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Es gibt fiir Jeden keinen anderen Weg der Entfaltung und Erfiillung
als den der mdglichst vollkommenen Darstellung des eigenen Wesens.
> Sei Du Selbst < ist das ideale Gesetz, zu mindest fiir den jungen
Menschen, es gibt keinen andern Weg zur Warheit und zur Entwick-
lung.

Daf dieser Weg durch viele moralische and andre Hindernisse er-
schwert wird, daft die Welt uns lieber angepafst und schwach sieht als
eigensinnig, daraus entsteht fiir jeden mehr als durchschnittlich indivi-
dualisierten Menschen der Lebenskampf. Da mufs jeder fiir sich allein,
nach seinen eigenen Kriften und Bediirfnissen, entscheiden, wieweit
er sich der Konvention unterwerfen oder ihr trotzen will. Wo er die
Konvention, die Forderungen von Familie, Staat, Gemeinschaft in den
Wind schldgt, mufs er es tun mit dem Wissen darum, dafs es auf seine
eigene Gefahr geschieht. Wiewiel Gefahr einer auf sich zu nehmen f&hig
ist, dafiir gibt es keinen objektiven Mafistab. Man mufs jedes Zuviel,
jedes Uberschreiten des eigenen Mafes biiffen, man darf ungestraft we-
der im FEigensinn noch im Anpassen zu weit gehen.

HERMANN HESSE, Eigensinn macht Spafl
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Quelques méthodes mathématiques pour la simulation moléculaire et
multiéchelle

Résumé : Ce travail présente quelques contributions & 1’étude théorique et numérique des mo-
déles utilisés en pratique pour la simulation moléculaire de la matiére. En particulier, on présente
et on analyse des méthodes numériques stochastiques dans le domaine de la physique statistique,
permettant de calculer plus efficacement des moyennes d’ensemble. Une application particuliére-
ment importante est le calcul de différences d’énergies libres, par dynamiques adaptatives ou hors
d’équilibre. On étudie également quelques techniques, stochastiques ou déterministes, utilisées en
chimie quantique et permettant de résoudre de maniére approchée le probléme de minimisation
associé a la recherche de 'état fondamental d’'un opérateur de Schrodinger en dimension grande.
On propose enfin des modeéles réduits permettant une description microscopique simplifiée des
ondes de choc et de détonation par le biais d'une dynamique stochastique sur des degrés de liberté
moyens, approchant la dynamique hamiltonienne déterministe du systéme complet.

Mots-clés : Equations aux dérivées partielles, équations différentielles stochastiques, systémes
dynamiques en physique statistique, méthodes de Monte-Carlo, ondes de choc.

Some Mathematical Methods for Molecular and Multiscale Simulation

Abstract: This work presents some contributions to the theoretical and numerical study of mo-
dels used in practice in the field of molecular simulation. In particular, stochastic techniques to
compute more efficiently ensemble averages in the field of computational statistical physics are
presented and analyzed. An important application is the computation of free energy differences
using nonequilibrium or adaptive dynamics. Some stochastic or deterministic techniques to solve
approximately the Schrédinger ground state problem for high dimensional systems are also studied.
Finally, some reduced models for shock and detonation waves, relying on an average stochastic
dynamics reproducing in a mean sense the high dimensional deterministic hamiltonian dynamics,
are proposed.

Keywords: Partial differential equations, stochastic differential equations, dynamical systems in
statistical physics, Monte-Carlo methods, shock waves.
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1

Preamble

1.1 Presentation of the main results

During my PhD, T studied several techniques for Molecular Simulation, from an applied ma-
thematical viewpoint. These studies can be classified in three domains:

(A) mathematical and numerical analysis of some models of quantum chemistry (Part IV);

(B) mathematical and numerical analysis of sampling schemes in molecular dynamics, with a
specific focus on stochastic techniques and free-energy differences computations (Part 11);

(C) reduction of dimensionality for shock waves (Part III).

1.1.1 Quantum chemistry

The methods I studied in quantum chemistry are not mainstream methods, but are nonetheless
very interesting:

(a) together with MiCHEL CAFFAREL, ERIC CANCES, TONY LELIEVRE, and ANTHONY SCE-
MAMA, we proposed a new sampling method for Variational Monte-Carlo (see [P8] and
Chapter 6), which proved to be more efficient and more robust, at least for the benchmark
systems considered. This new sampling procedure is an extension of usual sampling schemes
in position space to sampling schemes in phase-space (considering some fictitious momenta,
it amounts to replacing the traditional biased random-walk used in Variational Monte-Carlo
by a phase-space Langevin dynamics);

(b) with Eric CANCES and MATHIEU LEWIN we proposed a dual formulation of the electronic
minimization problem stated in terms of second-order reduced density matrices (see [P9]
and Chapter 7), and tested the method on a set, of small molecules;

(c) T also studied the Optimized Effective Potential problem (vaguely stated, the local potential
in the Kohn-Sham equations yielding the best Hartree-Fock exchange energy). In parti-
cular, we precised with ErRIC CANCES from a mathematical viewpoint the proposition of
ERNEST DAVIDSON, ARTHUR IZMAYLOV, GUSTAVO SCUSERIA, and VIKTOR STAROVEROV,
who define an Effective Local Potential through another minimization procedure to remedy
convergence problems arising in practical computations (see [P5], [A2] and Chapter 8).

1.1.2 Molecular dynamics and free-energy computations

My focus in this domain is on stochastic techniques to compute quantities of interest in Sta-
tistical Physics.

(a) Ifirst compared different sampling techniques for molecular dynamics, both from theoretical
and numerical viewpoints. This was done in collaboration with ErRic CANCES and FREDERIC
LeGOLL (see [P3] and Chapter 3).
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(b) I then turned to the computation of free-energy differences:

(i) first using non-equilibrium dynamics and the Jarzynski equality. This equality was
properly derived only in the case when the transition is parametrized by some ex-
ternal parameter (the so-called alchemical transitions), and so, together with ToNY
LELIEVRE and MATHIAS ROUSSET, we proposed an extension to the case when a reac-
tion coordinate indexes the transition, using a projected stochastic dynamics (see [P6]
and Section 4.1.2). With MATHIAS ROUSSET, we also proposed an equilibration proce-
dure of the switching done at finite rate (trough some birth/death process) in order to

avoid the degeneracy of weights in the Jarzynski equality (see [P10] and Section 4.2);

(ii) More recently, we turned to adaptive methods for the computation of free-energy dif-
ferences. We proposed, still with ToONY LELIEVRE and MATHIAS ROUSSET, a general
formalism to present all the adaptive strategies in a unified framework, showed that
a stationary state exists, and proposed a selection procedure to improve the adaptive
methods when parallel implementations are considered (see [P4] and Section 4.4.1).
Finally, a work in progress with TONY LELIEVRE, FELIX OTTO, and MATHIAS ROUS-
SET, is to rigorously prove the convergence of some limiting dynamics within this
framework using entropy methods (see [A1] and Section 4.4.2).

c¢) I also pI‘OpOSGd some extensions to the usual path samplin techniques when stochastic
g
dynamics are used (see [Pl] and Section 43)

1.1.3 Reduced models for shock waves

The work in this field was mainly done at CEA (French Atomic Authority), with JEAN-
BERNARD MAILLET and LAURENT SOULARD. The aim of my work was to find some reduced
mesoscopic model to describe the main features of shock and detonation waves:

(a) I first proposed a simplified one-dimensional model, suited for crystalline solids (see [P11]
and Section 5.1);

(b) T then proposed a three dimensional reduced model for shock waves based on some Dissipa-
tive Particle Dynamics model (see [P7] and Section 5.2.2);

(c) With JEAN-BERNARD MAILLET and LAURENT SOULARD, we could then extend this model
to the reactive case (see [P2] and Section 5.2.3).

The models proposed in [P7,P2] have firm thermodynamic grounds, and the corresponding nume-
rical results are in good agreement with all-atom studies, in a qualitative [P2] and quantitative [P7]
way.
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Quantum and Statistical Physics

Quantum and statistical physics are two important domains of contemporary physics, both
describing matter at the atomic level (see respectively Section 2.1 and 2.2). Quantum physics
considers protons, neutrons and electrons, subjected to the Schrodinger equation, whereas sta-
tistical physics may be applied to quantum or classical systems.! In the latter case, the theory
aims at describing the behavior of atoms, an entity arising as the reunion of a nucleus (made of
protons and neutrons) and its electronic cloud. Some important physical constants are recalled
in Table 2.1. From these constants, the typical orders of magnitudes of the description of matter
at the microscopic level can be inferred: The typical distances are expressed in A (10=1° m), the
energies are of the order of kT ~ 4 x 102! J at room temperature for classical systems while
for quantum systems energies are measured in Hartrees (1 Ha — 27.2 eV — 43.6 x 10719 J), and
the typical times range from 10717 s to 107! s depending whether quantum or classical systems
are considered (so that the typical mass to consider is the mass of the electron or the mass of the
proton).

! The term classical will often be employed as opposed to quantum in the sequel (and not as a synonymous
of usual...).
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In all cases, the orders of magnitude used in the microscopic description of matter are far from
the macroscopic quantities we are used to — as is the number of particles under consideration,
since macroscopic materials contain A4 ~ 10%3 particles! Fortunately, statistical physics allows to
bridge the gap between microscopic and macroscopic descriptions of matter, in particular

(i) in the framework of the thermodynamic limit, where the number of particles in the micro-
scopic description of the system goes to infinity, as well as the volume of the sample of
matter, the density being fixed. This kind of limit can however be justified rigorously in
some cases only (see for example the book by RUELLE [293] for results concerning classical
statistical physics, and the book by CarTo, LE BRIS and LiONS [55] for results about
quantum models);

(ii) in certain limiting physical regimes (low density, weak coupling, mean-field,...), the mi-
croscopic system can be described by a kinetic equation on the single-particle density
such as the Boltzmann equation (for a mathematical justification of these limits, see the
reviews by SPOHN, especially the paper [318] and the book [319]).

Table 2.1. Some important physical constants or quantities in quantum and statistical physics.

Physical constant Usual notation Value
Avogadro number Ny 6.02 x 1023
Boltzmann constant kp 1.381 x 107 J/K
Reduced Planck constant h 1.054 x 10734 Js
Elementary charge e 1.602 x 1071 C
Electron mass Me 9.11 x 1073 kg
Proton mass mp 1.67 x 10727 kg
Permittivity of the vacuum €0 8.854 x 10712 F/m
Electron-Volt eV 1.602 x 10719 ]

Computational Quantum and Statistical Physics

How pleasant this link is from a theoretical viewpoint, such considerations cannot hold for
practical numerical computations of matter at the microscopic level since this would require si-
mulating A4 atoms and performing O(10'°) time integration steps. These numbers should be
compared with the current orders of magnitude of the problems that can be tackled with classical
molecular simulation, such as the simulation of the complete satellite tobacco mosaic virus [111],
which involved 1 million atoms over 50 ns, or the folding simulations of the Villin headpiece,?
where a total trajectory of 500 us was integrated for 20,000 atoms.

Computational molecular simulation, despite its limitations, has however been used and de-
veloped in the past fifty years in order to test theories on computers before their applications to
the real world. It is a current alternative to approximate theories describing simplified models,
hence the name of “numerical experiment”. This use of molecular simulation is particularly clear
in its historic development, which was triggered and sustained by the physics of simple liquids, for
which there was no good analytical theory (see the pioneering work of METROPOLIS, ROSENBLUTH,
ROSENBLUTH, TELLER and TELLER [238] in 1953, and the first molecular dynamics simulation of
ALDER and WAINWRIGHT in 1956 [3]). Computational quantum chemistry also started in the 50’s,
with the works of HALL [149] and ROOTHAN [288] in 1951, and the work of KOHN and SHAM [195]
in 1965 for condensed matter studies.

2 See the website of the Folding@Home project: http://folding.stanford.edu/
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The numerical microscope

Molecular simulation can be used as a numerical microscope. Indeed, understanding the beha-
vior of matter at the microscopic level can be difficult from an experimental viewpoint (because of
the high resolution required, both in time and in space), or because we simply do not know what
to look for! Numerical simulations are then a valuable tool to test some ideas or obtain some data
to process and analyze in order to help assessing experimental setups. This is particularly true for
current nanoscale systems. Nevertheless, computer experiments cannot, simply replace real-world
experiments: they should merely be seen as a convenient first step in the construction of new
theories.

Computation of average properties of physical systems

One of the major aims of molecular simulation is to compute average properties of systems -
i.e. macroscopic quantities that could also be measured through experiments, but are computed
since experiments may be unfeasible or too costly. A famous instance of such computations is the
investigation of the earth’s inner core properties using ab-initio computations [316]. More generally,
numerical experiments become very attractive when high pressure or temperature regimes are
considered.

Statistical physics also allows to bridge the gap between physical systems simulated at the
microscopic level, and macroscopic quantities of interest, through averages over thermodynamic
ensembles:

W= [ Awr) o). (21)

In this expression, the function A = A(q,p) is an observable, and the position variable ¢ =
(q1,-..,qn) € MY while the momentum variable p = (py,...,pny) € R3*¥. The measure u is a
probability measure depending on the thermodynamic ensemble used. These quantities will be
precised in Section 2.2.

An example of observable is the bulk pressure P in a Lennard-Jones liquid. For particles of
masses m;, described by their positions ¢; and their momenta p;, it is given by P = (A) with

N
1 0|2 ov
Alg,p) = m Z <|Ir)n|l — i 94; (Q)> ’
i=1

where | M| is the volume occupied by the system, and the potential energy function V' is given
by (2.26)-(2.27).
In practice, such averages can be computed with very small systems compared to the actual

sizes of macroscopic systems (provided the interaction potentials are short-ranged). For example,
the equation of state of Figure 2.1 has been computed with a system of a few thousands particles
only, 20 orders of magnitude below the Avogadro number. The agreement with experimental
measurements is however very good, and high-pressure results not easily obtained with experiments
can be computed.

2.1 Quantum description of matter

We will consider in this section a molecular system composed of M nuclei, considered fixed at
the positions 7; € R3 (1 < i < M), and N electrons, with position and spin variables denoted
respectively by z; € R® and o; € {| 1),] 1)} (1 <j < N). The state of the system is described at
time t by a wavefunction

Y(t; (z1,01),..., (xN,0n)) € C.
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Fig. 2.1. Numerical equation of state of argon at 7' = 300 K (*+’) and experimental reference curve
(solid line). The ideal gas regime is plotted in dash-dotted line.

For the wavefunction 1 to be an admissible physical state, the following requirements must be
satisfied:

(i) Normalization: the wavefunction is normalized for the L? norm, that is

Z Z [RSN |’lﬁ(t,(l‘1,0’1),...,(CL‘N,UN))lzdxl...dCL'N21. (2.2)

are{lT)hI)}  one{lT)I}

This property results from the interpretation of |(,-)|?> as a probability density;

(ii) Indistinguishability of identical particles: The Pauli principle requires that the wavefunc-
tion is antisymmetric under the exchange of coordinates (position, spin) of two identical
particles. More precisely, for a permutation p of the indices {1,..., N} of signature £(p),

1/}(ta (Ip(l)vap(l))a ) (xp(N)ao'p(N))) = E(p) 1/’(157 ('rlv Ul)a SRR (ZEN, UN))

The admissible functions are therefore the elements of the space

N

H= AL (® x{|1).| 1)}, C).

i=1
with norm 1 (for the scalar product induced by (2.2)).

To precise further the functional space, we introduce the Hamiltonian of the system

H=-Y oA, - — .
~2m Pl dmeglr; — Tyl < Ten dreo|z; — x|
where Zje is the charge of the k-th nucleus and m is the mass of the electron. In the sequel, we
will consider atomic units, for which

1

=1.
47T€0

In this case, the mass unit is 9.11 x 103! kg, the length unit is the Bohr radius ag = 5.29x 10~ m,
the time unit is 2.42 x 10~'7 s, and the energy unit is the Hartree Ha = 4.36 x 10718 J — 27.2 eV —
627 kcal/mol. This change of units allows to consider more intuitive values of physical quantities:
for small systems at equilibrium (N and Z = Zi\il Zy, small), the typical distances between an
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electron and the nuclei where it is bound to are of the order of the Bohr radius, and the energies
at equilibrium are of the order of several Ha. The Hamiltonian reads, in atomic units,

N N M Z 1
H:_ZiAmi_ZZmi_i'ﬂ_'— i — ;| 23

1<i<j<N '

In the sequel, we will denote

Voue) = =2 =7
k=1

The Hamiltonian operator (2.3) is self-adjoint on H (for an introduction to the spectral theory of
quantum Hamiltonians, see the books by REED and SIMON [277] or DAUTRAY and LIONS [99]).

