esto show that a LSI of the form (4.112) holds for the target measure ψ∞(q) dq = Z−1 exp(−V (q)) dq(re
all that we assumed β = 1 thoughout this se
tion). A LSI 
an for instan
e be obtained in thefollowing 
ases:(i) when the potential V satis�es a stri
t 
onvexity 
ondition of the form Hess(V ) ≥ ρ Id with

ρ > 0, then a LSI with 
onstant ρ holds, as �rst shown by Bakry and Emery [19℄;(ii) when ψ∞ =
∏M
i=1 ψ

i
∞ and ea
h measure ψi∞(q) dq satisi�es a LSI with 
onstant ρi, then

ψ∞ satis�es a LSI with 
onstant ρ = min{ρ1, . . . , ρM} (see Gross [139℄);(iii) when a LSI with 
onstant ρ is satis�ed by Z−1
V e−V (q) dq, then Z−1

V+W e−(V (q)+W (q)) dq (with
W bounded) satis�es a LSI with 
onstant ρ̃ = ρ einfW−supW . This property expresses somestability with respe
t to bounded pertubations (see Holley and Stroo
k [169℄);(iv) there are also results on a global LSI for the measure when a marginal and the 
orrespon-ding 
onditional law satisfy a LSI (see Blower and Bolley [33℄), or when all the marginalssatisfy a LSI under some weak 
oupling assumption (see Otto and Rezniko� [263℄).A PDE formulation and a pre
ise statement of the resultSin
e only the law of the pro
ess Qt at a �xed time t is used in (4.107)-(4.108), it is possibleto re
ast the dynami
s in terms of a nonlinear partial di�erential equation (PDE) on the density

ψ(t, ·) of Qt (re
all that ξ(q) = ξ(z, q̃) = z):




∂tψ = div
(
∇(V − Fbias(t, z))ψ + β−1∇ψ

)
,

F ′
bias(t, z) =

∫

Rn−1

∂zV (z, q̃)ψ(t, z, q̃) dq̃
∫

Rn−1

ψ(t, z, q̃) dq̃

.
(4.113)
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esMeasure of the 
onvergen
eLet us introdu
e the longtime limit of the distribution of Xt:
ψ∞ = exp(−β(V − F ◦ ξ)),and the longtime limit of the marginal and 
onditional laws:

ψξ∞(z) =

∫

Rn−1

ψ∞(z, q̃) dq̃ ≡ 1, dµ∞,z(q̃) =
ψ∞(z, q̃) dq̃

ψξ∞(z)
.The �distan
e� between ψ (respe
tively ψξ) and ψ∞ (respe
tively ψξ∞) is measured using therelative entropy H(ψ|ψ∞) de�ned in (4.110) (respe
tively H(ψξ|ψξ∞)). In the following, the �total�entropy is denoted by

E(t) = H(ψ(t, ·)|ψ∞),the �ma
ros
opi
 entropy� by
EM (t) = H(ψξ(t, ·)|ψξ∞),the �lo
al entropy� at a �xed value z of the rea
tion 
oordinate by

em(t, z) = H(µt,z|µ∞,z) =

∫

Rn−1

ln

(
ψ(t, z, q̃)

ψξ(t, z)

/ψ∞(z, q̃)

ψξ∞(z)

)
ψ(t, z, q̃) dq̃

ψξ(t, z)
,and �nally the �mi
ros
opi
 entropy� by

Em(t) =

∫

T

em(t, z)ψξ(t, z) dz.It is straightforward to obtain the following result whi
h 
an be seen as a property of extensivityof the entropy:Lemma 4.2 (Extensivity of the entropy). The total entropy 
an be de
omposed as the sum ofthe ma
ros
opi
 and the mi
ros
opi
 entropies:
E(t) = EM (t) + Em(t).Remark 4.5 (On the 
hoi
e of the entropy). In the 
ase of linear Fokker Plan
k equations, itis well known that one 
an obtain exponential de
ay to equilibrium by 
onsidering various entropiesof the form ∫ h(dµdν) dµ, where h is typi
ally a stri
tly 
onvex fun
tion su
h that h(1) = 0 (see [10℄for more assumptions required on h). For example, the 
lassi
al 
hoi
e h(x) = 1

2 (x− 1)2 is linkedto Poin
aré type inequalities and leads to L2-
onvergen
e, while the fun
tion h(x) = x lnx− x+ 1used here to build the entropy is linked to logarithmi
 Sobolev inequalities and leads to L1 lnL1-
onvergen
e. However, for the study of the non-linear Fokker Plan
k equation (4.113), it seemsthat the 
hoi
e h(x) = x lnx − x + 1 is important to derive the estimates, sin
e the extensivityproperty of Lemma 4.2 is fundamental for the proof presented here.Let us also introdu
e another way to 
ompare two probability measures, namely the Wassersteindistan
e with quadrati
 
ost:
W (µ, ν) =

√
inf

π∈Π(µ,ν)

∫

Rn−1×Rn−1

|q̃ − q̃′|2 dπ(q̃, q̃′)where Π(µ, ν) denotes the set of 
oupling probability measures, namely probability measures on
Rn−1 × Rn−1 su
h that their marginals are µ and ν. We need the following de�nition:
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es 179De�nition 4.2. The probability measure ν satis�es a Talagrand inequality with 
onstant ρ > 0(in short: T(ρ)) if for all probability measures µ su
h that µ ≺ ν (i.e. µ is absolutely 
ontinuouswith respe
t to ν),
W (µ, ν) ≤

√
2

ρ
H(µ|ν).In the last de�nition, we impli
itly assume that the probability measures have �nite moments oforder 2, whi
h will be always the 
ase for all the probability measures we 
onsider. We will needthe following important result (see [264, Theorem 1℄).Lemma 4.3. If ν satis�es LSI(ρ), then ν satis�es T(ρ).Convergen
e resultsProposition 4.6. The marginal ψξ satis�es the following di�usion equation on T:

∂tψ
ξ =

1

β
∂z,zψ

ξ (4.114)and
∀t ≥ 0, I(ψ(t, ·) |ψ∞) ≤ I(ψ(0, ·) |ψ∞) exp(−8π2β−1t). (4.115)The proof of (4.114) is straightforward (by inegrating (4.113) with respe
t to q̃ ∈ Rn−1), andimplies the 
onvergen
e of the marginals (see Lemma 4.4 for the 
omplete proof of this proposition).To prove the global 
onvergen
e, we need some additional assumptions (on the potential V ):Theorem 4.3. Let (ψ, F ′

bias(t)) be a smooth solution to (4.113), and assume(H1) The fun
tion V is su
h that ‖∂z,q̃V ‖L∞ ≤M <∞;(H2) There exists ρ > 0 su
h that for all z ∈ M, the 
onditional measure µ∞,z satis�es LSI(ρ).Then,(i) the �mi
ros
opi
 entropy� Em satis�es
Em(t) ≤ C2 exp(−2λt) (4.116)where C = 2 max

(√
Em(0),Mβ|ρ− 4π2|−1

√
I0
2ρ

) with I0 = I(ψ(0, ·) |ψ∞), and
λ = β−1 min(ρ, 4π2).In the spe
ial 
ase ρ = 4π2, it holds √Em(t) ≤

(√
Em(0) +M

√
I0
2ρ t
)

exp(−4π2β−1 t).(ii) The mean for
e observed at time t F ′
bias(t) 
onverges to the mean for
e F ′ in the followingsense:

∀t ≥ 0,

∫

T

|F ′
bias(t) − F ′|2(z)ψξ(t, z) dz ≤ 2M2

ρ
Em(t). (4.117)Therefore, there exist C, t > 0 su
h that

∀t ≥ t,

∫

T

|F ′
bias(t) − F ′|(z) dz ≤ C exp(−λt). (4.118)This theorem therefore shows that F ′

bias(t) 
onverges exponentially fast to F ′ at a rate
λ = β−1 min(ρ, 4π2). The limitations on the rate λ are linked to the rate of 
onvergen
e atthe ma
ros
opi
 level, on the equation (4.114) satis�ed by ψξ, and the rate of 
onvergen
e at themi
ros
opi
 level, whi
h depends on the 
onstant ρ of the logarithmi
 Sobolev inequalities satis�edby the 
onditional measures µ∞,z. This 
onstant depends of 
ourse on the 
hoi
e of the rea
tion
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oordinate. In our framework, we 
ould state that a �good rea
tion 
oordinate� is su
h that ρ isas large as possible.Noti
e also that a 
onsequen
e of (4.116), (4.115) and Lemma 4.2 is that the �total entropy� Ealso de
ays exponentially fast to zero, with the same rate λ. Therefore, by the Csiszár-Kullba
kinequality, ψ(t, ·) 
onverges exponentially fast to ψ∞ in L1(Rn) norm.Remark 4.6 (On the initial 
ondition). If ψξ(0, ·) is zero at some points or is not su�
ientlysmooth, then F ′
bias(0) may be not well de�ned or I(ψξ(0, ·)|ψξ∞) may be in�nite. But sin
e weshow that ψξ satis�es a simple di�usion equation (see item 1 in Theorem 4.3), these di�
ultiesdisappear as soon as t > 0. Therefore, up to 
onsidering the problem for t ≥ t∗ > 0, we 
an supposethat ψξ(0, ·) > 0.It 
an be 
he
ked that the assumptions (H1) and (H2) are satis�ed in this 
ontext for apotential V of the following form:

V (z, q̃) = V0(z, q̃) + V1(z, q̃)where α = infT×Rn−1 ∂q̃,q̃V0 > 0, ‖V1‖L∞ < ∞, ‖∂z,q̃(V0 + V1)‖L∞ < ∞, with the 
hoi
e M =

‖∂z,q̃V ‖L∞ , ρ = (infT×Rn−1 ∂q̃,q̃V0) exp(−os
 V1), where os
 V1 = supT×Rn−1 V1 − infT×Rn−1 V1. Inwords, the potential V is a uniformly α-
onvex potential in the q̃ variable (therefore satisfying aLSI thanks to the Bakry-Emery 
riterion), perturbed by some bounded potential. The (almost)
α-
onvexity in the variables orthogonal to the rea
tion 
oordinate is indeed natural enough sin
eit is expe
ted that the metastable features of the potential are in the rea
tion 
oordinate variable.Proofs of Proposition 4.6 and Theorem 4.3To simplify the presentation of the proof, we assume β = 1, up to the following 
hange ofvariable: t̃ = β−1t, ψ̃(t̃, q) = ψ(t, q), Ṽ (q) = βV (q).Lemma 4.4 (Convergen
e of the Fisher information). Let φ be a positive fun
tion de�nedfor t ≥ 0 and z ∈ T, satisfying

∂tφ = ∂z,zφ on T,

∫

T

φ = 1. (4.119)Denoting by φ∞ ≡ 1 the longtime limit of φ, it holds
∀t ≥ 0, I(φ(t, ·) |φ∞) ≤ I(φ(0, ·) |φ∞) exp(−8π2t).Proof. Denoting by u =

√
φ, it follows
I(φ |φ∞) =

∫

T

|∂z lnφ|2φ = 4

∫
|∂zu|2.Moreover, from the di�usion equation (4.119),

∂tu = ∂z,zu+
(∂zu)

2

u
.Therefore,
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d

dt

∫

T

(∂zu)
2 = 2

∫

T

∂z,z,zu ∂zu+ 2

∫

T

∂z

(
(∂zu)

2

u

)
∂zu,

= −2

∫

T

(∂z,zu)
2 − 2

∫

T

(∂zu)
2

u
∂z,zu,

= −2

∫

T

(∂z,zu)
2 − 2

∫

T

∂z((∂zu)
3)

3u
,

= −2

∫

T

(∂z,zu)
2 − 2

3

∫

T

(∂zu)
4

u2
,so that �nally

d

dt

∫

T

(∂zu)
2 ≤ −8π2

∫

T

(∂zu)
2,where we have used the Poin
aré-Wirtinger inequality on T, applied to ∂zu: For any fun
tion

f ∈ H1(T), ∫

T

(
f −

∫

T

f

)2

≤ 1

4π2

∫

T

(∂zf)2.This Poin
aré inequality is obtained by studying the spe
tral gap of the operator ∂z,z on [0, 1]. ⊓⊔We now turn to the proof of Theorem 4.3. One fundamental lemma for the following isLemma 4.5. The di�eren
e between the �
urrent mean for
e� F ′
bias(t) and the mean for
e F ′ 
anbe expressed in term of the densities as

F ′
bias(t) − F ′ =

∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ

ψξ
dq̃ − ∂z ln

(
ψξ

ψξ∞

)
.Proof. This is a simple 
omputation:

∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ

ψξ
dq̃ − ∂z ln

(
ψξ

ψξ∞

)
=

∫

Rn−1

∂z lnψ
ψ

ψξ
dq̃ −

∫

Rn−1

∂z lnψ∞
ψ

ψξ
dq̃ − ∂z lnψξ,

=

∫

Rn−1

∂zψ

ψξ
dq̃ +

∫

Rn−1

∂z(V − F )
ψ

ψξ
dq̃ − ∂z lnψξ,

= F ′
bias(t) − F ′,whi
h 
on
ludes the proof. ⊓⊔We will also use the following estimates:Lemma 4.6. Under the assumptions (H1)�(H2), it holds, for all t ≥ 0 and for all z ∈ T,

|F ′
bias(t, z) − F ′(z)| ≤ ‖∂z,q̃V ‖L∞

√
2

ρ
em(t, z).Proof. For any 
oupling measure π ∈ Π(µt,z, µ∞,z),

|F ′
bias(t, z) − F ′(z)| =

∣∣∣∣
∫

Rn−1×Rn−1

∂zV (z, q̃) − ∂zV (z, q̃′)π(dq̃, dq̃′)

∣∣∣∣ ,

≤ ‖∂z,q̃V ‖L∞

∫
|q̃ − q̃′|π(dq̃, dq̃′)

≤ ‖∂z,q̃V ‖L∞

√∫
|q̃ − q̃′|2 π(dq̃, dq̃′).
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esTaking now the in�mum over all π ∈ Π(µt,z, µ∞,z) and using (2) together with Lemma 4.3, itfollows
|F ′

bias(t, z) − F ′(z)| ≤ ‖∂z,q̃V ‖L∞W (µt,z, µ∞,z) ≤ ‖∂z,q̃V ‖L∞

√
2

ρ
H(µt,z |µ∞,z),whi
h 
on
ludes the proof. ⊓⊔Lemma 4.7.When (H2) is satis�ed,

∀t ≥ 0, Em(t) ≤ 1

2ρ

∫

T×Rn−1

∣∣∣∣∂z ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ.Proof. Using (H2), it follows
Em =

∫

T

emψ
ξ dz ≤

∫

T

1

2ρ

∫

Rn−1

∣∣∣∣∂z ln

(
ψ

ψξ

/ψ∞

ψξ∞

)∣∣∣∣
2
ψ

ψξ
dq̃ ψξ dz,whi
h yields the result sin
e ψξ/ψξ∞ does not depend on q̃. ⊓⊔We are now in position to prove the �rst assertion (4.116) of Theorem 4.3. The equation on ψ
an be rewritten as:

∂tψ = div

(
ψ∞∇

(
ψ

ψ∞

))
+ ∂x((F

′ − F ′
bias(t))ψ).Therefore, after integration by parts, using a Cau
hy-S
hwarz inequality and Lemma 4.5,

d

dt
Em =

d

dt
E − d

dt
EM ,

= −
∫

M

∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ +

∫

M
(F ′

bias(t) − F ′)∂z ln

(
ψ

ψ∞

)
ψ +

∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

= −
∫

M

∣∣∣∣∂q̃ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ −
∫

M

∣∣∣∣∂z ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ

+

∫

T

(∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ dq̃

)2
1

ψξ
dz −

∫

M
∂z ln

(
ψξ

ψξ∞

)
∂z ln

(
ψ

ψ∞

)
ψ

+

∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

≤ −
∫

M

∣∣∣∣∂q̃ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ −
∫

T

∂z ln

(
ψξ

ψξ∞

)
ψξ(F ′

bias(t) − F ′).Using now Lemmata 4.6 and 4.7,
d

dt
Em ≤ −2ρEm +

√∫

T

|F ′
bias(t) − F ′|2 ψξ

√∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

≤ −2ρEm + ‖∂z,q̃V ‖L∞

√
2

ρ
Em

√
I(ψξ |ψξ∞).With Lemma 4.4, it then follows

d

dt

√
Em ≤ −ρ

√
Em + ‖∂z,q̃V ‖L∞

√
I(ψξ(0, ·) |ψξ∞)

2ρ
exp(−4π2t),
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es 183from whi
h (4.116) is dedu
ed.Let us now turn to the proof of the se
ond item of Theorem 4.3. Noti
e �rst that ‖ψ(t, ·) −
ψ∞‖L∞ → 0 when t → +∞. This results from the exponentially fast H1(R3) 
onvergen
e of
ψξt → ψξ∞ (whi
h 
an be proved using Lemma 4.4) and the inequality

∥∥∥∥f −
∫

T

f

∥∥∥∥
2

L∞(T)

≤
∫

T

(∂zf)2applied to f = ψξ. Sin
e ψξ∞ ≡ 1, it holds
∫

T

|F ′
bias(t) − F ′| =

∫
T
|F ′

bias(t) − F ′|ψξ∞ =

∫

T

|F ′
bias(t) − F ′|ψξ −

∫

T

|F ′
bias(t) − F ′|(ψξ − ψξ∞)

≤
∫

|F ′
bias(t) − F ′|2ψξ + ‖ψ(t, ·) − ψ∞‖L∞

∫

T

|F ′
bias(t) − F ′|.Thus, for t su�
iently large, ∫

T
|F ′

bias(t)−F ′| is bounded from above by c ∫
T
|F ′

bias(t)−F ′|2ψξ (forsome c > 0), whi
h yields (4.118) (using (4.117) and (4.116)).





Part III
Sho
k Waves: a Multis
ale Approa
h





5A redu
ed model for sho
k waves
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ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2055.2 A redu
ed model based on Dissipative Parti
le Dynami
s . . . . . . . . . 2085.2.1 Previous mesos
opi
 models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2085.2.2 A redu
ed model in the inert 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095.2.3 The rea
tive 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214Multimillion atom simulations are nowadays 
ommon in mole
ular dynami
s (MD) studies.However, the time and spa
e s
ales numeri
ally tra
table are still far from being ma
ros
opi
,so that redu
ed models are of primary interest when multis
ale phenomena are 
onsidered. Inparti
ular, the simulation of sho
k waves is a 
hallenging task, involving very small time andspa
e s
ales and large energies near the sho
k front, and mu
h larger time and spa
e s
ales andlower energies for the relaxation of the sho
ked materials, in
luding the evolution of dislo
ationsloops for example.The situation is even worse for detonation waves (Roughly speaking, a detonation wave isa sho
k wave 
ombined with very exothermi
 
hemi
al rea
tions, see [103℄ for a fundamentalreferen
e). The simulation of detonation requires the des
ription of a thin sho
k front, moving ata high velo
ity, usually using a 
ompli
ated empiri
al potential able to treat the 
hemi
al eventshappening (disso
iation, re
ombination). To this end, toy mole
ular models were proposed at theearly stages of the mole
ular simulation of detonation (see e.g. [269℄), until the �rst all-atomstudies in the 90's [38, 39℄. Su
h 
omputations are nowadays 
ommon (see for example [327℄ for astate of the art study), but are still limited in spatial and temporal sizes, so that a redu
ed modelfor detonations is of interest.Some redu
ed models for sho
k waves were proposed, for poly
rystalline materials [163℄ orresorting to mesoparti
les with internal degrees of freedom [326℄ (see a brief overview of all thosemethods in Se
tion 5.2.1). The latter approa
h seems to be the most promising and the mostgeneral one, and 
onsists in repla
ing a 
omplex mole
ule by a single parti
le. The introdu
tion ofan internal degree of freedom des
ribing in a mean way the behavior of several degrees of freedomis reminis
ent from Dissipative Parti
le Dynami
s (DPD) models [98,170℄, whi
h aim at des
ribing
omplex �uids through some mesodynami
s with some additional variables.We present in this 
hapter redu
ed model for sho
k and detonation waves des
ribed at the mi-
ros
opi
 level. Starting in Se
tion 5.1 from a very simple one-dimensional (1D) model where themain features of sho
k waves are already present, we show how a model redu
tion of dimensionality
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an be performed under some de
oupling or low-
oupling assumptions. Though the initial modelis deterministi
, the obtained model is sto
hasti
: more pre
isely, the many-body intera
tions arerepla
ed by some generalized fri
tion (with memory) depending on the relative velo
ities of neigh-boring parti
les (whi
h is reminis
ent of DPD models), and the system is governed by a generalizedLangevin equation instead of the usual Hamiltonian dynami
s. However, the temperature jumpsa
ross the sho
k front are not reprodu
ed 
orre
tly.Building on this one-dimensional model, a simpli�ed DPD dynami
s preserving the total energyof the system is proposed in Se
tion 5.2. Within su
h a model, temperature jumps a
ross the sho
kfront 
an be treated. It is also a 
onvenient framework for an extension to 
hemi
ally rea
tive sho
kwaves (detonations).5.1 A simpli�ed one-dimensional modelWe begin in Se
tion 5.1.1 with some introdu
tion to 1D latti
e motion, and brie�y report onsome theoreti
al results and numeri
al experiments on piston-impa
ted sho
ks. It is shown that,in the absen
e of a spe
i�
 treatment, the sho
k pro�les generated signi�
antly di�er from sho
kwaves. Espe
ially, their thi
knesses grow linearly with time [166,359℄, there is no usual equilibrationdownstream the sho
k front [87,168,359℄, and relaxation waves do not behave as expe
ted. Indeed,one would expe
t the sho
k wave to be a self-similar jump separating two domains at lo
al thermalequilibrium at di�erent temperatures. The relaxation waves should then 
at
h up the sho
k frontand weaken the sho
k wave until it disappears. So, we have to introdu
e higher-dimensional e�e
ts,at least in an averaged way. This is performed in Se
tion 5.1.2. The 
onne
tion of the 
hain witha heat bath 
onsisting of a large number of harmoni
 os
illators, seems to be a good remedy forspurious 1D e�e
ts. The sho
ks generated have 
onstant thi
knesses and relaxation waves appearto be properly modelled. We also present the sto
hasti
 limit of this model in Se
tion 5.1.3, andan extension to the rea
tive 
ase in Se
tion 5.1.4.5.1.1 Sho
k waves in one-dimensional latti
esThe aim of this se
tion is to derive and assess the validity of a simpli�ed mi
ros
opi
 modelof sho
k waves whi
h 
an useful for a more general derivation. Sho
k waves are intrinsi
allypropagative phenomena. It is thus reasonable to des
ribe them within a 1D ma
ros
opi
 theory.In some 
ases depending on the geometry, this approximation has proven to be 
orre
t [73℄.A 1D latti
e seems an appropriate model that 
ould, in addition, allow for some mathemati
altreatment and thus a better theoreti
al understanding of the phenomena and me
hanisms atplay. Indeed, many mathemati
al results are known about the behavior of waves in 1D latti
es,
on
erning the existen
e of lo
alized waves [117,315℄, the form of those waves in the high-energylimit [115℄ or in the low-energy limit [116℄, or the behavior under sho
k [104℄. There also existextended results for a parti
ular intera
tion between sites, the Toda potential [344℄ : the stru
tureof a 1D sho
k is then pre
isely known, at least in some regime [359℄.Des
ription of the latti
e modelConsider a one-dimensional 
hain of parti
les with nonlinear nearest-neighbor intera
tions,des
ribed by a potential V . Initially, the parti
les are at rest at positions Xn(0) = nd, whi
h isan equilibrium state for the system. All the masses are set to 1. The normalized displa
ementof the n-th parti
le from its equilibrium position is xn(t) = 1
d(Xn(t) − Xn(0)). The followingnormalization 
onditions [166℄ for the intera
tion potential V 
an be used:

V (0) = 0, V ′(0) = 0, V ′′(0) = 1. (5.1)



5.1 A simpli�ed one-dimensional model 189The �rst 
ondition is more a shift on the energy referen
e, the se
ond one expresses the fa
t that
x = 0 is the equilibrium position, and the last one amounts to a res
aling of time. The so-
alled�redu
ed relative displa
ement� is de�ned as δxn(t) = xn+1(t) − xn(t).The Hamiltonian of the system is:

HS({qn, pn}) =

∞∑

n=−∞
V (qn+1 − qn) +

1

2
ṗ2
n, (5.2)where (qn, pn) = (xn, ẋn). The Newton equations of motion read:

ẍn = V ′(xn+1 − xn) − V ′(xn − xn−1). (5.3)The potential taken here 
an either have a physi
al origin, like the 1D Lennard-Jones potential:
VLJ(x) =

1

8

(
1

(1 + x)4
− 2

(1 + x)2

)
, (5.4)or more mathemati
al motivations, like the one-parameter Toda potential [344℄:

V bToda(x) =
1

b2
(
e−bx − 1 + bx

)
. (5.5)De�ne b = −V ′′′(0). The parameter b measures at the �rst order the anharmoni
ity of the system.For the Lennard-Jones potential b = 9, and for the Toda potential, the parameter b introdu
ed inthe de�nition (5.5) is indeed equal to −d

3V b
dx3

(0).Sho
k waves in the 1D latti
eA brief review of the existing mathemati
al and numeri
al resultsA sho
k 
an be generated using a "piston" : the �rst parti
le is 
onsidered as being of in�nitemass and 
onstantly moving at velo
ity up. We refer to [90℄ for a pioneering study of those sho
ksin 1D latti
es, to [164,166,168℄ for 
areful numeri
al experiments and formal analysis, and to [359℄for a rigorous mathemati
al study in the Toda 
ase. All of these studies identify the parameter
a = bup as 
riti
al. When a < 2, the velo
ity of the downstream parti
les 
onverge to the pistonvelo
ity, in analogy with the behavior of a harmoni
 latti
e1 (see Figure 5.1). When a > 2, theparti
les behind the sho
k experien
e an os
illatory motion (see Figure 5.2). This behavior is quitesimilar to what is happening in hard-rod �uids (see [168℄ for a more pre
ise des
ription of thatphenomenon), and has to be linked to the ex
hange of momenta happening when two parti
les
ollide in a 1D setting. This was also noti
ed for other potentials su
h as the Lennard-Jonespotential, and 
an be used to de�ne spe
i�
 1D thermodynami
al averages [87℄.In the 
ase of a strong sho
k (a > 2) and in the Toda 
ase, the displa
ement pattern is parti-
ularly well understood from a mathemati
al point of view [359℄: the latti
e 
an be de
omposed inthree regions. In the �rst one, for n > cmaxt, the parti
les have �almost� not felt the sho
k yet, andtheir displa
ements are exponentially small. The se
ond region, whose thi
kness grows linearly intime (cmint < n < cmaxt), is 
omposed of a train of solitons. Re
all that solitons are parti
ularsolutions of the Toda latti
e model, and 
orrespond to lo
alized waves [344℄. In the third region(n < cmint), the latti
e motion 
onverges to an os
illatory pattern of period 2 (binary wave).The motion behind the sho
k is asymptoti
ally des
ribed by the evolution of a single os
illator(see [87℄ for a pre
ise des
ription of this behavior). There is no lo
al thermal equilibrium in theusual sense (i.e. the distribution of the velo
ities is not of Boltzmann form). This was alreadymentioned in [168℄.
1 Note that we use b = 2α with the notation of [166℄.
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Fig. 5.1. Relative displa
ement (left) and velo
ity pro�les (right) versus parti
le index for a weak sho
kat a representative time: number of parti
les Npart = 500, Toda parameter b = 1, piston velo
ity up = 0.2,so that a = 0.2. The parti
le are taken initially at rest at their equilibrium positions.
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Fig. 5.2. Relative displa
ement (left) and velo
ity pro�les (right) versus parti
le index for a strong sho
kat time T = 100: b = 10, up = 1, so that a = 10. The parti
les are initially at rest.Density plots.To get a better understanding of the sho
k patterns, it is 
onvenient to represent the system interms of lo
al density. This lo
al density 
an be obtained as a fun
tion of the lo
al average of theinteratomi
 distan
es, both in spa
e and time. We restri
t ourselves to a lo
al average in spa
e.More pre
isely, the lo
al averaged interatomi
 distan
e of the n-th length is denoted by δxn, andgiven by δxn =
∑+∞
i=−∞ αj δxn+j . The lo
al density ρn is then de�ned as ρn =

(
1 + δxn

)−1. Theweights {αj} are 
hosen in pra
ti
e to be non negative and of sum equal to one. For example:
αj = C−1 cos