2.1.1 The Schrédinger equation and the ground state problem

We will be interested in the sequel in ground-state properties of systems described at the quan-
tum level, i.e. finding the lowest eigenvalue of the operator H, and the corresponding eigenvector.
To this end, the following minimization problem is introduced:

E =inf{(, HY) | € H, [[¢]L> = 1}. (2.4)
A minimizer of (2.4) is an eigenvector of the Hamiltonian associated with E:
Hvy = Ev.

The existence of minimizers for (2.4) for Coulombic potentials is ensured when 22/[:1 Z, > N by
results of spectral theory [99,277,377]. Since H is a real valued operator, the minimization can
be restricted to real-valued functions. Actually, in view of the Laplacien in the Hamiltonian (2.3),
the minimization in (2.4) can even be restricted to functions in

n' = \NHUE < (1)1 1)}, ©).

Remark 2.1. In order to avoid unnecessarily heavy notations, the dependence of the ground-state
energy on the nuclei positions Z1,...,ZTa 1S not denoted explicitely. It s however convenient to
explicitely parametrize the ground-state energy as

U(‘flu e 7jM) = inf{<¢=H;i17...,iM¢> | ¢ € H, ||¢||L2 = 1} (25)

to study the dynamics of the system and its statistical properties (see Section 2.2). The function U
defined in (2.5) is in this case the interaction potential between the particles. The whole procedure
is referred to as ab-initio molecular dynamics. It relies on the approzimation that the evolution of
the electronic and nuclear degrees of freedom can be decoupled, more precisely that the electronic
degrees of freedom can be described by a wavefunction where only the positions of the nuclei enter
as parameters (in particular, it is not necessary to take the nuclear momenta into account). More
mathematical precisions on this approzimation (the so-called Born-Oppenheimer approximation,)
can be found in the book by TEUFEL [342].

For simplicity, we omit in the sequel the spin variable in the minimization (2.4) since the
mathematical difficulties are left unchanged.
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2.1.2 Direct search of the ground state energy

We present in this section methods to solve directly (possibly, only approximately) the mini-
mization problem (2.4). This is a non-trivial task since the minimization is performed in L2(R3")
(with 3N large), so that usual optimization techniques are usually hopeless, except for small

systems.

Variational Monte-Carlo

The variational Monte-Carlo (VMC) method relies on the following upper bound for the
ground-state energy (2.4): for an arbitrary function ¢ € H,

Ep(z) [(x)|? do
< WHY)  Jaan " 7 (2.6)

R BNl

with Fp(z) = [HY](z)/v¥(x). The function Ey(z) is called the local energy of the function .
Remark that if ¢ is an eigenfunction of H associated with the eigenvalue E, Ey (z) = E for all x,
and in this case the variance of Ele (with respect to the measure of density |¢(z)[?) is zero.

VMC calculations are usually performed with trial wavefunctions ¢ that are good approxi-
mations of some ground state wavefunction 1y. These wavefunctions are often sums of single de-
terminantal wavefunctions built upon Slater-type atomic orbitals, multiplied by a Jastrow factor
(see Eq. (6.8) for more precisions, and the mathematical analysis by FOURNATS, HOFFMANN-
OSTENHOF, HOFFMANN-OSTENHOF and OSTERGAARD SORENSEN [110] to motivate the intro-
duction of the Jastrow correlation terms). When several such trial wavefunctions are considered,
possibly depending on some parameters, and when these parameters are optimized (to minimize
the energy or the variance of Ez/’) good upper bounds to the ground-state energy can be obtained
(see in particular the work by UMRIGAR and FiLLippI [351] for such a study).

In practice, the expectation value in (2.6) can be seen as the average of the quantity Ep with
respect to the probability measure Z,'[¢(z)|? dz (with Zy = [pan [¢[?). Since the integration
in (2.6) is performed in a high dimensional space, it is natural to resort to stochastic techniques.
Such techniques are presented in Chapter 3 and can all be adapted to the VMC framework. In par-
ticular, we have shown in [P8], with E. CANCES, M. CAFFAREL, A. SCEMAMA and T. LELIEVRE,
that it is interesting to replace the gradient dynamics traditionally used in the VMC community
by a Langevin type dynamics (with some technical adaptations, see Chapter 6 for a more detailed
presentation of this new strategy and the corresponding numerical results).

Diffusion Monte-Carlo

The Diffusion Monte-Carlo (DMC) method consists in remarking that the ground state of an
elliptic operator can be recovered as the longtime limit of a diffusion process. Indeed, when the
Hamiltonian is self-adjoint and there exists a spectral gap v > 0 in the discrete spectrum between
the first eigenvalue (assumed to be a isolated eigenvalue of multiplicity 1) and the second one, the
solution of

oo

5= —Ho.  6(0.2) = wi(a) (27)

is such that
||eE0t¢(t) - <¢171/)0> 7/’0” S Cei’)’ta

where 1y denotes a ground-state wavefunction, and Ej the associated ground-state energy. It can
also be shown that the energy computed at time ¢ converges exponentially fast to the ground-state
energy; more precisely,
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< (Y1, Ho(t)) (Hr, 1) — Eo ot
T (Y, 6()) (1o, Y1) '

In practice, it is once again difficult to solve directly (2.7) because of the high dimension of
the partial differential equation. Stochastic methods are therefore used: (2.7) is interpreted as the
Fokker-Planck equation associated with a stochastic differential equation (SDE), and the ground-
state energy is estimated by simulating the associated SDE and using a Feynman-Kac formula.

—Ep <

However, this is not sufficient as such due to large variances in the estimates. Importance sampling
techniques are therefore used in practice. They consist in choosing a trial wavefunction ; such
that Er(x) = [H7)(x) /¢ (x) is as constant as possible (as for VMC calculations), considering ¢ =
11¢, and solving the corresponding diffusion equation on é by stochastic methods.

The introduction of some importance sampling function v; has however the drawback that
the equation on ¢ is not completely equivalent to (2.7). The nodes @[11_1(0) of the wavefunction
impose indeed additional constraints, and only upper bounds on the energy are obtained. This
is the so-called fixed node approximation. A mathematical analysis of the DMC method and the
fixed-node approximation is presented by CANCES, JOURDAIN and LELIEVRE in [50].

Deterministic methods

Although the minimization problem (2.4) is a high-dimensional problem, and so, straightfor-
ward minimization techniques (conjugated gradient, etc) are usually hopeless, such approaches
are nevertheless interesting to obtain benchmark results on small systems. The straightforward
gradient method based on the minimization of

(v, Hip)

O

leads to iterates of the form

Ynt1 =n + Cn(H - E(d’ﬂ))d’n

This iterative procedure is therefore not well-posed in general since the operator H is unboun-
ded. To remedy this problem, NAkATSUJI proposed to introduce some (self-adjoint) regularization
operator S and to solve the so-called scaled Schridinger equation [254,255]

SH = Eg Sv,
where the ground-state energy Fg is obtained as

(p, SY2HS24p)
(¥, Sv)
The regularization operator is such that S'/2HS'/2 is bounded, and Si = 0 implies ¢ = 0.

Actually, Es = F, so that the minimization problem (2.8) is equivalent to (2.4). The interest of
the formulation (2.8) is that the associated gradient minimization

Es_inf{ ‘1/167-(}. (2.8)

Unt1 = Un + cnSY2(H — Eg(1h,)) S *4n,

is well-posed. Beside the direct minimization of (2.4), this procedure is also a systematic way to
improve trial wavefunctions for VMC or DMC procedures [255].

A more common approach to obtain benchmark results for small systems is to resort to full
configuration interaction (full CI) computations. In this case, some Galerkin basis (¢1,...,dn,)
of H! (N, > N) is introduced. Denoting by Z the set of N-tuples of distinct elements of {1,..., Ny},
the minimization is performed over wavefunctions of the form
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b= ervr,
i€l

where, for I = (i1,...,ix) € Z, 11 is the Slater determinant ¢o; = (N!)~*/2 Det(¢;,, ..., ¢iy ). The
associated approximated minimization problem

Ercr = inf {<¢,H¢> ‘ = ey, ¥l = 1}

i€l

gives an upper bound of the ground-state energy. Notice however that the number of determinants
to be considered increases factorially with Ny, which is a severe practical limitation to the method.

2.1.3 Second-order reduced density matrices

It was recognized in the 50s by researchers such as MAYER [232], LOWDIN [220] or COUL-
SON [72], that the wavefunction needs not to be known in its full generality to compute the

ground-state energy of a system described by a Hamiltonian (2.3) involving only pair interactions.
Indeed,

1 r ;
(4, H) = Tr(hy) + 5 / D y; 2.8) gy gy — (i), (29)
2 Jrsxms lz —yl

where the operator
1
is self-adjoint on L?(R3), and the 2-body operator

1 1
K = 7(}111 +h12) +

2(N — 1) 2|5L‘1 — JJ2|

is self-adjoint on L%(R? x R?). The functions v and I" are respectively the first and second order
reduced density matrices, the p-th order reduced density matrix associated with a wavefunction
being defined as

F(p)(xla"'7$p;y17"'7yp)
NI

= a0 a(xlv" <3 Lpy, Tp41,- "aIN)q/}(ylv"'aypaxp+17"'aIN)dz;D+1 . dIN
(N =p)! Jraw—n)
(2.10)
In particular, the first and second-order density matrices are related through
(@) = 5 [T )d
T,Y) = —— T, %25y, Ta) dTs.
YN, Y N —1 R y L23Y, L2 2

The formulation (2.9) of the electronic problem (2.4) shows that the minimization can be
restricted to functions I" = I'®) depending on 4 variables only. However, no necessary and sufficient
conditions are known to ensure that a given second-order reduced density matrix (2-RDM) is
obtained from a wavefuntion 1 through the contraction (2.10) in the case p = 2. This is the so-
called N -representability problem of 2-RDMs for pure states. An extension of this issue consists in
characterizing the density matrices which are convex combinations of admissible 2-body density
operators:

“+o0 “+o00
F(x7y)zznipi(x7y)u Ognzglu Zni:Na
=1 i=1
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the 2-body density operator I'; being obtained from wavefunctions 1; € H! through (2.10) in
the case p = 2. Elements in the set Cn of convex combinations of 2-body density operators are
ensemble second order density matrices. The first works on N-representability have been done by
COLEMAN [69], and the recent monogrpaph by COLEMAN and YUKALOV [71] describes the current
setting of this research field (see also Section 7.2). To this date, only necessary N-representability
conditions are known; these conditions are stated in terms of linear (in)equalities. Therefore, only
lower bounds to the true ground-state energy can be recovered this way (since the variational
space is too large).

From a numerical viewpoint, the first encouraging results were obtained in 1975 by GARROD,
MiHaiLLovic and ROSINA [120], and recently very good numerical results were obtained with
semi-definite programming techniques, such as interior point methods (see NAKATA et al. [253])
and extended Lagrangian formulations (see the papers by Mazz101TI [234-236]). With E. CANCES
and M. LEWIN, we proposed in [P9] a dual approach to this minimization problem. Introducing
the augmented Lagrangian

L(I',B,p) = Te(KT) — Te(BT) — p{Te(I') — N(N — 1)},

it can be shown
E =inf sup L(I,B, )
I' Be(cn)*, ner
where Cy is the cone of admissible 2-RDMs, and (Cy)* its polar cone, the minimization on I"
being restricted to symmetric functions. In a dual manner,

E=  sap  infL(I'B,p) = NN —1)sup{u | K —pe (Cn)"}
Be(Cn)*, per I

the minimization on I' being also restricted to symmetric functions (see Section 7.3). Therefore,
the minimization problem (2.9) can be reduced to a one-dimensional minimization. The practical
implementation of this idea uses a Newton algorithm for the optimization in the p variable,
combined with an internal loop to find the projection of K — p™ onto (Cy)* at the n-th iteration
(see [P9] and Algorithm 7.1 in Section 7.3).

2.1.4 Wavefunction methods

Variational wavefunction methods make ansatz on the functional form of the wavefunction 1,
and then perform a minimization analogous to (2.4). The most commonly used approximation is
the Hartree-Fock (HF) approximation, which consists in restricting the variational space in (2.4)
to single Slater determinants (which are indeed antisymmetric functions):

(z1,...,aN) = Det(¢i(z;)), (2.11)

=l

where the N-tuple @ = {¢;};=1,....n is such that

¢; € H'(R), / 61(2); () dr = b5,
R3

The energy associated with the wavefunction (2.11) is
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(6, Hy) = B"(& Z / IV i(a)? di — / Ve () () it

pa(x)pa(y) // |ye(z,y)? d p
Y,
/R3/]R'* |x—y| Z R3 JR3 |$—y|

(2.12)
where the first-order reduced density matrix and density associated with @ are respectively

N
=> ¢i@)di(y),  palr) =Ya(z, ).
i=1
The associated minimization problem is

Eyr = inf{EHF@) ‘ & ={¢i}iz1.. N, ¢ € H(R?), /RB Gip; = 6ij } (2.13)

Since the particular ansatz (2.11) is made, the variational space is too small, the HF energy
is an upper bound to the ground-state energy (2.4). The existence of a minimizer for (2.13)
when Z = Ei\il Zp > N — 1 has been shown by LIEB and SiMON [211]. However, nothing is
known about the uniqueness of the minimizer (up to an orthogonal transformation on the N-
tuple ®).

In physical terms, the difference between the ground-state energy and the Hartree-Fock energy
is called the correlation energy. Indeed, the assumption (2.11) is some independence assumption
of the electrons, compatible with the Pauli principle. When the spin variable is considered, only
two electrons with the same spin are correlated with the HF ansatz, while for the true wavefunc-
tion, electrons with different spins are correlated due to the Coulomb interaction (which prevents
electrons to be too close one from another).

A minimizer of (2.13) satisfies the Hatree-Fock equations, which are the Euler-Lagrange equa-
tions associated with (2.13) (using the invariance through any unitary transform, see for instance
CANCES, DEFRANCESCHI, KUTZELNIGG, LE BRIS and MADAY [53]):

1 1
Fopi = _§A¢i + Vauc®s + (P@ * m) ¢i + Koo = €;¢;. (2.14)

In this expression, the exchange operator K¢ is defined as

Kogla) = = [ 3458 5)ay (2.15)

Under the assumption Z > N, LIONs proved in [214] that there are infinitely many solutions
to the nonlinear eigenvalue problem (2.14). It is not known which additional conditions must be
satisfied by the solutions of (2.14) for them to be minimizers of (2.13). On the other hand, if ¢ is a
minimizer of (2.13), then the corresponding eigenvalues ¢; are the N lowest eigenvalues of Fg [214],
and ey41 > ey (see BAcH, LiEB, Loss and SOLOVEJ [17]).

From a numerical viewpoint, fixed-points of (2.14) are sought for, usually through self-
consistent algorithms; indeed, even if (2.14) is not equivalent to (2.13), (2.14) turns out to be
easier to solve in practice. An introduction to the corresponding numerical techniques and to the
mathematical analysis of their convergence can be read in the book by CANCES, LE BRris and
MADAY [52] (see also [53] for a more comprehensive presentation).

Many methods were proposed and developed to improve the HF approximation. A classifi-
cation of these so-called post Hartree-Fock methods is presented in [53], where variational and
non-variational approaches are distinguished. An example of variational post-HF method is the
multiconfiguration self-consistent field method, for which the wavefunction is written as a finite
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sum of single Slater determinants (recall indeed that any admissible wavefunction can be written
as an infinite sum of single determinants). This method has recently been investigated from a
mathematical perspective by FRIESECKE [114] and LEWIN [208].

2.1.5 Density functional theory
The Hohenberg and Kohn idea

The HOHENBERG and KOHN theorem [161] expresses the fact that the knowledge of the ground-
state density of a system completely determines the potential V. (up to a constant), and the
ground-state wavefuntion . Therefore, the minimization (2.4) over all possible wavefunctions
can be replaced by a minimization over all admissible densities (see (2.18) below). Heuristically, it
indeed is expected that the derivative of the electronic density presents singularities at the positions
of the atomic nuclei, and the strength of these singularities is related to the electronic charge of
the corresponding nuclei (KATO’s cusp conditions [190]). All the parameters of the Coulombic
potential can therefore be recovered from the density.

The electronic energy of a system is defined, for an external potential V € L3/2(R?) + L>®(R?)
(so that V' = Vju with the notations used until here), as

N
E(V) = ot {<¢ (Ho +° V@-)) ¢>} = jnf, {<¢, Hot) + /R pwV} : (2.16)
i=1 :

where the Hamiltonian

does not depend on V, and where p,, is the electronic density associated with the wavefunction 1
through

py(x) =N [Y(z, z2,...,2N)|? doy ... dey.
R3(N—1)

Notice that, thanks to Sobolev embeddings, p, € L'(R3) N L3(R?). The functional [210] defined
for p € LY(R?) N L3(R3) as

Fup)=  sup {E(V) -/ pv}, (2.17)
VEL3/2(R8) 4L (R3) R3

has been introduced by LIEB [210]. Note that Ff, is a convex function, and that the ground-state
energy can be recovered as

E(V) = inf F v 2.18
) pELl(R%%mL3<R3>{ L<p)+~/R3p } (2.18)

This is a consequence of the fact that F, is the Legendre transform of E (recall that L3/2(R3) +
L>(R3) is the dual space of L'(R?) N L3(R?) and that the functional E defined by (2.16) is
concave [210]). The fact that the minimization in (2.18) can be restricted to a minimization over
electronic densities motivates the name density functional theory (DFT).

An alternative definition of the Lieb functional uses convex combinations of N-particle density
operators, of the form

+o0 too
F(N)(x,y):ZniFi(N)(x,y), 0<mn; <1, Zni:N,
i=1 i=1
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7/ being obtained from wavefunctions ; € H' through (2.10).
The set of convex combinations of N-particle density operators is the set DV of ensemble N-
particle density operators. In this setting,

the N-particle density operator ™

m@yﬂﬁ{mmwwm ﬂmepﬁrm@@:p@}

The fact that this definition coincides with the previous one is proven in [210].
In order to obtain practical models, the (unknown) function Fy, has to be precised. There are
two main approaches:

(i) in the so-called orbital-free methods, F, is an explicit function of the density p only. For
example, the Thomas-Fermi model approximates F1, by

10 1 p(@)p(y)
- 322/3/ 5/3+—// dx dy;
fTF(P) 3 ( ) s P 2 Jos Jos |z — T ay;

(ii) in Kohn-Sham models, a non-interacting system of N electrons is considered, and p is the
sum of the corresponding individual densities of the electrons.?

Practical implementation of DFT : the Kohn-Sham scheme

In most current computations, DET is implemented through the KouN and SHAM (KS) scheme.
First, considering a non-interacting electron gas, Hy is approximated by its kinetic part T =
—% Efil A;,. The associated energy is the Janak kinetic energy functional

n@:mqﬁwuwm ﬂmepﬁrm@@:m@}
1R
:1nf{—an/ |V(]51|2, (biEHl(RB), / ¢i¢j:6ij7 Ognlgl,
25" Jpo RS
—+oo —+oo
Z?’LizN, an|¢z|2:p}
i=1 i=1

This approach corresponds to the so-called extended KS model, in which fractional occupation
numbers n; are allowed. The functional T can be defined as above for ensemble N-representable
densities p, i.e. arising from the contraction of density operators belonging to DV. COLEMAN [69]
showed that the set of ensemble N-representable densities of finite kinetic energy is

ZN—{pZO, Vp € HY(RY), /Rsp—N}.

The electrostatic energy is then approximated by the Coulomb energy

1 p@)py)
0 =g [, [ 52y

Finally, the error done on the kinetic energy and on the electrostatic interaction energy is com-
pensated by the so-called ezchange-correlation energy:

Exc(p) = FL(p) — Txs(p) — J(p). (2.19)

The (extended) Kohn-Sham approach considers the following minimization problem:

3 This explains a posteriori why the Thomas-Fermi like models are called orbital-free models. ..
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1 E 1 p(x)p(y)
EXS(V) =inf{ = ni/ V(;Siz—i-/ pV+—/ / D2 de dy + Exe(p),
( ) {2; R3| | R3 2 R3 JR3 |I—y| ()

—+oo —+oo
¢ € H'(R?), /}R3 ¢id; = 6ij, 0 <mn; <1, an =N, Zni|¢i|2 = P} :
i=1

=1

(2.20)

Provided Ey. is differentiable in Zy at p € Zy and denoting by vy.(p) its functional derivative,
the Euler-Lagrange equations associated with (2.20) are the (extended) Kohn-Sham equations

1 Py
~5a0ia) 4+ Vot + ([ L2 ) 0o+ clio) —eile). 22)
together with the constraints f]R3 Gip; =0, and ny; =1if ¢, <ep, 0<n; <1lif g =€ep, n; =0
if ¢, > ep. The Lagrange multiplier ep of the constraint Z;Of n; = N is the so-called Fermi level.
The usual Kohn-Sham equations

~ga0(@) + V@) + ([ )60+ veloe) —aoita), 222
withn; = 1if 1 <¢ < N, and n; = 0 otherwise, are obtained when only integer occupation numbers
are allowed. The existence of a minimizer to the minimization problem associated with (2.22) (and
hence, the existence of a normalized solution to (2.22)) has been proved by LE BRis [42] for some
usual approximations of vyc.

Recall at this point that the potential V' used here is the external potential (for instance,
the potential Vyu. generated by the nuclei). Therefore, the Kohn-Sham equations are formally
similar to the Hartree-Fock equations (2.14), except that the non-local exchange operator has been
replaced by a local exchange-correlation potential. This similarity has been used in the early days
of quantum chemistry to simplify the Hartree-Fock equations, by replacing the non-local exchange
potential by its “best” approximation. The quality of this approximation must be understood in a
variational sense, and is known as the Optimized Effective Potential (OEP) approach (see below
and Chapter 8).

Exchange-correlation functionals

The most simple approximation of Ey.(p) is the local density approximation (LDA), based on
the homogeneous electron gas picture. It reads

B ) = [ pla)ekPA (pla) d,
R3

where elPA = ¢LDA 4 (LDA The exchange part can be computed analytically as eLPA(p) =
—Cpp*?, where Cp = %(%)1/3 is the Dirac constant. On the other hand, the correlation part

has to approximated, using for instance very accurate Quantum Monte-Carlo computations. As
an improvement, it was suggested to consider spin-dependent densities pj;y and p||y and gradient
corrections Vpj1y, Vp||y to account for inhomogeneities in the electron density (hence the name
Generalized Gradient Approximation (GGA) for this method). Many refinements to these functio-
nals were proposed (for example, relying on orbital dependent functions or using the Hartree-Fock
exchange functional), but the quest for a high-quality transferable exchange-correlation is definitely
not over (see for instance the review by SCUSERIA and STAROVEROV [304]).
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Finding relevant exchange-only functionals: the Optimized Effective Potential
approach

SHARP and HORTON [308] proposed a systematic way to obtain local potentials approximating
the non local Hartree-Fock exchange operator K¢ given by (2.15). They suggest to minimize
the energy of the Slater determinant constructed with the eigenfunctions cooresponding to the
N lowest eigenvalues of some one-electron Schrodinger operator —%A + W, W being a ’local
potential’.* This track was further explored by TALMAN and SHADWICK [338]. The corresponding
minimization problem is the so-called Optimized Effective Potential (OEP) problem, which can
be vaguely stated as

inf {EHF( VoW } / gbiwqﬁ}/v = 05, ( W, o%) are the eigenvectors
w R3
X (2.23)
corresponding to the N lowest eigenvalues of Hy = —§A + W} .

However, this minimization problem, stated as such, does not seem to be well-posed since there
is no straightforward bound on a minimizing sequence (W,,) in any natural norm (see the work
by BEN-HAJ-YEDDER, CANCES and LE BRiIs [25]). A way to circumvent this difficulty is to replace
the minimization problem (2.23) by formally equivalent conditions that do not explicitely refer
to a local potential TW. In this case, some mathematical results about the well-posedness of the
equivalent problem can be stated (see [25], as well as the brief summary of Section 8.2).

Besides these mathematical issues, there are also numerical problems in the computation of
the OEP when the problem is discretized using basis sets (see e.g [321]). It is therefore tempting
to replace the minimization problem (2.23) by a simpler minimization problem, also stating that
the exchange potential to be considered is some optimal approximation of the non-local exchange
operator (2.15). Together with E. Cancis, E. DAvVIDSON, A. IzmAYLOV, G. SCUSERIA and V.
STAROVEROV [P5,A2]|, we showed that it is possible to define (up to an additive constant) an
Effective Local Potential (ELP), which is such that

. 1
VELP = arginf {5 v — K, w]ngs} , (2.24)
veL3(R3)+L>~(R3)

where || - |lus is the Hilbert-Schmidt norm for L?(R?) operators, and [A4, B] = AB — BA. The
mathematical study of the well-posedness of the minimization problem (2.24) can be read in
Section 8.3.

The ELP potential has an analytic form, which is very useful for practical computations. Let us
however notice that this potential was already derived by other (non-variational) means in [138,
297]. The existence of solutions to the Kohn-Sham equations with a simplified local exchange
potential (solution of a simpler variational problem in Hilbert-Schmidt norm, and proposed by
SLATER [312]) is shown in Section 8.1 for radial orbitals.

4 The notion of local potential does not have a precise meaning in the physics and chemistry literature; it
is enough for this introduction to think consider W € L¥?(R?)+L2°(R?) as a multiplicative operator. In
this case, the essential spectrum of the operator —$ A+ W is still [0, +00) [52,277]. The set L32(R3) +
L (R?) is the set of all function ¢ which, for all € > 0, can be written as a sum ¢ = ¢3/2 + Poo with
¢3/2 S L3/2(R3) and H¢00||L°°(]R) <e.



2.2 Classical description of matter 21
2.2 Classical description of matter

2.2.1 Description of matter at the microscopic level

We consider in this section microscopic systems composed of N particles (typically atoms, i.e.
nuclei and their electronic clouds), described by the position of the particles ¢ = (¢1, - ,qn) €
R3N and the associated momenta p = (p1,---,pn) € R*V. For physical and biological systems
currently studied, N is typically between 10% and 10°. The interaction between the particles is
taken into account through a potential V' = V(¢), and the total energy of the system system is
given by the Hamiltonian

1 _
H(q,p) = 5p" M~'p+V(q), (2.25)

where M = Diag(mg,...,my) is the mass matrix.

Potential functions

The interaction potentials could, in principle, be obtained from (2.5). This is indeed the case
in ab-initio molecular dynamics simulations, where the potential is recomputed using (2.5) each
time the positions of the nuclei change.

This approach is however very time-consuming, so that only small systems can be simulated.
In practice, to tackle larger systems, empirical formulas for the potential energy function are
used. These empirical formulas are obtained by assuming a functional form for the interaction
potential, and then performing some parameter fitting so that computed average properties match
experimental results, or, possibly, simulations results from small equilibrium ab-initio simulations.
The properties to be matched are usually thermodynamic properties such as the equation of
state of the material or its compressibility. When ab-initio molecular dynamics is used to obtain
benchmark results, the Born-Oppenheimer approximation implicitely used to write the interaction
potential as (2.5) may not be valid. This is for instance the case when chemical reactions happen
in the systems (bonds being broken or formed), though some approaches aim at handling such
events in the framework of classical empirical potentials (see below).

A very simple example is the potential function of a fluid composed of N particles, interacting
though a pairwise additive potential depending only the distance between the particles. In this
case,

V(ql,...,qN) = Z V(l%' —Qj|). (2.26)

1<i<j<N

For example, the argon fluid is well described by a Lennard-Jones potential

vor=<((9)"-(2)), oo

with €/kp = 120 K, and o = 3.405 A Higher-body interactions can then be considered, in particu-
lar for biological modeling. These higher-orders terms account for local interactions (bond angles,
dihedral angles, see Section 3.4.1 for an explicit example of such potential terms for alkane chains)
and non-local interactions (van der Waals forces, Coulomb interactions between non-bonded atom
pairs)  see for instance the book by SCHLICK [299] for more precisions on the models used in
computational biology.

Pairwise additive potentials and three- or four-body interactions may however be not good en-
ough an approximation. Many studies still aim at proposing better (empirical) potential functions,
in particular in the field of condensed matter, and fitting their parameters on better data sets.
Recent instances of such potentials are the (Modified) Embedded-Atom Model ((M)EAM) poten-
tials [22], which use some reference electronic cloud around the particle; or bond-order potentials
of REBO [341] or ReaxFF [353] types, which contain environment-dependent terms (depending
on the local coordination of the atoms). The latter potentials can even handle chemical reactions.
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Boundary conditions

Several boundary conditions can be imposed to the system:

(1) Many current simulations are done with periodic boundary conditions, so that surface effects
can be avoided and bulk conditions are approximated. In this case, a particle interacts not
only with all the particles in the systems, but also with their periodic images;

(2) Some simulations are done with free boundary conditions. This is the case for isolated
systems (molecules in vacuo). It may be convenient to quotient out rigid body translations
in this case since the potential energy is invariant under global translation and rotation of
the system,;

(3) It is sometimes convenient to consider confined systems. In this case, the positions of the
particles are restricted to some predefined region of space, and some rules have to be set for
reflections on the boundaries of the system (such as specular reflection of the momenta);

(4) Finally, some (stochastic or deterministic) forcing can be considered at the boundaries (see
Section 3.5.1).

In the sequel, we will denote by M the position space (also called the configuration space), and
T*M its cotangent space. Typically, M = T3¥ (a torus of dimension 3N) for simulations with
periodic boundary conditions (PBC) and N atoms in the simulation cell. In this case, T*M =

T3N X R3N.

Thermodynamic ensembles

The state of a system is described, within the framework of statistical physics, by a probability
measure y on the phase-space T* M. Macroscopic features of the system are then computed as
averages with respect to this measure, as given by (2.1):

W= [ Awr)due).

We present in the sequel two very important thermodynamic measures, namely the microcanoni-
cal and the canonical measures, describing respectively isolated systems, and systems at a fixed
temperature (in contact with a so-called thermostat or energy reservoir).

2.2.2 The microcanonical ensemble

The most simple thermodynamic ensemble is the microcanonical ensemble, which describes
isolated systems. The corresponding probability measure is the uniform probability measure on
accessible configurations, that is

dO’E

= B 2.28

Mmc(d(L dp) = 5H(q,p)7E
where dog is the area measure induced by the Lebesgue measure on the manifold M(E) =
{(¢,p) | H(q,p) = E}. Thermodynamic integrals of the form (2.1) are computed in practice
resorting to some ergodicity assumption:

T
)= tim_ 7 [ A@i(a) (2:29)

where, in the microcanonical ensemble, the flow @, is the flow of the hamiltonian dynamics asso-
ciated with (2.25):
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i) = 24000 =29,
g;[ i (2.30)
pilt) = — 2L (q(0), (1)) = Vo, Via)).

0q;

Ergodicity can be shown rigorously for completely integrable systems and their perturbations (see
for instance the reference book by ArRNOL'D [11]).

From a numerical viewpoint, the ergodicity property requires very stable algorithms allowing
a longtime integration of the hamiltonian dynamics. The dynamics (2.30) is an ordinary diffe-
rential equation (ODE) which is often numerically integrated by the celebrated velocity-Verlet
algorithm® [360)]

At
pn+1/2: pn _ 7vv(q )7

qn+1 _ qn—l—At M—lpn+1/2, (2.31)
At
pn+1 _ pn+1/2 _ 7vv(qn+1),

where At is the time step. The numerical flow associated with the velocity-Verlet algorithm shares
two qualitative properties with the exact flow &; of (2.30): it is time reversible and symplectic.
These two properties are very important for the longtime integration of the hamiltonian dynamics:
A well-established result, recalled in the reference book by HAIRER, LUBICH and WANNER [146]
on geometric numerical integration (see in particular Chapters VIII and IX), is that the energy
of the system is conserved up to O(At?) over times O(e~%/4?) when the Stérmer-Verlet scheme is
used. The numerical analysis of microcanonical sampling methods based on these properties (in
the very particular case of completely integrable systems) can be read in the papers by CANCES,
CasTELLA, CHARTIER, LE BRIS, LEGOLL, FAOU and TuURINICI [48,49,203].