(
j

2M+1π
) for −M ≤ j ≤M , αj = 0 otherwise, and with C =

∑M
j=−M cos

(
j

2M+1π
).The integer M is the lo
al range of averaging. Figure 5.3 presents the densities 
orresponding tothe relative displa
ement patterns of Figures 5.1 and 5.2.Simulation of piston 
ompressionWe �rst implement a preliminary thermalization. The parti
les are taken initially at rest at theirequilibrium positions. We then generate displa
ements xn and velo
ities ẋn from the probabilitydensity

dν =
∞⊗

n=−∞
Z−1e−

1
2βx(x2

n+ẋ2
n) dxn dẋn, (5.6)
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Fig. 5.3. Density patterns for the relative displa
ement pattern of the weak sho
k of Figure 5.1 (left)and the strong sho
k of Figure 5.2 (right). The lo
al averaging range is M = 50.with Z = 2π/βx. The initial displa
ements and velo
ities are then of order 1√
βx

. Noti
e thatwe take small initial displa
ements, so we approximate the full potential V (x) by its harmoni
part 1
2x

2. This approximation is of 
ourse justi�ed only at the beginning of the simulation, whendispla
ements are small enough. After this initial perturbation, we let the system free to evolveduring a typi
al time Tinit = 10. The simulations were performed using a Velo
ity Verlet s
heme,the time step being 
hosen to have a relative energy 
onservation ∆E
E

of about 10−3. At time Tinitthe piston impa
t begins: the �rst parti
le is kept moving toward the right at 
onstant velo
ity up.Let us emphasize that the sho
k patterns are robust, in the sense that they remain essentiallyun
hanged when initial thermal pertubations are supplied. This point was already noted in [168℄where the authors gave numeri
al eviden
e of that fa
t. While rigorously proven only in the Todalatti
e 
ase for a latti
e initially at rest at equilibrium, the above sho
k des
ription seems then toremain qualitatively valid for a quite general 
lass of potentials and with random initial 
onditions.A 
omparison of the di�erent pro�les is made in Figures 5.4 and 5.5. The pro�les are indeed quite
onserved, espe
ially the density pro�les.
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Fig. 5.4. Relative displa
ement pro�les for a thermalized strong sho
k using a Toda potential with
b = 10, and 
omparison with the referen
e pro�le 
orresponding to a latti
e initially at rest. The pistonspeed is up = 0.3 (so that a = 3), 1√

βx
= 0.02.
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Fig. 5.5. Lo
al density pro�les 
orresponding to Figure 5.4 with M = 50. Dashed line: referen
e pro�le.Solid line: Thermalized pro�le. Noti
e that both patterns almost 
oin
ide.
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Fig. 5.6. Relative displa
ement patterns for the same 
onditions as in Figure 5.4 (referen
e 
ase).Left: Snapshot at time T1 = 200. The sho
k front 
orresponds (roughly) to the zone between parti
le
Nmin = cminT1 = 60 and parti
le Nmax = cmaxT1 = 350. Right: Snapshot at time T2 = 800. The sho
kfront 
orresponds to the zone between parti
le number Nmin = 250 and parti
le number Nmax = 1500.Thus the sho
k front is indeed growing linearly in time.For strong sho
ks (a > 2), the sho
k front thi
kens linearly with time as 
an be seen inFigure 5.6. This is in 
ontradi
tion with what is observed in sho
k propagation experiments aswell as in 3D numeri
al simulations. Moreover the velo
ity distribution behind the sho
k frontshows that the downstream parti
les experien
e a (quasi-)os
illatory motion in the range [0, 2up].This is of 
ourse not the 
ase for 3D simulations, where the parti
le velo
ities are mu
h less
orrelated, and appears to be a pure 1D e�e
t.We emphasize on
e again that initial thermal perturbations are not su�
ient to remedy thesespurious 1D e�e
ts sin
e the patterns obtained in Figures 5.4 and 5.5 are very similar. In thesequel we are going to build a 1D model that enables us to get rid of these undesired e�e
ts.Simulation of relaxation wavesIn order to study the relaxation waves, the piston is removed after a 
ompression time t0, andthe systems evolves freely during time t1 − t0.The results are on
e again not physi
ally satisfa
tory. The soliton train of Figure 5.7, whi
hwas less visible in Figure 5.4, is not destroyed by the relaxation waves. It travels on and widenssin
e the solitons move away from ea
h others (the distan
e between the fastest ones, that is,
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Fig. 5.7. Relative displa
ement and speed pro�les for the same parameters as for Figure 5.4. The
ompression time is now t0 = 50, and the relaxation time is t1 − t0 = 350.the more energeti
 ones, and the slowest ones, in
reases). We emphasize that the energy remainslo
alized in those waves, so there is no damping of these solitons. Rarefa
tion is only observed inthe region behind the soliton train.On the other hand, in 3D simulations or in experiments, one observes a progressive dampingof the whole 
ompressive wave. This is a se
ond spurious e�e
t of the 1D model we would like toget rid of and that the model of Se
tions 5.1.2 and 5.1.3 will be able to deal with.5.1.2 An augmented one-dimensional modelThe results of the previous Se
tion indi
ate the need for a modeling of perturbations arisingfrom the transverse degrees of freedom existing in higher dimensional simulations. Su
h pertur-bations will interfere with the sho
k front 
omposed of a soliton train, and possibly damp thissoliton train. Perturbations in the longitudinal dire
tion, su
h as thermal initialization for the xn,
annot do this, as shown by Figures 5.4 and 5.5.A
tually, some fa
ts are already known about the in�uen
e of 3D e�e
ts on sho
k waves.In [162,167℄ Holian et. al pointed out the fa
t that even a 1D sho
k 
onsidered in a 3D system (apiston 
ompression along a prin
ipal dire
tion of a 
rystal for example) may not look like the typi
al1D pattern of Figures 5.1 or 5.2. If the 
rystal is at zero temperature, then the 
ompression patternin 3D is the same as the 1D one, with a soliton train at the front. But if positive temperature e�e
tsare 
onsidered, the intera
tions of the parti
les with their neighbors - espe
ially in the transversedire
tions - lead to the destru
tion of the 
oherent soliton train at the front, and a steady-regime
an be rea
hed (sho
k with 
onstant thi
kness).Therefore, 1D models are often supplemented with a postulated dissipation. The 
orrespondingdamping term in the equations of motion usually a

ounts for radiative damping [160,313,314℄, ormay 
ompensate thermal �u
tuations [9℄ from an external heat bath for a system at equilibrium.Let us point out that purely dissipative models may stabilize sho
k fronts. However, temperaturee�e
ts then 
ompletely disappear. In parti
ular, no jump in kineti
 temperature 
an be observed inpurely dissipative 1D simulations. Besides, we also aim here at motivating the usually postulateddissipation and memory terms, and show that they arise naturally as e�e
ts of (
onveniently
hosen) higher dimensional degrees of freedom.There is no existing model (to our knowledge) that 
ould both a

ount for higher dimensionale�e
ts in non equilibrium dynami
s and be mathemati
ally tra
table. We introdu
e a 
lassi
aldeterministi
 heat bath model, as an idealized way to 
ouple the longitudinal modes of the atom
hain to other modes. This model is justi�ed to some extent by heuristi
 
onsiderations in Se
-
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ed model for sho
k wavestion 5.1.2. We are then able to derive a generalized Langevin equation des
ribing the evolution ofthe system, and re
over a sto
hasti
 model in some limiting regime.Form of the perturbations arising from higher dimensional degrees of freedomConsider the system des
ribed in Figure 5.8, whi
h is still a 1D atom 
hain, but where ea
hparti
le in the 1D 
hain also intera
ts with two parti
les outside the horizontal line. These parti
lesaim at mimi
king some e�e
ts of transverse degrees of freedom. The transverse parti
les are pla
edin the middle of the springs and have only one degree of freedom, namely their ordinates yn. Theparti
les in the 1D 
hain are still assumed to have only one degree of freedom as well. This meansthat we 
onstrain them to remain on the horizontal line. The intera
tions between the parti
lesin the 
hain and the parti
les outside the 
hain are ruled by a pairwise intera
tion potential, forexample the same potential as for intera
tions in the 1D 
hain.

θ

x

xn+1

dn

yn

dn

xn

y

Fig. 5.8. Notations for the intera
tion of a transverse parti
le with parti
les on the 1D atom 
hain.Consider small displa
ements around equilibrium positions. The pairwise intera
tion potentials
an therefore be taken harmoni
. Up to a normalization, and for a displa
ement x from equilibriumposition, V (x) = 1
2x

2.We �rst turn to the 
ase θ = π
3 
orresponding to a 2D regular latti
e. At �rst order,

dn =



(

1

2
(1 + xn+1 − xn)

)2

+

(√
3

2
+ yn

)2



1/2

≃ 1 +
1

4
(xn+1 − xn) +

√
3

2
yn.We now fo
us on the evolution of xn. All the equalities written below have to be understoodas equalities holding at �rst order in O(|xn|),O(|yjn|). Considering only intera
tions with theneighboring parti
les on the horizontal line, and the additional intera
tion with the parti
le yn,

ẍn =
9

8
(xn+1 − 2xn + xn−1) +

√
3

4
(yn − yn−1).The equation governing the evolution of yn is:
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ÿn = −3

2
yn −

√
3

2
(xn+1 − xn).More generally, 
onsider the system of Figure 5.8 with an arbitrary angle θ. The equilibriumdistan
e is now d0 = 1

2 cos θ , and the 
orresponding normalized harmoni
 potential is V (d) =

1
2 ( dd0 − 1)2. The normalized distan
e d̄n =

dn
d0

is
d̄n = 1 + cos2 θ(xn+1 − xn) + 2 sin θ cos θ · yn.The additional longitudinal for
e exerted on xn by yn is then
fn = cos2 θ [cos θ(xn+1 − xn) + 2 sin θ · yn] .Summing over N parti
les that do not intera
t with ea
h other, ea
h one being 
hara
terized byan angle θi, the additional for
e on xn is seen to be of the form

Fn = AN (xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yin−1),with Ki = 2 cos2 θi sin θi and AN =

∑N
i=1 cos3 θi. So, the equation of motion for xn is

ẍn = (1 +AN )(xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yin−1). (5.7)The equations for the yin 
an be obtained in the same way as before:

ÿin = −aiyin − 2Ki(xn+1 − xn). (5.8)These linear perturbations are only valid for small displa
ements, i.e. when the approximationof the full potential by its harmoni
 part is justi�ed. Noti
e moreover that we dis
ard any type ofintera
tion of the y parti
les with ea
h others. However, this motivates an attempt to take intoa

ount missing degrees of freedom by introdu
ing a heat bath whose form will lead to equationof motion similar to (5.7) - (5.8). We now turn to this task.Des
ription of the heat bath modelWe 
onsider the following Hamiltonian for a 
oupled system 
onsisting of the system understudy (S) and a heat bath (B) des
ribed by bath variables {yjn} (n ∈ Z, j = 1, . . . , N). To use aheat bath is 
lassi
al but was never done in the 
ontext of 1D 
hains. The full Hamiltonian reads:
H({qn, pn, q̃jn, p̃jn}) = HS({qn, pn}) +HSB({qn, pn, q̃jn, p̃jn}), (5.9)where (qn, pn, q̃

j
n, p̃

j
n) = (xn, ẋn, y

j
n,mj ẏ

j
n), HS is given by (5.2), and

HSB({qn, pn, q̃jn, p̃jn}) =
∞∑

n=−∞

N∑

j=1

1

2mj
(p̃jn)

2 +
1

2
kj
[
γj(qn+1 − qn) + q̃jn

]2
. (5.10)The interpretation is as follows. Ea
h spring length δxn = xn+1 − xn is thermostated by a heatbath {yjn}, in the spirit of [108,379℄. The parameter kj is the spring 
onstant of the j-th os
illator,

mj its mass, γj weights the 
oupling between ∆xn and yjn. Note that although more general 
ases
an be 
onsidered [198,212℄, the 
oupling is taken bilinear in the variables, for it allows for an exa
tmathemati
al treatment. Indeed, a generalized Langevin equation (GLE) 
an be easily re
overed
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ed model for sho
k waves(see [108, 379℄ for seminal examples). It is also the only 
ase where the limit N → ∞ 
an berigorously justi�ed. Other physi
al motivations may be presented, su
h as the representation ofextra variables in Fourier modes leading to a Hamiltonian similar to (5.9), see [44℄. These extradegrees of freedom allow for some �transverse� radiation of the energy.Derivation of the generalized Langevin equationGeneral pro
edureUp to a res
aling of yjn, we may assume that all masses mj are 1. The only parameters left forthe 
oupling are the 
oupling fa
tors γj . Introdu
ing the pulsations ωj given by ωj = k
1/2
j , theequations of motion read:

ẍn = gN(xn+1 − xn) − gN (xn − xn−1) +

N∑

j=1

γjω
2
j (y

j
n − yjn−1), (5.11)

ÿjn = −ω2
j

[
yjn + γj(xn+1 − xn)

]
, (5.12)where

gN (x) = V ′(x) +




N∑

j=1

γ2
jω

2
j


 x. (5.13)Noti
e the stru
tural similarities of (5.11) with (5.7) and of (5.12) with (5.8).The solutions {yjn} of (5.12) are then integrated and inserted in (5.11) for {xn}. This pro
edureis the 
lassi
al Mori-Zwanzig proje
tion [250, 379℄. The integrability of the system is 
lear (on
einitial 
onditions in velo
ities and displa
ements are set) when the for
e gN is globally Lips
hitz.This is for example the 
ase when the sum∑N

j=1 γ
2
jω

2
j is �nite, and when V ′ is globally Lips
hitz,whi
h is indeed true for the Toda potential (5.5). For the Lennard-Jones potential (5.4) it remainstrue as long as the energy of the system is �nite (sin
e the potential diverges when x → −1, thebound on the total energy implies x > x0 > −1, and a bound on the Lips
hitz 
onstant 
an begiven by V ′(x0)). The 
omputation gives:

yjn(t) = yjn(0) cos(ωjt) +
ẏjn(0)

ωj
sin(ωjt) +

∫ t

0

γjωj sin(ωjs)(xn+1 − xn)(t− s) ds.Integrating by parts and inserting in (5.11):
ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+

∫ t

0

KN(s)(ẋn+1 − 2ẋn + ẋn−1)(t− s) ds+ rNn (t),
(5.14)where

KN (t) =
N∑

j=1

γ2
jω

2
j cos(ωjt),and

rNn (t) =

N∑

j=1

(yjn(0) − yjn−1(0))γjω
2
j cos(ωjt) + (ẏjn(0) − ẏjn−1(0))γjω

2
j

sin(ωjt)

ωj

+γ2
j kj cos(ωjt)(xn+1 − 2xn + xn−1)(0).Formally, (5.14) looks like a generalized Langevin equation (GLE), provided rNn is a random for
ingterm. The dissipation term involves a memory kernelKN and an �inner� fri
tion ẋn+1−2ẋn+ẋn−1.



5.1 A simpli�ed one-dimensional model 197The derivation made here shows that the usually postulated dissipation and memory arise naturallyas e�e
ts of higher dimensional degrees of freedom. The dissipation term, 
lassi
al in elasti
itytheory and postulated by some studies [160,314℄, is derived here, as memory e�e
ts, that were also
onsidered in [314℄, sin
e the 
orresponding model was that of a vis
oelasti
 material. So, we areleft with a des
ription of the system only in terms of {xn}. To further spe
ify the terms, we haveto des
ribe the 
hoi
e of the heat bath spe
trum {ωj}, the 
oupling 
onstant γj and the initial
onditions for the bath variables.Choi
e of the 
onstantsWe 
hoose the values [199℄:
ωj = Ω

(
j

N

)k
, γ2

jω
2
j = λ2f2(ωj) (∆ω)j , f2(ω) =

2α

π

1

α2 + ω2
, (5.15)where (∆ω)j = ωj+1 − ωj , α, λ > 0 and k > 0.The fun
tion f2 is de�ned this way for reasons that will be made 
lear in Se
tion 5.1.3. The heatbath spe
trum {ωj} is more dense as N in
reases. The exponent k a

ounts for the repartition ofthe pulsations. More general 
hoi
es 
ould be made, involving randomly 
hosen pulsations [199℄.However, we restri
t ourselves to the 
ase of deterministi
 pulsations. We emphasize here on
eagain that the 
onstants 
hosen and the form of the 
oupling are not new. A similar 
hoi
e ismade in [199℄. The novelty is in the appli
ation to a 1D 
hain, where independent heat baths are
onsidered, ea
h heat bath 
orresponding to a spring length.We now motivate (5.15). Noti
e that an upper bound to the heat bath spe
trum is imposed.This is related to the dis
reteness of the medium. Indeed, for a system at rest with parti
les distantfrom 1, the higher pulsation allowed is π, 
orresponding to an os
illatory motion of spatial period

2. When parti
les 
ome 
loser (for example if the mean distan
e between parti
les is a < 1), thehigher pulsation in
reases to the value π
a sin
e the lowest spatial period is now 2a. Taking thenlower bound dm for the minimal distan
e between neighboring parti
les, we get an upper boundfor the spe
trum, namely Ω = π

dm
.The 
hoi
e of the 
oupling 
onstants between the system and the bath is an important issue. Theonly purpose of the heat bath in a 1D sho
k simulation is to mimi
 some e�e
ts of dimensionality,su
h as energy transfer to the tranverse modes. This energy transfer 
an be quanti�ed using (5.12).Indeed, the total energy transfer for a harmoni
 os
illator of pulsation ω subje
ted to an externalfor
ing σ is known [44℄. More pre
isely, 
onsider the following harmoni
 os
illator:

z̈ + ω2z = h(t), (5.16)where h is an external time-dependent for
ing term. Then the total energy transfered by theexternal for
ing to the system (from t = −∞ to t = +∞ for a system at rest at t = −∞) is
∆E = 1

2 |ĥ(ω)|2. The energy transfer to the heat bath o

urs as des
ribed by (5.12). This gives atotal energy transfer for a spring xn+1 − xn 
onsidered initially at rest:
∆En =

1

2

N∑

j=1

γ2
jω

4
j |∆̂xn(ωj)|2. (5.17)As a �rst approximation, a sho
k pro�le 
an be des
ribed as a self-similar jump: ∆xn(t) = δH(n−

ctn), where δ < 0 is the jump amplitude, c the sho
k speed, and H is the Heaviside fun
tion.Then, |∆̂xn(ω)| = ω−1. The energy transfer (5.17) is therefore
∆En =

δ2

2

N∑

j=1

γ2
jω

2
j .
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ed model for sho
k wavesWith the spe
trum (5.15), the 
ondition ∆En → C with 0 < C <∞ is satis�ed:
∆En =

δ2λ2

2

N∑

j=1

f2(ωj)(∆ω)j →
δ2λ2

2

∫ Ω

0

f2 = λ2δ2σ(Ω).The last expression is bounded sin
e f2 is integrable (re
all ∫ ∞

0

f2 = 1). The fun
tion σ is a C∞fun
tion. Noti
e that the above 
onvergen
e results from the 
onvergen
e of the Riemann sumappearing on the left.Choi
e of the initial 
onditions.We 
onsider initial 
onditions {yjn(0), ẏjn(0)} randomly drawn from a Gibbs distribution withinverse temperature βy. This distribution is 
onditioned by the initial data {xn, ẋn}. More pre
i-sely, set
yjn(0) = −γj(xn+1 − xn)(0) + (βykj)

−1/2ξnj , (5.18)
ẏjn(0) = (βy)

−1/2ηnj , (5.19)where ξnj , ηnj ∼ N (0, 1) are independently and identi
ally distributed (i.i.d.) random Gaussianvariables. With these 
hoi
es,
rNn (t) =

1√
βy

N∑

j=1

ωjγj cos(ωjt)(ξ
j
n − ξjn−1) + ωjγj sin(ωjt)(η

j
n − ηjn−1). (5.20)The probability spa
e is indu
ed by the mutually independent sequen
es of i.i.d. random variables

ξjn, η
j
n. Denote D the linear operator a
ting on sequen
es Z = {zn} through DZ = {zn − zn−1}.So,

rNn (t) =
λ√
βy

N∑

j=1

f(ωj) cos(ωjt)Dξ
j
n + f(ωj) sin(ωjt)Dη

j
n (∆ω)

1/2
j .For �xed N , the above expressions give

E(rN (t)(rN (s))T ) =
1

βy
KN(t− s)DDT (5.21)where rN = (. . . , rNn , . . . ) and the linear operator DDT a
ts on sequen
es Z as DDT z = {zn+1 −

2zn + zn−1}. This relation is known as the �u
tuation-dissipation relation, linking the randomfor
ing term and the memory kernel. Noti
e that the noise term is 
orrelated both in time and inspa
e. The behavior of the system when N → ∞ is then an interesting issue, that 
an help us toget a better understanding of the phenomenas at play (see Se
tion 5.1.3).Numeri
al resultsThe equations of motion (5.11), (5.12) are integrated numeri
ally for a givenN , using a 
lassi
alvelo
ity-Verlet s
heme. The system is initialized with velo
ities and displa
ements generated from(5.18) and (5.19) in the y-
oordinates, and from (5.6) in the x 
oordinates. Note that the quantities
1

βx
and 1

βy
may di�er. The system is then �rst let to evolve freely, so that the 
oupling betweentransverse and longitudinal dire
tions starts.Sho
k waves are generated using a piston in the same fashion as in Se
tion 5.1.1, giving Fi-gures 5.9 and 5.10. We then study relaxation waves (Figure 5.11). The time-step ∆t is 
hosento ensure a relative energy 
onservation of 10−3 in the absen
e of external for
ing. Typi
ally,
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∆t = 0.01. The spe
trum density parameter k in (5.15) is taken to be k = 1. Other 
hoi
es leadto the same kind of simulation results. Noti
e that, if L represents the size of the 1D 
hain, thealgorithmi
 
omplexity s
ales as O(LN).Sustained sho
k wavesFigures 5.9 and 5.10 show the di�erent patterns obtained in the 
ase of a system 
oupled to aheat bath. Noti
e that the upper bound to the spe
trum, Ω, is of order π sin
e the sho
k is nottoo strong, and hen
e the medium is not too 
ompressed. The parameter α is taken less or equalto Ω so that KΩ and σ(Ω) are su�
iently 
lose from their limiting values.The parameter λ was varied in the range [0, 5]. If λ is too small, the 
oupling is too weak andthe pro�les look like the pure 1D ones (Note that we re
over the purely 1D model with Hamiltonian(5.2) when λ = 0). If λ is too high, the for
ing may be too strong, leading to the 
ollapse of twoneighboring parti
les if the time step is not small enough. A good 
hoi
e of λ involves a good rateof energy transfer to the transverse modes. The 
hoi
e of λ is 
ompletely empiri
al, but it wouldbe desirable to estimate it from full 3D simulations.The results show that the introdu
tion of transverse degrees of freedom has important 
onse-quen
es on the pure 1D pattern. The soliton train at the front is destroyed, and the sho
k thi
knessis 
onstant along time, instead of growing in time as in the pure 1D 
ase. Thus a steady regime 
annow be rea
hed, and these simulations really seem to deserve the name �sho
k waves�. In 
ontrastto the pure 1D model results, these simulations have now the same qualitative behavior as 3Dsimulations or experiments.
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Fig. 5.9. Relative displa
ement pro�les for the system 
oupled to a heat bath (left), and 
omparisonwith a thermalized sho
k (right). For the thermalized sho
k, the parameters are up = 0.3, b = 10 and
1√
βx

= 0.01. For the system 
oupled to a heat bath, the additional parameters are 1√
βy

= 0.02, α = 5,
Ω = 10, λ = 0.5. The number of transverse os
illators is N = 25.Rarefa
tion wavesAs 
an be seen in Figure 5.11, a rarefa
tion wave develops and progressively weakens thesho
k (noti
e that the velo
ities de
rease and that the relative displa
ement in
rease 
omparedto Figures 5.9 and 5.10). This is indeed the expe
ted physi
al behavior for a vis
ous �uid. Thisdissipation 
an be interpreted as energy transfer to the transverse modes.Besides, no soliton train survives, 
ontrarily to the pure 1D 
ase, where the solitons are notdestroyed and move on unperturbed. In the pure 1D 
ase, there is no weakening of the initial wave,only dispersion. On
e again, to our knowledge, this is the �rst time a 1D dis
rete model behavesas expe
ted.
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Fig. 5.10. Same parameters as for Figure 5.9, ex
ept for the system 
oupled to a heat bath, N = 100.Left: Relative displa
ement pro�le. Right: Lo
al density as a fun
tion of the parti
le index.
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Fig. 5.11. Relative displa
ement pro�les for the system 
oupled to a heat bath (left) and the thermalized1D system (right). The parameters for the system 
oupled to a heat bath are 1√
βy

= 0.04, α = 2, Ω = 5,
λ = 0.5. The system is 
ompressed during t0 = 50. The relaxation time is t1 − t0 = 350.Generalizations of the system-bath intera
tionBeyond nearest-neighbor intera
tionsThe Hamiltonian of the system 
an be written in an abstra
t form as

H(x, yN) =
1

2
|ẋ|2 + F (x) +

1

2
˙yN
TM ˙yN +

1

2
|Ax− ByN |2 (5.22)where x = (. . . , xn−1, xn, xn+1, . . .) and yN = (. . . , y1

n−1, . . . , y
N
n−1, y

1
n, . . . , y

N
n , . . .). The matrix Mis a mass matrix (operator), A and B are general operators, F (x) =

∑∞
n=−∞ V (xn+1 − xn). We
hose previously B diagonal. But more generally, B 
ould be 
onsidered as tridiagonal: this 
ouldmodel the intera
tion of two neighboring heat baths linked to neighboring spring lengths.Nonlinear 
oupling with the heat-bathWhen the sho
k strength in
reases, the heuristi
 derivation performed in this se
tion (relyingon small displa
ements) is no longer valid. The approa
h 
an however be generalized by 
onsideringa nonlinear 
oupling between the transverse parti
les and the parti
les in the 
hain. It is hopedthat the thermalization will be more e�
ient this way, in parti
ular, stronger sho
ks 
ould be



5.1 A simpli�ed one-dimensional model 201sustained with less transverse os
illatory degrees of freedom. We therefore 
onsider the followingHamiltonian:
H({qn, pn, q̃jn, p̃jn}) = HS({qn, pn}) +HNLB({qn, pn, q̃jn, p̃jn}), (5.23)with (qn, pn, q̃

j
n, p̃

j
n) = (xn, ẋn, y

j
n, ẏ

j
n), HS still given by (5.2), and

HNLB({qn, pn, q̃jn, p̃jn}) =
∞∑

n=−∞

N∑

j=1

1

2
(p̃jn)2 + kjU [γj(qn+1 − qn) + q̃jn], (5.24)where U is a nonlinear fun
tion to be spe
i�ed. The Hamiltonian (5.9) is re
overed when U(x) =

1
2x

2. Typi
ally,
U(x) = VLJ(1 + x),so that the intera
tions with the transverse os
illators are similar than the intera
tions in the
hain. We still 
onsider the distribution of sti�nesses kj and 
oupling 
onstants γj given by (5.15).Figure 5.12 presents numeri
al results obtained for a strong sho
k (up = 1). Satisfa
tory sho
kpro�les are obtained with N = 8 additional degrees of freedom only.
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Fig. 5.12. Displa
ement pro�les (Left) and velo
ity pro�les (Right) for a strong sho
k (up = 1) for thedeterministi
 model (5.9) using a nonlinear 
oupling, with N = 8, the parameters of the spe
trum (5.15)being k = 1, Ω = 10, α = 5 and λ = 0.2.5.1.3 The sto
hasti
 limitThe model developed in the previous se
tion shows how the introdu
tion of a 
ertain numberof transverse degrees of freedom leads to 
ompression pro�les very di�erent from the purely one-dimensional results. In parti
ular, some energy relaxation is possible due to the heat bath formedby the transverse os
illators. However, even when the heat bath is nonlinearly 
oupled, severaldegrees of freedom have to be introdu
ed and numeri
ally resolved for ea
h longitudinal degree offreedom. Therefore, it is interesting to repla
e the deterministi
 heat bath with many os
illatorsby its average a
tion. Mathemati
ally, this amounts to repla
ing the deterministi
 system (5.14)by a sto
hasti
 di�erential equation (SDE) of lower dimension. The only remaining unknowns arethe positions of the parti
les (. . . , xn(t), . . . ).
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ed model for sho
k wavesLimit of the dynami
s (5.14) when N → ∞Limit of the dissipation termThe memory kernel 
an be seen as a Riemann sum. The limit is then:
KN (t) = λ2

N∑

j=1

f2(ωj) cos(ωjt)(∆ω)j → λ2

∫ Ω

0

f2(ω) cos(ωt) dt = λ2KΩ(t) (5.25)when N → ∞, the 
onvergen
e holding in L1[0, T ], T > 0.The spe
ial 
hoi
e (5.15) implies KΩ(t) → e−αt when Ω → ∞ in L∞(R+). The memory kernelis then exponentially de
reasing.Limit of the �u
tuation termThe limit N → ∞ gives the 
onvergen
e of the noise term in a weak sense in C[0, T ] toward asto
hasti
 integral:
rNn (t) → λrΩn (t) =

λ√
βy

∫ Ω

0

f(ω) cos(ωt)D dWn,1
ω + f(ω) sin(ωt)DdWn,2

ω (5.26)where Wn,1
ω ,Wn,2

ω (n ∈ Z) are independent standard Brownian motions.Limit of the equationFormally, a sto
hasti
 integro-di�erential equation (SIDE) is obtained in the limit N → ∞ :
ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+λ2

∫ t

0

KΩ(s)(ẋn+1 − 2ẋn + ẋn−1)(t− s) ds+ λrΩn (t),
(5.27)with

KΩ(t) =

∫ Ω

0

f2(ω) cos(ωt) dω,

rΩn (t) =
1√
βy

∫ Ω

0

f(ω) cos(ωt)DdWn,1
ω + f(ω) sin(ωt)DdWn,2

ω ,and the �u
tuation-dissipation relation
E(rΩ(t)(rΩ(s))T ) =

1

βy
KΩ(t− s)DDT , (5.28)where rΩ = (. . . , rΩn , . . . ). The way the solutions of (5.14) 
onverge to the solutions of (5.27) 
anbe made rigorous by a dire
t adaptation of the results of [199℄: the 
onvergen
e of xNn solution of(5.14) to xn solution of (5.27) is weak in C2[0, T ] (in the sense of 
ontinuous random pro
esses,see below).The SIDE (5.27) 
an be rewritten as a sto
hasti
 di�erential equation (SDE). In the limiting
ase Ω → ∞, a Markovian limit 
an indeed be re
overed when 
onsidering an additional variable[199℄. Noti
e that when Ω → ∞, KΩ(t) → K(t) = e−αt. Denoting Q = (. . . , xn−1, xn, xn+1, . . . ),

P = (. . . , ẋn−1, ẋn, ẋn+1, . . . ), V (Q) =
∑∞
n=−∞ V (xn+1 −xn) and R = (. . . , Rn−1, Rn, Rn+1, . . . ),

λ =
√
αξ, the previous SIDE (5.27) is equivalent to the following SDE:
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dQt = Pt dt,

dPt = (Rt −∇V (Qt)) dt,

dRt = −α(Rt + ξDDTPt) dt+ α
√

2β−1ξ DdWt,

(5.29)where W is a standard Brownian motion, and with initial 
onditions rn(0) ∼ λβ−1/2 N (0, 1).The limiting equation (5.26) shows the main e�e
ts of the heat-bath intera
tion: The pure 1Dequation (5.3) is supplemented by two terms, one dissipation term with an exponentially de
reasingmemory, and a random for
ing. Therefore the heat bath a
ts �rst as an energy trap, absorbingsome of the energy of the sho
k when it passes. This energy is then given ba
k to the systemthrough the random for
ing term to an amount pre
ised by (5.28). This allows the equilibrationof the downstream domain.Proof of 
onvergen
eThe proof of the 
onvergen
e of the solutions of (5.14) to the solutions of (5.27) 
an be doneas in [199℄, by a straightforward extension to the multi-dimensional 
ase (in order to deal with
onvergen
e of sequen
es). Denote by xNn the solution of (5.14) for a given number N of transversevariables. We set δxNn = xNn+1 − xNn . The solution of (5.27) is noted xn. We set λ = 1 to simplifynotations. The extension to more general values of λ is straightforward. The spa
e of real sequen
esin noted H = RN, and is equiped with the usual l∞-norm. For a sequen
e z = {zn} ∈ H:
|z|l∞ = sup

n∈Z

|zn|.The spa
e H endowed with this norm is then a separable 
omplete metri
 spa
e.Consider the array of spring lenghts
QN =




...
δxNn... 