2.2.3 The canonical ensemble

Systems at a fixed temperature (in particular, systems in contact with a thermostat) are
described by the canonical probability measure g on T*M:

du(q,p) = Z~ " exp(—BH(q,p)) dgdp, (2.32)

where 3 = 1/kgT (T denotes the temperature and kg the Boltzmann constant). The constant Z
in (2.32) is the normalization constant defined as

Z=/ exp(—BH (q,p)) dqdp,
* M

and is also called the partition function in statistical physics. Since the Hamiltonian H is separable,
the canonical measure is of the form

du(q, p) = dr(q)dr(p),

where
_ _ -1 B oy
dr(p) = P(p)dp =2, exp  —5p"M""p ) dp, (2.33)
and

dr(q) = f(q)dg = Z, ' PV(V dg. (2.34)

® See also |145] for more historical precisions: The algorithm introduced by VERLET in 1967 |360] was
already known by STORMER at the beginning of the 20th century, and even by NEwTON!
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The positive numbers Z, = [,, e V@ dq and Z, = (2r/B)*N/2 Y, m?/? are normalization
constants. Notice that we implicitely assumed that the measures p and 7 are probability measures,
which is the case when e 8V € LY(M). Tt is straightforward to sample from dk, so that the actual
issue is to sample from dm.

Theoretical and numerical comparison of some usual sampling methods

Some numerical methods to generate configurations (¢", p™),>o such that

N—1
1
lim — A(q",p") = A d 2.35
i 5 S A = [ A dutan) (2.35)
n=0

are presented in the review paper [P3]| co-authored with E. CaNcks and F. LEGOLL (see also
Chapter 3). In particular, we propose a classification of usual canonical sampling methods in three
categories, and precise their theoretical ergocity properties. More precisely, we distinguish

(i) purely stochastic methods, such as the Rejection method or importance sampling tech-
niques, whose convergence relies on usual probabilistic theorems (Law of Large Numbers
(LLN), Central Limit Theorem (CLT));

(ii) methods based on deterministic hamiltonian dynamics, modified by stochastic perturba-
tions to ensure that different energy levels are explored. These methods are either Markov
chains techniques, such as Metropolis-Hastings schemes [153,238] using the hamiltonian
dynamics as a proposition function (Hybrid Monte-Carlo scheme [88]), or stochastic dif-
ferential equations having the hamiltonian dynamics as limiting dynamics (Langevin dy-
namics). In all cases, the methods are constructed such that the canonical measure is
invariant. Since theorems analogous to LGN and CLT for Markov chains or processes can
be obtained under rather general assumptions, the theoretical ergodicity of these methods
is usually granted (see in particular the excellent book by MEYN and TWEEDIE [240] for
theoretical results for Markov chains, as well as Section 3.6 for a summary of some relevant
theoretical results in the context of computational statistical physics);

(iii) completely deterministic methods, based on the Nosé-Hoover paradigm [259,260]. In this
case, extended variables (g, p,x) are considered, and their dynamics is postulated in a
manner that the marginal of the invariant measure with respect to the additional variable z
is the canonical measure. Though this consistency result, no theoretical ergodicity proof
is known. On the other hand, there exist some theoretical non-ergodicity results (see the
proof by LEGOLL, LUuskIN and MOECKEL [204] based on a perturbation of completely
integrable systems).

We have also compared the numerical ergodicity of these methods for a simple alkane molecule,
both for static properties (thermodynamic integrals of the form (2.1)) and for time-dependent
properties such as autocorrelation functions (see Section 2.2.5). The numerical results show, as
qualitatively expected, that the efficiency of purely stochastic methods decreases rapidly when the
dimension of the system increases. Completely deterministic methods may be difficult to use (choice
of parameters, necessity of small time-steps to ensure the proper conservation of some invariants of
the dynamics). On the other hand, methods mixing molecular dynamics and stochastic techniques
are found to be more robust and efficient.

Metastability and the obstruction to numerical ergodicity

Even if the theoretical ergodicity is ensured and can be checked numerically for simple systems,
it is often the case in practice for interesting physical systems that numerical ergodicity fails due
to the presence of very different time scales in the system. Fast time scales are typically associated
with fast component of the potential energy, and require small time-steps to be resolved. For
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instance, bond lengths in a molecule have a vibration period of the order of a femtosecond (10715 s),
whereas other quantities (such as the backbone structure of a protein) evolve on much longer
time scales. Long time scales are often the consequence of metastable features of the potential:
metastable regions are portions of the phase-space located around a local minima of the potential
energy surface, separated by high energy barriers. Interesting events such as protein folding occur
only when several metastable basins have been explored, and this may require times of the order
of the microsecond (1075 s) or more [299].

When the metastable states of the system are identified, it is possible to decouple the metastable
variables and the remaining degrees of freedom: A possible cure to the failure of the numerical
ergodicity is then to resort to free energy differences computation techniques (see Section 2.3.1).
There are of course many other ways to proceed, such as the accelerated dynamics of Section 2.3.2.
There are also methods based on the spectral properties of the Markov transition kernel to identify
the metastable states, see the work of SCHUTTE [301]. Robust, general purpose methods able to
sample complex potential energy surfaces (such as those of large biological systems) are however
still lacking.

2.2.4 Other thermodynamic ensembles

There are several other thermodynamic ensembles beside the microcanonical and the canonical
ensembles, for instance ensembles where the number of particles, the pressure and the tempera-
ture are conserved (NPT ensemble), or the grand canonical ensemble, where the volume, the
temperature and the average number of particles are conserved. The grand-canonical ensemble is
also termed VT ensemble, denoting by u the chemical potential.® The VT probability measure
is [270]

1
h3N NIV N
where d is the dimension of the space, V' the volume of simulation the cell, and Hy is the Hamilto-
nian (2.25) for N interacting particles. The normalization constant Z reads (denoting by T* My
the cotangent space of the manifold M y)

-1 NN
7 = - eBuN/ e AHN(GTPT) goN gpN |
2 v

dv(N, ¢V, pN) = 271 BWN=HN (@ 2™) goN gpN. (2.36)

where A = h(2rmB~')~1/2 (with h the Planck constant) is the “thermal de Broglie wavelength”.
The first techniques developed to sample from (2.36) were Monte-Carlo techniques [258]. We refer
to [113, Chapter 5] for further references. Techniques from NVT sampling were then transposed
to the puVT setting, such as Hybrid Monte-Carlo [218] or Nosé-Hoover dynamics [56, 57, 216]
(see [296, Chapter 8] for further references concerning these methods and their extensions).

It may also be the case that some external forcing is performed on the system (see Section 3.5).
For instance, there may be particle creations or destruction or some thermalization at the boun-
daries of the system only. In these cases, it is not always clear which thermodynamic ensemble to
use, and which quantities are preserved (exactly or in average).

2.2.5 Time-dependent properties

Time-dependent properties are of the general form

@0 = [ B@an). 0.0 dr (2.37)

6 In this section but in this section only, the notation g is the chemical potential and not the thermody-
namic measure used.
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where @, is the flow of the dynamics used to generate trajectories. The trajectories (q(t), p(t))i>0 =
:(q,p);>o may be computed using the hamiltonian flow associated with (2.25). This is a consitant
choice since the canonical measure (2.32) is invariant under the microcanonical dynamics (2.30).

Transport, coefficients are examples of dynamical properties. For instance, the self diffusion
coefficient in a system of N identical particles of mass m can be computed by the Einstein rela-

tion [276]:
D= lim —1 gN lqs(t) — ¢;(0)]?
t—+oo 6Nt \ & ! ! ’

where ¢;(t) is the position of the i-th particle at time ¢, and (-) denotes an ensemble average over
the initial conditions. An alternative expression is the Green-Kubo formula based on the integrated
velocity autocorrelation function [276]:

+oo [ N
D= ﬁ/o <Zpi(t) 'pi(0)> dt,

where p;(t) is the momentum of the i-th particle at time ¢. Other classical examples are the shear
viscosity of a fluid or its thermal diffusivity [276].

An accurate numerical computation of time-dependent thermodynamical integrals asks first for
a good sampling of the starting points, distributed according to the canonical distribution. These
points should not be too numerous - one must be able to run short hamiltonian trajectories (one
or several) starting from each point with reasonable computer ressources. The cost of computing
a single trajectory over a given physical time interval [0, T] scales as (At)~!. The total cost is of
order O(N(At)~1), where N is the number of starting points. Therefore, for a fixed computational
cost, there is a trade-off to be made between the accuracy of the sampling of du (scaled by N)
and the accuracy of the numerical integration of (2.30) (given by At).

In practice, it is sometimes the case that time-dependent properties at constant temperature
are computed as a trajectorial averages (relying on some ergodicity assumption). It is not clear
however whether such a procedure is correct, since the dynamics is either the hamiltonian flow,
in which case the initial conditions are not properly sampled, or the dynamics is consistant with
the canonical ensemble, in which case there are usually parameters to be chosen, and it is unclear
that the final result is independent on those parameters. For instance, the self-diffusion of a water
molecule depends a priori on the friction used in the Langevin dynamics.

However, in any cases, systems do not usually conserve their energies in the longtime limit
because of interactions with their environment. Sampling initial canonical conditions and perfor-
ming hamiltonian dynamics may then be justified only for the computation of time-dependent
properties for short times, since the interactions with the environment can be neglected. An alter-
native strategy could be to resort to systems with stochastic boundary conditions, but governed
by hamiltonian dynamics in the core simulation region (see Section 3.5). In this situation, the
thermostatting procedure on the boundaries does not directly affect the dynamics and thus, the
properties to be computed. The influence of the thermostat nonetheless plays a role on longer
times since the energy of the system is allowed to fluctuate.

2.3 Towards longer simulation times and larger system sizes

The molecular simulation techniques presented in the previous sections only allow to simulate
systems very small compared to real physical systems, and for short times only. However, the
behavior of certain macroscopic systems is influenced in the long-term by events happening at the
microscopic level. For instance, biological molecules are subjected to important changes of their
conformations (and thus, of their biological properties) on time scales of the order of a second,



2.3 Towards longer simulation times and larger system sizes 27

and the typical times for the evolution of mechanical properties of materials subjected to radiation
damages scale as years whereas the corresponding relevant microscopic events (evolution of the
dislocations, migration of vacancies, etc) happen on microscopic time scales. There is therefore a
need for methods enabling larger simulations. We focus in this section on three strategies:

(i) free-energy techniques, which allow to enforce transitions from a metastable state to ano-
ther one, provided the transition can be conveniently parametrized (Section 2.3.1);

(ii) techniques to increase the simulated time, resorting to larger time-steps, accelerated dy-
namics, or Kinetic Monte-Carlo techniques (Section 2.3.2);

(iii) reduced dynamics, which are mesoscopic dynamics corresponding to the all-atom dyna-
mics through some averaging procedure, and are therefore computationally less demanding
(Section 2.3.3).

We do not mention here techniques to increase the spatial sizes of the system, such as domain
decomposition methods, or model coupling, where a region of the system is described with a refined
model while the remaining part of the system is described with a coarser method. An instance of
the latter approach is the quasicontinuum method of TADMOR, ORTI1Z and PHILLIPS [334], where
an atomistic description and a finite element discretization are coupled. This method has been
studied from a mathematical perspective on a model one-dimensional system by BLANC, LE BRIs
and LEGOLL in [32].

2.3.1 Free-energy computations

When the variables at the origin of the metastable behavior of the system are known (or
assumed to be known), it is possible to use free-energy techniques to enforce transitions between
metastable states. Of course the reliability of the methods crucially depends on the choice of the
reaction coordinate, which represents the essential degrees of freedom. The determination of these
essential degrees of freedom is a very important problem. Thus, in the following, we suppose that
a “good” reaction coordinate is given, and we are interested in the computation of free energy
differences associated with this reaction coordinate.

Remark 2.2 (Mathematical motivation for the choice of the reaction coordinate). Only
few mathematical studies have dealt with the optimal choice of the reaction coordinate. In the work
of VANDEN-EWINDEN and TAL [357] a variational definition of the reaction coordinate and the
surface separating two metastability zones is proposed. This definition is at the origin of the string
method [370] (see also the corresponding discussion in [91]).

The absolute free energy of a system is defined as

where Z = fT*M e PH(@P) dqdp is the partition function. It can be computed only for certain
systems, such as ideal gases, or solids at low temperature (resorting to the phonon spectrum) [113,
281]. However, in many applications, the quantity of interest is the free energy difference between
an initial and a final state. These differences indeed give information on the relative stabilities of
several species, and the free energy difference profile between the initial and the final state can be
used to precise the transition kinetics from one state to the other. Transitions from an initial to a
final state can be classified in two categories:

(i) the so-called alchemical case considers transitions indexed by an external parameter A
(intensity of a magnetic field, temperature, parameters of an interaction potential). The
system is then governed by a Hamiltonian Hy (or a potential V). The corresponding free
energy difference is
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/ e PH@P) qq dp
*M

/ o~ PBHo(a,p) dq dp
* M

in the reaction coordinate case, the transition is indexed through some level set func-
tion £(q) € R™ indexing submanifolds of the configuration space, and

AF = —p7tn

)

/ e~ BH(ap) 55((1)_21 dq dp
—1 In *M

e~ BH(a:p) 55((1)_% dq dp
T M

AF = 8

Recall that d¢(4)—. is the measure defined on Y(z) = {q, £(¢q) = 2} by

Se(q)—» = |VE| Hdo s,

Free energy differences are much more amenable to compute than the absolute free energy.
Classical techniques to this end fall within four main classes (see Figure 2.2 for a cartoon compa-

rison):

(i)

(i)

(iii)

(iv)

The first one, dating back to KIRKwWoOOD [194], is thermodynamic integration, which mi-
mics the quasi-static evolution of a system as a succession of equilibrium samplings (this
amounts to an infinitely slow switching between the initial and final states);

The second one, the free energy perturbation method, was introduced by ZwaNzIG [380],
and is suited to the alchemical case only. It recasts free energy differences as canonical
averages, so that usual sampling techniques can be employed. Notice also that there exist
many refinements for those two classes of techniques, such importance sampling techniques
(the umbrella sampling of TORRIE and VALLEAU [345]);

A more recent class of methods uses dynamics arising from a switching at a finite rate,
using nonequilibrium dynamics with a suitable exponential reweighting, as introduced by
JARZYNSKI in [187];

finally, adaptive dynamics may be used. In this case, the switching schedule is not imposed
a priori, but a biasing term in the dynamics forces the transition by penalizing the regions
which have already been visited. This biasing term can be a biasing force as for the Adaptive
Biasing Force technique of DARVE and POHORILLE [75], or a biasing potential in the case
of the WANG and LANDAU scheme [368] or the nonequilibrium metadynamics of TANNUZZI,
La1o and PARRINELLO [179].

We detail now to some extend these approaches in the alchemical setting, for simplicity, and
indicate how the method can be extended to treat transitions indexed by a reaction coordinate.

Thermodynamic integration

In the alchemical setting,

F(\) = L e PP qq dp.

B Jrem

Thermodynamic integration consists in remarking that F(\) = fo)\ F'(s) ds, and that the derivative

s OA
/ e~ BHx(2:p) dq dp
* M

H
/ O (g, p) 750 dg dp
F'(\) = 2L
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(a) Thermodynamic integration: a projected dy- (b) Perturbative method: an instantaneous
namics is used to sample each “slice” of the transition from the initial to the final state is
phase-space. considered.

m,,./”
(¢) Nonequilibrium dynamics: the switching (d) Adaptive dynamics: the system is forced to
speed is the same for each trajectory and is im- leave regions where the sampling is sufficient.
posed a priori.

Fig. 2.2. Cartoon comparison of the diffent techniques to compute free energy differences.

is the canonical average of aafﬁ\* with respect to the canonical measure duy = Z;l e~ PHX(a:P) dg dp.

Therefore, in practice, F’()\;) is computed by usual sampling techniques for a sequence of va-
lues \; € [0, 1] and integrated numerically to obtain the free-energy difference profile.

The extension to transitions indexed by a reaction coordinate can be done using for instance
projected stochastic dynamics (see the work by CiccorTl, LELIEVRE and VANDEN-ELINDEN [66],
recalled in Section 4.1.2). In this case, it can be shown rigorously that the derivative of the
free energy can be obtained as an average over the Lagrange multipliers associated with the
constraint £(q) fixed. Alternatively, Hybrid Monte-Carlo type approaches may be used to sample
the submanifold of fixed values of £ (see SCHUTTE and HARTMANN [151]).

Free-energy perturbation

Free-energy perturbation consists in rewriting AF' as

AF = —5*11n/ e AUHL=Ho) gy
*M
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Notice that this technique cannot be used as such to compute free energy difference in the reaction
coordinate case, since the corresponding measures d¢(q)—., and d¢g)—-, have non overlapping
supports.”

An approximation of AF is then obtained by generating configurations (¢",p™) distributed
according to duy and averaging the corresponding quantities e #(H1—Ho)(d".P")  However, it is
often the case that the initial and the final distributions dug and dp; hardly overlap, so that
intermediate steps are considered. Decomposing the free-energy change in n intermediate steps
)\i = Z/?’L

AF =~ 2 — i / e M T dpy,
Zy, M
it holds AF = AFy + -+ 4+ AF,,_1. It is expected that the overlap between du; and dp;q1 is
sufficient provided n is large.

The elementary free-energy differences AF; can be computed more efficiently using some im-

portance sampling technique, namely Umbrella sampling [345] is this context. It relies on the

[ e,
AF = — ! In L22M

3
o HO=W) gy,
T*M

following reformulation:

where dmy (¢,p) = Z~ e #W(@P) dgdp. The measure dmy should be chosen such that it has an
appreciable overlap both with dug and dgu1. This bridging property motivated the name Umbrella
sampling. Some possible choices for the umbrella function are

drw (q) = Zf/lz e~ BH1/2(a:p) dq dp.,

or using ﬁl/Q defined by the relation

7 1
dmy (q) = Zy jy P12 dgdp = 5 (dpo + dp).

The Jarzynski equality

The Jarzynski equality can easily be obtained for a system governed by hamiltonian dynamics,
starting at equilibrium, and subjected to a switching at finite rate (in a time 7' < 4o00) from
the state A(0) = 0 to the state A(T") = 1. More precisely, we consider initial conditions sampled
according to dug, and the system of non-autonomous ordinary differential equations (0 < ¢ <T)

.o OHyu
¢(t) = a—pi(fJ(f)ap(t))’
_BH)\(t)

dq;

(2.38)
(q(t),p(t))-

pi(t) =

Defining by $* the associated flow, the work performed on the system starting from some initial
conditions (¢, p) is

T
Wian) = [ P00 X0t = i@ 0,p) - Hola.p),

Indeed, with @} (q,p) = (Q(t), P(t)),

" This technique is however used in practice to compute free energy difference in the reaction coordinate
case: To this end, the free energy difference is approximated by the free energy difference associated
with the transition indexed by Vi(q) = V(q) + K(£(q) — 2»)?, for K large enough.
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BH)\(t) 6H)\(t) aH)\(t)

(@R @p) N () + 9 o

0, Q(t) +

Oy (Haw) (972 (q.p))) = -0, P(t),

and the last two terms on the right-hand side compensate each other in view of (2.38). Then,

/ e~ PW(a,p) duo(q, p) = Zo—l / e—ﬁ%@?(q,p)) dgdp = Zo—l / e~ BH1(a,p) dq dp
*M *M *M

since @g‘p defines a change of variables of Jacobian 1. The above equality can be restated as

VA4
E(e W) = 71 = o PAF, (2.39)
0

where the expectation is taken with respect to initial conditions distributed according to djug. The
extension to stochastic dynamics is presented in Section 4.1.1, following the proof of HUMMER and
SzABO [177] relying on a Feynman-Kac formula.

Extension to the reaction coordinate case

We have proposed with T. LELIEVRE and M. ROUSSET [P6] an extension of the Jarzynski
nonequilibrium dynamics to the reaction case, as well as the extension of the equality (2.39). The
dynamics relies on projected stochastic dynamics, and the equality allowing the computation of
free energy differences is still obtained using a Feynman-Kac equality (see Section 4.1.2). However,
the correct derivation of this equality requires a careful definition of the work exerted on the
system, which can be computed as some trajectorial average of the Lagrange multipliers required
to project the dynamics onto the visited submanifolds of constant values of £, minus an additional
term correcting the biais introduced by the nonequilibrium forcing (a force is exerted on the system
to force the transition, and the corresponding work should be discarded).

Degeneracy of the weights

Free-energy differences can be obtained as a nonlinear average over many realizations. The
realizations of the switching process can be straightforwardly parallelized resorting to many inde-
pendent trajectories, so that natural a posteriori error bounds are provided via the central limit
theorem. However, as elegant as the Jarzynski equality may be, it is often the case in practice,
unless the swiching is very slow, that the weights are degenerated, so that some rare realizations
rule out the average. These heuristic considerations can be made rigorous in some situations, where
analytical computations can be done. Consider the Hamiltonian

1 1
Hi(q,p) = §w2(q -2+ 51?2,

and the linear switching schedule A(¢) = ¢/T. The general solution of the hamiltonian dynamics is

q(t) = q(0) cos(wt) + Z@ sin(wt) + /Ot wsin(ws)A(t — s) ds.

For simplicity, the switching time is chosen such that w7 = 7/2 mod 7 (but the following analysis
remains qualitatively valid whenever wT # 0 mod 7). Then,

1

a(T) = 4(0) + NT) ~ =, p(T) = —wq(0) + ..

Therefore, if the initial positions are canonically sampled (that is, ¢(0) ~ w='3~Y2N(0,1)), then
the final positions and momenta are distributed respectively according to
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1 1
o(T) ~ 1= —=+w ' B72N(0,1), p(T) ~ 7+ 872N (0, 1),

It can be read from these formulas that the distribution of the configurations lags behing the
canonical distribution. Indeed, the positions for example are distributed around the average posi-
tion 1 — (wT)~! instead of 1, and the difference between the average values grows as the switching
is performed faster. It is also possible to compute the works associated with the switching:

1 2w 1 2

W = H,(q(T),p(T)) — Ho(q(0),p(0)) (0,1). (2.40)
This shows that E(W) = T-2 > AF = 0, the expectation being taken with respect to initial
configurations (g(0), p(0)) canonically distributed (for the Hamiltonian Hy), while E(e™#") =1 =
e PAF a5 expected. When the switching time is small, it is clear from the expression (2.40) that
the lower tail of the work distribution is of paramount importance to obtain correct estimates
of the free energy difference, and that very a small fraction of the work distribution will rule
out the expectation value. More precisely, denoting by P(W) the probability density of the work

distribution,

T2 4\?
E(e W) = /Re*QWP(W) aw = C/Rexp l—% <W+ ﬁ)

When T is small, the values of the work contributing the most to the integral are distributed
around —4/T?, with a standard deviation O(T). These values are however quite unlikely in view
of (2.40). The lower tail of the work distribution is related to the tails of the distribution of the
initial configurations. Therefore, unless the initial configurations can be sampled very accurately
(which asks for a large sample of starting points, as well as an unbiased and efficient sampling
method), the switching should not be performed too fast, and, in any cases, the exponential re-

weighting (2.39) must be performed.

aw.

To avoid the degeneracy of weights, especially when the switching is not slow, we have proposed
with M. ROUSSET in [P10] to use a selection mechanism on replicas of the system simulated in
parallel (see also Section 4.3.3). This selection uses an interacting system of particles, a strategy
inspired by resampling techniques (see the literature on sequential Monte-Carlo algorithms, in
particular the book by DouckT, FREITAS and GORDON [84] and the review paper by DOUCET,
DEL MORAL and JasrA [85]). In this case, it is not necessary to attach a weight to each particle,
the equilibrium being maintained at all times through probabilistic selection rules (birth/death
process): Replicas with a work lower than the average work are favoured, while the other ones are
penalized. The consistency of this approach can be shown in the limit of an infinite number of
replicas (see the works by ROUSSET [289,290]).

Another approach to compute more reliably the expectation value (2.39) is to consider this
expectation as an expectation over all possible transition paths. Path sampling strategies, possibly
combined with importance sampling techniques, can then be used [331,374] to bias the sampling
towards paths corresponding to unlikely low values of the work (see Section 4.3 for more precisions
on path sampling and its application to the computation of free energy differences).

Adaptive dynamics

Adaptive dynamics aim at spending just enough time to sample the measures du) as is needed,
while overcoming free energy barriers. To describe precisely adaptive dynamics, we proposed a
formulation in terms of a fixed point strategy in [P4] with T. LELIEVRE and M. ROUSSET (see
also Section 4.4). We present here adaptive dynamics in the alchemical setting, but all the original
formulations of this method were proposed in the reaction coordinate case.
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It is convenient to consider the extended variable X = (¢, \), where the associated reaction
coordinate £(X) = A € T. We consider here that the transition is parametrized using a potential
function V' (g, \), the corresponding canonical measures being dmy(q) = Z;le_ﬁv(q’)‘) dq. When X;
evolves according to an overdamped Langevin dynamics:

g = V(a0 M)+ IFT AW, @)
dXe = =NV (qi, \e) dt + /23~ 1 dW, |

(where W, W} are standard independent brownian motions) the measure
dIl (g, \) = Z7 e V@M dqdx

is invariant.® In principle, it is possible to use the dynamics (2.41) to sample extended configura-
tions distributed according to dII(X), and then compute free energy differences as

o eg(N2)
FMQ—FQQ——ﬁlmiREY

where the marginals Ecq of the equilibrium distribution are defined as

TN = [ eV ag
M

However, the above dynamics cannot be used as such when there are metastable features in the
free-energy difference profile F'(\) — F(0), because the values of the parameter A will remain stuck
in some subset of [0, 1]. Free energy barriers are associated with values of Ecq()\) small compared
{0 T (0).

In order to overcome these metastable features, adaptive dynamics propose to add a biasing
term in the dynamics of the variable A; in (2.41) so as to explore the whole interval [0, 1]. The bias
should also give the free energy profile in the longtime limit. To make these heuristic considerations
precise, it is convenient to resort to ensembles of realizations of some stochastic dynamics on X,
namely

dXe = —0x [V (ge, M) — Fhias (£, A)] dt + /28T dW,

where a biasing term Fais(t, A) has been introduced. The configurations of the system are then
described at time ¢ by some distribution (g, A) (in practice, this corresponds to simulating an
infinite number of replicas in parallel). The distribution of the variables )\; is given by the marginals

{ dgr = —=VV(qe, \e) dt + /281 dW{, (2.42)

TN = /M elg, ) dg.

If the biasing term Fias(t, A) indeed converges to F'(A), then the variable X subjected to the dyna-
mics (2.42) is distributed according to dIT.(q, \) = Z e PV(@N=F(N) 5o that A is distributed
according to the marginals

TN = /M exp(—BV (g, \) — FOV)) dg = 1.

8 Of course, boundary conditions should be specified for the variable . For certain reaction coordinates,
periodic boundary conditions can be used. A more detailed discussion on the appropriate boundary
conditions can be read in Section 4.4.



34 2 Molecular Simulation: A Hierarchy of Models

This means that the metastable features of the free energy profile have been removed, and all
regions are explored in the same manner.

Adaptive biasing potential

In practice, the key issue for adaptive dynamics is to propose a convenient update for the
biasing potential Fii.s(t, A). A first idea is to force the marginals ¢,(\) to converge to the target
value ¥ (A) = 1, and to rely on the dynamics on ¢; in (2.42) to obtain the right distribution of
configurations for a fixed value of A\. Assuming that the configurations of the system are instan-
taneously distributed according to 1¢(g, \) = Zt_1e’5(v(q’A)*Fb‘as(t’)‘)) (which is indeed the case if
the dynamics on the ¢ variable is much faster than the dynamics in the A variable), the update

—1
B: Fiias (t, \) = _ﬁT InP,(\) = %(F(A) — Foias(t,\) + ¢

with 7 > 0 is such that Fpias(t,\) — F()\) as ¢ — 400 (up to a constant term not depending
on \). In general, 1 (q, \) # Z; e PV(@N)=Foias(bA) hut the biasing potential is still updated as

-1

0y Foias (£, \) = In g, (\). (2.43)

-
In this case, it can be shown that, if there is a stationary point of the dynamics (2.42) with the
update (2.43), then it holds Fias(t,\) — F(A) (up to a constant). The update (2.43) is quite
natural in view of the requirement that the marginals v,()\) should be constant: when ,(\) > 1
(overexplored region), the bias is decreased, whereas the biasing term is increased in underexplored

regions, corresponding to 1,(\) < 1 (see Figure 2.3).

bias
% diffusion
1 J wa

Potential

decrease biasing potential Y !

N ’
increase, biasing’potential
N ’
N

05 1
(a) Marginal distributions (b) Free energies

Fig. 2.3. (a) Target marginal distribution in the X\ variable at time ¢ (dotted line) and current marginal
distribution (solid line). (b) Target free energy profile (solid line) and proposed biasing potential (dashed
line): In this case, the bias should be decreased in the first free energy well where the sampling is sufficient
(¥, (\) > ¥ ()\)), and increased in the second one to favour the sampling of this region.

Adaptive biasing force

In the same vein, the biasing term can be introduced as a biasing force (instead of a biasing
potential). Assuming again that the configurations of the system are instantaneously distributed
according to ;(q, \) = Z; e AV (@) =Foias(t0) the update
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for some 7 > 0 is such that the biasing force Oy Fyias(t, A) converges to 9y F(\). In the general case,
the biasing force is still updated as

1
010\ Fias(t, \) = — — O\Frias(t,N) | = ;(3>\F(/\) — O\ Frias(t, N))

571 /M 8)\‘/((]7 )‘)wt (qa )‘) dq
O e

As in the case of biasing potentials, it can be shown that, if there exists a stationary state for the
above dynamics, then Fiiais(t,\) — F(A) (up to a constant) in the longtime limit.

O01Ox Fhias(t, \) = — — O\ Fhias(t, N) | - (2.44)

With T. LELIEVRE, F. OTTO and M. ROUSSET [A1] (see also Section 4.4.2 for a mathematical
proof in a simplified case and a brief introduction to the mathematical techniques required for the
proof), we could write a proof of convergence of the dynamics (2.44) in the limiting regime 7 — 0.
The proof relies on the introduction of an entropy function for the measure v;, and its decompo-
sition into a macroscopic contribution (associated with the marginals 1),) and a microscopic part
(depending only on the conditioned measures 1/;/1/,). On the other hand,

3@t = O Eta

which implies the convergence of the marginals ¢/, and the decay of the macroscopic entropy. The
decay of the microscopic entropy is ensured when the conditioned measures s (-, \) /¥ (\) sa-
tisfy a logarithmic Sobolev inequality with a constant uniform with respect to A\. From a physical
viewpoint, this expresses the fact that the dynamics for fixed A are uniformly ergodic. Finally, the
rate of convergence is the minimum between the macroscopic convergence rate (diffusive explo-
ration) and the microscopic convergence rate (related to the logarithmic Sobolev constant). The
extension of the proof to the reaction coordinate case follows the same lines but requires to modify
slightly the dynamics (2.44).

Enhancing the convergence

The above formalism using ensemble of realizations naturally suggests a parallel implemen-
tation of the dynamics through replicas constructing a common biasing term. This plain parallel
implementation can however be enhanced through some selection process on the replicas (see [P4]).
Indeed, in the above heuristic analysis, it seemed important to have a uniform sampling of the
accessible space in the A variable (the reaction coordinate in this setting). A selection process
(jump/branching process) can be surimposed to the diffusion dynamics (2.42) to duplicate repli-
cas in underexplored regions (innovative particles) and eliminate replicas in overexplored regions.
It is, in some sense, a non-local procedure, complementary to the diffusion process, to equilibriate
the distribution of the values of the reaction coordinates as fast as possible. Numerical results in
a simple case can be found in [P4] (see also Section 4.4.1).