 ,and the array of random for
ing terms
GN =

1

βy




...
rNn...  .We similarly de�ne Q and G for the sequen
e {xn}.Re
all that the linear operator D, a
ting on sequen
es z = {zn} ∈ H, is de�ned by Dz =

{Dzn} = {zn − zn−1}. It follows |DDT z|l∞ ≤ 4|z|l∞ . Equation (5.14) 
an be rewritten as (re
all
λ = 1)

Q̈N = DDTF (QN ) +

∫ t

0

KN(s)DDT Q̇N (t− s) ds+DGN (t).Introdu
ing KN (t) =
∫ t
0
KN(s) ds and integrating the 
onvolution term by parts, (5.14) be
omes

Q̈N −
(
DDTF (QN) +

∫ t

0

KN (s)DDT Q̈N(t− s) ds

)
= DGN (t) −DDT Q̇N (0)KN (t). (5.30)This equation 
an be rewritten under a �xed point form as

(Id +RN )Q̈N (t) = hN (t). (5.31)



204 5 A redu
ed model for sho
k wavesAs F is Lips
hitz, ||RN || is small for small T . An usual Pi
ard argument gives the existen
eand uniqueness of Q̈N ∈ C([0, T ],H) solving (5.31) for T small enough (see [148℄, Se
tion 12,for an analogous proof). Standard results also give the 
ontinuity of Q̈N on KN ∈ L1[0, T ] and
UN = DGN −DDTQN (0)KN ∈ C([0, T ],H). The mapping (KN , UN ) 7→ QN is then 
ontinuousfrom L1[0, T ]× C([0, T ],H) to C([0, T ],H) with the 
orresponding norms.The 
onvergen
e of KN in L1[0, T ] is straightforward, and implies the 
onvergen
e of KN in
L1[0, T ]. The 
onvergen
e of UN results from the 
onvergen
e of KN ∈ L1[0, T ] and from the
onvergen
e of GN to G (in a way to pre
ise). We refer to [125℄, Se
tion VI.4., Theorem 2.Considering the 
olle
tion of 
ontinuous real-valued sto
hasti
 pro
esses GN with values in H(whi
h is a separable 
omplete metri
 spa
e), we have to show:(i) The �nite-dimensional distributions of GN weakly 
onverge to those of G, whi
h is a
ontinuous pro
ess.(ii) A tightness inequality of the form

∀t, t+ u ∈ [0, T ], E
[
|GN (t+ u) −GN (t)|2l∞

]
≤ C|u|.Then it follows GN ⇒ G in C([0, T ],H)-weak.These two points are straightforward generalizations of the proof in [199℄ (in the 
ase of non-random pulsations ωj) when extended to sequen
es with values in H, giving the 
onvergen
e

UN ⇒ U in C([0, T ],H)-weak. The 
onvergen
es ofKN toK in L1[0, T ] and UN to U in C([0, T ],H)in a weak sense then give the 
onvergen
e of Q̈N in C([0, T ],H) in a weak sense. Therefore,QN ⇒ Qin C2([0, T ],H)-weak. This implies the 
onvergen
e in a weak sense for all the 
omponents of QNfor T small enough.For general t, 
onsider e−γtQN for γ large enough, and res
ale appopriately the operatorsappearing in (5.31). The proof then follows the same lines.Numeri
al implementationThe SDE (5.29) is of the form
dXt = Y (Xt) dt+ΣdWt, (5.32)where Wt is a standard Wiener pro
ess, with the notations

Xt = (Qt, Pt, Rt), Y (Xt) = (Pt, Rt −∇V (Qt),−αRt + αξDDTPt), Σ = α

√
2ξ

β




0 0 0

0 0 0

0 0 Id .The integration is done using the following splitting of the ve
tor �eld Y :
Y (X) = YNewton(X) + YPR(X) + YRR(X) + YRP (X),with YP (X) = (0, R, 0), YR(X) = (0, 0,−αR + αξDDTP ) and YNewton(X) = (P,−∇V (Q), 0).Denote also by φ∆tNewton, φ∆tP and φ∆tR the asso
iated numeri
al �ows. When Σ = 0, a 
onsistantnumeri
al s
heme is

Ψ∆t = Φ
∆t/2
R ◦ Φ∆t/2P ◦ Φ∆tNewton ◦ Φ∆t/2P ◦ Φ∆t/2R .The �ow φ∆tNewton is approximated by the Velo
ity-Verlet s
heme Φ∆tNewton. The �ows φ∆tP and φ∆tR
an be analyti
ally integrated, so that:

Φ∆tP (Q0, P0, R0) = (Q0, P0 +R0∆t,R0).

Φ∆tR (Q0, P0, R0) =
(
Q0, P0, e−α∆tR0 − ξ(1 − e−α∆t)DDTP0

)
.



5.1 A simpli�ed one-dimensional model 205The random noise is added at the beginning and at the end of the time step. Denoting by i theindex of the parti
lesn and by n the integration index, the following s
heme 
an be proposed:




r
n+1/2
i = e−α∆t/2rni − ξ(1 − e−α∆t/2)(DDT pn)i +

√
αξ(1 − e−α∆t)

β
(DZn)i,

p
n+1/2
i = pni − ∆t

2
∇V (Qn) +

∆t

2
r
n+1/2
i ,

qn+1
i = qni +∆tp

n+1/2
i ,

pn+1
i = p

n+1/2
i − ∆t

2
∇V (Qn+1) +

∆t

2
r
n+1/2
i ,

rn+1
i = e−α∆t/2rn+1/2

i − ξ(1 − e−α∆t/2)(DDT pn+1)i +

√
αξ(1 − e−α∆t)

β
(DZn+1)i,

(5.33)
where {Zn}n∈N = {(. . . , zni , . . . )}n∈N and (zni )n∈N,i∈Z are i.i.d. standard random gaussian va-riables.Numeri
al resultsPro�les obtained with a 
ompression at �xed piston velo
ity up for one realization of (5.29)are presented in Figure 5.13, as well as averages obtained over 100 realizations (see Figure 5.14).Although the pro�les show sharp transitions, the temperature (given by �u
tuations in velo
itiesor positions downtream the sho
k front) is not 
orre
t sin
e it is the same as before the sho
k. Thisis 
ontrast with simulation results obtained with a few transverse os
illatory degrees of freedom.We will see in Se
tion 5.2 how to maintain 
hanges in the temperature a
ross the sho
k interfa
e,as observed in all-atom simulations.
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Fig. 5.13. Displa
ement pro�les (Left) and velo
ity pro�les (Right) for a single realization of a sustainedsho
k 
ompression at up = 1 for (5.29), the parameters being α = 10, β−1/2 = 0.01 and ξ = 1.5.1.4 Extension to the rea
tive 
aseWe extend here the one-dimensional sto
hasti
 model for sho
k waves to the rea
tive sho
kwaves, where 
hemi
al rea
tions are triggered when the sho
k passes. The exothermi
ity of theserea
tions �rst enhan
es, then sustains the propagation of the sho
k. The physi
al theorey behindthese rea
tive waves is the ZND theory [103,343℄ of detonation waves, whi
h de
omposes the waveinto three regions: an upstream unperturbed region, a sho
k front (or rea
tion zone) of 
onstant
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Fig. 5.14. Average over 100 realizations with the same 
onditions as for Figure 5.13.width where 
hemi
al rea
tions happen, followed by an autosimilar rarefa
tion wave. To give someorders of magintude for real materials, the width of the rea
tion zone ranges between severalmi
rometers to several millimeters, and the speed of the sho
k front may rea
h several km/s.Modelling of rea
tion wavesWe 
onsider a rea
tive potential in the vein of [361℄. To this end, an additional parameter rnis introdu
ed for ea
h interatomi
 bond ∆xn = xn+1 − xn, and models the rea
tion rate of thezone between xn+1 and xn. The intera
tion potential is also a fun
tion of this additional variable,and sin
e the rea
tion is exothermi
, the ground state of the rea
tion produ
ts is lower than theground state of the rea
tants. We therefore 
onsider the following intera
tion potential:
Vr(x) = (1 +Kr)VLJ(x) − VLJ(dc) =

1 +Kr

8

(
1

(1 + x)4
− 2

(1 + x)2

)
− VLJ(dc). (5.34)The potential sti�ens as the rea
tion goes on. The rea
tion starts when enough energy has beenstored in the media, for example when the media is 
ompressed enough (a less naive ignition of therea
tion is proposed in Se
tion 5.2.3). For the bond ∆xn, this 
orresponds to the �rst time t∗ su
hthat ∆xn < dc, where dc < 0 is a parameter (
riti
al distan
e). By 
onstru
tion, the potential is
ontinous at x = dc. For t ≥ t∗, the kineti
s of the rea
tion is assumed to be

drn
dt

(t) = D if 0 ≤ rn(t) ≤ 1,
drn
dt

(t) = 0 otherwise ,or possibly
drn
dt

(t) = D(1 − rn(t))for a �rst-order kineti
s. The bond ∆xn(t) is then des
ribed by the potential Vrn(t), using (5.34).The exothermi
ity of the rea
tion is ensured provided dc < 0, and is parametrized by K and dc.Figure 5.15 presents an example of modi�
ation of the potential when a rea
tion o

urs.Modi�
ation of the parameters in the generalized Langevin equationThe derivation of (5.29) uses parameters des
ribing some absorption spe
trum. However, as the
hemi
al rea
tion goes on, the me
hani
al properties of the media evolve, and so, the parametersof the absorption spe
trum should evolve as well. Sin
e the intera
tion potentials get sti�er bya fa
tor 1 + Krn, we arbitrarily modify the distribution of the pulsations {ω}, and repla
e ω2
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differenceFig. 5.15. Modi�
ation of the potential during the rea
tion (initial potential: upper 
urve, �nal potential:lower 
urve). Note that the equilibrium position is preserved, but the ground state is lower.par (1 +Krn)ω

2. analogously, α is repla
ed by α√1 +Krn and λ by λ√1 +Krn, while keepingthe {γj} un
hanged.Numeri
al results
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Fig. 5.16. Sustained 
ompression of rea
tive sho
k waves. Displa
ement pro�les (Left) and velo
itypro�les (Right) for a single realization of a sustained sho
k 
ompression. The parameters are the same asfor Figure 5.13, with K = 1, dc = −0.3, D = 0.025 and a �rst-order rea
tion kineti
s.Pro�les reminis
ent of 
lassi
al ZND pro�les are re
overed, with sho
ks stronger than in thenon-rea
tive 
ase and propagating faster (see Figure 5.16). The sho
k is also followed by a relaxa-tion wave. When the piston is removed, a steady-state sho
k front is �nally obtained, whi
h isnot weakened by the downstream rarefa
tions (see Figure 5.17). However, the material returns toequilibrium after some relaxation period, whereas a �uid behavior is expe
ted when detonationtakes pla
e (the order in the material being 
ompletely lost be
ause of the large energy release).Therefore, the 1D model, even augmented, is not 
onvenient to model detonation of real materials.
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Fig. 5.17. Same parameters as for Figure 5.16, a 
ompression time Tcomp = 20 and a relaxationtime Trelax = 1500.5.2 A redu
ed model based on Dissipative Parti
le Dynami
sThe redu
ed model (5.29) obtained in Se
tion 5.1 is reminis
ent of DPD models sin
e thefri
tion depends on the relative velo
ities of the parti
les. However, the temperature e�e
ts arenot 
orre
tly taken into a

ount. Let us emphasize at this point that keeping thermal �u
tuationsin the mi
ros
opi
 models is of paramount importan
e to obtain the right relaxation pro�les behindthe sho
k front [162,323℄.It is not possible to resort dire
tly to the 
lassi
al DPD models to simulate sho
k waves.Indeed, the dissipative and random for
es arising in DPD are linked through some �u
tuation-dissipation relation, using a lo
al temperature. But when a sho
k wave passes, energy is transferedto the material, and the lo
al temperature 
hanges. Therefore, it is ne
essary to 
onsider DPDmodels where the �u
tuation-dissipation relation is not �xed a priori, but evolves depending onthe physi
al events that have happened. DPD with 
onserved energy [15, 95℄ are su
h models.DPD models, introdu
ed in [170℄, have been put on �rm thermodynami
s ground in [98℄.Some derivations from mole
ular dynami
s where proposed in a simpli�ed 
ase in [94℄, the more
onvin
ing general derivation being at the moment [106℄. These studies motivate the modelling ofthe mean a
tion of the proje
ted degrees of freedom through some dissipative for
es (dependingon the relative velo
ities of the parti
les, so that the global momentum is 
onserved), balan
edby some random for
es. Ergodi
ity of the dynami
s 
an be shown in some simpli�ed 
ases [307℄.Therefore, DPD dynami
s are well established and motivated redu
ed models.Coarser models su
h as SPH (Smoothed parti
le hydrodynami
s) [217,246℄ are routinely used tosimulate sho
k waves at the hydrodynami
 level, and 
an also be formulated in a DPD framework(the so-
alled Smoothed dissipative parti
le dynami
s [96℄). However, these models require theknowledge of an equation of state Eint = Eint(S, P ) giving the internal energy as a fun
tion ofentropy and pressure, for instan
e. Therefore, SPH-like models 
annot be 
onsidered when the
oarse-grained model is still at the mi
ros
opi
 level.We present in this se
tion a dynami
s strongly inspired by those models, and show that itprovides an interesting mesos
opi
 model for the simulation of sho
k waves (see Se
tion 5.2.2and [324℄). It also opens the way for an extension to detonation waves, where exothermi
 
hemi
alrea
tions are triggered as the sho
k passes, with the sho
k sustained and enhan
ed through theenergy released (see Se
tion 5.2.3 and [222℄).5.2.1 Previous mesos
opi
 modelsWe review here some mesos
opi
 models [163,326℄ for sho
k waves, obtained through a 
oarse-graining from mi
ros
opi
 (all-atom) models. The model from [163℄ is more empiri
al and has been
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le Dynami
s 209derived to re
over 
ertain properties of poly
rystalline materials. One parti
le stand for a grainin this 
ase, and some assumptions are made on the me
hani
al behavior at grain boundaries.The model from [326℄ 
onsiders the elementary 
oarse-graining, in whi
h a 
omplex mole
ule isrepla
ed by a single �
titious parti
le with internal degrees of freedom (internal energy).In both [163,326℄, the dissipation for
es a
ting on the i-th parti
le are of the form −γ(vi− v̄i),where v̄i is a lo
al average of the velo
ities around the parti
le. We will fo
us in the sequel onthe model [326℄, in whi
h the Hamiltonian equations of motions are then perturbed by additionalterms: 



dqi
dt

=
pi
mi

− χi∇Vqi (q),

dpi
dt

= −∇Vqi(q) −
ηi
mi

(vi − v̄i).It is assumed that the variations of me
hani
al energy are exa
tly 
ompensated by the variationsof internal energy. Asso
iating an internal energy ǫi to ea
h parti
le (see Se
tion 5.2.2), it follows
dEtot = dEmec +

N∑

i=1

dǫi = d

[
1

2
pTMp+ V (q)

]
+

N∑

i=1

dǫi = 0.Therefore,
dǫi
dt

= ηi(vi − v̄i) · vi + χi|∇Vqi (q)|2.The authors of [326℄ then argue that this energy transfer is not Galilean invariant (in view of the�rst term on the right hand side in the above equation: vi − v̄i is Galilean invariant, but vi isnot), even if the dynami
s is. To remedy this problem, they restrain themselves to dissipationon the position variable q only, and do not 
onsider dissipation in the momenta (ηi = 0). Astable dynami
s is obtained by 
onsidering a 
oe�
ient χi depending on the di�eren
e betweenthe internal and the external (translational or me
hani
al temperature), and a Berendsen-likefeedba
k. The resulting dynami
s is not 
ompletely satisfa
tory from a physi
al viewpoint sin
eit has a stru
ture very di�erent of Newton's equation. It is also not 
lear whether an invariantmeasure exists.It is however possible to preserve the Galilean invarian
e by 
onsidering pair fri
tion for
es,depending on the relative velo
ities of the parti
les as is done in DPD models. In this 
ase,the energy ex
hanges 
an indeed be symmetrized, and the resulting pro
ess is totally Galileaninvariant. The resulting dynami
s, of DPD form, are physi
ally more natural then the dampeddynami
s of [326℄.5.2.2 A redu
ed model in the inert 
aseDes
ription of the modelAll atom simulations are performed resorting to Newton's equations of motion. The 
orrespon-ding mi
ros
opi
 systems are deterministi
, Galilean invariant, and have some invariants, su
h asthe total energy. While sto
hasti
 models are natural models to des
ribe systems with redu
eddynami
s (sin
e the information lost by the averaging pro
ess is modelled by some random pro-
ess), it is however not 
lear that su
h a sto
hasti
 model 
an reprodu
e, even in a mean way, adeterministi
 dynami
s with invariants.It turns out however that DPD models are sto
hasti
 dynami
s whi
h are Galilean invariantand preserve total momentum. Some re�nements were also proposed in order to 
onserve the totalenergy of the system, a model 
alled 'DPD with 
onserved energy' (DPDE [15,95℄).We 
onsider a system of N parti
les in a spa
e of dimension d, des
ribed by their positions
(q1, . . . , qN ) and momenta (p1, . . . , pN ), with asso
iated mass matrix M = Diag(m1, . . . ,mN ),
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ed model for sho
k wavesintera
ting through a potential V . We assume for simpli
ity that the intera
tions between theparti
les are pairwise and depend only on the relative distan
es, so that V(q) =
∑

i<j V (|qi− qj |).Denoting by T̄ the referen
e temperature and β = 1/(kBT̄ ), the DPD equations read [98,170℄




dqi =
pi
mi

dt,

dpi =
∑

j 6=i
−∇V (rij) dt− γχ2(rij)(vij · eij)eij +

√
2γ

β
χ(rij)dWij eij ,

(5.35)with γ > 0, rij = |qi− qj|, eij = (qi− qj)/rij , vij = pi

mi
− pj

mj
, χ a weight fun
tion (with support in

[0, rc] where rc is a 
ut-o� radius), and whereWij are 1-dimensional independent Wiener pro
essessu
h that Wij = Wji.Noti
e that, sin
e the dissipation term depends only on the relative velo
ities, the dynami
s areglobally Galilean invariant. Besides, the total momentum is preserved. However, the total energy�u
tuates, so that some re�nements in the model are required. Relying on the general DPD pi
ture,DPD with 
onserved energy were introdu
ed in [15,95℄. The idea is that the variations of the totalme
hani
al energy H(q, p) = 1
2p
TMp + V(q) through the dissipative for
es are 
ompensated bysome reservoir energy variable atta
hed to ea
h parti
le. Introdu
ing an internal energy ǫi for ea
hparti
le, the evolution of the internal energies are 
onstru
ted su
h that

dH(q, p) +
∑

i

dǫi = 0.An asso
iated entropy si = s(ǫi) and an internal temperature 
an be also de�ned for ea
h parti
leas
Ti =

(
∂si
∂ǫi

)−1

.For example, when the internal degrees of freedom are purely harmoni
, T (ǫ) = ǫ/Cv, where
Cv is the spe
i�
 heat at 
onstant volume. More generally, this mi
ros
opi
 state law should be
omputed using all-atom MD or ab initio simulations.The model we 
onsider is strongly inspired from DPD models with 
onserved energy [15, 95℄,so that all the properties of the usual DPD models with 
onserved energy 
an be straightforwardlytransposed to this 
ase. The derivation of the model is done as in [15, 95℄. The main di�eren
eshere is that (i) we present the dynami
s for parti
les of unequal masses, and (ii) do not proje
tthe dissipatives and random for
es along the lines of 
enter of the parti
les. The generalizationto parti
les of unequal masses is done by 
onsidering dissipation for
es depending on the relativevelo
ities, and not on the relative momenta. This is important if mixtures 
omposed of (say) twomole
ules are simulated, and ea
h mole
ule is repla
ed by a single parti
le, whose mass is the totalmass of the mole
ule. The dissipative and random for
es 
ould be proje
ted as well to 
onserveangular momentum, but we restri
t ourselves to the simpler and more general 
ase when thesefor
es are not proje
ted, sin
e we are only interested in Galilean invarian
e, and have in mind anextension to redu
ed models for rea
tive sho
k waves, whi
h do not ne
essarily preserve angularmomentum, even if the dissipative and random for
es are proje
ted. Su
h a model is also 
loserto the Langevin pi
ture of the previous redu
ed models for sho
k waves [163,326℄.We �nally negle
t the thermal 
ondu
tion here, sin
e the 
ontribution to the evolution of theinternal energy arising from the dissipation for
es is expe
ted to be dominant in the nonequilibriumzone near the sho
k front. Heat di�usion plays a role only after the relaxation towards equilibriumin the sho
ked zone is a
hieved.The equations of motion for the system read:
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



dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γijχ

2(rij)vij dt+ σijχ(rij)dWij ,
(5.36)where χ is still a weight fun
tion (with support in [0, rc] where rc is a 
ut-o� radius), and Wij arenow d-dimensional independents Wiener pro
esses su
h that Wij = −Wji. The fri
tion γij andthe �u
tuation magnitude σij will be pre
ised below. As for DPD models with 
onserved energy,the dynami
s is postulated in a manner su
h that the total energy E(q, p, ǫ) = H(q, p) +
∑

i ǫi ispreserved. The evolution of dH = −∑i dǫi is inferred from (5.36) using It� rule (see [95℄ for moredetails). Therefore, we 
onsider the following dynami
s:
dqi =

pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γijχ

2(rij)vij dt+ σijχ(rij)dWij ,

dǫi =
1

2

∑

j, j 6=i

(
χ2(rij)γijv

2
ij −

dσ2
ij

2

(
1

mi
+

1

mj

)
χ2(rij)

)
dt− σij χ(rij)vij · dWij ,

(5.37)
with the �u
tuation-dissipation relation [15, 95℄ :

σij = σ, γij = σ2βij/2, β−1
ij = 2kB(T−1

i + T−1
j )−1.It is then easily 
he
ked that measures of the form

dρ(q, p, ǫ) =
1

ZP,E
e−βH(q,p) exp

(∑

i

s(ǫi)

kB
− βǫi

)
δE=E0 δP=P0 dq dp dǫ (5.38)are invariant [15℄. This measure expresses the fa
t that the translational degrees of freedom aredistributed a

ording to a 
lassi
al Boltzmann statisti
s, whereas the internal energies are distri-buted a

ording to some free energy statisti
s. The total momentum P0 =

∑
i pi and the totalenergy E0 = E(q, p, ǫ) are also preserved by 
onstru
tion.If the dynami
s is ergodi
 for the measure (5.38) and in the limit N → +∞, it holds

kB〈Tkin〉 = β−1, kB(〈T−1
int 〉)−1 = β−1,with

Tkin =
1

kBdN

N∑

i=1

p2
i

mi
,

1

Tint
=

1

N

N∑

i=1

1

Ti
,and 〈A〉 =

∫
A(q, p) ρ(q, p, ǫ) dq dp dǫ. Indeed, as T−1

i = s′(ǫi), and assuming s(ǫ) → −∞ when ǫ→
0, s(ǫ)/ǫ→ 0 when ǫ→ +∞ (whi
h is the 
ase when s(ǫ) = Cv ln ǫ),

〈
1

kBTi

〉
=

∫ +∞

0

s′(ǫi)

kB
exp

(
s(ǫi)

kB
− βǫi

)
dǫi

∫ +∞

0

exp

(
s(ǫi)

kB
− βǫi

)
dǫi

= β.Noti
e that these relationships provide estimators for the lo
al thermodynami
 temperature
β−1/kB through the arithmeti
 average kineti
 temperatures, and the harmoni
 average inter-
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ed model for sho
k wavesnal temperatures. Let us emphasize that a straightforward arithmeti
 average over the internaltemperatures would give wrong results (the 
orresponding estimator being biased).A deterministi
 version of the modelWe intend here to introdu
e a deterministi
 version of our model, whi
h allows to bridge thegap between a previous mesos
opi
 deterministi
 model [326℄ (see also Se
tion 5.2.1) and the DPDframework for sho
k waves. The model proposed in [326℄ introdu
es damping for
es on the positionvariables dire
tly (and not on the momentum variables as would be expe
ted) in order to preservethe Galilean invarian
e. Indeed, the damping terms in the momentum variable are 
onsidered tobe of the form −γ(vi − v̄i), where v̄i is a lo
al average of the velo
ities around the parti
le, whi
hmakes the Galilean invarian
e of the dissipated energy di�
ult to preserve. If on the other handthe dissipation term in the momentum variable implies only pairwise velo
ity di�eren
es as forDPD models, the Galilean invarian
e follows immediately. The following equations of motion thenmix the deterministi
 equations of motion of [326℄ and the DPD philosophy:




dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γ

T ext
ij − T int

ij

T̄
ω(rij)vij dt,

dǫi =
1

2

∑

j, j 6=i
γ
T ext
ij − T int

ij

T̄
ω(rij)v

2
ij dt,where T ext

ij is the average temperature in the kineti
 degrees of freedom of parti
les i and j (forexample, T ext
ij = (T ext

i + T ext
j )/2 with T ext

i = 2p2
i /kBdmi the kineti
 temperature asso
iatedwith parti
le i) and T int

ij is the average internal temperatures of parti
les i and j (for example,
T int
ij = (T int

i +T int
j )/2). The fun
tion ω is still a weighting fun
tion, and γ determines the strengthof the 
oupling.Noti
e that the dissipation term is in fa
t a dissipation term only when T ext

ij > T int
ij , and ananti-dissipation term otherwise (and so, is a Nosé-like feedba
k). This ensures that the internaland external (kineti
 thus potential terms) energies equilibriate in all 
ases. However, the thermo-dynami
 properties of su
h a model are less 
lear to state than for the previous sto
hasti
 model,and so, we sti
k to the model (5.37).Numeri
al dis
retizationWe use splitting formulas inspired from [305,306℄. Re
all that the integration of the equation ofmotion (5.37) is not straightforward sin
e the dissipation terms depend on the relative velo
ities.We de
ompose (5.37) into elementary SDEs, and denote by φ∆t the (sto
hasti
) �ow map for atime ∆t. The elementary SDEs are the usual deterministi
 Newton part and the dissipation part,whi
h read respe
tively