2.3.2 Tackling the time-scale problem

We present in this section some strategies to reach longer simulation times. Tackling the time-
problem is more difficult than tackling the space-problem, since parallel implementation strategies
are usually limited by the sequential nature of time.
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The parareal strategy

A noticeable exception to the above intrinsic limitation is the parareal strategy, introduced by
LioNs, MADAY and TURINICI in [213], and then applied to the field of molecular dynamics in [18].
The parareal strategy consists in a cheap sequential part, the proposition of a coarse trajectory of
the system using a coarse integrator (large time-step or coarse force-field), which is then refined
in parallel; this procedure is repeated until convergence.

Taking larger time-steps

It is a typical situation in molecular dynamics that the potential energy is the sum of a rapidly
evolving term and a term evolving on much longer time scales:

V(Q) - ‘/slow (q) + ‘/fast (q) (245)

The fast term may arise from stiff components in the potential energy (or degrees of freedom with
small associated masses), and is generally much cheaper to evaluate than the slow term. Indeed,
the fast term usually corresponds to close range interactions, and the cost of its evaluation scales
linearly with the system size. On the contrary, the slow term often corresponds to long-range
interactions, whose cost scales quadratically with the system size.

When V is given by (2.45), the time step used for the integration of the dynamics is dictated
by the fast part of the potential. There are several methods to handle this issue:

(i) when the fast term comes from stiff components in the potential, and these stiff components
are considered to penalize some constraints (an almost constant bond length in a molecule

for instance), it may be advantageous to resort to constrained dynamics, as is done in
RATTLE [8] and SHAKE [295];

(ii) multiple time-step methods may be used. The fast forces are then evaluated with a
time step At close to the time step used in the standard velocity-Verlet algorithm, whe-
reas the slow forces are evaluated with a larger time step Afgow. One such algorithm
is the so-called Impulse method [141, 347], which corresponds to a Strang splitting of
the original Hamiltonian in two terms, H = Hgow + Hiast With Hglow(¢,2) = Viiow (),
Hiost (p, q) = Veast(q) + %pTM’lp. However, numerical resonances require the slow force
evaluation time step Atgow to be smaller than half the period of the fast movement [31,119].
So, Atglow is still restricted by the highest frequency modes (see also [146, Chap. XIII] for
a comprehensive review in the case when the fast term is harmonic).

Kinetic Monte-Carlo approaches

In Kinetic Monte-Carlo (KMC) algorithms, a list of metastable states and events that may
happen in the system (possible transitions between metastable states) is considered. The system
can be an all-atom system, or a reduced version of the all-atom system (for example, for events
happening on a cristal, the atoms of the cristal are not represented, and only the defects, such as
vacancies, interstitial atoms and aggregates, are considered; this approach is the so-called Object
KMC).

For simplicity, we present here only the equilibrium KMC algorithm, for which the list of
events and their occurence probabilities are fixed (techniques to update the list of events on the
fly have also been developed, see HENKELMAN and JONSSON [158]). It is assumed that the events
occur at random times distributed according to a Poisson distribution. Indexing by i the possible
events, with rates r; (so that the corresponding random times are distributed according to the
density e~ "it), the KMC algorithm, first proposed by BorTZ, KALOS and LEBOWITZ [37] in the
context of material science (and independently proposed later by GIiLLESPIE [129,130] to treat
chemical reactions) is
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KMC ALGORITHM

Algorithm 2.1. Consider a list of M possible events ¢ = 1,..., M, with associated reaction
rates r;. Starting from some initial configuration of the system and t° = 0,

ri

M
=177

(1) choose an event k, according to the discrete probabilies (w;);=1,.. a with w; =

(2) perform the move corresponding to the event k;

(3) increment the time by a random time distributed according to an exponential distribu-
M
tion of parameter Zﬁl rpn Tl =gt 4 A E er ;
j=1
(4) go to Step (1).

This algorithm is not efficient as such when the rates span several orders of magnitudes, since
in this case, the less unfrequent events are performed very often in the KMC algorithm, and the
time increments are not large (of the order of the smallest typical time of the possible events).
In this case, GILLESPIE and PETZOLD [131,132] have shown how to perform some time coarse-
graining based on the 7-leap method, in order to obtain a chemical Langevin equation or even
some deterministic kinetic equation.

Another route is to remark that events happening almost simultaneously but far away one
from each other may be treated as independent events. Domain decomposition techniques for
KMC [309] are based on this idea, the main challenges being the synchronization of time in the
different subdomains and the treatment of events happening at the boundaries of the subdomains.
Some spatially adaptive coarse-graining may also be considered [63].

Computation of reaction rates

The most important and time-consuming part in a KMC computation is actually the computa-
tion of the reaction rates of the possible events. These events are transitions from one metastable
state to the other, so that, when the temperature is not too high (and entropic effects are not
too important), these metastable states are local minima of the potential energy surface. In this
case also, the transition states between two local minima are saddle-points of the potential energy
surface, located along the minimum energy path bridging the initial and the final state. The lo-
cation of the saddle-point on the minimum energy path is due to the Large Deviation Theory of
FREIDLIN and WENTZELL [112].

We describe here techniques used in many practical computations, which rely on the Reactive
Flux method of BENNETT and CHANDLER [26,60], and on the Transition State Theory (TST),
introduced in the 30s by EYRING and WIGNER [102,371]. The first step in all these methods is
to localize transition states, which are saddle-points of order 1 of the energy surface (the Hessian
matrix has only one negative eigenvalue),” and to parametrize the transition from one metastable
state to the other using some reaction coordinate (or collective variable, or order parameter) £(q),
such that the transition state corresponds to X = 5_1{%}. The normal to the surface X at ¢ € X
is denoted by n(q). The reactant region is A = ¢~1[0, 3), the product region is £~*(3, 1]

The forward reactive flux (measuring escapes from A to A°) is then defined, for a time ¢, as
the forward flux through the dividing surface (see Figure 2.4, Left):

9 This localization is done using some method to follow the eigenvectors corresponding to one of the
lowest eigenvalues of the Hessian matrix, starting from the bottom of the energy well.
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n(q(0)) - — La (q(t))e P dos(q,p)
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/ Lac(g) e PH@P) dgdp
*M

ky(t) =

The backward reactive flux k_(¢) is defined in a similar manner. In practice, this expression reaches
a plateau value for times t < (k4 (0)+%_(0))~!, and this limit is the reactive flux rate. The choice
of the dividing surface X' is very important for practical implementations since a bad choice of
this surface leads to many recrossings, and few transitions (see Remark 2.2 for an optimization of
the interface).

Fig. 2.4. Left: Schematic picture of the flux leaving region A through the dividing surface. Some attempts
are successful (trajectories ending outside of A), others are not (trajectories ending on the left of the
dividing surface). Right: Harmonic TST approximation.

The classical TST rate constant is actually k(0), i.e. it corresponds to the reactive flux value
when recrossings are discarded (which corresponds to setting ¢ = 0), and is an upper bound for
the true rate. The TST approximation is therefore not suited for diffusive processes. Harmonic
TST is the further approximation that the rate constant can be written as

LHTST BE,

=rpe ",

where the activation energy FE, is the difference between the energy of the saddle-point and the
local minima from which the escape is attempted, and vy is homogenous to a frequency (see
Figure 2.4, Right). Harmonic TST can be derived rigoroulsy in the one-dimensional case for a
harmonic potential under the assumption SE, > 1 (see e.g. [178, Section III.A]). In the mutli-
dimensional case, the harmonic TST rate is given by the VINEYARD expression [362]

3N mi
LHTST _ Hi:l 2 o—BEa
- 3N—1  gad ’
L= v
where (V;nin)i:LMgN are the frequencies of the Hessian matrix at the bottom of the energy well,

and (v524),1  3ny_1 are the positive frequencies of the Hessian matrix at the saddle-point.
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Sampling reaction paths
Transition Path Sampling

Transition Path sampling (TPS) is a technique developed by BoLHUIS, CHANDLER, DELLAGO
and GEISSLER [80, 81] which allows to sample reactive paths (for a fixed time interval T'). A
reactive path is defined in this context as a trajectory (deterministic or stochastic) starting in
some initial subset A of phase-space and ending in another region B of phase-space at time T
This can indeed be a challenging task with straightforward MD when high free-energy barriers
separate both regions. This is even more challenging when many local minima separate both states,
and no convenient reaction coordinate can be found (the corresponding free-energy surfaces are
said to be rough).

TPS is a method to sample paths bridging A and B once an initial reactive path is given.
More precisely, the corresponding algorithm is a Metropolis-Hastings algorithm with a convenient
proposition function allowing, starting from a reactive path at the n-th iteration, to propose a
modified (hopefully reactive) path at iteration n + 1. When the underlying dynamics is determi-
nistic, an efficient proposal function consists in choosing randomly a time along the trajectory,
modifying slightly the momenta of the particles at this time, and integrating the dynamics forward
and backward in time (see the review paper by DELLAGO, BOLHUIS et GEISSLER [81] for more
precisions). When the underlying dynamics is stochastic, for instance when a Langevin dynamics
is considered, the latter algorithm is often still used (the dynamics is integrated forward and ba-
ckward in time using a new realization of the brownian motion), so that the proposition of a new
path uses only some information at a given time along the trajectory. In particular, the specific
realization of the brownian motion which led to the transition is completely discarded, and so,
the probability to obtain a new reactive path may be low, especially if the transition is diffusive.
Inversly, CROOKS and CHANDLER [74] proposed to keep completely the realization of the brownian
motion that led to the transition, except on a small time interval. In this case, the proposal path is
very similar to the previous path, and the iterations in the Metropolis-Hastings algorithm may be
very correlated. I proposed in [P1] an approach generalizing the two techniques presented above:
in this framework, a path is represented as its initial conditions and the specific realization of the
brownian motion that led to the transition. A new path is proposed by selecting a time at random
along the trajectory, but integrated forward and backward using a new realization of the brow-
nian motion correlated to the previous one (the amout of correlation being a tunable parameter).
Numerical tests show that this new algorithm is indeed interesting (see [P1] and Section 4.3)

Computation of reaction constants

The sampling of the path ensemble allows the computation of rate constants for transitions
from A to B (which can be used for KMC computations for instance). More precisely, starting at
time ¢ = 0 with replicas of the system all located in A, it holds

~ (1a(q0)1B(q))
O = @)

for times Tmel < t K Tyxn, and where (-) denotes an average over all possible paths (see |81] and
Section 4.3 for more precisions on the measure used in path-space). The times 7,01 and 7y are
respectively the molecular decorrelation time and the typical reaction time, namely

~ kABt,

1
kap +kpa

Trxn —

In practice, it is possible to sample only paths of a prescribed temporal length and to compute
from the resulting sample whether C(¢) scales linearly. The precise procedure to extract the rate
constant from those simulations is explained in [81, Section 4.4].
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Finding a convenient initial path is a difficult task in practice. Some strategies are proposed
in [81]. It is also possible to enforce progressively the paths to end up in B. In this case, free-energy
techniques can be used provided some order parameter defining the end region B is known. This
was done by GEISSLER and DELLAGO in [122] using nonequilibrium switching dynamics. This can
also be done with several paths switched in parallel, using a selection procedure to ensure that
the final sample of paths is not degenerate (see [P1] and Section 4.3.3).

Path sampling formulated as a stochastic partial differential equation

In TPS, a path is represented as a numerical trajectory, that is, a sequence of configurations
separated by a time At. In particular, the measure on path space depends on the time step chosen,
and the results are not formulated in an intrinsic manner. From a mathematical viewpoint, it is
interesting to formulate the path sampling problem at a continuous level. In the formulation of
HAIRER, STUART, VOss and WIBERG [147,330], the sampling of paths linking an initial state xg
to a final state z1 (bridge path sampling) is formulated as a stochastic partial differential equation
(SPDE). Ouly then, this SPDE is discretized so that paths can be computed in practice. This
way, more efficient numerical algorithms can be proposed (see BESKOS, ROBERTS, STUART, and
Voss [29)]).

Accelerated dynamics

Several techniques were proposed to accelerate molecular dynamics computations. We present
here three strategies, proposed by VOTER, from the most rigorous to the most approximate one
(i.e. relying on less and less assumptions).

Hyperdynamics

The Hyperdynamics method, introduced by VOTER in [365], is reminiscent of Umbrella sam-
pling techniques (see Section 2.3.1). The idea is to counsider a bias potential AV > 0 acting only on
the wells of the energy minima, so that the dynamics is unaffected near transition states (saddle-
points of the energy landscape). In this manner, for a simulation time ¢ (algorithmic time), the
systems spends less time near the bottom of the energy wells, and more time in the transition
regions. The accumulated physical time is

¢
thyper = / AAVI) (s > t,
0

so that the speed-up factor tnyper/t > 1. The key challenge in this method, as in all Umbrella
sampling methods, is the construction of the bias potential for many-dimensional problems. Some
proposals were made in [364] (using a hessian-based potential) or in [243] (relying on the assump-
tion that transitions can be detected by significant changes in some bond lengths).

Parallel Replica dynamics

This method, proposed by VOTER in [366], enables to parallelize (with a linear scaling) the time
evolution for true infrequent transitions in a system, under the assumption that the escape times
are exponentially distributed. The method relies on the mathematical remark that the sum of M
exponentially distributed random variables (with parameter 7) is also exponentially distributed,
but with a parameter M. Therefore, unless a transition occurs, it is equivalent to simulate one
system or several independent replicas of the system, and adding the associated simulated times
to give the corresponding simulation time of a single system.

A practical implementation of this idea is that several replicas of a same system are simulated
on different processors, and whenever a transition from one metastable state to another one occurs,
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the simulation is stopped. The total simulation time is incremented by the sum of all simulation
times, all replicas start from the new metastable state (the successful system is replicated) and
some decorrelation is performed, then the parallel time integration until the next transition is
started again. This strategy can be used even if the processors do not have the same speeds.
However, some care has to taken to detect transitions properly. A classical procedure to this end is
a quenching procedure using some gradient descent method, checking at convergence whether the
geometry at the basin minimum has changed. Applications of this method can be found in [367].

Temperature Accelerated dynamics

This technique, proposed by SORENSEN and VOTER in [317], can be applied to infrequent event
systems when harmonic TST is a good approximation. The typical application is radiation damage
for very long times. The system is simulated at some higher temperature 7'y, while the dynamics
of interest is for a temperature 7 < T,. Starting from some metastable state, the attempted
escapes out of this metastable state are intercepted, and the corresponding harmonic TST rate
are computed. More precisely, for the i-th escape event at time ti, the rate is

i _ i —FE!/kpT
kY = vge /B+,

so that the corresponding transition time t* associated with the lower temperature T is

L E (1 1
t7=t+exp E E—T—+ .

After this computation, the system is reflected back in the metastable state, and the simulation
continues. Assuming some lower bound on the prefactors v, it is possible to derive an upper
bound on the simulation time required at the higher temperature in order to be sure that (say)
95% of the transitions at the lower temperature have occured. Finally, the system undergoes the
transition event with the smallest time ¢’ , and the simulation time is advanced by ¢’ . The main
limitation to this approach is that the temperature 7'y cannot be too large in practice, otherwise
harmonic TST is no longer valid.

2.3.3 Reduced dynamics

Some dynamics can be explicitely reduced in some limiting regime. This is the case for some
model systems (see below for the case of a system coupled with a deterministic heat bath composed
of harmonic oscillators). Even if this is not possible in general, a formal analysis may suggest
a reasonable form for the reduced dynamics, and some parameter estimation then has to be
performed to reproduce as well as possible the simulation results obtained for the original model
with the reduced model.

Reduced dynamics in the case of a coupling with a deterministic heat bath

For a particle coupled to many harmonic oscillators, ZwWANz1G [379] formally showed that the
limiting dynamics on the coupled particle is a generalized Langevin equation (with memory).
This formal proof was put on firm mathematical grounds by KUPFERMAN, STUART, TERRY and
TUPPER in the case of a single particle harmonically coupled with bath particles [199].

In [P11], T have used such a coupling with harmonic bath degrees of freedom to model
shock waves using a one-dimensional atom chain model. Although this simplified model is one-
dimensional, it captures some effects of higher dimensional models, in particular some relaxation
of the energy behind the shock front, which allows to correct the non-physical behavior of one-
dimensional chains under shock loading (see also Section 5.1 for more precisions on the limiting
dynamics when the number of degrees of freedom of the heat bath goes to infinity).
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Dissipative Particle Dynamics models

Dissipative Particle Dynamics is a mesoscopic model introduced in 1992 by HOOGERBRUGGE
and KOELMAN [170], and later put on firm thermodynamic grounds by ESPANOL and WARREN
in 1995 [98]. The primary aim of DPD was the modeling of complex fluids, based on the heuris-
tic coarse-graining that droplets or blobs of fluids (that is, a collection of molecules moving in a
coherent fashion) can be replaced by single mesoscopic particles, interacting through conservative
(pairwise additive) and viscous forces with their neighbors, while subjected to some thermal mo-
tion. What is not always clear in those models, is the typical physical length and time scales of
the problem (how ’mesoscopic’ it is).

DPD models may be derived from (all-atom) microscopic models for harmonic one-dimensional
atom chains [94] (see also the limiting equation obtained in [P11] and Section 5.1, which is of ge-
neralized DPD type). In a more general context, FLEKKOY, COVENEY and DE FABRITIIS [106]
motivate the dynamics using Voronoi cells. In all cases, the all-atom deterministic dynamics is
replaced by a stochastic dynamics, where the deterministic part arises from some average beha-
vior of the system, and the stochastic part models the fluctuations around the average behavior
resulting from the degrees of freedom which are no longer treated explicitely.

As can be seen from the equilibrium measure of the dynamics (see (2.46)), the conservative
part of the dynamics accounts for thermodynamical properties of the system, while the friction
and fluctuaction parts enhance the viscosity of the system [97]. The DPD dynamics reads

1
2
dpi =Y =V V(rig) dt — 1 (rig) (vis - eij)es; dt + %X(ﬁj)dWij €ij
i
with — P; i
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where the standard one-dimensional Wiener processes W;; are such that W;; = —Wj;. DPD is
therefore such that the global linear momentum and the global angular momentum are preserved
(since all interactions, including friction forces and random terms, are pairwise additive).

Still denoting H(g,p) = 2p" Mp + V(q) with V(q) = > i<icjen Y(7ij), it can be shown that
the measure

X a weighting function (with support in a ball of radius r., r. being some cut-off radius), and

du(q,p) = % exp (—BH (q,p)) dqdp (2.46)

(where Z is a normalization constant) is an invariant probability measure of (5.35) since it is
a stationary solution of the Fokker-Planck equation associated with (5.35) (see [98]). However,
proving the ergodicity of DPD is a difficult task. The only result to this date is due to SHARDLOW
and YAN who showed the ergodicity of DPD when the configuration space is a one-dimensional
torus, and under certain conditions on the interaction potential, the weighting functions, and
provided the density of the system is large enough.

Notice finally that DPD-like models may help to bridge the gap between particle discretizations
of Navier-Stokes equations (such as the Smoothed Particle Hydrodynamics of Lucy and MONA-
GHAN [217,246]) and all-atom models. A first step to such a general formalism in the equilibrium
case is proposed by ESPANOL and REVENGA in [96].

Interaction potential between particles

Choosing a good potential describing interactions between the mesoscopic DPD particles is a
question that has been addressed from different viewpoints. There are three typical approaches:
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(i) use some averaged force, arising as some thermodynamic average (the mean force obtained
in free-energy computations) [97, 142|, or some short-time average [109] of a complete
dynamics. The mean force exerted by a particle located at go on a particle located at ¢ is
defined as [142]:

Vo V(g)e PV Ddgs...dgy ]
Vo Va1, q) = = —Bvql Mmg(lgr — g2))],
/e_ﬁv(‘” dgs ...dgn

where ¢(r) is the pair distribution function. For droplets of fluids, this equation may
be extended to describe interactions between center of masses of the droplets at a fixed
distance (still averging the interaction forces);

(ii) search for some optimal pair potential, fitting the parameters of a potential with a given
functional form through some criteria (usually, a least square fit of the results to static
equilibrium thermodynamic properties computed for some reference all-atom system);

(iii) using more complicated effective potentials, for instance anisotropic (to take steric effects
into account).

Many (most) studies follow the second approach. In particular, Inverse Monte-Carlo techniques [219,
279] aim at recovering the radial pair distribution function g(r) (using the one-to-one mapping
between ¢(r) and a pairwise potential V(r), see [155]). Other important quantities are thermo-
dynamic coefficients (such as the compressibility), or equations of state (pressure as a function
of density, see for instance [245] for a model protocol). Sometimes, transport coefficients are also
considered, in particular the self-diffusion constant. It is important to note that the effective po-
tentials computed these ways depend on the thermodynamic regimes where the fitting was done.
This is particularly clear when the effective interaction force is the mean force, or is obtained from

one given radial pair distribution function.
Application to shock and detonation waves

There are many refinements and variants of the DPD model (2.46). In particular, it is possible
to consider DPD models where the particles have an internal energy ¢;. These models are known as
DPD models with conserved energy (DPDE) since the evolution of the internal energy variable is
postulated in a manner that the total energy of the system H/(q, p)+ Zfil €; is preserved (which is
non-trivial since the dynamics is stochastic). The idea is that the dissipated mechanical energy is
transformed into internal energy. DPDE was proposed independently by AvaLos and MACKIE [15]
and EsPANOL [95].

In [P7], I have used a slightly modified DPDE dynamics to propose a mesoscopic model for
shock waves. In this model, one (meso)particle stands for a complex molecule, the internal energy
of the particle being € = NyeakpTint/2, where Tiy is the internal temperature, and Nyq the
number of degrees of freedom not explicitely represented (for a molecule composed of N, atoms
in dimension d, it holds Nyeq = 2d(Nat —1)). Replacing a complex molecule by a single particle was
already done in the context of shock waves by STRACHAN and HOLIAN [326], but the associated
dynamics is physically less attractive than DPD like dynamics. Simulation results demonstrate
that a good agreement with all-atom results can be obtained with such a reduced model (see [P7]
and Section 5.2.2 for more precisions).

The DPD formalism also allows an extension to the modeling of detonation waves. Detonation
waves are, roughly speaking, shock waves initiating exothermic chemical reactions as they passes,
the energy liberated by the chemical reactions enhancing and sustaining the shock. The modeling
of detonation requires the introduction of an additional variable, a progress variable A describing
the progress of the chemical decomposition (seen as some progress on a free energy profile). The
dynamics can be split into three elementary physical processes:
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(i) the dynamics on (g, p, €), analogous to the dynamics of inert materials;
(ii) the evolution of chemical reactions through some kinetics on the progress variable;

(iii) the exothermicity of the reaction: energy transfers between chemical and mechanical plus
internal energies have to be precised.

We have proposed such a model with J.-B. MAILLET and L. SOULARD (see [P2] and Section 5.2.3),
and the first numerical results obtained are encouraging.

Effective diffusion in the reaction coordinate

This last section presents an interesting domain for further research: the determination of some
average or effective dynamics on the reaction coordinate. Indeed, since the reaction coordinate
represents some macroscopic or global variable of the system, or at least some slowly evolving
degree of freedom, it is natural to seek an effective equation for its evolution where the remaining
degrees of freedom would enter only in an average way, through some stochastic forcing or memory
effects. Two problems can be distinguished in such an approach: First, the analytic form of the
dynamics must be postulated or derived, and this form may vary depending on whether the
underlying dynamics is hamiltonian or stochastic; second, once the general form of the dynamics
is obtained, some parameter estimation must usually be done in order to fit precisely the reduced
dynamics to the (possibly partially) observed microscopic data.

Reduction of the hamiltonian dynamics

A general procedure to reduce a deterministic dynamics to obtain an effective dynamics for
a subset of the initial degrees of freedom is to use a projection operation introduced by MORI
and ZWANZIG [250,379]. The idea is to integrate exactly (though only formally) the undesired
degrees of freedom, which appear in the dynamics of the remaining degrees of freedom through
some memory term and a random forcing (related to uncertainties on the initial conditions).
We present the general lines of the Mori-Zwanzig procedure following GIvON, KUPFERMAN and
STUART [134], in the case when ¢ = (x,%) with € R™, y € RN =™ For the general case of
reaction coordinates ¢ : R — R™, additional geometric difficulties are introduced, but an
analogous derivation can be performed (see [136]). We denote by p = (ps,py) the momentum
associated with g.

For (z,y) € X x ) evolving according to the dynamics

{X = f(X.Y), (2.47)

Y =g(X,Y),

which is assumed to have dp(X,Y) as an invariant (positive, bounded) measure, the following
projection operators can be introduced:

X, Y)dp(X,Y)

/y dp(X,Y)

3

I(X,Y)=X, Pf(X)= /3’

The solution of (2.47) can then be rewritten as

X(t):Pf(X(t))—i-/O K(X(t—s),s)ds +n(X(0),Y(0),t).

The forcing term n and the memory term K are related through a fluctuation/dissipation relation,
and are defined respectively by the equation
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o= (1d—P)Ln,  n(X,Y,0) = f(X,Y) - Pf(X),

and the relation
K(X,t) = PLn(X,Y,t),

where £ is the Liouville operator £ = f(X,Y)-Vx + ¢(X,Y) - Vy.

When (2.47) is the hamiltonian dynamics, initial conditions can be assumed to be distributed
according to the canonical measure, which determines the measure to be used for the projection
operator P. This leads to the following projected dynamics defined on R?™:

G ()= () )+ [ Kot 50.8)ds 4 (0,500 0.p00). 0, (249

where M, is the mass matrix associated with the variable p,, and V() is the potential of mean
force:

Viz) = LW e VY gy, (2.49)

16} RAN—m

The effective dynamics is therefore a hamiltonian dynamics, with two additional terms: a memory
term, and a forcing term arising from the undetermination on the initial conditions. The latter
term is a random forcing term when the initial conditions are random (and in the limit N — +o0,
see for instance [199] for a rigorous proof in a simple case).

However, it is important to note that the limiting equation (2.48) obtained by this projec-
tion technique is not simpler than the original hamiltonian equation posed in RV, In practice,
it is nevertheless a convenient starting point to propose approximate dynamics on the reaction
coordinate.

Reduction of stochastic dynamics

Certain reduction of all-atom dynamics are done starting from a stochastic dynamics. We
present here a classical derivation in the simple case ¢ = (z,y) with z € R™, y € RIV=™_ for the
dynamics

dg; = =YV (gr) dt + /2~ dW;,

W being a standard dN-dimensional brownian motion. When the variables of the system can be
partitioned into slowly evolving variables = and rapidly evolving variables y, the variables y are
present only through some mean action on the variables z. This idea can be made rigourous using
some fictitious rescaling of the time in the y variables according to (e > 0)

da§ = =V, V(x,y5) dt + /26~ HdWT,
231

€

1
dy; = ==V, V(zy,yp) dt + awy,

€
where Wi, W/ are independent standard brownian motions, of dimensions m and dN — m res-
pectively. In the limit e — 0, an effective dynamics on x is obtained as

dX, = —V,V(X,) dt + /281 dW,, (2.50)

W, being a standard m-dimensional brownian motion, and V() the potential of mean force (2.49)
(see PAPANICOLAOU [266] and the pedagogical book by PavLioTis and STUART [268, Chapters 10
and 11] for more precisions on the meaning and the validity of this limit). This approach can be
extended to general reaction coordinates (see [91, Section 10]). In this case, the limiting dynamics
is of the general form

dX: = f(Xy) dt + o(Xy) dt, (2.51)
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the functions f and o depending on the choice of the reaction coordinate.

An alternative derivation of the dynamics (2.51) relies on the work of GYONGY [144]. Indeed,
for a reaction coordinate ¢ : R — R, Ito calculus using (2.50) shows that

delar) = (~VV a0) - V€(ar) + 57 Acla)) de-+ V2T V(0| g
Introducing the dynamics
_ V(q) - dW;

dXi = f(t, X¢)dt + o(t, X¢) dBy, 4By = [VE(qr)|
t

with
ft,2) =B (=VV(q) - VE(q:) + B Aar) [E(ar) = 2), o(t,z) =E(|VE(@)| |€(a) = =),

the results of |144] show that the laws of X; and {(¢:) are identical. A dynamics of the form (2.51)
can be obtained under the assumption that the conditional distributions of ¢; are independent of
time, and are in fact conditioned canonical measures. In this case, the above conditional expecta-
tions can indeed be computed as

/ @) eV OVe(g) T dg
E(h(q) [&(q) = 2) = £-1(2)

/ V@ Ve ()| dg
£ ()

Parameter estimation for the limiting equation

Depending on whether the starting dynamics is deterministic or stochastic, it is possible to
obtain reduced dynamics of generalized Langevin type such as (2.48), or dynamics with a multipli-
cative noise such as (2.51). In both cases, to simulate in practice such dynamics, some preliminary
parameter estimation must be performed.

For dynamics of Mori-Zwanzig type (2.48), a usual approach is to postulate some functional
form for the potential of mean force V, the memory term and the noise term. The corresponding
parameter estimation can then be performed starting from a sample of observed values of the
reaction coordinate and using statistical techniques such as maximum likelihood estimations (see
for instance the review paper by BIBBY and SORENSEN [30] on parameter estimation for ellipic
diffusions, or the work of POKERN, STUART and WIBERG [271] in the hypoelliptic case). These
statistical estimations can also validate or invalidate the functional form postulated a priori for
the different terms.

Statistical techniques can of course also be used for dynamics of the form (2.51) (see for ins-
tance HUMMER [176]). For the moment however, most approaches rely rather on the so-called
equation-free techniques (see, in the context of effective dynamics, KOPELEVICH, PANAGIOTO-
POULOS and KEVREKIDIS [196], as well as [373]). These methods start from an ensemble of inde-
pendent microscopic configurations associated with a fixed value of the reaction coordinate, and
study the short-time evolution of the distribution of the values of the reaction coordinate to obtain
approximations of the drift term f and the multiplicative noise term o in (2.51).



Part 11

Sampling Techniques in Molecular Dynamics






3

Phase-space sampling techniques

3.1 Purely stochastic methods .............. .. ... . i, 52
3.1.1 Rejection method ...... .. ... . .. 52
3.1.2  Rejection control . ... ... ... . ... 54
3.1.3 Metropolized independence sampler ....... ... ... ... .. .. ... ... 54
3.1.4 Importance sampling ......... ... . . e 58
3.2 Stochastically perturbed Molecular Dynamics methods ........... 58
3.2.1 General framework for NVE Molecular Dynamics .................. 59
3.2.2  Hybrid Monte Carlo ....... ... . .. .. .. . 59
3.2.3 Biased Random-Walk .. ... ... ... . .. . .. 71
3.2.4  Langevin dynamics . .......... .. e 74
3.3 Deterministic molecular dynamics sampling ..................... 79
3.3.1 The Nosé-Hoover and Nosé-Hoover chains methods ................. 79
3.3.2 The Nosé-Poincaré and the Recursive Multiple Thermostat methods .. 80
3.4 Numerical illustrations . ........ ...ttt ennnns 81
3.4.1 Description of the linear alkane molecule ............. ... ... .. ... 82
3.4.2 Discrepancy of sample points .. ........ ... ... .. L 83
3.4.3 Choice of parameters .............. ... .. 85
3.4.4 Numerical results ........ ... . . 89
3.4.5 Improvement of the convergence rates............................. 90
3.4.6 Computation of correlation functions .......... ... ... .. ... ..... 92
3.5 Stochastic boundary conditions .........ccviii ittt iians 92
3.5.1 Review of some classical stochastic boundary conditions............. 93
3.5.2  An example of thermal boundary conditions ....................... 95
3.6 Some background on continuous state-space Markov chains and
PLrOCESSES t v et et oonetonoeesaseanssonssonsesanssssassanaaans 101
3.6.1 Some background on continuous state-space Markov chains .......... 101
3.6.2 Some convergence results for Markov processes. .................... 110

In this chapter, we present and compare, from both a theoretical and a numerical point of
view, sampling methods to compute phase space integrals of the form

W= [ Aaputa), (3)

or time-dependent properties
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B0 = [ B0 @.0) d (32)
*M

where @; is the Hamiltonian flow. In the above expression, M denotes the position space (also
called the configuration space), and T*M its cotangent space. A generic element of the position
space M will be denoted by ¢ = (q1,- -+ ,qn) and a generic element of the momentum space R3Y
by p = (p1,---,pn). The mass matrix is M = Diag(myq,...,my). The measure p is the canonical

probability measure:
dp(q, p) = Z~ " exp(—BH (g, p)) dq dp, (3.3)

where 5 = 1/kgT (T denotes the temperature and kg the Boltzmann constant) and where H
denotes the Hamiltonian of the molecular system:

Hgp) = 50" M'p+ V(o) (34)

Recall that the measure du(q,p) can be written as du(q, p) = dn(q) dk(p) with

dr(p) = P(p)dp = Z, " exp (—ngMlp) dp, (3.5)

and
dr(q) = f(q)dg = Z;'e PV (@ dg. (3.6)

Since it is straightforward to sample from the momentum distribution (3.5) (it is a product of
independent Gaussian densities), the actual issue is to sample efficiently from the (position space)
measure 7 given by (3.6).