{
dq = M−1p dt,

dp = −∇V (q) dt
and ∀i < j,





dpi = −γijχ2(rij)vij dt+ σχ(rij) dWij ,

dpj = −dpi,
dǫi = − 1

2d
(
p2i

2mi
+

p2j
2mj

)
,

dǫj = dǫi.Denoting by φNewton,∆t and φi,jdiss,∆t (1 ≤ i < j ≤ N) the asso
iated sto
hasti
 �ow maps, anapproximation of φ∆t is
φ∆t ≃ φ1,2

diss,∆t ◦ · · · ◦ φ
N−1,N
diss,∆t ◦ φNewton,∆t.
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ed model based on Dissipative Parti
le Dynami
s 213The Newton �ow φNewton,∆t is approximated using a Velo
ity-Verlet s
heme. For an approximation
Φi,jdiss,∆t (i < j) of the dissipation part, we �rst update the velo
ities at �xed internal temperaturesusing a Verlet-like algorithm as proposed in [306℄. The energy is then updated as

ǫn+1
i − ǫni = ǫn+1

j − ǫnj =
1

2

(
(pn+1
i )2

2mi
+

(pn+1
j )2

2mj
− (pni )2

2mi
−

(pnj )
2

2mj

)
,so that the total energy is indeed 
onserved by this step. Of 
ourse, this integration s
heme 
ouldbe re�ned, espe
ially the dissipation part.Appli
ation to sho
k wavesSome numeri
al simulations of DPD models with 
onserved energy where proposed in [16,282℄, but were 
on
erned only with the 
omputation of thermal 
ondu
tivities. The 
orrespondingnonequilibrium states were stabilized using steady temperature gradients. The dissipation termsin the DPDE equations of motions were dis
arded, and only the di�usive part was retained. Wepresent in this se
tion pro�les obtained from simulations of sho
k waves, for whi
h the di�usivepart of the dynami
s 
an be dis
arded, but the dissipative part is of paramount importan
e toreprodu
e qualitative and quantitative features of all-atom sho
k waves. This situation is somehow
omplementary to the 
ases studied in [16,282℄, and, to our knowledge, was never 
onsidered beforefor some physi
al appli
ation.We 
onsider the 
rystalline polymer (PVDF) system of [326℄, the 
orresponding redu
ed systembeing modeled by a two-dimensional (2D) triangular latti
e of mesoparti
les. Results for the all-atom model 
an also be found in [326℄.The e�e
tive intera
tion potential between mesoparti
les is a pairwise Rydberg potential ofthe form [326℄ V (r) = VR(λ(r/r0)− 1)) with VR(d) = −ǫ (1 + d+ αd3) e−d. The parameters givenby [326℄ were �tted to reprodu
e the stress in an uniaxial 
ompression: λ = 7.90, α = 0.185,

r0 = 5.07 Å, ǫ = 1.612 × 10−20 J, m = 64.03 × 10−3 kg/mol. We also 
hoose a 
ut-o� radius
Rcut = 15 Å for the pairwise intera
tions. The mi
ros
opi
 state law is obtained by assuming that
Cv is independent of the temperature: ǫ = CvT , with here Cv = 16 kB sin
e we represent a three-dimensional mole
ule formed of 6 atoms by a 2D mesoparti
le. In general, the heat 
apa
ity is afun
tion of the temperature Cv = Cv(T ), and should be parametrized by equilibrium simulations.We use the simple weight fun
tion χ(r) = (1 − r/Rcut)

2 if r ≥ Rcut, χ(r) = 0 otherwise,the 
ut-o� radius Rcut being the same as the one used for the potential. Of 
ourse, many otherweight fun
tions 
ould be used. We also set γ = 1.5 × 10−14 kg/s and ∆t = 10−14 s. In thesepreliminary tests of the model, the parameter γ was varied to obtain a good agreement with theall-atom results. However, it is expe
ted that γ is linked to some physi
al quantity, su
h as thede
ay rate of the relative velo
ities auto
orrelation in an all-atom simulation, and 
ould thereforebe estimated using some preliminary small equilibrium simulations.We �rst prepare an initial state a

ording to the invariant measure (5.38). To this end, wesample independently the internal energies a

ording to the measure Z−1
ǫ exp(−βǫ + s(ǫ)/kB) =

Z−1
ǫ ǫCv/kB exp(−βǫ), and the initial 
on�guration in phase-spa
e by thermalizing a latti
e initiallyat rest, using a Langevin dynami
s. In this study, the initial temperature is T0 = 300 K, and theedge of the triangles in the triangular latti
e is a = 5.13 Å.We then produ
e a sho
k using a piston at velo
ity up = 3000 m/s. Figure 5.18 presentsthe relaxation behind the sho
k front for the 2D triangular latti
e of mesoparti
les subje
tedto the dynami
s (5.37). The results are in good agreement with the all-atom results of [326℄.In parti
ular, the �nal temperature is very 
lose to the all-atom value (whereas it is of 
oursegreatly overestimated by the mesos
opi
 dynami
s without 
oupling), and the time required forthe internal temperatures and kineti
 temperatures to equilibriate is almost the time needed inall-atom studies.
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Fig. 5.18. Temporal evolution of the temperature of a thin slab of material as the sho
k runs troughit: mean kineti
 temperature T̂kin in the dire
tion of the sho
k (intermediate 
urve, red), mean internaltemperature T̂int (lower 
urve, blue). The 
orresponding results when the 
oupling with the internal degressof freedom is turned o� are also shown (upper 
urve, bla
k), and a 
artoon representation of the all-atomresult from [326℄ for the kineti
 temperature T̂kin is also plotted (dark dash dotted line).5.2.3 The rea
tive 
aseIn the rea
tive 
ase, exothermi
 
hemi
al rea
tions are triggered when the sho
k passes, andthe energy liberated sustains the sho
k. To model detonation at the mesos
opi
 level, we introdu
ean additional variable per mesoparti
le, namely a progress variable. The dynami
s 
an then besplit into three elementary physi
al pro
esses:(i) the translational dynami
s of the parti
les, given by the dynami
s of inert materials (seeEq. (5.37));(ii) the evolution of the 
hemi
al rea
tion through some kineti
s;(iii) the exothermi
ity of the rea
tion: energy transfers between 
hemi
al energy and me
hani
aland internal energies have to be pre
ised.Treating the exothermi
ityIn the rea
tive 
ase, 
hemi
al rea
tions are triggered when the sho
k passes. To model theprogress of the rea
tion, an additional degree of freedom, a progress variable λi, is atta
hed toea
h parti
le. For the model rea
tion
2AB ⇄ A2 + B2, (5.39)
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ed model based on Dissipative Parti
le Dynami
s 215the state λ = 0 
orresponds to a mole
ule AB, whereas the state λ = 1 
orresponds to A2 + B2.Representing the progress of the 
hemi
al rea
tion by a real-value parameter makes sense when themesoparti
le represent a blob of material, but seems questionable when a mesoparti
le stands fora single mole
ule. Therefore, the progress variable should be seen as some disso
iation probability,or progress along some free energy pro�le.Sin
e the model rea
tion (5.39) involves two spe
ies on ea
h side, we postulate for example areversible evolution of order 2:
dλi
dt

=
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] , (5.40)the fun
tion ωr being a weight fun
tion (with support in [0, rreac]), and the mean temperature Tij =

(Ti +Tj)/2. The rea
tion 
onstants K1, K2 are assumed to depend only on internal temperaturesof the parti
les. For example, a possible form in the Arrhénius spirit is:
K1(T ) = A1 e−E1/kBT , K2(T ) = A2 e−E2/kBT . (5.41)The total in
rement of the progress variable is therefore the sum of all elementary pair in
rements,whi
h is very mu
h in the DPD spirit. Other kineti
s (for example, using some lo
al averagedinternal temperatures 〈T 〉i and lo
al averaged progress variables 〈λ〉i) are of 
ourse possible.For very exothermi
 rea
tions, E2 ≫ E1, and both energies are large sin
e the a
tivation energyis usually large for energeti
 materials. The in
rement of a given progress variable is non-negligibleonly if the material is lo
ally heated enough. In pra
ti
e, this 
an be a
hieved when a strong sho
kis initiated in the system. If this sho
k is not strong enough, 
hemi
al rea
tions do not o

urfast enough, and sin
e the energy released is not su�
ient, the sho
k wave is weakened until itdisappears. On the 
ontrary, if the sho
k wave is strong enough, the 
hemi
al rea
tions happen
lose enough from the detonation front, and the energy released sustains the sho
k wave.The progress of the rea
tion also modi�es the me
hani
al properties of the material. In parti
u-lar, rea
tion produ
ts usually have a larger spe
i�
 volume than rea
tants (at �xed thermodynami

onditions). Therefore, some expansion is expe
ted. The 
hanges in the nature of the mole
ules aretaken into a

ount by introdu
ing two additional parameters ka, kE and using some mixing rulesu
h as Berthelot's rule. When the intera
tion potential is of Lennard-Jones form, the intera
tionbetween the mesoparti
les i and j separated by a distan
e rij is then given by
V (rij , λi, λj) = 4Eij

((
aij
rij

)12

−
(
aij
rij

)6
)
, (5.42)with Eij = E

√
(1 + kEλi)(1 + kEλj), aij = a

(
1 + ka

λi+λj

2

). When the rea
tion is 
omplete, thematerial initially des
ribed by a Lennard-Jones potential of parameters a,E is then des
ribed bya Lennard-Jones of parameters a′ = a(1 + ka) and E′ = E(1 + kE).We denote by ∆Eexthm the exothermi
ity of the rea
tion (5.39). It is expe
ted that ∆Eexthm =

E2 − E1. We assume that the energy is liberated progressively during the rea
tion, in a mannerthat the total energy of the system (
hemi
al, me
hani
al, internal) is preserved:
dHtot(q, p, ǫ, λ) = d


 ∑

1≤i<j≤N
V (rij , λi, λj) +

N∑

i=1

p2
i

2mi
+ ǫi + (1 − λi)∆Eexthm


 = 0.In order to propose a dynami
s satisfying this 
ondition, we have to make an additional assumptionabout the evolution of the system. Negele
ting di�usive pro
esses, we require that, during theelementary step 
orresponding to exothermi
ity, the total energy of a given mesoparti
le does not
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hange2:
d


1

2

∑

i6=j
V (rij , λi, λj)


+ d

(
p2
i

2mi

)
+ dǫi −∆Eexthmdλi = 0. (5.43)We then 
onsider evolutions of momenta and internal energies balan
ing the variations in thetotal energy due to the variations of λ (exothermi
ity, 
hanges in the potential energies). This isanalogous to the fa
t that the variations of kineti
 energy in (5.37) are 
ompensated by variationsof internal energies. The variations in total energy are distributed between internal energies andkineti
 energies following some predetermined ratio 0 < c < 1. For the internal energies,

dǫi = −c


d


1

2

∑

i6=j
V (rij , λi, λj)


 −∆Eexthmdλi


 .For the momenta, we 
onsider a pro
ess Zpi su
h that dpi = dZpi with

d

(
p2
i

2m

)
= −(1 − c)


d


1

2

∑

i6=j
V (rij , λi, λj)


−∆Eexthmdλi


 .We explain in the next se
tion how this is done in pra
ti
e (see Eq. (5.46)).Let us emphasize at this point that there are many other possible ways to treat the exother-mi
ity. For instan
e, it would be possible to 
onsider instantaneous rea
tions (jump pro
esses forwhi
h λ 
hanges from 0 to 1) o

uring at random times, the probability of rea
tion dependingon the progress variable. However, it is not 
lear whether su
h a dynami
s is reversible, sin
e thereverse rea
tion requires parti
les to have large kineti
 and internal energies. In 
omparison, thepro
ess des
ribed here is progressive and therefore, mu
h more reversible.Finally, we propose the following dynami
s to des
ribe rea
tive sho
k waves:

dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇qiV (rij , λi, λj) dt− γijχ

2(rij)vij dt+ σχ(rij)dWij + dZpi ,

dǫi =
1

2

∑

j, j 6=i

(
χ2(rij)γijv

2
ij −

dσ2

2

(
1

mi
+

1

mj

)
χ2(rij)

)
dt

−σ χ(rij)vij · dWij + dZǫi ,

dλi =
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] dt,

(5.44)
where dZpi , dZǫi are su
h that (5.43) holds, i.e. the total energy is 
onserved. The �u
tuation-dissipation relation relating γij and σ is the same as for (5.37). Noti
e also that the inert dyna-mi
s (5.37) is re
overed when A1 = A2 = 0, starting from λi = 0 for all i.Numeri
al implementationThe numeri
al integration of (5.44) is done using a de
omposition of the dynami
s into ele-mentary sto
hasti
 di�erential equations. We denote by φtinert the �ow asso
iated with the dyna-mi
s (5.37), and by φtreac the �ow asso
iated with the remaining part of the dynami
s (5.44):
2 Of 
ourse, during the elementary step 
orresponding to the dynami
s (5.37), the total energy 
hanges.
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∀1 ≤ i ≤ N,





dλi =
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] dt,

dpi = dZpi ,

dǫi = dZǫi .

(5.45)A one-step integrator for a time-step ∆t is 
onstru
ted as (qn+1, pn+1, ǫn+1, λn+1) = Φ∆treac ◦
Φ∆tinert(q

n, pn, ǫn, λn). A possible numeri
al �ow Φ∆tinert is given in Se
tion 5.2.3.Let us now 
onstru
t a numeri
al �ow Φ∆treac approximating the �ow φ∆treac. Denoting (qn+1, p̃n, ǫ̃n, λn) =

Φ∆tinert(q
n, pn, ǫn, λn), we �rst integrate the evolution equation on the progress variables λi using a�rst-order expli
it integration:

λ̃n+1
i = λni +


∑

j 6=i
ωr(r

n+1
ij )K1(T̃

n
ij)(1 − λ̃ni )(1 − λ̃nj ) +K2(T̃

n
ij)λ̃

n
i λ̃

n
j


 ∆t.We then set λn+1

i = min(max(0, λ̃n+1
i ), 1) in order to ensure that the progress variable remainsbetween 0 and 1. On
e all progress variables are updated, the variation δEni in the total energyof parti
le i due to the variations of {λj} is 
omputed as

δEni = (λn+1
i − λni )∆Eexthm +

1

2

∑

j 6=i

(
V (rn+1

ij , λn+1
i , λn+1

j ) − V (rn+1
ij , λni , λ

n
j )
)
.The 
onservation of total energy is then ensured through variations of internal and kineti
 energies.The internal energies are updated as ǫn+1

i = ǫ̃ni + c δEni . The update of pn+1
i is done by addingto pni a ve
tor with random dire
tion, so that the �nal momentum is su
h that the kineti
 energyis 
orre
t. More pre
isely, when the dimension of the physi
al spa
e is d = 2 for example, anangle θni is 
hosen at random in the interval [0, 2π], the angles (θni )i,n being idependent andidenti
ally distributed (i.i.d.) random variables. The new momentum pn+1

i is then 
onstru
tedsu
h that
pn+1
i = pni + αn(cos θn, sin θn),

(pn+1
i )2

2mi
=

(p̃ni )
2

2mi
+ (1 − c) δEni . (5.46)Solving this equation in αn gives the desired result.Numeri
al resultsWe present in this se
tion numeri
al results obtained for the dynami
s (5.44) for a two-dimensional �uid. A sho
k is initiated using a piston of velo
ity up during a time tp. The initial
onditions for the positions qi, momenta pi and internal energies ǫi are sampled as proposed inSe
tion 5.2.2.We 
onsider the following parameters, inspired by the nitromethane example, where the mo-le
ule CH3NO2 is repla
ed by a mesoparti
le in a spa
e of 2 dimensions. The parameters 
an be
lassi�ed in four main 
ategories, the ones des
ribing the me
hani
al properties of the material, theparameters used to 
hara
terize the inert dynami
s and the 
hemi
al kineti
s, and the parametersrelated to the exothermi
ity. We 
onsider here a system with(i) (Material parameters) a molar massm = 80 g/mol, des
ribed by a Lennard-Jones potentialof parameter ELJ = 3× 10−21 J (melting temperature around 220 K) and a = 5 Å, with a
ut-o� radius rcut = 15 Å for the 
omputation of for
es. The 
hanges in the parameters ofthe Lennard-Jones material during the rea
tion follow (5.42), using kE = 0 and ka = 0.2(pure expansion).
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ed model for sho
k waves(ii) (Parameters of the inert dynami
s) The mi
ros
opi
 state law is ǫ = CvT with Cv = 10 kB(i.e., 20 degrees of freedom are not represented). The fri
tion is γ = 10−15 kg/s, and thedissipation weighting fun
tion χ(r) = (1 − r/rc), with rc = rcut.(iii) (Chemi
al kineti
s) For the 
hemi
al rea
tion (5.40), rea
tion 
onstants are 
omputedusing (5.41) with Z1 = Z2 = 1017 s−1, E1/kB = 15000 K, the exothermi
ity being
∆Eexthm = 6.25 eV. The rea
tion weighting fun
tion ω(r) = χ(r);(iv) (Exothermi
ity) we 
hoose c = 0.5.The intial density of the system is ρ = 1.06 g/
m3, and the initial temperature T̄ = 300 K.The time-step used is ∆t = 2 × 10−15 s. Figure 5.19 presents velo
ity pro�les averaged in thinsli
es of the material in the dire
tion of the sko
k, for a 
ompression time tp = 2 ps at a velo
ity

up = 5000 m/s. We tested the independen
e of the resulting pro�les for the initial loadings
(tp, up) = (1 ps, 6000 m/s), (tp, up) = (2 ps, 6000 m/s), (tp, up) = (3 ps, 6000 m/s) and (tp, up) =

(3 ps, 5000 m/s) .
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Fig. 5.19. Velo
ity pro�les in the material as a fun
tion of the distan
e to the sho
k front (in µm) atdi�erent times (lower 
urve (red): t = 1.2 × 10−10 s; middle 
urve (bla
k): t = 1.6 × 10−10 s; upper 
urve(blue): t = 2 × 10−10 s).The velo
ity of the sho
k front is 
onstant, and approximately equal to us = 3060 m/s. Noti
ethat the wave 
an be divided into three regions: the upstream region is unperturbed; the regionaround the sho
k front where 
hemi
al rea
tions happen is of 
onstant width (approximately 300-400 Å, whi
h is 
onsistent with all-atoms studies, see for instan
e [154℄); the downstream regionis an autosimilar rarefa
tion wave. This pro�le is therefore reminis
ent from ZND pro�les [103℄en
ountered in hydrodynami
 simulations of detonation waves.
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Fig. 5.20. Left: variations of internal (lower 
urve, bla
k) and kineti
 (upper 
urve, red) temperaturesin the dire
tion of the sho
k, as a fun
tion of time in a sli
e of material. Right: evolution of the progressvariable averaged in a sli
e of material as a fun
tion of time (upper 
urve, blue). For 
omparison, a res
aledinternal temperature pro�le is also presented (lower 
urve, bla
k).Figure 5.20 presents the evolution of internal and kineti
 temperatures averaged in a sli
eof material in the dire
tion of the sho
k as a fun
tion of time (Left), as well as the evolutionof the average progress variables (Right). In parti
ular, the rea
tion does not start immedialelyat the sho
k front: the ignition asks �rst for a su�
ient heating of the material (through anin
reasing internal energy), sin
e the rea
tion 
onstant are too low at temperatures lower than afew thousands Kelvins with the values 
hosen here.
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al experiments and appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . 2306.2.1 Measuring the e�
ien
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2306.2.2 Numeri
al results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2326.2.3 Dis
ussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234Most quantities of interest in quantum physi
s and 
hemistry are expe
tation values of theform

〈ψ, Ôψ〉
〈ψ, ψ〉 (6.1)where Ô is the self-adjoint operator (the observable) asso
iated with a physi
al quantity O and Ψa given wave fun
tion. For N -body systems in the position representation, ψ is a fun
tion of 3Nreal variables and

〈ψ, Ôψ〉
〈ψ, ψ〉 =

∫

R3N

[Ôψ](x)ψ(x) dx
∫

R3N

|ψ(x)|2 dx
. (6.2)High-dimensional integrals are very di�
ult to evaluate numeri
ally by standard integration rules.For spe
i�
 operators Ô and spe
i�
 wave fun
tions ψ, e.g. for ele
troni
 Hamiltonians and Slaterdeterminants built from Gaussian atomi
 orbitals, the above integrals 
an be 
al
ulated analyti-
ally. In some other spe
ial 
ases, (6.2) 
an be rewritten in terms of integrals on lower-dimensionalspa
es (typi
ally R3 or R6).In the general 
ase however, the only possible way to evaluate (6.2) is to resort to sto
hasti
te
hniques. The VMC method [40℄ 
onsists in remarking that

〈ψ, Ôψ〉
〈ψ, ψ〉 =

∫

R3N

OL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
(6.3)with OL(x) = [Ôψ](x)/ψ(x). The above expe
tation value is reminis
ent of expe
tations values
omputed in Chapter 3, for the measure
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dπ(x) =

|ψ(x)|2∫

R3N

|ψ|2
dx. (6.4)This measure 
an be formally interpreted as a Boltzmann measure Z−1 e−βV (x) dx with the 
hoi
e

β = 1 and
V (x) = − ln

(
|ψ(x)|2

)
. (6.5)Hen
e, sampling 
on�gurations (xn)n≥1 ∈ R3N from the measure (6.4), the expe
tation value (6.3)
an be approximated as

〈ψ, Ôψ〉
〈ψ, ψ〉 ≃ 1

L

L∑

n=1

OL(xn). (6.6)The VMC algorithms des
ribed below are generi
, in the sense that they 
an be used to 
omputethe expe
tation value of any observable, for any N -body system. In the numeri
al example, we willhowever fo
us on the important 
ase of the 
al
ulation of ele
troni
 energies of mole
ular systems.In this parti
ular 
ase, the expe
tation value to be 
omputed reads
〈ψ, Ĥψ〉
〈ψ, ψ〉 =

∫

R3N

EL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
(6.7)where the s
alar �eld EL(x) = [Ĥψ](x)/ψ(x) is 
alled the lo
al energy. Remark that if ψ is aneigenfun
tion of Ĥ asso
iated with the eigenvalue E, EL(x) = E for all x. Most often, VMC
al
ulations are performed with trial wave fun
tions ψ that are good approximations of someground state wave fun
tion ψ0. These trial wavefun
tions are sums of single determinantal wavefun
tions built upon Slater-type atomi
 orbitals, multiplied by a Jastrow fa
tor. More pre
isely,for a system of N ele
trons (omitting spin variables and ele
tron-nu
leus 
orrelations, see e.g. [105℄for more general expressions), a typi
al expression of the wavefun
tion is

ψ(x1, . . . , xN ) =

[
Ndet∑

n=1

anDet(φn1 , . . . , φ
n
N )(x1, . . . , xN )

]
·

∏

1≤i<j≤N
exp

(
b|xi − xj |

1 + c|xi − xj |

)
, (6.8)where the fun
tions φni are atomi
-like orbitals

φni (x) = Z−1
αn

i , ξ
n
i , l

n
i ,m

n
i
|x|αn

i e−ξ
n
i |x| Ylni ,mn

i

(
x

|x|

)
.In this last expression, the notation x/|x| is a formal notation for the angles (θ, ϕ) asso
iated with

x ∈ R3 in spheri
al 
oordinates, and the fun
tions Yl,m are spheri
al harmoni
s.Sin
e the trial wave fun
tions are good approximations of some ground state wave fun
tion,
EL(x) usually is a fun
tion of low varian
e (with respe
t to the probability density π(x)). This isthe reason why, in pra
ti
e, the approximation formula

〈ψ, Ĥψ〉
〈ψ, ψ〉 ≃ 1

L

L∑

n=1

EL(xn) (6.9)is fairly a

urate, even for relatively small values of L (in pra
ti
al appli
ations on realisti
 mole-
ular systems L ranges typi
ally between 106 and 109).Of 
ourse, the quality of the above approximation formula depends on the way the points (xn)n≥1are generated. In Se
tion 6.1.1, we des
ribe the standard sampling method 
urrently used for VMC
al
ulations. It 
onsists in a biased random walk (overdamped Langevin dynami
s) in the 
on�-
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e R3N 
orre
ted by a Metropolis-Hastings a

eptan
e/reje
tion pro
edure. However,the numeri
al results of Chapter 3 suggest that Langevin dynami
s have better sampling pro-perties than overdamped Langevin dynami
s. Therefore, in Se
tion 6.1.2, we introdu
e �
titiousmasses, and 
onsider a sampling s
heme in whi
h the points (xn)n≥1 are the proje
tions on the
on�guration spa
e of one realization of some Markov 
hain on the phase spa
e R3N ×R3N . ThisMarkov 
hain is obtained by a modi�ed Langevin dynami
s, 
orre
ted by a Metropolis-Hastingsa

eptan
e/reje
tion pro
edure.Another advantage of su
h a dynami
s on an extended 
on�guration spa
e is a better behavior
lose to singularities of the formal potential V (as given by (6.5). Those singularities arise atthose points where ψ(x) = 0. The set ψ−1(0) is 
alled the nodal surfa
e, and has its origin in theantisymmetri
 property of the wavefun
tion. Re
all indeed that
ψ(x1, x2, x3, . . . , xN ) = −ψ(x2, x1, x3, . . . , xN ),so that ψ(x) = 0 whenever x1 = x2 for example. A spe
i�
 problem en
ountered in VMC 
al
u-lations on fermioni
 systems is that the standard dis
retization of the biased random walk (Eulers
heme) does not behave properly 
lose to the nodal surfa
e of the trial wave fun
tion ψ. This isdue to the fa
t that the drift term blows up as the inverse of the distan
e to the nodal surfa
e:if a random walker gets 
lose to the nodal surfa
e, the drift term repulses it far apart in a singletime step. In some studies [47, 352℄, this di�
ulty is partially 
ir
umvented by resorting to more
lever dis
retization s
hemes. Using here a Langevin dynami
s, the walkers have a mass (hen
esome inertia) and the singular drift does not dire
tly a
t on the position variables (as it is the 
asefor the biased random walk), but indire
tly via the momentum variables. The undesirable e�e
tsof the singularities are thus expe
ted to be damped down.Numeri
al results were performed by Anthony S
emama when he was a post-do
 at CERMICS.These results, presented in Se
tion 6.2, 
on�rm these intuitions and demonstrate on a ben
h ofrepresentative examples that the algorithm based on the modi�ed Langevin dynami
s is the moste�
ient one of the algorithms studied here (the mathemati
al 
riteria for measuring the e�
ien
ywill be made pre
ise below).6.1 Des
ription of the algorithms6.1.1 Random walks in the 
on�guration spa
eIn this se
tion, the state spa
e is the 
on�guration spa
e R3N , so that the Metropolis-Hastingsalgorithm a
tually samples the probability density π(x) (see Se
tion 3.1.3 for a general presenta-tion of the Metropolis-Hastings algorithm). Re
all that the Metropolis-Hastings algorithm has atransition kernel given by

P (x, dy) = r(x, y)P(x, y) dy +

(
1 −

∫
r(x, y′)P(x, y′) dy′

)
δx,where the density r(x, ·) is given by

r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
.The fun
tion P is the proposal fun
tion. In words, the 
on�guration y is proposed with probability

P(x, y) from x, and a

epted with probability r(x, y), reje
ted otherwise.Simple random walkIn the original paper [238℄ of Metropolis et al., the Markov 
hain is a simple random walk:
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x̃n+1 = xn + δ Un,where δ is the step size and Un are independent and identi
ally distributed (i.i.d.) random ve
torsdrawn uniformly in the 3N -dimensional 
ube K = [−1, 1]3N . The 
orresponding transition densityis

P(x, y) = (2δ)−3N χK

(
x− y

δ

)
,where χK is the 
hara
teristi
 fun
tion of the 
ubeK. Noti
e that in this parti
ular 
ase, P(x, y) =

P(y, x) so that the a

eptan
e rate r(x, y) only depends on the ratio π(y)/π(x).Biased random walkThe simple random walk is far from being the optimal 
hoi
e: it indu
es a high reje
tion rate,hen
e a large varian
e. A varian
e redu
tion te
hnique 
onsists in 
onsidering the overdampedLangevin dynami
s [58℄:
dxt = ∇[ln |ψ|](xt)dt+ dWt, (6.10)where Wt is a 3N -dimensional Wiener pro
ess. Note that |ψ|2 is an invariant measure of theMarkov pro
ess (6.10), and, better, that the dynami
s (6.10) is in fa
t ergodi
 (see the results inChapter 3) and satis�es a detailed balan
e property:

|ψ(x)|2 P∆t(x, y) = |ψ(y)|2 P∆t(y, x)for any ∆t > 0, where P∆t(x, y) is the probability density that the Markov pro
ess (6.10) is at yat time t + ∆t starting from x at time t. These above results are 
lassi
al for regular, positivefun
tions ψ, and have been re
ently proven for fermioni
 wave fun
tions [50℄ (in the latter 
ase,the dynami
s is ergodi
 in ea
h nodal po
ket of the wave fun
tion ψ).Noti
e that if one uses the Markov 
hain of density P∆t(x, y) in the Metropolis-Hastingsalgorithm, the a

eptan
e/reje
tion step is useless, sin
e (thanks to the detailed balan
e property)the a

eptan
e rate always equals one. The exa
t value of P∆t(x, y) is however unknown, so thata dis
retization of equation (6.10) with a simple Euler-Maruyama s
heme is generally used
xn+1 = xn +∆t∇[ln |ψ|](xn) +∆Wn (6.11)where ∆Wn are i.i.d. Gaussian random ve
tors with zero mean and 
ovarian
e matrix ∆t I3N (I3Nis the identity matrix). The Euler s
heme leads to the approximated transition density

PEuler
∆t (x, y) =

1

(2π∆t)3N/2
exp

(
−| y − x−∆t∇[ln |ψ|](x) |2

2∆t

)
.The time dis
retization introdu
es the so-
alled time-step error, whose 
onsequen
e is that (6.11)samples dπ only approximately. This error is however 
orre
ted by the Metropolis-Hastings a

ep-tan
e/reje
tion pro
edure, whi
h ensures that dπ is exa
tly sampled.This sampling method is mu
h more e�
ient than the Metropolis-Hastings algorithm based onthe simple random walk, sin
e the Markov 
hain (6.11) does a large part of the work (it samplesa short time-step approximation of dπ), whi
h is 
learly not the 
ase for the simple random walk.The standard method in VMC 
omputations 
urrently is the Metropolis-Hastings algorithm basedon the Markov 
hain de�ned by (6.11) (for re�nements of this method, see [41, 332,350℄).



6.1 Des
ription of the algorithms 2276.1.2 Random walks in the phase spa
eIn this se
tion, the state spa
e is the phase spa
e R3N ×R3N . Let us emphasize that the intro-du
tion of momentum variables is nothing but a numeri
al arti�
e. The phase spa
e traje
toriesthat will be dealt with in this se
tion do not have any physi
al meaning.Langevin dynami
sWe 
onsider here the following Langevin dynami
s of a system ofN parti
les of massm evolvingin an external potential V :



dxt =

pt
m
dt,

dpt = −∇V (xt) dt− γpt dt+ σdWt.
(6.12)The magnitudes σ and γ of the random for
es σWt and of the drag term −γpt dt are related herethrough the �u
tuation-dissipation formula

σ2 =
2mγ

β
, (6.13)with β = 1 in the VMC framework. Sin
e, for regular potentials, the 
anoni
al distribution

dΠ(x, p) = Z−1 exp

[
−β
(
V (x) +

|p|2
2m

)]
dx dp (6.14)is an invariant probability measure for the system (Z being a normalization 
onstant), the proje
-tion on the position spa
e of the Langevin dynami
s samples dπ. On the other hand, the Langevindynami
s does not satisfy the detailed balan
e property. We will 
ome ba
k to this importantpoint in the forth
oming se
tion.In this 
ontext, the parameters m and γ (σ being then obtained through (6.13)) should beseen as numeri
al parameters to be optimized to get the best sampling. We now des
ribe howto dis
retize and apply a Metropolis-Hastings algorithm to the Langevin dynami
s (6.12), in the
ontext of VMC.Time dis
retization of the Langevin dynami
sMany dis
retization s
hemes exist for Langevin dynami
s (see Se
tion 3.2.4). In order to 
hoosewhi
h algorithm is best for VMC, we have tested four di�erent s
hemes available in the literature [4,45,183,280℄, with parameters β = 1, γ = 1 and m = 1. The ben
hmark system is a Lithium atom,and ψ is a single determinantal wave fun
tion built upon Slater-type atomi
 orbitals, multiplied bya Jastrow fa
tor1. We turn o� the a

eptan
e/reje
tion step in these preliminary tests, sin
e ourpurpose is to 
ompare the time-step errors for the various algorithms. From the results displayedin Table 6.1, one 
an see that the Ri

i-Ci

otti algorithm [280℄ is the method whi
h generatesthe smallest time-step error. This algorithm reads





xn+1 = xn +∆t
pn

m
e−γ∆t/2 +

∆t

2m
[−∇V (xn)∆t+ Un] e−γ∆t/4,

pn+1 = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 + Une−γ∆t/2,

(6.15)
1 For all the numeri
al 
omputations presented in this 
hapter, the interested reader should ask AnthonyS
emama for details of the 
omputations, in parti
ular the values of the parameters for ψ given by (6.8).



228 6 Variational Monte-Carlowhere Un are i.i.d. Gaussian random ve
tors with zero mean and varian
e σ2I3N with σ2 = 2γm
β ∆t.It 
an be seen from Table 6.1 that the Ri

i-Ci

otti algorithm also outperforms the biased randomwalk (6.11), as far as sampling issues are 
on
erned. In the following, we shall therefore use theRi

i-Ci

otti algorithm.Table 6.1. Comparison of the energies 
omputed with di�erent dis
retization s
hemes for Langevindynami
s. The referen
e energy is -7.47198(4) a.u.

∆t BRW BBK [45℄ For
e interpolation [4℄ Splitting [183℄ Ri

i & Ci

otti [280℄0.05 -7.3758(316) -7.4395(246) -7.4386(188) -7.4467(137) -7.4576(07)0.005 -7.4644(069) -7.4698(015) -7.4723(015) -7.4723(015) -7.4701(20)0.001 -7.4740(007) -7.4728(013) -7.4708(017) -7.4708(017) -7.4696(17)0.0005 -7.4732(010) -7.4700(023) -7.4709(022) -7.4708(022) -7.4755(26)Metropolized Langevin dynami
sThe dis
retized Langevin dynami
s does not exa
tly sample the target distribution Π , butrather some approximation Π∆t of Π . It is therefore tempting to introdu
e a Metropolis-Hastingsa

eptan
e/reje
tion step to further improve the quality of the sampling. Unfortunately, this idea
annot be straightforwardly implemented for two reasons:(i) �rst, this is not te
hni
ally feasible, sin
e the Markov 
hain de�ned by (6.15) does not havea transition density. Indeed, as the same Gaussian random ve
tors Un are used to updateboth the positions and the momenta, the 
onditional measure p((xn, pn), ·) is supportedon a 3N -dimensional submanifold of the phase spa
e R3N × R3N ;(ii) se
ond, leaving apart the above mentioned te
hni
al di�
ulty, whi
h is spe
i�
 to the Ri

i-Ci

otti s
heme, the Langevin dynami
s is a priori not an e�
ient Markov 
hain for theMetropolis-Hastings algorithm be
ause it does not satisfy the detailed balan
e property.Let us now explain how to ta
kle these two issues, starting with the �rst one. To make it 
om-patible with the Metropolis-Hastings framework, one needs to slightly modify the Ri

i-Ci

ottialgorithm. Following [4, 62℄ (see also the derivation in Se
tion 3.2.4), we thus introdu
e i.i.d. 
or-related Gaussian ve
tors (Gn1,i, G
n
2,i) (1 ≤ i ≤ 3N) su
h that:





〈(Gn1,i)2〉 = σ2
1 =

∆t

βmγ

(
2 − 3 − 4e−γ∆t + e−2γ∆t

γ∆t

)
,

〈(Gn2,i)2〉 = σ2
2 =

m

β

(
1 − e−2γ∆t

)
,

〈Gn1,iGn2,i〉
σ1σ2

= c12 =
(1 − e−γ∆t)2

βγσ1σ2
.Setting Gn1 = (Gn1,i)1≤i≤3N and Gn2 = (Gn2,i)1≤i≤3N , the modi�ed Ri

i-Ci

otti algorithm reads





xn+1 = xn +
∆t

m
pne−γ∆t/2 − ∆t2

2m
∇V (xn)e−γ∆t/4 +Gn1 ,

pn+1 = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 +Gn2 .

(6.16)The above s
heme is a 
onsistent dis
retization of (6.12) and the 
orresponding Markov 
hain doeshave a transition density, whi
h reads (see Se
tion 4.3.1 for example)
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PMRC
∆t ((xn, pn), (xn+1, pn+1)) = Z−1 exp

[
− 1

2(1 − c212)

(( |d1|
σ1

)2

+

( |d2|
σ2

)2

− 2c12
d1

σ1
· d2

σ2

)]
,(6.17)with

d1 = xn+1 − xn −∆t
pn

m
e−γ∆t/2 +

∆t2

2m
∇V (xn)e−γ∆t/4,

d2 = pn+1 − pne−γ∆t +
1

2
∆t
[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2.Unfortunately, inserting dire
tly the transition density (6.17) in the Metropolis-Hastings algorithmleads to a high reje
tion rate. Indeed, if (xn, pn) and (xn+1, pn+1) are related through (6.16),

PMRC
∆t ((xn, pn), (xn+1, pn+1)) usually is mu
h greater than PMRC

∆t ((xn+1, pn+1), (xn, pn)), sin
e theprobability that the random for
es are strong enough to make the parti
le go ba
k in one stepfrom where it 
omes, is very low in general. This is related to the fa
t that the Langevin dynami
sdoes not satisfy the detailed balan
e relation.
Fig. 6.1. Left: Usual Langevin dynami
s; in this 
ase, it is very unlikely to re-obtain the initial 
on�gu-ration starting from the �nal one. Right: Momentum reversal after integration time ∆t; in this 
ase, thedynami
s is reversible.It is however possible to further modify the overall algorithm by ensuring some mi
ros
opi
reversibility, in order to �nally obtain low reje
tion rates. For this purpose, we introdu
e momen-tum reversions. Su
h a pro
edure was already 
onsidered for Hybrid Monte Carlo algorithms (seefor instan
e [2℄). Denoting by PLangevin

∆t the transition density of the Markov 
hain obtained byintegrating (6.12) exa
tly on the time interval [t, t+∆t], it is indeed not di�
ult to 
he
k (under
onvenient assumptions on V = − ln |ψ|2), that the Markov 
hain de�ned by the transition density
P̃Langevin
∆t ((x, p), (x′, p′)) = PLangevin

∆t ((x, p), (x′,−p′)) (6.18)is ergodi
 with respe
t to Π and satis�es the detailed balan
e property (see Figure 6.1)
Π(x, p) P̃Langevin

∆t ((x, p), (x′, p′)) = Π(x′, p′) P̃Langevin
∆t ((x′, p′), (x, p)) . (6.19)Repla
ing the exa
t transition density PLangevin

∆t by the approximation PMRC
∆t , we now 
onsiderthe transition density

P̃MRC
∆t ((x, p), (x′, p′)) = PMRC

∆t ((x, p), (x′,−p′)) . (6.20)These 
onsiderations are summarized in Algorithm 6.1. Note that a momentum reversion issystemati
ally performed just after the Metropolis-Hastings step. As the invariant measure Π isleft un
hanged by this operation, the global algorithm (Metropolis-Hastings step based on thetransition density P̃MRC
∆t plus momentum reversion) a
tually samples Π . The role of the �nalmomentum reversion is to preserve the underlying Langevin dynami
s: while the proposals area

epted, the above algorithm generates Langevin traje
tories, that are known to e�
iently sample
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al tests seem to show that, in addition, themomentum reversion also plays a role when the proposal is reje
ted: it seems to in
rease thea

eptan
e rate of the next step, preventing the walkers from being trapped in the vi
inity of thenodal surfa
e ψ−1(0).As the points (xn, pn) of the phase spa
e generated by the above algorithm form a samplingof Π , the positions (xn) sample dπ and 
an therefore be used for VMC 
al
ulations.Langevin Metropolized VMC algorithmAlgorithm 6.1. Starting from some initial 
on�guration (x0, p0),(1) Propose a move from (xn, pn) to (x̃n+1, p̃n+1) using the transition density P̃MRC
∆t . Inother words, perform one step of the modi�ed Ri

i-Ci

otti algorithm (6.16)





xn+1
∗ = xn +

∆t

m
pne−γ∆t/2 − ∆t2

2m
∇V (xn) + e−γ∆t/4 +Gn1 ,

pn+1
∗ = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 +Gn2 ,and set (x̃n+1, p̃n+1) = (xn+1

∗ ,−pn+1
∗ );(2) Compute the a

eptan
e rate

αn = min

(
Π(x̃n+1, p̃n+1) P̃MRC

∆t ((x̃n+1, p̃n+1), (xn, pn))

Π(xn, pn) P̃MRC
∆t ((xn, pn), (x̃n+1, p̃n+1))

, 1

)
;(3) Draw a random variable Un ∼ U(0, 1):� if Un ≤ αn, a

ept the proposal and set (xn+1, pn+1) = (x̃n+1, p̃n+1);� if Un > αn, reje
t the proposal, and set (xn+1, pn+1) = (xn, pn);(4) Reverse the momenta: (xn+1, pn+1) = (xn+1,−pn+1).A Hybrid Monte Carlo VMC algorithmGeneralized Hybrid Monte Carlo (HMC) algorithms 
ould also be used (see Se
tion 3.2.2 formore pre
isions on the HMC algorithm), relying in parti
ular on the idea of using 
orrelatedmomenta from one HMC step to the other [173℄. For i.i.d. standard Gaussian random ve
tors Gn,the momenta may be updated as

pn+1 =
√

1 − 2γ∆t pn +
√

2γ∆tGn ≃ (1 − γ∆t) pn +
√

2γ∆tGnwhen γ∆≪ 1. Therefore, using a very strong 
orrelation from one step to another, and 
ombiningthis momentum update in a HMC algorithm results in an approximation of Langevin dynami
s.The interesting point in HMC algorithms is that the integration s
heme to be used is a dis
retiza-tion of the Hamiltonian dynami
s, and often the Störmer-Verlet algorithm is the most 
onvenients
heme to use. Only some tuning of the parameters γ, m, ∆t (and possibly the number of HMCsteps before the a

eptan
e/reje
tion step) has to be made.6.2 Numeri
al experiments and appli
ations6.2.1 Measuring the e�
ien
yA major drawba
k of samplers based on Markov pro
esses is that they generate sequentially
orrelated data. For a traje
tory of L steps, the e�e
tive number of independent observations is
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al experiments and appli
ations 231in fa
t Le� = L/N
orr, where N
orr is the 
orrelation length, namely the number of su

essive
orrelated moves. In the following appli
ations, we provide estimators for the 
orrelation length
N
orr and for the so-
alled ine�
ien
y η (see below), whi
h are relevant indi
ators of the quality ofthe sampling. In this se
tion, following Stedman et al. [322℄, we des
ribe the way these quantitiesare de�ned and 
omputed.The sequen
e of samples is split into NB blo
ks of LB steps, where the number LB is 
hosensu
h that it is a few orders of magnitude higher than N
orr. The mean energy is 〈EL〉|ψ|2 and thevarian
e is σ2 = 〈

(
EL − 〈EL〉|ψ|2)2〉|ψ|2 . These quantities are de�ned independently on the VMCalgorithm used. The empiri
al mean of the lo
al energy reads

〈EL〉NB ,LB

|ψ|2 =
1

NBLB

NBLB∑

i=1

EL(xi). (6.21)The empiri
al varian
e over all the individual steps is given by
[σNB ,LB ]2 =

1

NBLB

NBLB∑

i=1

(
EL(xi) − 〈EL〉NB ,LB

|ψ|2
)2 (6.22)and the empiri
al varian
e over the blo
ks by

[σNB ,LB

B ]2 =
1

NB

NB∑

i=1

(
EB,i − 〈EL〉NB ,LB

|ψ|2
)2

, (6.23)where EB,i is the average energy over blo
k i:
EB,i =

1

LB

iLB∑

j=(i−1)LB+1

EL(xj). (6.24)Following [322℄, we de�ne the 
orrelation length as
N
orr = lim

NB→∞
lim

LB→∞
LB

[σNB ,LB

B ]2

[σNB ,LB ]2
, (6.25)and the ine�
ien
y η of the run as:

η = lim
NB→∞

lim
LB→∞

LB[σNB ,LB

B ]2. (6.26)On the numeri
al examples presented below, the relative �u
tuations of the quantities LB [σ
NB,LB
B ]2

[σNB,LB ]2and LB[σNB ,LB

B ]2 be
ome small for LB > 50 and NB > 50.The de�nition of these two quantities 
an be understood as follows. Sin
e LB ≫ N
orr andonly LB/N
orr are independent samples among the samples in the blo
k, the 
entral limit theoremyields
EB,i ≃ 〈EL〉|ψ|2 +

σGi√
LB/N
orrwhere Gi are i.i.d. normal random variables. Thus, in the limit NB → ∞ and LB → ∞, we obtain

(σNB ,LB

B )2 =
σ2

LB/N
orr .
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e limNB→∞ limLB→∞[σNB ,LB ]2 = σ2, we obtain (6.25). The ine�
ien
y η is thus equal to
N
orrσ2 and is large if the varian
e is large, or if the number of 
orrelated steps is large.Using this measure of e�
ien
y, we 
an now 
ompare the sampling algorithms (the simplerandom walk, the biased random walk and the Langevin algorithm) for various systems. In any
ase, a Metropolis-Hastings a

eptan
e/reje
tion step is used. We found empiri
ally from severaltests that 
onvenient values for the parameters of the Langevin algorithm are γ = 1 and m = Z3/2where Z is the highest nu
lear 
harge among all the nu
lei. For ea
h algorithm, we 
omparethe e�
ien
y for various values of the step length, namely the in
rement δ in the 
ase of thesimple random walk, and the time-step ∆t for the other two s
hemes. For a given algorithm,simple arguments 
orroborated by numeri
al tests show that there exists an optimal value ofthis in
rement: for smaller (resp. for larger in
rements), the 
orrelation between two su

essivepositions in
reases sin
e the displa
ement of the parti
le is small (resp. sin
e many moves arereje
ted), and this in
reases the number of 
orrelated steps N
orr.One 
an noti
e on the results (see tables 6.2, 6.3, 6.4, 6.5) that a large error bar 
orrespondsto large values for N
orr and η. The quantities N
orr and η are a way to re�ne the measure ofe�
ien
y, sin
e the same length of error bar may be obtained for di�erent values of the numeri
alparameters.6.2.2 Numeri
al resultsSome numeri
al tests based on the above estimators of (in)e�
ien
y are presented in thisse
tion. We 
ompare the algorithms and parameters at a �xed 
omputational 
ost. The referen
evalues are obtained by ten times longer VMC simulations. The error bars given in parenthesis are
60% 
on�den
e intervals. We also provide the a

eptan
e rate (denoted by A in the tables) and,when it is relevant, the mean of the length of the in
rement xn+1−xn over one time-step (denotedby 〈|∆x|〉 in the tables) for the biased random walk and the Langevin dynami
s. These tests wereperformed by Anthony S
emama using the QMC=Chem program2.Lithium.The Lithium atom was 
hosen as a �rst simple example. The wave fun
tion is the same as forthe ben
hmark system used for the 
omparison of the various Langevin s
hemes, namely a singleSlater determinant of Slater-type basis fun
tions improved by a Jastrow fa
tor to take a

ount ofthe ele
tron 
orrelation. The referen
e energy asso
iated with this wave fun
tion is −7.47198(4)a.u., and the 
omparison of the algorithms is given in Table 6.2. The runs were made of 100 randomwalks 
omposed of 50 blo
ks of 1000 steps. For the simple random walk, the lowest values of the
orrelation length and of the ine�
ien
y are respe
tively 11.4 and 1.40. The biased random walkis mu
h more e�
ient, sin
e the optimal 
orrelation length and ine�
ien
y are more than twi
esmaller, i.e. 4.74 and 0.55. The proposed algorithm is even more e�
ient: the optimal 
orrelationlength is 3.75 and the optimal ine�
ien
y is 0.44.Fluorine.The Fluorine atom was 
hosen for its relatively �high� nu
lear 
harge (Z = 9), leading to atimes
ale separation of the 
ore and valen
e ele
trons. The wave fun
tion is a Slater-determinantwith Gaussian-type basis fun
tions where the 1s orbital was substituted by a Slater-type orbital,with a referen
e energy of −99.397(2) a.u. The runs were made of 100 random walks 
omposed of100 blo
ks of 100 steps. The results are given in Table 6.3. For the simple random walk, the lowestvalues of the 
orrelation length and of the ine�
ien
y are respe
tively 15.6 and 282. The biasedrandom walk, for whi
h the optimal 
orrelation length and ine�
ien
y are 7.4 and 137, is again
2 Chem is a Quantum Monte Carlo program written by M. Ca�arel, IRSAMC, Université Paul Sabatier �CNRS, Toulouse, Fran
e. The wave fun
tions are available upon request.



6.2 Numeri
al experiments and appli
ations 233Table 6.2. The Lithium atom: Comparison of the Simple random walk, the Biased random walk andthe proposed Langevin algorithm. The runs were 
arried out with 100 walkers, ea
h realizing 50 blo
ks of1000 steps. The referen
e energy is -7.47198(4) a.u., and A is the average a

eptan
e rate.
∆R 〈EL〉 N
orr η ASimple random walk0.05 -7.47126(183) 94.5 ± 3.3 11.72(42) 0.910.10 -7.47239(97) 35.2 ± 1.2 4.08(14) 0.820.15 -7.47189(75) 20.5(5) 2.30(06) 0.740.20 -7.47157(56) 14.3(4) 1.62(04) 0.660.25 -7.47182(56) 12.1(3) 1.40(05) 0.590.30 -7.47189(56) 11.4(3) 1.57(17) 0.520.35 -7.47275(59) 12.4(3) 1.57(17) 0.460.40 -7.47130(63) 14.4(5) 1.93(22) 0.40
∆t 〈EL〉 N
orr η 〈|∆x|〉 ABiased random walk0.01 -7.47198(53) 10.31(29) 1.23(3) 0.284(09) 0.980.03 -7.47156(39) 5.26(14) 0.73(7) 0.444(21) 0.920.04 -7.47195(35) 4.82(12) 0.57(3) 0.486(26) 0.880.05 -7.47219(32) 4.74(11) 0.55(2) 0.514(31) 0.850.06 -7.47204(38) 4.95(11) 0.58(3) 0.533(36) 0.810.07 -7.47251(32) 5.39(14) 0.61(3) 0.546(40) 0.780.10 -7.47249(42) 7.56(25) 0.87(5) 0.555(50) 0.68Langevin0.20 -7.47233(34) 5.07(10) 0.60(1) 0.236(08) 0.970.30 -7.47207(34) 4.14(09) 0.47(1) 0.328(15) 0.930.35 -7.47180(31) 3.96(08) 0.45(1) 0.366(18) 0.910.40 -7.47185(29) 3.75(08) 0.44(2) 0.399(22) 0.890.45 -7.47264(29) 3.88(08) 0.45(2) 0.426(25) 0.860.50 -7.47191(29) 4.07(14) 0.46(2) 0.426(25) 0.840.60 -7.47258(32) 4.78(16) 0.52(2) 0.481(36) 0.78twi
e more e�
ient than the simple random walk. The Langevin algorithm is more e�
ient thanthe biased random walk: the optimal 
orrelation length is 5.3 and the optimal ine�
ien
y is 102.Copper.We 
an go even further in the times
ale separation and take the Copper atom (Z = 29) as anexample. The wave fun
tion is a Slater determinant with a basis of Slater-type atomi
 orbitals,improved by a Jastrow fa
tor to take a

ount of the ele
tron 
orrelation. The referen
e energy is

−1639.2539(24). The runs were made of 40 random walks 
omposed of 500 blo
ks of 500 steps.From Table 6.4, one 
an remark that the Langevin algorithm is again more e�
ient than thebiased random walk, sin
e the optimal 
orrelation length and ine�
ien
y are respe
tively 28.7 and
4027, whereas using the biased random walk, these values are 51.0 and 5953.The phenol mole
ule.The Phenol mole
ule was 
hosen to test the proposed algorithm be
ause it 
ontains threedi�erent types of atoms (H, C and O). The wave fun
tion here is a single Slater determinant withGaussian-type basis fun
tions. The 
ore mole
ular orbitals of the Oxygen and Carbon atoms weresubstituted by the 
orresponding atomi
 1s orbitals. The 
omparison of the biased random walkwith the Langevin algorithm is given in Table 6.5. The optimal 
orrelation length using the biased



234 6 Variational Monte-CarloTable 6.3. The Fluorine atom : Comparison of the Simple random walk, the Biased random walk andthe proposed Langevin algorithm. The runs were 
arried out with 100 walkers, ea
h realizing 100 blo
ksof 100 steps. The referen
e energy is -99.397(2) a.u.
∆R 〈EL〉 N
orr η ASimple random walk0.02 -99.398(72) 38.9(7) 823(31) 0.870.05 -99.426(39) 20.3(4) 405(11) 0.690.08 -99.406(28) 15.6(4) 326(17) 0.530.10 -99.437(23) 15.8(3) 282(07) 0.440.12 -99.402(24) 16.6(4) 341(24) 0.360.15 -99.398(25) 19.4(5) 412(41) 0.27
∆t 〈EL〉 N
orr η 〈|∆x|〉 ABiased random walk0.002 -99.411(21) 9.9(2) 206(04) 0.211(08) 0.940.003 -99.424(17) 8.8(2) 173(04) 0.242(11) 0.900.004 -99.430(15) 7.6(2) 147(03) 0.263(16) 0.860.005 -99.399(14) 7.3(2) 142(03) 0.275(17) 0.820.006 -99.406(14) 7.4(1) 137(03) 0.282(19) 0.790.007 -99.430(14) 7.4(2) 142(08) 0.286(21) 0.750.008 -99.421(13) 7.6(2) 141(05) 0.287(23) 0.710.009 -99.406(13) 7.8(2) 177(19) 0.285(25) 0.670.010 -99.419(15) 7.8(2) 162(10) 0.281(27) 0.640.011 -99.416(14) 8.3(2) 147(05) 0.276(28) 0.600.012 -99.420(15) 9.1(3) 205(34) 0.270(29) 0.570.013 -99.425(17) 10.2(4) 224(38) 0.263(30) 0.54Langevin0.10 -99.402(16) 8.9(2) 199(04) 0.095(02) 0.980.20 -99.403(12) 6.0(1) 123(02) 0.174(06) 0.940.25 -99.402(12) 5.4(1) 108(02) 0.204(09) 0.910.30 -99.395(11) 5.3(1) 104(02) 0.228(10) 0.870.35 -99.409(12) 5.4(1) 108(06) 0.245(15) 0.830.40 -99.402(11) 5.5(1) 102(03) 0.256(18) 0.780.45 -99.406(11) 5.9(1) 114(06) 0.261(21) 0.730.50 -99.408(12) 6.6(2) 124(07) 0.262(24) 0.680.55 -99.407(14) 7.9(4) 149(10) 0.257(26) 0.620.60 -99.405(15) 9.2(4) 178(13) 0.250(42) 0.56random walk is 10.17, whereas it is 8.23 with our Langevin algorithm. The optimal ine�
ien
y isagain lower with the Langevin algorithm (η = 544) than with the biased random walk (η = 653).6.2.3 Dis
ussion of the resultsIn 
on
lusion, the numeri
al tests show that the Langevin dynami
s is always more e�
ientthan the biased random walk. Indeed,(i) The error bar (or N
orr, or η) obtained with the Langevin dynami
s for an optimal set ofnumeri
al parameters is always smaller than the error bar obtained with other algorithms(for whi
h we also optimize the numeri
al parameters);(ii) The size of the error bar does not seem to be as sensitive to the 
hoi
e of the numeri
alparameters as for other methods. In parti
ular, we observe on our numeri
al tests that the



6.2 Numeri
al experiments and appli
ations 235Table 6.4. The Copper atom: Comparison of the Biased random walk with the proposed Langevinalgorithm. The runs were 
arried out with 40 walkers, ea
h realizing 500 blo
ks of 500 steps. The referen
eenergy is -1639.2539(24) a.u.
∆t 〈EL〉 N
orr η 〈|∆x|〉 ABiased random walk0.0003 -1639.2679( 78) 79.1 ± 2.7 10682(420) 0.1311(108) 0.860.0004 -1639.2681( 98) 70.4 ± 1.3 8682(204) 0.1385(137) 0.810.0005 -1639.2499( 96) 61.3 ± 2.5 7770(297) 0.1414(162) 0.750.0006 -1639.2629( 96) 56.0 ± 1.2 6834( 88) 0.1414(183) 0.700.0007 -1639.2575( 73) 53.8 ± 0.8 6420( 81) 0.1393(201) 0.650.00075 -1639.2518( 85) 53.1 ± 0.9 6330( 91) 0.1377(209) 0.620.0008 -1639.2370( 86) 55.7 ± 3.6 6612(405) 0.1357(216) 0.600.00105 -1639.2694( 85) 51.0 ± 0.8 5953( 90) 0.1228(241) 0.480.0011 -1639.2563(110) 54.3 ± 1.8 6513(221) 0.1198(245) 0.460.0012 -1639.2523( 72) 59.9 ± 5.5 7266(658) 0.1136(251) 0.43Langevin0.05 -1639.2553( 92) 61.3 ± 1.7 8256( 89) 0.0371( 1) 0.990.10 -1639.2583( 76) 40.6 ± 3.1 5319( 383) 0.0705( 30) 0.970.15 -1639.2496( 65) 30.1 ± 0.8 4042( 103) 0.0978( 60) 0.930.20 -1639.2521( 71) 28.7 ± 0.9 4027( 403) 0.1173( 96) 0.870.30 -1639.2510( 67) 35.2 ± 2.5 4157( 291) 0.1326(170) 0.710.40 -1639.2524( 78) 50.5 ± 3.7 5922( 455) 0.1210(225) 0.52Table 6.5. The Phenol mole
ule : Comparison of the Biased random walk with the proposed Langevinalgorithm. The runs were 
arried out with 100 walkers, ea
h realizing 100 blo
ks of 100 steps. The referen
eenergy is -305.647(2) a.u.
∆t 〈EL〉 N
orr η 〈|∆x|〉 ABiased random walk0.003 -305.6308(83) 18.71(24) 1368(12) 0.522(29) 0.850.004 -305.6471(78) 16.00(28) 1193(30) 0.547(36) 0.800.005 -305.6457(65) 15.29(20) 1077(14) 0.555(43) 0.740.006 -305.6412(79) 15.00(17) 1018(11) 0.552(48) 0.690.007 -305.6391(67) 14.52(26) 1051(53) 0.540(52) 0.630.008 -305.6530(65) 14.72(19) 980(10) 0.523(56) 0.580.009 -305.6555(82) 15.28(28) 1272(163) 0.502(59) 0.54Langevin0.05 -305.6417(101) 23.13(41) 1932(41) 0.126(02) 0.990.1 -305.6416(68) 13.97(22) 1189(23) 0.240(06) 0.970.2 -305.6496(57) 9.70(13) 812(12) 0.408(20) 0.890.3 -305.6493(56) 9.36(16) 817(36) 0.487(36) 0.780.4 -305.6473(58) 12.21(22) 834(20) 0.485(50) 0.610.5 -305.6497(80) 17.51(44) 1237(52) 0.425(58) 0.43value ∆t = 0.2 seems to be 
onvenient to obtain good results with the Langevin dynami
s,whatever the atom or mole
ule.
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ed by Coleman that the ele
troni
 N -body ground-state energy
ould be obtained by minimizing over the set of N -representable two-body redu
ed density ma-tri
es (2-RDM), and Mayer de�nitely opened the �eld in 1955 with his pioneering arti
le [232℄. Ata 
onferen
e in 1959, Coulson then proposed to 
ompletely eliminate wavefun
tions from QuantumChemisty, sin
e all the ele
troni
 ground-state properties of mole
ular systems 
an be 
omputedfrom the 2-RDM [72,220,232℄. Unfortunately, the set of N -representable 2-RDM is not known ex-pli
itly. Some mathemati
al 
hara
terizations were provided [70,71,197℄ but they 
ould not be usedto derive a numeri
al method with a 
omplexity of a lower order than the usual N -body problem.In pra
ti
e, only approximate RDM minimization problems, in whi
h only a few ne
essary N -representability 
onditions are imposed (for example the so-
alled P,Q,G 
onditions [69,121℄), 
anbe 
onsidered. The �rst numeri
al studies relying on this strategy gave en
ouraging results [120℄.Re
ently a new interest in the Redu
ed Density Matrix (RDM) approa
h arose. Very goodnumeri
al results have been obtained by two di�erent strategies issued from semide�nite pro-gramming: primal-dual interior point methods [118, 233, 253, 376℄ on the one hand, augmentedLagrangian formulations using matrix fa
torizations of the 2-RDM [234�236℄ on the other hand.These results use a small number of known ne
essary 
onditions of N -representability. Yet, the so-obtained ground-state energies are as a

urate as the ones obtained with 
oupled-
luster methods,see e.g. [234,235℄. In addition, these energies provide lower bounds of the Full CI energies, whereasthe variational post Hartree-Fo
k methods, su
h as CI or MCSCF, all provide upper bounds.Sin
e the RDM method is a linear minimization problem over a 
onvex set of 
ompli
atedstru
ture, it is natural to use the 
on
ept of duality to mathemati
ally 
hara
terize and numeri
ally
ompute the minimum. Duality is an underlying issue in all the RDM studies [70,71,92,93,121,197℄,but surprisingly, the spe
i�
 form of the dual formulation of the RDM problem has not yet been
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ond-order redu
ed density matri
esused to derive an e�
ient algorithm. The 
urrent methods (see, e.g. [118, 234, 235, 253, 376℄) alluse general duality 
onsiderations in their algorithms, but none of them solves dire
tly (and only)the dual RDM problem. As will be shown below, the asso
iated dual optimization problem boilsdown to the sear
h of the zero of a one-dimensional 
onvex fun
tion.This 
hapter is organized as follows. We �rst present the reformulation of the ele
troni
 problemin terms of 2-RDMs in Se
tion 7.1, and re
all the N -representability problem in Se
tion 7.2.We then propose a dual formulation of the ele
troni
 problem in Se
tion 7.3, and illustrate thisapproa
h with some numeri
al results.7.1 The ele
troni
 stru
ture problem in terms of se
ond order redu
eddensity matri
es7.1.1 The ensemble of N-repsentable se
ond-order density matri
esWe denote by x = (x, σ) the ve
tor 
ontaining both the spa
e variable x ∈ R3 and thespin variable σ ∈ {|↑〉, |↓〉}. The summation on the spin variable will sometimes be denoted as anintegral to simplify notations. For an antisymmetri
N -body wavefun
tions ψ(x1, ..., xN ) ∈ ∧Nn=1 h,the se
ond-order redu
ed density matrix Γ is
Γ (x1, x2; y1, y2) = N(N − 1)

∫

(R3×{±1})N−2

ψ(x1, x2, x3, . . . , xN )ψ(y1, y2, x3, . . . , xN ) dx3 . . . dxN ,(7.1)while the �rst-order redu
ed density matrix γ is
γ(x, y) =

1

N − 1

∫

R3×{±1}
Γ (x, z; y, z) dz

= N

∫

(R3×{±1})N−1

ψ(x, x2, x3, . . . , xN )ψ(y, x2, x3, . . . , xN ) dx2 . . . dxN .For a basis (φi)i∈N∗of the spa
e L2(R3 × {|↑〉, |↓〉},C),
Γ (x1, x2; y1, y2) =

∑

i1,i2,j1,j2∈N∗

Γ j1,j2i1,i2
φi1(x1)φi2(x2)φj1 (y1)φj2 (y2), γ(x, y) =

∑

i,j

γji φi(x)φj(y).In the 
ase of fermions, the matrix Γ j1,j2i1,i2
is antisymmetri
, whi
h means that Γ j1,j2i1,i2

= −Γ j1,j2i2,i1
=

Γ j2,j1i1,i2
. This ensures that Γ (x1, x2; y1, y2) = −Γ (x2, x1; y1, y2) for instan
e.For any ve
tor spa
e X , we denote by S(X) the spa
e of self-adjoint matri
es a
ting on X , andby P(X) ⊂ S(X) the 
one of positive semi-de�nite matri
es. We also use the simpli�ed notation

PN := P
(∧N

1 h
) and SN := S

(∧N
1 h
). The 
one of ensemble representable N -order densitymatri
es is the 
onvex envelope

PN =

{
+∞∑

i=1

ni |ψi 〉 〈ψi | , ψi ∈
N∧

n=1

h

}
,where |ψi 〉 〈ψi | is the proje
tor onto span(ψi) :

|ψi 〉 〈ψi | ψ 〉 =

(∫

(R3×{±1})N

ψi(x)ψ(x) dx

)
ψiTherefore, the 
one of 2-RDM arising from an ensemble representable N -order density matrix is



7.1 The ele
troni
 stru
ture problem in terms of se
ond order redu
ed density matri
es 239
CN = L2

N (PN ) ⊂ C2.In this expression, the Kummer 
ontra
tion operator L2
N [71,197℄ is the linear operator |ψ 〉 〈ψ | 7→

Γ de�ned by (7.1). The 
orresponding Γ ∈ CN are said to be N -representable. Of 
ourse the 2-RDMs of physi
al interest are the elements Γ ∈ CN whi
h arise from a normalized N -body densitymatrix Υ ∈ PN (satisfying Tr(Υ ) = 1), so that Γ = L2
N (Υ ) satis�es Tr(Γ ) = N(N − 1).7.1.2 The energy minimization problem in terms of se
ond order redu
ed-densitymatri
esThe ele
troni
 HamiltonianHN a
ting on the N -body fermioni
 spa
e∧Nn=1 h of antisymmetri


N -body wavefun
tions ψ(x1, ..., xN ) is formally de�ned as
HN =

N∑

i=1

hxi +
∑

1≤i<j≤N

1

|xi − xj |
,where h = −∆/2 + V and V is the external Coulomb potential generated by the nu
lei. It holds

E = inf
Ψ∈VN

n=1 h,
||Ψ ||=1

〈Ψ,HNΨ〉 = inf
Υ∈PN ,
Tr(Υ )=1

Tr(HNΥ ). (7.2)The se
ond equality holds true sin
e the minimum of a linear fun
tion over a 
onvex set is attainedon an extremal point of the 
onvex set (on a point Γ = |ψ0 〉 〈ψ0 | , whi
h is a rank 1 proje
toron Span{ψ0})). The physi
al interpretation is that the in�mum of the energy over the set of mixedstates 
oin
ides with the in�mum of the energy over the set of pure states.Sin
e the Hamiltonian HN only 
ontains two-body intera
tions, the energy of the system 
anbe expressed in terms of the two-body density matrix Γ only (see, e.g. [71,233℄). By linearity, thisproperty has to be shown only for extremal points Γψ = |ψ 〉 〈ψ | . Let us then show that
〈
ψ
∣∣∣ Ĥ
∣∣∣ ψ
〉

= Tr(KΓ ),where the two-body operator K is de�ned as
K =

1

2(N − 1)
(hx1 + hx2) +

1

2|x1 − x2|
.It holds:

〈
ψ
∣∣∣ Ĥ

∣∣∣ ψ
〉

=
N∑

i=1

∫

(R3×{±1})N

ψ((x1, σ1), . . . , (xN , σN )) [h(xi) · ψ((x1, σ1), . . . , (xN , σN )) ]

+
∑

1≤i<j≤N

∫

(R3×{±1})N

|ψ((x1, σ1), . . . , (xN , σN ))|2
|xi − xj |

,

=
∑

σ1∈{±1}

∫

R3

h(x1) · γ((x1, σ1), (x
′
1, σ1))|x′

1=x1
dx1

+
1

2

∑

(σ1,σ2)∈{±1}2

∫

R6

Γ ((x1, σ1), (x2, σ2) ; (x1, σ1), (x2, σ2))

|x1 − x2|
dx1 dx2. (7.3)Therefore,
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E = inf

Γ∈CN ,
Tr(Γ )=N(N−1)

Tr(KΓ ). (7.4)Noti
e that we did not impose any 
onstraint on the spin state in (7.4), but su
h 
onstraints 
anbe easily taken into a

ount.The Galerkin approximationIn pra
ti
e, �nite-dimensional spa
es are used:
h := span(χi, i = 1, ..., r),where (χi)i≥1 is a Hilbert basis of the one-body spa
e L2(R3 ×{|↑〉, |↓〉},C). The 2-RDM Γ asso-
iated with an N -body density matrix Υ ∈ PN is still de�ned by means of Kummer's 
ontra
tionoperator L2

N as
Γ j1,j2i1,i2

= L2
N(Υ )j1,j2i1,i2

= N(N − 1)

r∑

k3,...,kN=1

Υ j1j2k3...kN

i1i2k3...kN
. (7.5)The 2-RDM Γ is now 
ompletely 
hara
terized by the matrix (Γ j1,j2i1,i2

)i1<i2, j1<j2 .7.2 The N -representability problemThe ele
troni
 ground state problem reformulated as (7.4) is not tra
table sin
e the set CN =

L2
N (PN ) over whi
h the minimization is performed is unknown. This set is the set of 2-RDMobtained from a wavefun
tion (or an ensemble of wavefun
tions) through the Kummer 
ontra
tion.Chara
terizing this set is the so-
alled N -representability problem. No ne
essary and su�
ient
onditions of N -representability are known for 2-RDM (or higher order RDMs). This is in 
ontrastwith �rst-order redu
ed density matri
es [69℄, whi
h are N -representable as soon as 0 ≤ γ ≤ 1 (asan operator) and Tr(γ) = N .Only ne
essary 
onditions are known for 2-RDM. The most famous ones are the so-
alled P,Q, G 
onditions [69, 121℄, and we will fo
us on them in the sequel. Additional 
onditions T1 et
T2 [92℄ 
an also be 
onsidered. Imposing only this ne
essary 
onditions results in minimizing theenergy on too large a variational spa
e. Therefore, only lower bounds to the true energy are foundthis way.7.2.1 Some ne
essary N-representability 
onditions for 2-RDMsOrigin of the P, Q, G 
onditionsAn operator Γ ∈ S(h ∧ h) is non-negative if and only if, for any g ∈ h ∧ h, 〈g, Γg〉 ≥ 0. The P,Q, G 
onditions are obtained by requiring

〈
ψ
∣∣A†A

∣∣ ψ
〉
≥ 0,for 
ertain operators A. In the formalism of se
ond quantization (see [71℄ for more pre
isions), theP 
ondition 
orrespond to the positivity of the matrix 〈ψ ∣∣∣ a†i1a†i2aj1aj2 ∣∣∣ ψ 〉, the 
ondition Q tothe positivity of 〈ψ ∣∣∣ aj1aj2a†i1a†i2 ∣∣∣ ψ 〉, and G to the positivity of 〈ψ ∣∣∣ a†i1aj2a†i2aj1 ∣∣∣ ψ 〉.



7.2 The N-representability problem 241Expli
it formulation of the P,Q,G 
onditionsThe P, Q, G 
onditions are linear equalities of the form
LP (Γ ) ≥ 0, LQ(Γ ) ≥ 0, LG(Γ ) ≥ 0.The above operators are

LP (Γ ) = Γ, (7.6)
LQ(Γ )j1,j2i1,i2

= Γ j1,j2i1,i2
− δj1i1 γ

j2
i2

− δj2i2 γ
j1
i1

+ δj2i1 γ
j1
i2

+ δj1i2 γ
j2
i1

+ (δj1i1 δ
j2
i2

− δj2i1 δ
j1
i2

)Tr(Γ ), (7.7)
LG(Γ )j1,j2i1,i2

= −Γ j1,i2i1,j2
+ δj1i1 γ

j2
i2
. (7.8)The �rst order redu
ed density matrix is still obtained by means of the Kummer 
ontra
tion

γji =
1

N − 1

N∑

k=1

Γ j,ki,k .Noti
e that the operators LP and LQ de�ned on S(h ∧ h) have values in S(h ∧ h), so that
L∗
P = LP , L∗

Q = LQ (where the notation ∗ refers to the adjoint operator). Therefore, the 
onstraints
LP (Γ ),LQ(Γ ) ≥ 0 must be understood as

∀B ∈ S(h ∧ h), Tr(BLP (Γ )) ≥ 0, Tr(BLQ(Γ )) ≥ 0.The operator LG is also de�ned on S(h∧h) but has values in a spa
e larger than S(h∧h), a priorithe whole set S(h ⊗ h). Therefore, LG(Γ ) ≥ 0 means
∀B ∈ S(h ⊗ h), Tr(BLG(Γ )) ≥ 0.Relationship with the N-representability of the �rst-order RDMWe verify here that the ne
essary N -representability 
onditions for the 2-RDM imply the N -representability of the �rst-order RDM. It is straightforward that the P 
ondition ensures γ ≥ 0.It then remains to 
he
k γ ≤ 1 [69℄. The proof we present here is suited for �nite-dimensionalspa
es (whi
h is the 
ase of interest in pra
ti
e), with r spatial basis fun
tions (2r basis fun
tionswhen 
onsidering the spin variable).Up to an orthogonal transformation, the �rst-order redu
ed density matrix 
an be 
hosendiagonal. It is then enough to show that γii ≤ 1 for any 1 ≤ i ≤ 2r. Sin
e the diagonal elements of

LQ(ΓN ) are positive, if follows
Γ i1,i2i1,i2

− γi1i1 − γi2i2 + 1 ≥ 0.Summing over i2 6= i1 and dividing by N − 1,
1

N − 1

∑

i2 6=i1
Γ i1,i2i1,i2

− 2r − 1

N − 1
γi1i1 − 1

N − 1
(Tr(γ) − γi1i1 ) +

2r − 1

N − 1
≥ 0,sin
e∑i2 6=i1 γ

i2
i2

= Tr(γ)− γi1i1 . The �rst term of the above inequality being γi1i1 (by 
ontra
tion ofthe 2-RDM) and using Tr(γ) = N , it �nally holds
γi1i1

(
1 − 2r

N − 1

)
+

2r − 1 −N

N − 1
≥ 0,so that, when 2r − 1 −N > 0 (as in the 
ase in pra
ti
e), γi1i1 ≤ 1.
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ond-order redu
ed density matri
es7.2.2 An expli
it (
ounter)exampleThe aim of this se
tion is to show on an example that the set of N -representable 2-RDM hasa very 
ompli
ated topology. In parti
ular, there exist N -representable 2-RDM that are no longer
N -representable after an arbitrary small perturbation.Consider N = 3 ele
trons, and an orthonoral system (φ1, . . . , φ5) in L2(R3). We denote Υψ thedensity matrix of order N = 3 asso
iated with the wavefun
tion ψ, and Γψ the 2-RDM obtainedfrom Υψ through the Kummer operator L ≡ L2

3. A basis of the 3-body spa
e H3 ⊂ h3 is given bythe Slater determinants { |φiφjφk 〉}1≤i<j<k≤5, where
|φiφjφk〉(x, y, z) =

1√
3!

∣∣∣∣∣∣

φi(x) φi(y) φi(z)

φj(x) φj(y) φj(z)

φk(x) φk(y) φk(z)

∣∣∣∣∣∣
.The spa
e H3 is of dimension (5

3

)
= 10. We will use in the sequel the short-hand notations

ψ1 = |φ1φ2φ3〉, ψ2 = |φ1φ4φ5〉, ψ3 = |φ2φ4φ5〉, ψ4 = |φ3φ4φ5〉, ψ5 = |φ2φ3φ5〉.The remaining basis fun
tions ψ6, · · · , ψ10 are 
hosen arbitrarily among the remaining Slaterdeterminants, so that B3 = (Ψ1, ..., Ψ10) is a basis of H3. The spa
e of 2-body fun
tions H2 is alsoof dimension 10. A basis of this spa
e is given by the Slater determinants {|φiφj〉}1≤i<j≤5, wherefor example
|φ1φ2〉(x, y) =

1√
2

∣∣∣∣
φ1(x) φ1(y)

φ2(x) φ2(y)

∣∣∣∣ .This basis is ordered as
B2 := {|φ1 φ2〉, |φ1 φ3〉, |φ1 φ4〉, |φ1 φ5〉, |φ2 φ3〉, |φ2 φ4〉, |φ2 φ5〉, |φ3 φ4〉, |φ3 φ5〉, |φ4 φ5〉}.Let us �rst 
ompute the matri
es τi asso
iated with the 2-RDM Γψi in the basis B2. Forexample,

L(Υψ1) =
1

3
(|φ1φ2〉 〈φ1φ2| + |φ1φ3〉 〈φ1φ3| + |φ2φ3〉 〈φ2φ3|),so that, in the ordered basis B2,
τ1 =

1

3
Diag(1, 1, 0, 0, 1, 0, 0, 0, 0, 0).Analogously,

τ2 =
1

3
Diag(0, 0, 1, 1, 0, 0, 0, 0, 0, 1),

τ3 =
1

3
Diag(0, 0, 0, 0, 0, 1, 1, 0, 0, 1),

τ4 =
1

3
Diag(0, 0, 0, 0, 0, 0, 0, 1, 1, 1).The 3-order density matrix

Υ =
1

4
(ΓΨ1 + ΓΨ2 + ΓΨ3 + ΓΨ4) (7.9)is therefore in P3 sin
e it is a 
onvex 
ombination of elements of P3. The matrix τ asso
iated withthe 
orresponding 2-RDM is

τ =
1

3
Diag

(
1

4
, . . . ,

1

4
,
3

4

)
.



7.3 A dual formulation of the optimization problem 243The 2-RDM Γ = L(Υ ) is then su
h that Γ > 0, and Υ de�ned by (7.9) is in fa
t the unique elementin B3 su
h that Γ = L(Υ ) (be
ause L is one-to-one in the spe
i�
 
ase we 
onsider). Noti
e that
Υ is non-negative but not positive, sin
e its kernel is of dimension 6.Consider now an arbitrary small perturbation of Γ of the form

Γǫ(x, y ; x′, y′) = Γ (x, y ; x′, y′) +
ǫ

2
{|φ1φ4〉(x, y) 〈φ2φ3|(x′, y′) + |φ2φ3〉(x, y) 〈φ1φ4|(x′, y′)}The matrix τǫ 
orresponding to Γǫ reads in the B2 basis

τǫ = τ +
ǫ

2
(δ3,5 + δ5,3).Therefore, for ǫ small enough, the symmetri
 matrix τǫ still veri�es τǫ > 0 and tr(τǫ) = 3. However,

τǫ is not 3-representable! Indeed, sin
e L is one-to-one, τǫ is obtained by 
ontra
tion of
Υǫ = Υ +

ǫ

2
{|φ1φ4φ5〉〈φ2φ3φ5| + |φ2φ3φ5〉〈φ1φ4φ5|}

= Γ +
ǫ

2
{|Ψ5〉〈Ψ2| + |Ψ2〉〈Ψ5|}.In the basis {ψi}i=1,...,M , the matrix Tǫ 
orresponding to Υǫ is

Tǫ = Diag

(
1

4
,
1

4
,
1

4
,
1

4
, 0, 0, 0, 0, 0, 0

)
+
ǫ

2
(δ2,5 + δ5,2),whi
h has a negative eigenvalue −ǫ, so that the operator Γǫ is not positive semi-de�nite.7.3 A dual formulation of the optimization problem7.3.1 Dual Formulation of the RDM Minimization ProblemWe now present the dual formulation of the minimization (7.4). We re
all that the polar 
one

C∗ of a 
one C in any Hermitian spa
e is de�ned as C∗ = {x | ∀y ∈ C, 〈x, y〉 ≥ 0}, where 〈·, ·〉denotes the 
onsidered s
alar produ
t (here, the Frobenius s
alar produ
t). The dual method then
onsists in formulating (7.4) in terms of (CN )∗ instead of CN :
E = N(N − 1) sup{µ | K − µ ∈ (CN)∗}. (7.10)Formula (7.10) 
an be easily derived from (7.4). Introdu
ing the Lagrangian

L(Γ,B, µ) = Tr(KΓ ) − Tr(BΓ ) − µ{Tr(Γ ) −N(N − 1)},it follows
E = inf

Γ∈S2

sup
B∈(CN )∗, µ∈R

L(Γ,B, µ). (7.11)As usual when using Lagrangian, the 
onstraints are not stated expli
itely, but penalized usingsome Lagrange parameter: µ is used to ensure that Tr(Γ ) = N(N − 1), and B ∈ (CN )∗ ensuresthat Γ ∈ CN . It then su�
es to ex
hange the inf and the sup in (7.11) to obtain (7.10).We therefore obtain an optimization problem in dimension 1 over µ ∈ R whi
h is the variabledual to the 
onstraint Tr(Γ ) = N(N − 1). Of 
ourse 
hara
terizing the polar 
one (CN )∗ is asdi�
ult as 
hara
terizing CN , this issue is 
alled the N -representability problem. Indeed CN =

(CN )∗∗. Even if the dual formulation (7.10) does not simplify the theoreti
al N -representabilityproblem, it turns out to be more 
onvenient for numeri
al purposes.



244 7 Se
ond-order redu
ed density matri
esSin
e both (CN )∗ and CN are unknown and di�
ult to 
hara
terize, it is ne
essary to ap-proximate (7.10) by a variational problem that 
an be 
arried out numeri
ally. To this end, somene
essary 
onditions for N -representability are sele
ted. We 
onsider L 
onditions of the followinggeneral form
∀ℓ = 1...L, Lℓ(Γ ) ≥ 0 (7.12)where for any ℓ, Lℓ : S2 → S(Xℓ) is a linear map and Xℓ is some ve
tor spa
e. Here, we restri
tourselves to the P, Q, G 
onditions, with asso
iated operators LP , LP and LG given respe
tivelyby (7.6), (7.7) an (7.8), and asso
iated ve
tor spa
es XP = XQ = h ∧ h and XG = h ⊗ h.Imposing only the ne
essary 
onditions (7.12) means that CN is repla
ed by the approximate
one Capp ⊃ CN de�ned as

Capp := {Γ ∈ S2 | ∀ℓ = 1...L, Lℓ(Γ ) ≥ 0}.Its polar 
one 
an easily be shown to be
(Capp)∗ :=

{
L∑

ℓ=1

(Lℓ)∗Bℓ | Bℓ ∈ S(Xℓ), Bℓ ≥ 0

}
, (7.13)and the asso
iated approximate energy is then, in view of (7.10),

Eapp = inf
Γ∈Capp,

Tr(Γ )=N(N−1)

Tr(KΓ ) (7.14)
= N(N − 1) sup{µ | K − µ ∈ (Capp)∗}. (7.15)Let us emphasize again that, sin
e Capp ⊃ CN , the energyEapp is a lower bound to the full CI energyin the 
hosen basis, Eapp ≤ E. We present in Se
tion 7.3.2 an algorithm for solving problem (7.15).Noti
e that we obtain only the ground-state energy (and not the ground state density matrix), but,resorting to �rst order perturbation theory, any observable in
luding at most two-body intera
tionterms 
an be obtained by a �nite di�eren
e of energies.7.3.2 Algorithm for solving the dual problemLet us introdu
e the distan
e to the dual 
one (Capp)∗

δ(µ) = dist (K − µ, (Capp)
∗) .Denoting µ∗

app = Eapp/(N(N − 1)), the fun
tion δ satis�es the following properties:(1) δ ≡ 0 on (−∞, µ∗
app] and is in
reasing on [µ∗

app,∞);(2) δ is 
onvex on R;(3) δ2 is 
ontinuously di�erentiable on R, thus δ is 
ontinuously di�erentiable on R\{µ∗
app} and

∀µ > µ∗
app, δ′(µ) = −Tr(K − µ−Aµ)

||K − µ−Aµ||
(7.16)where Aµ denotes the proje
tion of K − µ onto the polar 
one (Capp)∗.Proofs for (ii) − (iii) 
an be found in [249℄. To prove (i), one noti
es that when µ ≤ µ∗

app,
K−µ = K−µ∗ +(µ∗−µ) belongs to (Capp)

∗ sin
e µ∗ −µ ∈ P2 ⊂ (Capp)∗. To illustrate the aboveproperties, we provide a plot of δ(µ) for N2 in a STO-6G basis set (see Figure 7.1).In order to 
ompute µ∗
app, we use a Newton-like s
heme that strongly exploits the abovementioned properties in a natural way: starting from an initial energy above µ∗

app (su
h as theHartree-Fo
k energy for instan
e) and using the 
onvexity of the fun
tion δ, the Newton algorithm
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Fig. 7.1. Left: Distan
e δ(µ) of K − µ to the 
one (Capp)
∗ as a fun
tion of µ for N2 in a STO-6Gbasis set. The tangent at the estimated value for µ∗

app is also displayed (dashed line). Right: Zoom nearthe FCI referen
e value. The Hartree-Fo
k value is µHF = −1.4435153 while the referen
e FCI value is
µCI = −1.4453909.ensures that the energy µ de
reases at ea
h step of the optimization pro
ess and 
onverges to µ∗

app.The right derivative of δ at µ∗
app being always positive, the 
onvergen
e rate is guaranteed to beat least superlinear.Of 
ourse, the most di�
ult part of the algorithm is the 
omputation of the distan
e δ(µ) tothe 
one, and of the proje
tion Aµ of K − µ. To this end, we 
hose to minimize, for a given µ, theobje
tive fun
tion

Jµ(B1, . . . , BL) =
1

2

∥∥∥∥∥K − µ−
L∑

ℓ=1

(Lℓ)∗Bℓ
∥∥∥∥∥

2

,under the 
onstraintsBℓ ≥ 0 (ℓ = 1...L), a

ording to the de�nition (7.13) of the polar 
one (Capp)
∗.The above minimization is performed using a 
lassi
al limited-memory BFGS algorithm [36℄,keeping the last m = 3 des
ent dire
tions. The positivity 
onstraints were parametrized by Bℓ =

(Cℓ)
2 with Cℓ symmetri
, as suggested by Mazziotti in [234,235℄.Computing δ(µ) with su�
ient a

ura
y when µ is 
lose to µ∗

app 
an be di�
ult be
ause theminimization of Jµ(B) then is ill-
onditioned. We therefore 
onsider a �trun
ated" version of theNewton algorithm where µ is updated by a fra
tion 0 < a ≤ 1 of the Newton step. We then usethe linearity of δ for values 
lose to µ∗
app to devise a stopping 
riterion limiting the number ofiterations. The algorithm is as follows:Dual RDM optimizationAlgorithm 7.1. Consider an initial value µ0 (for example the Hartree-Fo
k value µHF), and

0 < a ≤ 1. Compute the proje
tion Aµ0 of K − µ0 on (Capp)∗ and the distan
e d0 = δ(µ0),and 
onsider µ1 = µ0 − δ(µ0)
δ′(µ0) . For n ≥ 1, and ǫ > 0 small,(1) Compute the proje
tion Aµn =

∑L
ℓ=1(Lℓ)∗

[
(Cnℓ )2

] of K−µn on (Capp)
∗, the asso
iateddistan
e dn = δ(µn) = ||K − µn −Aµn || and the derivative δ′(µn);(2) Compute the interpolation slope pn = dn−1−dn

µn−1−µn ;(3) If pn ≤ (1 + ǫ)δ′(µn), then the linear assumption is satis�ed and the �nal value isextrapolated from the 
urrent position as µ∗ = µn − δ(µn)
δ′µn) ;(4) Otherwise, set µn+1 = µn − a δ(µ

n)
δ′(µn) and start again from (1) using as initial guess

Cn+1
ℓ = Cnℓ for any ℓ = 1...L.
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ond-order redu
ed density matri
esIn pra
ti
e, the above algorithm 
onverges in a few iterations. The only time 
onsuming stepis the proje
tion performed in Step (1). As des
ribed above, this proje
tion is done iteratively byminimizing the obje
tive fun
tion Jµ by a limited-memory BFGS algorithm. The 
ost of one BFGSiteration s
ales as O(r6). We did not observe a 
lear s
aling of the number of BFGS iterationswith respe
t to the basis set size. The memory requirements s
ale as O(r4). Both 
omputationaltime and memory requirements are 
omparable to those of [234℄.7.3.3 Numeri
al resultsWe have tested the method on several mole
ules at equilibrium geometries using data fromthe EMSL Computational Results DataBase,1 for STO-6G and 6-31G basis sets. The results arereported in Table 7.1 and 7.2 respe
tively.Table 7.1. Correlation energies in a STO-6G basis set.System FCI energy Correlation energy Dual RDM energy (% of the 
orrelation energy)Be -14.556086 -0.0527274 -14.556123 (100.07)LiH -7.972557 -0.0190867 -7.9727078 (100.79)BH -25.058806 -0.0569044 -25.061771 (105.21)Li2 -14.837571 -0.0286889 -14.839066 (105.21)BeH2 -15.759498 -0.0335151 -15.761284 (105.33)H2O -75.735839 -0.0546392 -75.738582 (105.02)NH3 -56.0586005 -0.0693410 -56.074805 (123.37)Table 7.2. Correlation energies in a 6-31G basis set.System FCI energy Correlation energy Dual RDM energy (% of the 
orrelation energy)Be -14.613545 -0.0467812 -14.613653 (100.23)LiH -7.995678 -0.0185565 -7.9959693 (101.57)BH -25.171730 -0.0630461 -25.176736 (107.94)Li2 -14.893607 -0.0277581 -14.895389 (106.42)BeH2 -15.798440 -0.0402691 -15.801066 (106.52)H2O -76.120220 -0.1401501 -76.142125 (115.63)NH3 -56.291315 -0.1336141 -56.318065 (120.02)The referen
e Full CI (FCI) energies have been 
omputed using GAMESS [300℄. The 
orrelationenergies are re
overed with a good a

ura
y. This is 
onsistent with previous results alreadyobtained with di�erent RDM methods [118,234,235,253,376℄.In general, we have observed that the fun
tion δ is almost linear in quite large a right neigh-borhood of µ∗
app (see Figure 7.1). Usually, only 3 or 4 Newton iterations are ne
essary to a
hieve
onvergen
e. Therefore, the only limiting step of the method is the 
omputation of the distan
e

δ(µ) and of the proje
tion Aµ of K −µ on the polar 
one. The method is very robust with respe
tto initial 
hoi
es of the energy µ0 and the matri
es C0
k . However, we have observed that the 
om-putational time needed for �nding the proje
tion Aµ highly depends on the quality of the initialguess. The 
hoi
e of genuine initial 
onditions is not obvious sin
e we are manipulating abstra
tobje
ts (dual elements of 2-RDM). Some CPU times are reported in Table 7.3 for very 
rude initial
onditions C0

k = Id and µ0 ≃ 0.9µHF.
1 See the web site http://www.emsl.pnl.gov/proj/
rdb/



7.3 A dual formulation of the optimization problem 247Table 7.3. CPU time (s) in a STO-6G basis using very 
rude initial guesses (Cl = I).System Spatial basis size r CPU time (s) Newton iterationsBe 5 25.7 2LiH 6 240.9 3H2O 7 958.8 4BeH2 7 1143.3 3We would like to underline that our proje
tion algorithm is far from being optimal. There is
learly mu
h room for improvement here. Let us also mention that the 
urve µ 7→ δ(µ) 
an beeasily sampled using parallel 
omputing (one value of µ per pro
essor).
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Fig. 7.2. Disso
iation 
urve for N2 in a STO-6G basis set.We �nally present in Figure 7.2 disso
iation 
urves for N2 in a STO-6G basis set. This examplewas already studied in several works [124,188,252℄. The agreement of our results with the referen
eFull CI is ex
ellent, and the disso
iation energy is therefore re
overed with a very good a

ura
y.
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hapter presents a work on progress with E. Can
ès, E. Davidson, A. Izmaylov,G. S
useria and V. Staroverov, on the mathemati
al understanding of the optimized e�e
-tive potential (OEP) and other lo
al potentials mathemati
ally motivated by some minimizationpro
edure. We seek here a lo
al potential a

ounting for the ex
hange part of the ele
troni
 inter-a
tions (of 
ourse, eletroni
 
orrelations should ultimately be handled as well), and reprodu
ingas a

urately as possible the Hartree-Fo
k ex
hange, also 
alled 'exa
t ex
hange' in the physi
sand 
hemistry literature.The Hartree-Fo
k method, presented in Se
tion 2.1.4, is a variational wavefun
tion methodrestri
ting the variational spa
e to single Slater determinants:

ψ(x1, . . . , xN ) =
1√
N !

Det(φi(xj)), (8.1)with φi ∈ H1(R3), ∫
R3 φi(x)φj(x) dx = δij . In the sequel,
XN =

{
Φ = (φi)1≤i≤N ∈ (H1(R3))N

∣∣∣∣
∫

R3

φiφj = δij

}
.The Hartree-Fo
k energy fun
tional of a system of N spin-less ele
trons reads

EHF(Φ) =
1

2

N∑

i=1

∫

R3

|∇φi|2+

∫

R3

VnucρΦ+
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy− 1

2

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y| dx dy,(8.2)where the density ρΦ and the density matrix γΦ are de�ned respe
tively by

ρΦ(x) =

N∑

i=1

|φi(x)|2, γΦ(x, y) =

N∑

i=1

φi(x)φi(y). (8.3)



250 8 Lo
al Ex
hange Potentials and Optimized E�e
tive PotentialsThe potential 
reated by the nu
lei is, for a mole
ule with K atoms of 
harge zk at positions x̄k,
Vnuc(x) = −

K∑

k=1

zk
|x− x̄k|

.For simpli
ity, we will 
onsider in the sequel the Coulombi
 atomi
 potential
Vnuc(x) = − Z

|x|for Z ≥ 0. A minimizer of (8.2) satis�es the Hatree-Fo
k equations, whi
h are the Euler-Lagrangeequations asso
iated with (8.2) (up to a unitary transformation):
FΦφi = −1

2
∆φi + Vnucφi +

(
ρΦ ⋆

1

|x|

)
φi +KΦφi = ǫiφi. (8.4)In this expression, the ex
hange operator KΦ is de�ned as

KΦϕ(x) = −
∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy. (8.5)It is therefore a non-lo
al operator depending on the orbitals Φ = {φi}i=1,...,N .Mathemati
al settingWe 
onsider here a given N -tuple Φ = {φi}1≤i≤N of fun
tions de�ned on R3, orthogonalfor the L2(R3) inner produ
t and belonging to the Sobolev spa
e H2(R3) (noti
e that the lattertwo 
onditions are automati
ally satis�ed for any solution of the Hartree-Fo
k or Kohn-Shamequations). The 
orresponding density and density matrix are de�ned as in (8.3). As the {φi}1≤i≤Nare assumed to be in H2(R3), it follows from Sobolev embedding theorems that the density ρΦis a 
ontinuous fun
tion going to zero at in�nity. We also assume that ρΦ does not vanish on R3(this 
ondition is automati
ally satis�ed if the {φi}1≤i≤N are the lowest N eigenfun
tions of aKohn-Sham operator).The ex
hange operator (8.5) asso
iated with the N -tuple {φi}1≤i≤N is the Hilbert-S
hmidtoperator on L2(R3) de�ned for all ϕ ∈ L2(R3) as
(KΦϕ)(x) = −

∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy.Note that the right hand side of the above de�nition a
tually makes sense as a L2(R3) fun
tion.This is a 
onsequen
e of Cau
hy-S
hwarz and Hardy inequalities (for the Hardy inequality, seee.g. [52, Theorem 2.12℄), sin
e, for �xed x ∈ R3,
∣∣∣∣
∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy

∣∣∣∣ ≤
N∑

i=1

|φi(x)| ‖ϕ‖L2(R3)

∥∥∥∥
φi

| · −x|

∥∥∥∥
L2(R3)

≤ 2

N∑

i=1

|φi(x)| ‖ϕ‖L2(R3)‖∇φi‖L2(R3).

(8.6)Re
all that a Hilbert-S
hmidt operator on L2(R3) is a linear operator on L2(R3) for whi
h thereexists g ∈ L2(R3 × R3) su
h that
∀f ∈ L2(R3), (Gf)(x) =

∫

R3

g(x, y)f(y) dy.



8.1 The Slater ex
hange potential 251The fun
tion g (whi
h is unique) is 
alled the kernel of G. The set of Hilbert-S
hmidt operatorson L2(R3) is denoted by σ2(L
2(R3)). Endoved with the inner produ
t de�ned by
〈G,H〉HS =

∫

R3

∫

R3

g(x, y)h(x, y) dx dy(where g and h are the kernels of G and H respe
tively), σ2(L
2(R3)) is a Hilbert spa
e. The
orresponding norm is thus de�ned by

‖G‖HS =

(∫

R3

∫

R3

|g(x, y)|2 dx dy
)1/2

.Here, the kernel kΦ of KΦ reads
kΦ(x, y) = −γΦ(x, y)

|x− y| ,and, making use on
e again of Cau
hy-S
hwarz and Hardy inequalities,
‖KΦ‖2

HS =

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y|2 dx dy ≤

N∑

i=1

∫

R3

|φi(x)|2 dx
N∑

j=1

∥∥∥∥
φj

| · −x|

∥∥∥∥
2

L2(R3)

≤ 4N

N∑

j=1

‖∇φj‖2
L2(R3) < +∞.The one-body density matrix γΦ is also the kernel of a Hilbert-S
hmidt operator on L2(R3),denoted by γΦ (abusing notations) and de�ned as

∀f ∈ L2(R3), (γΦf)(x) =

∫

R3

γΦ(x, y)f(y) dy =

N∑

i=1

φi(x)

∫

R3

φi(y)f(y) dy.8.1 The Slater ex
hange potentialThe ex
hange operator (8.5) is not a lo
al operator (see Se
tion 8.2.1 for a tentative de�nition oflo
al operators). In order to redu
e the 
omplexity of the Hartree-Fo
k equations, Slater proposedto repla
e the non-lo
al ex
hange operator by some lo
al operator [312℄. This lo
al operator isobtained by some averaging pro
edure (but 
an also be de�ned in terms of some variationalpro
edure, see Remark 8.3), and 
an be expressed in terms of the density matrix of the system as
vΦx,S(x) = − 1

ρΦ(x)

∫

R3

|γΦ(x, y)|2
|x− y| dy. (8.7)Nowadays, the 
omplexity of the Hartree-Fo
k equations is no more an obsta
le for ground-state
omputations. However, it is still very interesting to �nd approximate lo
al ex
hange operators forthe purpose of interpretation, or to improve the ex
hange part of ex
hange-
orrelation fun
tionalsin Density Fun
tional Theory. The lo
al ex
hange potentials 
an also be used as an input in otherapproa
hes, espe
ially time-dependent methods.The existen
e of a radial solution to the self-
onsistent Kohn-Sham equations with the Slaterex
hange potential as an ex
hange-
orrelation potential is given by the following theorem. Re
allthat a fun
tion φ is said to be radial if there exists a fun
tion ϕ su
h that φ(x) = ϕ(|x|). We willdenote by L2

r(R
3) (resp. H1

r (R
3)) the set of radial L2(R3) (resp. radial H1(R3)) fun
tions, and set

X r
N =

{
Φ = (φi)1≤i≤N ∈ (H1

r (R
3))N

∣∣∣∣
∫

R3

φiφj = δij

}
.
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al Ex
hange Potentials and Optimized E�e
tive PotentialsTheorem 8.1. In the 
ase of a single nu
leus of 
harge Z ≥ N , the nonlinear eigenvalue problem
1 ≤ i ≤ N,

(
−1

2
∆− Z

|x| + ρΦ ⋆
1

|x| −
1

ρΦ(x)

∫

R3

|γΦ(x, y)|2
|x− y| dy

)
φi = ǫiφi, (8.8)with ǫ1 < · · · ≤ ǫN ≤ 0 and ρΦ, γΦ de�ned as in (8.3), has a solution1 Φ = (φi) ∈ X r

N and the
orresponding ex
hange potential vΦx,S is globally Lips
hitz in R3, C∞ away from the nu
leus, andsatis�es, for all η > 0,
vΦx,S(x) = − 1

|x| + o
(
e−(2

√
−2ǫN−η)|x|

)
.Besides, the minimum of the Hartree-Fo
k energy over the set of the radial solutions to (8.8) isattained.The proof of Theorem 8.1 
an be read in Se
tion 8.4.Remark 8.1 (Pra
ti
al 
omputation through an iterative pro
edure). To 
ompute inpra
ti
e a solution (8.8), it is possible to 
onsider the following iterative pro
edure:Algorithm 8.1. Starting from some set of N orbitals Φ0 = {φ0

1, . . . , φ
0
N},(1) 
ompute the lo
al Slater ex
hange potential vΦn

x,S given by (8.7) using the orbitals Φn =

{φni }i=1,...,N ;(2) 
ompute the �rst N eigenve
tors of the operator
(
−1

2
∆− Z

|x| + ρΦn ⋆
1

|x| + vΦ
n

x,S

)
φn+1
i = ǫn+1

i φn+1
i . (8.9)When there are degenera
ies in the highest energy levels, some arbitrary 
hoi
e is made;(3) repla
e n by n+ 1 and go ba
k to Step 1.In some 
ase, we will restri
t ourselves to radial eigenve
tors. Re
all that, when the orbitals areradial, the eigenvalues of the operators appearing in Algorithm 8.1 are non-degenerate, and theradial i-th eigenve
tor φi has exa
tly i− 1 nodal spheres.The well-posedness of this iterative pro
edure is ensured provided the operator in (8.9) has atleast N negative eigenvalues, its essential spe
trum still being [0,+∞). This is easier to 
he
kwhen the orbitals are radial, or when the nu
lear 
harge satis�es Z > N . In the general 
ase, someexponential de
ay of the initial orbitals has to be assumed. The well-posedness of the iterativepro
edure is pre
ised in the following propositions:Proposition 8.1. Assume Z > N − 1. For initial radial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N , andwhen (φn+1

1 , . . . , φn+1
N ) are the �rst N radial orbitals in the diagonalization (8.9), the iterativepro
edure of Algorithm 8.1 is well-de�ned.Proposition 8.2. Assume Z > N . For initial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N , the iterativepro
edure of Algorithm 8.1 is well-de�ned.Proposition 8.3. Assume Z = N . For initial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N exponentiallyde
reasing, i.e. su
h that there exists C0, γ0, R0 > 0 with

∀1 ≤ i ≤ N, ∀|x| ≥ R0, |φ0
i (x)| ≤ C0e−γ

0|x|,the iterative pro
edure of Algorithm 8.1 is well-de�ned.However, we were not able to show that this numeri
al pro
edure indeed 
onverges to a solutionof the self-
onsistent Kohn-Sham equations with Slater ex
hange potential.
1 In the Aufbau 
ondition (ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of “

− 1
2
∆ + Vnuc + ρΦ ⋆

1
|x| + vΦ

x,S

”),the mean-�eld Hamiltonian is here 
onsidered as an operator on L2
r(R

3).
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tive Potential problem 2538.2 The Optimized E�e
tive Potential problem8.2.1 Usual formulation of the OEP problemIn order to generalize and improve Slater's approa
h, Sharp and Horton [308℄ proposed a syste-mati
 way to obtain lo
al potentials approximating the non lo
al ex
hange operator. They suggestto minimize the energy of the Slater determinant 
onstru
ted with the lowest N eigenfun
tionsof some one-ele
tron S
hrödinger operator − 1
2∆ + W , W being a 'lo
al potential'. This tra
kwas further explored by Talman and Shadwi
k [338℄. Note that what is pre
isely meant by 'lo
alpotential' is not 
lear.Leaving this issue aside until next se
tion, we introdu
e the set of admissible 'lo
al potentials'

W =

{
W 'lo
al potential' ∣∣∣∣ HW = −1

2
∆+W is a self-adjoint operator on L2(R3),bounded from below, with at least N eigenvalues below its essential spe
trum},and the OEP minimization set

X =
{
Φ = {φi}1≤i≤N

∣∣ φi ∈ H1(R3), (8.11) and (8.12) hold for some W ∈ W
}
, (8.10)where 
onditions (8.11) and (8.12) are de�ned as

(
−1

2
∆+W

)
φi = ǫiφi,

∫

R3

φiφj = δij , (8.11)and
ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of HW = −1

2
∆+W. (8.12)The optimized e�e
tive potential problem then reads

inf
Φ∈X

EHF(Φ). (8.13)Denoting by ΦOEP a minimizer to (8.13), an optimal e�e
tive potential is a 'lo
al potential'
WOEP ∈ W whi
h allows to generate ΦOEP through (8.11)-(8.12). It is 
onvenient to de
ompose
WOEP as

WOEP(x) = Vnuc(x) +

∫

R3

ρΦOEP(y)

|x− y| dy + vx,OEP(x).In order to emphasize the mathemati
al issues arising from the above formulation of the OEP pro-blem, it is worth re
alling the general method for proving existen
e of solutions to a minimizationproblem su
h as (8.13). The �rst step 
onsists in 
onsidering a so-
alled minimizing sequen
e, thatis a sequen
e (Φn)n∈N of elements of X su
h that
lim

n→+∞
EHF(Φn) = inf

Φ∈X
EHF(Φ).It is easy to 
he
k that the sequen
e (Φn)n∈N is bounded in (H1(R3))N , hen
e weakly 
onverges, upto extra
tion, toward some Φ∞ ∈ (H1(R3))N . It is then standard to show (see [211℄ for instan
e)that

EHF(Φ∞) ≤ inf
Φ∈X

EHF(Φ). (8.14)The di�
ult step of the proof is to show that Φ∞ ∈ X (if Φ∞ ∈ X , we 
an immediately 
on
lude,using (8.14), that Φ∞ is a solution to (8.13)). For this purpose, we need to introdu
e a sequen
e
(Wn)n∈N of 'lo
al potentials' su
h that Φn 
an be generated by Wn via (8.11)-(8.12). If (Wn)n∈N
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al Ex
hange Potentials and Optimized E�e
tive Potentialswas bounded in some 
onvenient fun
tional spa
e Y, (Wn)n∈N would 
onverge (up to extra
tionand in some weak sense) to some potential W∞ ∈ Y. We 
ould then try to pass to the limit in thesystem 



−1

2
∆φni +Wnφ

n
i = ǫni φ

n
i ,∫

R3

φni φ
n
j = δij ,

ǫn1 ≤ · · · ≤ ǫnN are the lowest N eigenvalues of HWn = −1

2
∆+Wn,using more or less sophisti
ated fun
tional analysis arguments, in order to prove that Φ∞ satis�es





−1

2
∆φ∞i +W∞φ

∞
i = ǫ∞i φ

∞
i ,∫

R3

φ∞i φ
∞
j = δij ,

ǫ∞1 ≤ · · · ≤ ǫ∞N are the lowest N eigenvalues of HW∞ =
1

2
∆+W∞,hen
e belongs to X .To make this strategy of proof work, we therefore need to �nd a fun
tional spa
e Y in whi
hthe sequen
e (Wn)n∈N is bounded. This will allow us in addition to 
larify the notion of lo
alpotential in this setting (a lo
al potential will be de�ned as an element of Y). Unfortunately, wehave not been able to �nd any non trivial2 fun
tional spa
e W satisfying the above request. Thismathemati
al di�
ulty has well-known numeri
al 
ounterparts [321℄:(i) it is easy to 
onstru
t dramati
 modi�
ations of the (
omputed) optimized e�e
tive po-tential that are �almost solutions� of the OEP problem;(ii) variational approximations of the OEP problem in whi
h the mole
ular orbitals and thetrial e�e
tive potentials are dis
retized in independent basis sets lead to unphysi
al results.8.2.2 A well-posed reformulation of the OEP problemA way to 
ir
umvent the issue raised in the above dis
ussion is to repla
e (8.11)-(8.12) withformally equivalent 
onditions that do not expli
itly refer to a 'lo
al potential' W [25℄.Let us �rst deal with (8.11). Consider some operator W su
h that (Wφ)ψ = φ(Wψ) for all

(φ, ψ) ∈ H1(R3) × H1(R3) (whi
h is the least we 
an demand to a 'lo
al potential'). It is then
lear that if Φ = {φ1, . . . , φN} ∈ (H1(R3))N satis�es (8.11), we also have




div (φi∇φ1 − φ1∇φi) = ciφ1φi,∫

R3

φiφj = δij ,
(8.15)with ci = 2(ǫi − ǫ1). Conversely, if Φ = {φi} ∈ (H1(R3))N satis�es (8.15), then at least formally,

Φ satis�es (8.11) with, for instan
e,
W =

N∑

i=1

φi∆φi +

N∑

i=2

ciφ
2
i

2ρΦ
, (8.16)

ǫ1 = 0, and ǫi = ci/2 for 2 ≤ i ≤ N . We are therefore now in position to rigorously de�ne a set ofadmissible lo
al potentials
2 It is of 
ourse possible to 
onstru
t �nite dimensional fun
tional spa
es W for whi
h (8.13), with Xde�ned by (8.10), has a solution. Redu
ing arti�
ially the 
lass of admissible potentials is however nota very satisfa
tory way to ta
kle the OEP problem.
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tive Potential problem 255
W =

{
W operator on L2(R3)

∣∣∣∣ HW = −1

2
∆+W is a self-adjoint operator on L2(R3)with domain D(W ) ⊂ H1

loc(R
3),bounded from below with at least N eigenvalues below its essential spe
trum,and su
h that ∀(φ, ψ) ∈ D(W ) ×D(W ), (HWφ)ψ − (HWψ)φ =

1

2
div (φ∇ψ − ψ∇φ)

}
.In order to a

ount for 
ondition (8.12), we remark that for any Φ ∈ X , it holds for all 1 ≤ i ≤ N ,

∀ψ ∈ C∞
0 (R3),

1

2

∫

R3

φ2
i |∇ψ|2 = 〈ψφi, (HW − ǫi)ψφi〉.It follows from the above equality (see [25℄ for details) that 
onditions (8.11)-(8.12) are rigorouslyequivalent to





(
−1

2
∆+W

)
φi = ǫiφi,

∫

R3

φiφj = δij ,

∀ψ ∈ C∞
0 (R3), ∀1 ≤ i ≤ N − 1,

∫

R3

φ2
i |∇ψ|2 ≥ 2

i∑

j=1

(ǫj − ǫ1)

(∫

R3

ψφiφj

)2

+ 2(ǫi+1 − ǫ1)



∫

R3

ψ2 φ2
i −

i∑

j=1

(∫

R3

ψφiφj

)2

 .Combining the above result with the formal equivalen
e between (8.11) and (8.15) with ci =

2(ǫi − ǫ1), it is natural to introdu
e the optimization problem
inf
Φ∈ eX

EHF(Φ). (8.17)wherẽ
X =

{
Φ = {φi}1≤i≤N

∣∣∣∣ φi ∈ H1(R3),

∫

R3

φiφj = δij ,

∃0 = c1 ≤ c2 ≤ · · · ≤ cN <∞, ∀2 ≤ i ≤ N, div (φi∇φ1 − φ1∇φi) = ciφ1φi,

∀1 ≤ i ≤ N − 1, ∀ψ ∈ C∞
0 (R3),

∫

R3

φ2
i |∇ψ|2 ≥

i∑

j=1

cj

(∫

R3

ψφiφj

)2

+ ci+1



∫

R3

ψ2 φ2
i −

i∑

j=1

(∫

R3

ψφiφj

)2




 .We have therefore eliminated any expli
it referen
e to a 'lo
al potential'. The 
onne
tion betweenthe original OEP problem (8.13) and its reformulation (8.17) 
an be stated as follows:(i) if ΦOEP is solution to (8.13), then ΦOEP is solution to (8.17);(ii) if Φ̃OEP =

{
φ̃OEP
i

}
1≤i≤N

is solution to (8.17), and if the re
onstru
ted potential
WOEP =

N∑

i=1

φ̃OEP
i ∆φ̃OEP

i +

N∑

i=2

ci|φ̃OEP
i |2

2ρeΦOEP

(8.18)de�nes an element of W , then Φ̃OEP is solution to (8.13) and WOEP is an optimizede�e
tive potential.It is proved in [25℄ that for a neutral or positively 
harged two ele
tron system, problem (8.17) hasat least one global minimizer Φ̃OEP. Unfortunately, we have not been able to establish whether ornot the re
onstru
ted potential formally de�ned by (8.18) is in W .
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al Ex
hange Potentials and Optimized E�e
tive Potentials8.3 The e�e
tive lo
al potential minimization problemAs shown in Se
tion 8.2, the OEP problem in its original formulation is not well posed. We
onsider here an alternative way of obtaining an e�e
tive lo
al potential (ELP), relying on somevarian
e minimization. We show that the 
orresponding minimization problem is well-posed inthe sense that the ELP is uniquely de�ned up to a uniform 
onstant. We also provide an expli
itanalyti
al expression for it.The e�e
tive lo
al potential asso
iated with a given Φ ∈ XN was originally de�ned as the lo
alpotential minimizing the fun
tion [185℄
v 7→ SΦ(v) =

N∑

i=1

+∞∑

a=N+1

|〈φi|(v −KΦ)|φa〉|2 ,

(φa)a≥N+1 being a Hilbert basis of the orthogonal of the ve
tor spa
e generated by (φi)1≤i≤N . Asimple 
al
ulation shows that SΦ(v) = JELP
Φ (v) where

JELP
Φ (v) =

1

2
‖[v −KΦ, γΦ]‖2

HS,

[A,B] = AB − BA denoting the 
ommutator of the operators A and B. An intrinsi
 formulationof the ELP problem therefore reads
inf {JELP

Φ (v), v ∈ L3(R3) + L∞(R3)}. (8.19)Proposition 8.4. Let Φ = (φi)1≤i≤N ∈ XN . Any solution vΦx,ELP to (8.19) satis�es
ρΦ(x)vΦx,ELP(x) = −

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

(
〈φi|vΦx,ELP|φj〉 − 〈φi|KΦ|φj〉

)
φi(x)φj(x) (8.20)and the symmetri
 matrix MΦ = [〈φi|vΦx,ELP|φj〉] is solution to the linear system

(I −AΦ)MΦ = GΦ (8.21)with
AΦkl,ij =

∫

R3

φi φj φk φl
ρΦ

, GΦkl =

∫

R3

vΦx,Sφkφl −
N∑

i,j=1

AΦkl,ij〈φi|KΦ|φj〉.Besides, if the orbitals φi are 
ontinuous and if the open set R3 \ ρ−1
Φ (0) is 
onne
ted, then thesolutions to (8.21) form a one-dimensional a�ne set of the form

M̄ + RIN ,so that vΦx,ELP is uniquely de�ned, up to an additive 
onstant, on the set where ρΦ > 0, and 
anbe given arbitrary values on the set where ρΦ = 0.Remark 8.2 (ELP for systems with spin states). We denote the spin variables by α, β,and the number of ele
trons of spin σ by Nσ. The Euler-Lagrange equations asso
iated with theUnrestri
ted Hartree-Fo
k problem read




−1

2
∆φαi + Vnucφ

α
i +

(
ρΦ ⋆

1

|x|

)
φαi +KΦαφαi = ǫαi φ

α
i ,

−1

2
∆φβi + Vnucφ

β
i +

(
ρΦ ⋆

1

|x|

)
φβi +KΦβφβi = ǫβi φ

β
i ,
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al proofs 257where ρΦ is the total density ρΦ(x) = ρΦα(x) + ρΦβ (x), with ρΦσ(x) =
∑Nσ

i=1 |φσi (x)|2, and KΦαand KΦβ the ex
hange operators de�ned by
(KΦαϕ)(x) = −

∫

R3

γΦα(x, y)

|x− y| ϕ(y) dy, (KΦβϕ)(x) = −
∫

R3

γΦβ (x, y)

|x− y| ϕ(y) dy,with γΦσ(x, y) =
∑Nσ

i=1 φ
σ
i (x)φ

σ
i (y). The e�e
tive lo
al potentials vα and vβ are then obtained bysolving

inf {JΦσ(vσ), vσ ∈ L3(R3) + L∞(R3) }, (8.22)where JΦσ : L3(R3) + L∞(R3) → R3 is de�ned as
JΦσ(vσ) =

1

2
‖[vσ −KΦσ , γΦσ ]‖2

HS.The results obtained in the spinless 
ase straightforwardly apply.Remark 8.3 (Variational de�nition of the Slater potential). There is also an alternativede�nition of the Slater potential in terms of some minimization pro
edure in Hilbert-S
hmidt norm,namely
vΦx,S = arginf

v∈L3(R3)+L∞(R3)

‖vγΦ −KΦ‖2
HS.This variational 
hara
terization is reminis
ent of the de�nition of the e�e
tive lo
al potential(ELP) through the minimization (8.19). A
tually, as will be seen below, the ELP 
an be de
omposedas a Slater part, plus 
orre
tion terms. The Slater potentiel is believed to represent the long-rangepart of the ex
hange potential (de
aying as −1/|x| when |x| → +∞), whereas the remaining termsare believed to be exponentially de
reasing.8.4 Mathemati
al proofs8.4.1 Some useful preliminary resultsRe
all that the set L3/2(R3) + (L∞(R3))ǫ is the set of all fun
tion φ whi
h 
an be written,for all ǫ > 0, as a sum φ = φ3/2 + φ∞ with φ3/2 ∈ L3/2(R3) and ‖φ∞‖L∞(R3) ≤ ǫ. When W ∈

L3/2(R3) + (L∞(R3))ǫ, the essential spe
trum of the operator − 1
2∆+W is still [0,+∞) [52,277℄.Lemma 8.1 (Exponential de
ay of the orbitals). Consider an orbital φ ∈ H2(R3) satisfyingan equation of the form

−1

2
∆φ+Wφ = −µφ, (8.23)where the potential W ∈ L3/2(R3)+(L∞(R3))ǫ is su
h that W (x) → 0 when |x| → +∞, and µ > 0.Then, for any η > 0, there exists Mη > 0 and Rη > 0 su
h that

∀|x| ≥ Rη, |φ(x)| ≤Mηe
−√

2µ−η|x|. (8.24)Proof of Lemma 8.1. Kato's inequality −∆|φ| ≤ −sgn(φ)∆φ implies
−∆|φ| ≤ 2(µ+W )φ sgn(φ) = −2(µ+W )|φ|.For 0 < η < 2µ, there exists Rη > 0 su
h that 2|W (x)| ≤ η when |x| ≥ Rη. Then,

−∆|φ| + (2µ− η)|φ| ≤ (2W − η)|φ|.
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al Ex
hange Potentials and Optimized E�e
tive PotentialsUsing the elementary solution of −∆ + (2µ − η), namely u(x) = (4π|x|)−1 exp(−√
2µ− η|x|), itfollows

|φ(x)| =

∫

R3

u(x− y)(−η + 2W (y))|φ(y)| dy ≤
∫

|y|≤Rη

u(x− y)(−η + 2W (y))|φ(y)| dysin
e −η + 2W (y) ≤ 0 when |x| ≥ Rη and |φ| ≥ 0. Finally, the last integral in the above equality
an be bounded by Mη exp(−√
2µ− η|x|) for some Mη > 0 and for |x| ≥ Rη > 0, so that (8.24)follows. ⊓⊔Lemma 8.2 (Asymptoti
 behavior of the Slater potential for exponentially de
reasingorbitals). Consider Φ⋆ = (φ⋆1, . . . , φ

⋆
N ) ∈ [H2(R3)]N and assume that there exists R⋆ > 0 su
hthat, for |x| ≥ R⋆,

∀1 ≤ i ≤ N, |φ⋆i (x)| ≤ C⋆ exp (−γ⋆|x|) , (8.25)for some γ⋆, C⋆ > 0. Then the Slater potential vΦ⋆

x,S de�ned by (8.7) is su
h that
vΦ

⋆

x,S(x) ∼ − 1

|x|when |x| → +∞.Proof of Lemma 8.2. First, for any R > R⋆,
∫

|y|≥R

φ⋆i φ
⋆
j (y)

|x− y| dy ≤
(∫

|y|≥R

|φ⋆i (y)|2
|x− y|2

)1/2(∫

|y|≥R
|φ⋆i (y)|2

)1/2

≤ CR2 e−γ⋆R (8.26)for some C > 0, using Hardy's inequality to bound the �rst term on the right hand-side, and theexponential fall-o� of the j-th orbital for the se
ond term. Se
ond,
∣∣∣∣∣

∫

|y|≤R

φ⋆iφ
⋆
j (y)

|x− y| dy −
∫
|y|≤R φ

⋆
i φ

⋆
j (y) dy

|x|

∣∣∣∣∣ ≤
∫

|y|≤R
|φ⋆i (y)φ⋆j (y)|

∣∣∣∣
|y − x| − |x|
|x| · |y − x|

∣∣∣∣ dy,so that
∣∣∣∣∣

∫

|y|≤R

φ⋆i φ
⋆
j (y)

|x− y| dy −
∫
|y|≤R φ

⋆
i φ

⋆
j (y) dy

|x|

∣∣∣∣∣ ≤
1

|x|

∫

|y|≤R
|y| |φ⋆i (y)φ⋆j (y)|

1

|y − x| dy.Using a Hölder inequality,
∫

|y|≤R
|y| |φ⋆i (y)φ⋆j (y)|

1

|y − x| dy → 0when |x| → +∞, whi
h 
on
ludes the proof. ⊓⊔8.4.2 Proofs for the Slater potentialProof of Theorem 8.1. The strategy of proof is based on a �xed-point argument. Noti
e thatvariational methods 
annot be used sin
e (8.8) seems to have no variational interpretation.For all η ≥ 0, we 
onsider the problem
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



(
−1

2
∆− Z + η

|x| + ρΦη ⋆
1

|x| + vΦ
η ,η

x,S

)
φηi = ǫηi φ

η
i ,∫

R3

φηi φ
η
j = δij ,

ǫη1 ≤ · · · ≤ ǫηN are the lowest N eigenvalues of (− 1
2∆− Z+η

|x| + ρΦη ⋆ 1
|x| + vΦ

η ,η
x,S

) (on L2
r(R

3))(8.27)where
vΦ,ηx,S (x) = − 1

ρΦ(x) + η

∫

R3

|γΦ(x, y)|2
|x− y| dy.The proof of existen
e of a solution to (8.27) for η = 0 follows the lines of the proof of Theorem III.3in [214℄. We �rst 
onstru
t, for η > 0, a 
ontinuous appli
ation T η whose �xed points are solutionsto (8.27) in X r

N . We then prove the existen
e of a �xed point of T η using S
hauder Theorem. Theexisten
e of a solution to (8.27) in the 
ase when η = 0 is �nally obtained using some limitingpro
edure. Note that we have introdu
ed the parameter η both in the nu
leus-ele
tron intera
tionand in the Slater potential. In the former term, η plays the same role as in [214℄ (i.e. it enables usto 
ontrol the de
ay of the orbitals at in�nity). The role of η in the latter term is to ensure the
ontinuity of the nonlinear appli
ation T η for η > 0.First step. Constru
tion of the appli
ation T η.Let η > 0 and
K =

{
Ψ = (ψi)1≤i≤N ∈ (H1

r (R
3))N

∣∣∣∣
[∫

R3

φiφj

]
≤ IN

}
,

IN denoting the identity matrix of rank N . The semide�nite 
onstraint [∫
R3 φiφj

]
≤ IN means

∀x ∈ RN ,

N∑

i,j=1

(∫

R3

φiφj

)
xixj ≤ |x|2.It is easy to see that K is a nonempty, 
losed, bounded, 
onvex subset of the Hilbert spa
e

(H1
r (R

3))N , 
ontaining X r
N . For Ψ ∈ K, we denote by γΨ (x, y) =

∑N
i=1 ψi(x)ψi(y), ρΨ (x) =

γΨ (x, x) and
F̃ ηΨ = −1

2
∆− Z + η

|x| + ρΨ ⋆
1

|x| + vΨ,ηx,S .As the potential V ηΨ = −Z+η
|x| + ρΨ ⋆

1
|x| + vΨ,ηx,S belongs to

L2(R3)+L∞
ǫ (R3) =

{
W | ∀ǫ > 0, ∃(W2,W∞) ∈ L2(R3) × L∞(R3), ‖W∞‖L∞ ≤ ǫ, W = W2 +W∞

}
,it is a 
ompa
t perturbation of the kineti
 energy operator. By Weyl Theorem [277℄, σess(F̃

η
Ψ ) =

σess(− 1
2∆) = [0,∞). Besides, using Gauss theorem and the inequalities−N

|·| ≤ −ρΨ⋆ 1
|x| ≤ vΨ,ηx,S ≤ 0,one has −Z+η

|x| ≤ V ηΨ ≤ − η
|x| . Hen
e,

GZ+η := −1

2
∆− Z + η

|x| ≤ F̃ ηΨ ≤ Gη := −1

2
∆− η

|x| . (8.28)As the hydrogen-like Hamiltonian Gη, 
onsidered as an operator on L2
r(R

3), has in�nitely manynegative eigenvalues, so does F̃Ψ (this is a straightforward 
onsequen
e of Courant-Fis
her min-max prin
iple). Besides, the eigenvalues of the radial S
hrödinger operator F̃ ηΨ being simple, thespe
tral problem
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



F̃ ηΨφi = ǫiφi,∫

R3

φiφj = δij ,

ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of F̃ ηΨ (on L2
r(R

3)),has a unique solution Φ = (φi) in X r
N ⊂ K up to the signs of the orbitals φi. We 
an thereforede�ne a nonlinear appli
ation T η from K to K whi
h asso
iates with any Ψ ∈ K the uniquesolution Φ = (φi) ∈ X r

N ⊂ K to (8.27), for whi
h φi ≥ 0 in a neighborhood of x = 0, for all
1 ≤ i ≤ N (by the strong maximum prin
iple, φi 
annot vanish on an open set of R3).Se
ond step. Existen
e of a solution to (8.27) for η > 0.By standard perturbation theory, it is not di�
ult to prove that T η is 
ontinuous (for the H1norm topology). Let us prove that T η is 
ompa
t. Let (Ψn) be a bounded sequen
e in K, and let
Φn = T ηΨn. There is no restri
tion in assuming that (Ψn) 
onverges to some Ψη ∈ (H1(R3))N ,weakly in (H1(R3))N , strongly in (L2

loc(R
3))N and almost everywhere. This implies in parti
ularthat the sequen
e (ρΨn ⋆ 1

|x| + vΨ
n,η

x,S ) is bounded in L∞ and 
onverges almost everywhere to
ρΨη ⋆ 1

|x| + vΨ
η,η

x,S when n goes to in�nity. Using again (8.28) and denoting by ǫni the i-th eigenvalueof F ηΨn , one obtains
1

2

N∑

i=1

(‖∇φni ‖L2 − 2(Z + η))
2 − 2(Z + η)2 ≤

N∑

i=1

1

2

∫

R3

|∇φni |2 −
∫

R3

Z + η

|x| ρΦn ≤
N∑

i=1

ǫni < 0.Thus, for all 1 ≤ i ≤ N , the sequen
e (φni )n∈N∗ is uniformly bounded in H1(R3) (independentlyof (Ψn)), and therefore 
onverges, up to extra
tion, to some φηi ∈ H1
r (R

3), weakly in H1(R3),strongly in L2
loc(R

3) and almost everywhere. Besides, using (8.28) and Courant-Fis
her formula,one obtains
− (Z + η)2

2i2
≤ ǫni ≤ − η2

2i2
.Up to extra
tion, (ǫni ) therefore 
onverges to some ǫηi ∈ [− (Z+η)2

2i2 ,− η2

2i2 ]. Next, by Kato inequa-lity [277℄,
−∆|φni | ≤ −sgn(φni )∆φni = 2(ǫni − V ηΨn)|φni |

≤ 2

(
Z + η

|x| − η2

i2

)
|φni |. (8.29)As, moreover, (Ψn) and (Φn) are bounded for the H1 norm topology, (V ηΨnφni ) is bounded in

L2(R3), so that (φni ) is bounded in H2(R3), hen
e in L∞(R3). Consequently, it follows from (8.29)and the maximum prin
iple that there exists δ > 0 small enough and M ≥ 0 independent of iand n, su
h that
|φni (x)| ≤M e

−
“ √

2 η
N −δ

”
|x|
.This implies that (φni )n∈N∗ 
onverges (up to extra
tion) to φηi strongly in L2(R3). In parti
ular,

Φη = (φηi ) ∈ X r
N . It is therefore possible to 
he
k, using the 
onvergen
e of (Ψn) to Ψη and the
onvergen
e - up to extra
tion - of (Φn) to Φη and of (ǫni ) to ǫηi , that

−1

2
∆φηi + V ηΨηφ

η
i = ǫηi φ

η
iand then, using the positivity of ρΨn ⋆ 1

|x| + vΨ
n,η

x,S and Fatou lemma on the one hand, and thelower semi-
ontinuity of the fun
tional φ 7→
∫

R3 |∇φ|2 on the other hand, that
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lim inf
n→+∞

−
∫

R3

|∇φni |2 = lim inf
n→+∞

2

∫

R3

(V ηΨn − ǫni )|φni |2

≥ 2

∫

R3

(V ηΨη − ǫηi )|φηi |2 = −
∫

R3

|∇φηi |2.As on the other hand, ∫

R3

|∇φηi |2 ≤ lim inf
n→+∞

∫

R3

|∇φni |2,

(Ψn) 
onverges to Ψη strongly in (H1(R3))N , whi
h proves that T η is 
ompa
t. It then followsfrom S
hauder �xed point theorem [375℄ that T η has a �xed point Φη ∈ X r
N , whi
h is solution to(8.27).Third step. Existen
e of a solution to (8.27) for η = 0.Let (ηn) be a sequen
e of positive real numbers 
onverging to zero. As the sequen
e of 
orrespon-ding �xed points (Φηn) is uniformly bounded in (H1(R3))N and as − (Z+ηn)2

2i2 ≤ ǫηn

i ≤ 0, there isno restri
tion in assuming that (Φηn) 
onverges to some Φ⋆ ∈ (H1(R3))N , weakly in (H1(R3))N ,strongly in (L2
loc(R

3))N and almost everywhere, and that (ǫηn

i ) 
onverges to ǫ∗i ≤ 0. Besides, thesequen
e (Φηn) is bounded in (H2(R3))N , hen
e in (L∞(R3))N .Passing to the limit in the equation F̃ηn

Φηnφ
ηn

i = ǫηn

i φηn

i yields
−1

2
∆φ⋆i −

Z

|x|φ
⋆
i +

(
ρΦ⋆ ⋆

1

|x|

)
φ⋆i + vΦ

⋆

x,Sφ
⋆
i = ǫ⋆iφ

⋆
i .Assume that ∫

R3 ρΦ⋆ < N . As
F̃Φηn ≤ −1

2
∆− Z

|x| + ρΦηn ⋆
1

|x| ,one has, using Courant-Fis
her formula, and denoting by λi(A) the i-th eigenvalue of A,
ǫ⋆i = lim

n→+∞
ǫηn

i

= lim
n→+∞

λi

(
F̃Φηn

)

≤ lim
n→+∞

λi

(
−1

2
∆− Z

|x| + ρΦηn ⋆
1

|x|

)

= λi

(
−1

2
∆− Z

|x| + ρΦ⋆ ⋆
1

|x|

)

≤ λi

(
−1

2
∆− N −

∫
R3 ρΦ⋆

|x|

)

= − (N −
∫

R3 ρΦ⋆)2

2i2
< 0.It follows that for n large enough, the sequen
e (ǫηn

i ) is isolated from zero. As (Φηn) is boundedin (L∞(R3))N , we 
on
lude, reasoning as above, that there exists M ∈ R+ and α > 0 su
h thatfor n large enough
|φηn

i (x)| ≤M e−α|x|.This implies that (Φηn) 
onverges to Φ⋆ ∈ (H1(R3))N strongly in (L2(R3))N , and 
onsequentlythat ∫
R3 ρΦ⋆ = N . We rea
h a 
ontradi
tion. This means that ∫

R3 ρΦ⋆ = N and therefore that
Φ⋆ ∈ X r

N .
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tive PotentialsThis proves that (φ∗i ) are orthonormal eigenve
tors of F̃ 0
Φ⋆ . The fa
t that ǫ⋆1 < · · · < ǫ⋆N are thelowest eigenvalues of F̃ 0

Φ⋆ follows from Courant-Fis
her formula.In view of the proof of Proposition 8.1, the Slater potential vΦ⋆

x,S is equivalent to − 1
|x| at in�nity.This proves that ǫ⋆1 < · · · < ǫ⋆N < 0, from whi
h it follows that the orbitals φ⋆i enjoy exponentialde
ay: For all η > 0, there exists M ∈ R3 su
h that

|φ⋆i (x)| ≤M e−(
√

−2ǫ⋆N−η/3)|x|,so that
vΦ

⋆

x,S(x) = − 1

|x| + o
(
e−(2

√
−2ǫ⋆N−η)|x|

)
.Lastly, the same arguments as above 
an be used to prove that the minimum of the Hartree-Fo
kenergy over the set of solutions to (8.8) is attained. ⊓⊔Proof of Proposition 8.1. The well-posedness of the iterative pro
edure is granted provided theaufbau prin
iple asso
iated with the Hamiltonian

HΦn = −1

2
∆− Z

|x| + ρΦn ⋆
1

|x| + vΦ
n

x,S (8.30)is well-posed for all n ≥ 0. This in turn is guaranteed provided the lowest N negative eigen-values of HΦn 
an be 
omputed unambiguously (Noti
e that the essential spe
trum of HΦn isstill [0,+∞)).When the orbitals Φ = {φi}i=1,...,N are radial, the asymptoti
 behavior of the Slater potential
an be pre
ised. Gauss's theorem shows that
∫

R3

φiφj(y)

|x− y| dy =

∫

R3

φiφj(y)

max(|x|, |y|) dy =





1

|x| + o

(
1

|x|

) when i = j,

o

(
1

|x|

) when i 6= j.Indeed, ∫

R3

φiφj(y)

max(|x|, |y|) dy =
1

|x|

(
δij −

∫

|y|≥|x|
φiφj

)
+

∫

|y|≥|x|

φiφj(y)

|y| dy.The se
ond integral on the right hand side 
onverges to 0 when |x| → +∞, and the rate of
onvergen
e 
an be pre
ised as
∣∣∣∣∣

∫

|y|≥|x|

φiφj(y)

|y| dy

∣∣∣∣∣ ≤
1

|x|

(∫

|y|≥|x|
φ2
i

)1/2(∫

|y|≥|x|
φ2
j

)1/2

= o

(
1

|x|

)sin
e the fun
tions φi are in L2(R3). The �rst term is handled in a similar manner. Finally,
vΦx,S(x) = −

N∑

i=1

φ2
i (x)

ρ(x)

1

|x| + o

(
1

|x|

)
= − 1

|x| + o

(
1

|x|

)when |x| → +∞.A 
lassi
al s
aling argument (as for in proof of Lemma II.1 in [214℄ for instan
e) then showsthat, for all n ≥ 0, HΦn has in�nitely many single negative eigenvalues. Therefore, the new orbitals
an be uniquely 
onstru
ted. ⊓⊔Proof of Proposition 8.2. Using a Cau
hy-S
hwarz inequality, the following bound is obtained:
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−1

2
∆− Z

|x| ≤ HΦn ≤ H̃Φn = −1

2
∆− Z

|x| + ρΦn ⋆
1

|x| . (8.31)It is not su�
ient to obtain the existen
e of in�nitely many negtive eigenvalues when Z = N andthe orbitals are not required to be radial. This is however the 
ase when Z = N + η (for some
η > 0), using again a s
aling argument as in [214, Lemma II.1℄. The proof of Proposition 8.2 istherefore analogous to the proof of Proposition 8.1, and we skip it. ⊓⊔Proof of Proposition 8.3. When Z = N and the orbitals are not radial but have an initial expo-nential de
ay, we show that(i) the Hamiltonian HΦn de�ned by (8.30) has in�nitely many eigenvalues below 0;(ii) the 
orresponding eigenve
tors are still exponentially de
reasing.The proof of well-posedness of the iterative pro
edure is done using the following re
urren
eassumption:Re
urren
e assumption 8.1. There exists Rn > 0 su
h that, for |x| ≥ Rn,

∀1 ≤ i ≤ N, |φni (x)| ≤ Cn exp (−γn|x|) , (8.32)for some γn, Cn > 0.This assumption is veri�ed for n = 0. If it is veri�ed for n ≥ 0, then, by Lemma 8.2, the Slaterpotential behaves as −1/|x| at in�nity. A 
lassi
al s
aling argument then shows that there are in�-nitely many negatives eigenvalues. The exponential fall-o� of the asso
iated orbitals {φn+1
i }i=1,...,N
an then be shown using Lemma 8.1, so that the re
urren
e assumption (8.1) is satis�ed for n+1.

⊓⊔8.4.3 Proof of Proposition 8.4For all v ∈ L3(R3) + L∞(R3), the operator BΦv = [v, γΦ] is Hilbert-S
hmidt. One 
an thereforede�ne on L3(R3) + L∞(R3) the fun
tional
JELP
Φ (v) =

1

2
‖[v −KΦ, γΦ]‖2

HS =
1

2
‖BΦv − [KΦ, γΦ]‖2

HS.For all v and h in L3(R3) + L∞(R3),
JELP
Φ (v + h) = JELP

Φ (v) + 〈BΦv − [KΦ, γΦ], BΦh〉HS +
1

2
‖BΦh‖2

HSand
〈BΦv − [KΦ, γΦ], BΦh〉HS

=

∫

R3


ρΦ(x)v +

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

〈φi |v −KΦ |φj〉φi(x)φj(x)


 h(x) dx.The global minimizers v of (8.19) are therefore exa
tly the solutions to the equation

ρΦ(x)v(x) = −
∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

〈φi|v −KΦ|φj〉φi(x)φj(x). (8.33)Multiplying the above equation by φiφj

ρ and integrating over R3, one then observes that a fun
tion
v satisfying
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ρΦ(x)v(x) = −

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

(Mij − 〈φi|KΦ|φj〉)φi(x)φj(x).is solution to (8.33) if and only if the matrix M is solution to the linear system
(I −AΦ)M = GΦ. (8.34)Let us now prove that, if the orbitals φi are 
ontinuous and if R3 \ ρ−1

Φ (0) is 
onne
ted, thenKer(I−AΦ) = RIN and GΦ ∈ Ran(I−AΦ). For this purpose, let us 
onsider a matrixM ∈ MS(N)su
h that (I −AΦ
)
M = 0. AsM is symmetri
, it 
an be diagonalized in an orthonormal basis setas

M = UT Diag(λ1, · · · , λN ) Uwhere U is a unitary matrix. Denoting by (ψ1, . . . , ψN )T = U(φ1, . . . , φN )T , a simple 
al
ulationleads to
0 = (

(
I −AΦ

)
M,M)F =

N∑

i=1

λ2
i −

∫

R3

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

dx

ρΦ(x)
,where (·, ·)F is the Frobenius inner produ
t on MS(N). As U is a unitary transform, the ψiare orthonormal for the L2(R3) inner produ
t and N∑

i=1

ψi(x)
2 = ρΦ(x). Therefore, using Cau
hy-S
hwarz inequality,

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

≤
(

N∑

i=1

ψi(x)
2

) (
N∑

i=1

λ2
iψi(x)

2

)
= ρΦ(x)

N∑

i=1

λ2
iψi(x)

2,with equality if and only if there exists C(x) su
h that λiψi(x) = C(x)ψi(x) for all 1 ≤ i ≤ N .Hen
e,
N∑

i=1

λ2
i −

∫

R3

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

dx

ρΦ(x)
≥

N∑

i=1

λ2
i −

∫

R3

N∑

i=1

λ2
iψ

2
i = 0,with equality if and only if for almost all x ∈ R3, there exists C(x) su
h that λiψi(x) = C(x)ψi(x)for all 1 ≤ i ≤ N .If the orbitals φi are 
ontinuous, so are the fun
tions ψi. Let us 
onsider the open sets Ωi =

R3 \ ψ−1
i (0) and Ω = ∪Ni=1Ωi = R3 \ ρ−1

Φ (0). On Ωi, one has C(x) = λi. This implies that thefun
tion C(x) is 
onstant on ea
h 
onne
ted 
omponent of Ω. If Ω is 
onne
ted, one therefore has
λ1 = λ2 = · · · = λN , i.e. M is proportional to the identity matrix.In summary, under the assumptions that the orbitals φi are 
ontinuous and that R3 \ ρ−1

Φ (0)is 
onne
ted,(1) the linear equation (8.34) has a solution if and only if GΦ ∈ Ran (I −AΦ
). Note thatRan (I −AΦ

)
= Ker (I − (AΦ)∗

)⊥
= Ker (I −AΦ

)⊥, sin
e AΦ is self-adjoint for the Fro-benius inner produ
t. It then follows Ran (I − AΦ
)

= Span(IN )⊥. Sin
e (IN , G
Φ)F =

Tr(GΦ) = 0, GΦ ∈ Ran (I − AΦ
) and (8.34) has at least one solution MΦ

⋆ ;(2) ifMΦ
⋆ is a solution to (8.34), then the set of the solutions of (8.34) is {MΦ

⋆ + λIRN , λ ∈ R
}.Note that repla
ingMΦ withMΦ+λIRN in (8.34) amounts to repla
ing vΦx,ELP with vΦx,ELP+λ. ⊓⊔
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