In this chapter, new convergence results on the Hybrid Monte-Carlo sampling scheme are stated
(see Section 3.2.2) and various numerical methods to compute integrals such as (3.1) or (3.2), are
reviewed and their efficiencies are compared on a benchmark system (simple alkane molecule).
More precisely, we consider the issue of sampling from the canonical measure (3.3).

All the methods considered in this chapter consist in generating a sequence of points (¢")nen
in the position space. These methods can be classified in four categories:

Type 1. (¢")nen is a sequence of independent realizations of a given random variable of density
flg) = Z—efﬁv(q); this is the case for the standard Rejection and for the Rejection control
methods;

Type 2. (¢")nen is a realization of a continuous state-space Markov chain, for which 7 is an
invariant measure; this is the case for the Metropolized independence sampler and for the
Hybrid Monte Carlo method;

Type 3. (¢")nen is an approximation of (g, Jneny where (g)¢>o (resp. (qi, pt)i>o0) is a sample path
of a stochastic process on M (resp. on T*M), for which 7 (resp. u) is an invariant
measure; this is the case for the biased Random-Walk (resp. for the Langevin dynamics);

Type 4. (¢")nen is an approximation of (q(t,))nen where (q(t),p(t),z(t))i>0 is a trajectory of
a deterministic extended dynamical system (¢ and p are the physical variables, while
2 represents some additional variables; see Section 3.3 for more details); this extended
dynamical system is such that it preserves a measure dp whose projection on the physical
variables ¢,p is the measure du given by (3.3); this is the case for Nosé-Hoover, Nosé-
Poincaré and Recursive Multiple Thermostat methods.

The first two questions we will adress are relevant for all the methods mentioned above:
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N—-1
1
Question 1. An observable A(g) on M being given, does the empirical mean N E A(g"™) converge
n=0

to the space average / A(q) dn(q)?
M

Question 2. If so, can the speed of convergence be estimated?

For methods of Type 1, the answers to Questions 1 and 2 are obviously positive and are direct
consequences of the Law of Large Number (LLN) and of the Central Limit Theorem (CLT) for
independent identically distributed (i.i.d.) random variables. For the methods of Type 2, Ques-
tions 1 and 2 can be positively answered, at least for compact position spaces M and under some
assumptions on the potential energy V. For Question 1, the point is to check (see Theorem 3.1
and Section 3.6 below) that

m is an invariant probability measure of the Markov chain, (3.7)

and that the probability transition kernel P(q,-) of the Markov chain' satisfies the accessibility
condition
Yge M, VYBeBM), u*B)>0 = P(¢,B)>0, (3.8)

where B(M) is the Borel o-algebra of M and pu" is the Lebesgue measure on M. Turning to
Question 2, a convergence rate of N~/2 can be obtained when the transition kernel P has some
regularity properties, and provided some Lyapunov condition holds true (see Theorem 3.2 and
condition (3.11) below).

For the methods of Type 3, analogous results can be stated at the continuous level (for the
underlying Markov processes). In computations, discrete-time approximations are used, and one
recovers the case of a Markov chain, and the same kind of results as for methods of Type 2 hold
true. For methods of Type 4, no general convergence result is known.

In the case when the sequence (¢")nen originates from a Markov chain on M or from a
discretized stochastic process on M or on T* M (methods of Types 2 and 3), additional questions
arise. Indeed, instead of considering ome realization starting from a given initial data, it is also
possible to generate samples with the same computational cost by considering several shorter
realizations starting either all from the same point or from different points (which constitute a
pre-existing initial distribution). In this case, typical convergence results involve weighted total
variation norms for the probability measures that are generated. In the sequel, we will often refer
to this kind of convergence as the "convergence of densities" since, when the n-step probability
transition kernel? P"(q,-) of the Markov chain and the invariant probability measure both admit
densities with respect to the Lebesgue measure, the convergence in total variation norm implies
the L! convergence of the densities. We can thus formulate the following two questions:

Question 3. Does ||P"(q,-) — 7| converge to zero when n goes to infinity for some (weighted)
total variation norm?

Question 4. If so, can the speed of convergence be estimated?

Again, if 7 is an invariant probability measure and if the accessibility condition (3.8) holds true,
the answer to Question 3 is positive (see Theorems 3.3 and 3.4 below). A geometric convergence
rate in p" for some p € (0, 1) in some weighted total variation norm can also be obtained when the

' 1f g € M and B is a Borel set of M, P(q, B) is the probability for the Markov chain to be in B when
starting from q.

2 For ¢ € M and B a Borel set of M, P"(q, B) is the probability for the Markov chain to be in B when
starting from ¢ after exactly n steps. It is inductively defined from P by P°(¢q, B) = 15(q) and the
induction rule

P"(q,B) = /M P(q,d¢d)P"" (¢, B).
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transition kernel P has some weak regularity properties and provided some Lyapunov condition
holds true (namely condition (3.31) below, see Theorem 3.8). Let us point out that the Lyapunov
condition (3.31) providing geometric convergence of the densities is not of the same nature as the
condition (3.11) providing a convergence rate of the average along one sample path.

Let us mention that, in some applications, integrals such as (3.1) are sometimes computed using
Blue Moon sampling techniques [54, 65, 370]. In this case, integrals over submanifolds (generally
hypersurfaces) of M have to be estimated. For such computations, the theoretical analysis is
the same as the one presented here. From the numerical viewpoint, algorithms adapted to the
constraint of sampling a hypersurface (and not the whole space) have to be used, namely projected
algorithms for stochastic dynamics (see e.g. [66] and Section 4.1.3) and SHAKE or RATTLE
algorithms for deterministic evolutions (see [146, Chap. VIL.1.4]).

This chapter is organized as follows. We first describe and compare from a theoretical point
of view the most popular methods to sample from the canonical distribution. In Section 3.1,
we consider purely stochastic methods; stochastically perturbed Molecular Dynamics methods
and deterministic thermostatting methods are presented in Section 3.2 and 3.3 respectively. In
particular, in Section 3.2.2, we present some new convergence results for the Hybrid Monte Carlo
scheme (see Theorems 3.7, 3.9 and 3.10). A summary of the main known results is presented in
Table 3.1. We refer to the corresponding sections for notations and further explanations, and to
Section 3.6 for some theoretical background on Markov chains and processes.

We then turn to a practical application of those methods in the case of linear alkane molecules
in Section 3.4. The fact that some methods may work better than others, and that this depends
on the situation at hand, is commonly accepted. However, these beliefs are usually only based
on some qualitative comparisons, or on comparison with experimental data. In the latter case,
discrepancies between numerical results and experimental results can come both from numerical
and modelling approximations, so it is not easy to draw conclusions specifically on the numerical
methods. Comparing the methods in a quantitative way is one of the main purpose of this study.

Finally, an application of the previous sampling methods to compute time-dependent properties
using stochastic boundary conditions is presented in Section 3.5.

3.1 Purely stochastic methods

Purely stochastic methods consist in generating points in the position space according to the
measure dr(q) = f(g) dq given by (3.6), without refering to any physical dynamics of the system.

We briefly recall here four methods, the Rejection, Rejection control, Importance sampling, and
Metropolized sampling methods. They all make use of a reference positive probability distribution
9(q), such that (i) it is easy to generate samples from g, and (ii) ¢ is a “good” approximation of f,
in a sense that will be made precise below.

3.1.1 Rejection method

The Rejection method [215] requires the knowledge of a probability density g which bounds f
from above up to a multiplicative factor ¢ > 0:

[ <cg, (3.9)

and from which it is easy to generate samples. For instance, when M = T3¥ (molecular system
with periodic boundary conditions) and the potential energy V' is bounded from below, a uniform
density g may be used (but its efficiency is likely to be very poor). The idea of the method is to
draw proposals according to the density ¢ and to accept them with probability f/(cg).
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Name Rejection control independence Monte-Carlo Random-Walk dynamics dynamics
sampler (MIS) (HMC)
Sampling from MH with MH with Elliptic Hypoelliptic Extended
Method the true independent MD proposals diffusion diffusion MD system
density proposals
Type iid Markov Markov Markov Markov ODE
variables chain chain process process
MC LLN MC LLN MP LLN MP LLN
Questions 1, 2 LLN (conditions on the (conditions on the (Lyapunov (Lyapunov Open
proposal function) potential energy) condition) condition) question
Any textbook Section 3.1.3 and [237] Section 3.2.2 Section 3.2.3 Section 3.2.4
Uniform ergodicity Geometric ergodicity Geometric ergodicity
Questions 3, 4 - when a bounding Ergodicity (Lyapunov (Lyapunov Open
function exists condition) condition) question
Section 3.1.3 Section 3.2.2 Section 3.2.3 Section 3.2.4
Numerical MH with Euler-Maruyama BBK algorithm or Operator
discretization - - velocity-Verlet or MALA higher order schemes splitting
Section 3.2.2 Section 3.2.3 Section 3.2.4 Section 3.3
Type - - Markov Markov Markov ODE
chain chain chain discretization
Same techniques Classical No result for usual
Convergence - - and results as for the MC techniques schemes / results for Open
continuous scheme specific schemes question
Section 3.2.2 Section 3.2.3 and [283] Section 3.2.4
Free Sampling Proposal Time step At, Time step At Time step At, Number /values of
parameters function g function g Integration time 7 Friction coefficient ¢ thermostat masses,
time step At
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Actually, a bound on the (non-normalized) distribution f(q) = Z,f(q) = e #V(® is sufficient
to run the algorithm. Such a bound reads f < ¢g, and is much easier to establish in practice since
the normalization constant Z, is unknown and very difficult to estimate. The proposals are then
accepted with probability f/(ég).

Finding a function g such that the constant ¢ appearing in (3.9) is as small as possible is very
important. It is indeed well-known [215] that, on average, generating one sample point requires ¢
draws, that is ¢ evaluations of the potential energy V', which is by far the most computationally
expensive part of the calculation. This constant c¢ is therefore of paramount importance. When
the system dimension is small, it is usually possible to find g such that ¢ is not too large, and
therefore the method is very efficient. But when c is very large, the method is totally inefficient.
In molecular simulation, it is usually very difficult to construct efficient sampling functions g for
systems involving more than a few atoms. This can however still be done for some specific systems,
such as crystals at low temperature, using Taylor expansions around the equilibrium position, and
controlling the relevance of the expansion by Rejection control techniques (see Section 3.1.2 below).

Since the points generated by the Rejection algorithm are independent realizations of some
random variable, usual convergence results such as the Law of Large Numbers and the Central
Limit Theorem apply [137]. Let A be some observable over the position space, (¢")o<n<n—1 be
the sample generated by the method, and let us set

Sn(4) =Y A" (3.10)
If 7(JA]) < 400, then the Law of Large Numbers holds true:

1
lim —Sy(A) = / A(Q)f(q)dg = / Adr  as.
M M
If 7(]AJ?) < +o0, then the Central Limit Theorem holds true. There exists y4 > 0 (in fact,y4 =
7(|A]?) — 7(|A])?) such the following convergence in law holds:

(N7a)"28n(4) = N(0,1),
where A = A — / Adm and N(0,1) is the standard Gaussian random variable.
M

3.1.2 Rejection control

It is often tricky to find a function g such that (3.9) is satisfied everywhere in M. However, it
is sometimes possible to find a sampling function g for which (3.9) is satisfied for most proposals
g generated from g¢. In this case, the Rejection method presented in the previous section can be
somewhat modified so that the non-global character of the bound is taken into account.

The Rejection control scheme [64,215] allows one to handle proposals that violate the inequa-
lity (3.9) by an appropriate a posteriori reweighting. Let us just note here that this scheme can
be recast [64] as an Importance sampling scheme, a method we will recall in Section 3.1.4.

3.1.3 Metropolized independence sampler

When c is large, the Rejection method may require many evaluations of the potential energy V.
As ¢ is unknown in practice, it is difficult to estimate a priori the computational efficiency of
the method. Therefore, a stochastic method with a fixed computational cost could provide an
interesting alternative.



3.1 Purely stochastic methods 55

The Metropolized independence sampler (MIS), presented e.g. in [215, Section 5.4.2], is one such
method. Basically, it is a Metropolis-Hastings algorithm [153,238] with i.i.d. proposals. Therefore,
the generated sequence of points forms a Markov chain (see [240] for some definitions and properties
of continuous state-space Markov chains).

Metropolis-Hastings algorithm

We first recall the general idea of the Metropolis algorithm [238], which was later generalized by
Hastings [153] to provide a general purpose sampling method (see also Section 4.3 and Section 6.1.1
for non trivial applications of the Metropolis-Hastings algorithm to the case of path sampling and
Variational Monte Carlo respectively). We present it here on the configurational space M, and
consider that we have a rule to generate proposal configurations ¢’ starting from the current
configuration ¢, and that this proposal function is characterized by the probability density P(q, q")
(It is also called ’generation probability’ or 'transition density’ in the field of molecular simulation).

METROPOLIS-HASTINGS ALGORITHM

Algorithm 3.1. Starting from some initial configuration ¢°, and for n > 1,

n+1

(1) Propose a move from ¢" to q according to the transition density P(q",¢"*1);

(2) Compute the acceptance rate

o™ = min (f(c}”“)P(é”“,q”) 1) .
f@)Plgn, g+t 7 )7

(3) Draw a random variable U™ uniformly distributed in [0, 1] (U™ ~ U]0, 1]);

1 _ ~n+l.
e _q+7

(ii) if U™ > a™, reject the move and set ¢" ™1 = ¢".

(4) go to Step (1).

(i) if U™ < o™, accept the move and set ¢

We denote by P the transition kernel of this Markov chain. It is easily seen that
P(q,d¢') = r(q,4")P(q,q') dq’ + (1 — /r(q,q”’)P(q,q") dq"> Sg,

where the density (g, -) is given by

(q,¢') = min (l, W) |

f(@)P(g,q")

By construction, dr(q) = f(gq) dg is an invariant measure [215].

The key point in all Metropolis-Hastings schemes is to find an efficient proposal function.
In particular, there is always a trade-off between the acceptance and the decorrelation rate of
the Markov chain. Indeed, if the acceptance rate is low, the obtained sample is degenerate, and
not statistically confident. On the other hand, to increase the acceptance rate, more correlated
iterations can be used. In this case the method is more likely to remain trapped in local minima,
and the numerical ergodicity rate may be slow.

Metropolized independence sampler

We assume that the potential energy V is continuous. Considering an everywhere positive

probability density g, let us set P(q,¢’) = g(¢’) and w(q) = @ This version of the Metropolis-

9(q)
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Hastings is called the Metropolized independence sampler (MIS). The algorithm we will use is
therefore as follows:

METROPOLIZED INDEPENDENCE SAMPLING

Algorithm 3.2. Consider an initial point ¢°. For n > 1,
(1) generate a point ¢ in M from the density g;

2) generate a random number U™ ~ U[0, 1];

w(q™)

(2)
(3) if U™ < min {1, w(@) } set ¢"*t1 = §, otherwise, set ¢"+! = g";
(4) replace n by n + 1 and go back to step (1).

Convergence of the average along one sample path

Let us now recall some convergence results for Markov chains, which, applied to the specific
cases of the Metropolized independence sampling, will provide convergence results. Let us denote
by A some observable on the position space and by (¢™),en one realization of the MIS Markov
chain starting from a given ¢°. The question under examination is that of the convergence of the

empirical mean NSN(A) toward A(q) dn(q) where 7 is the canonical measure defined by (3.6)

and Sy (A) is defined by (3.10).

First, 7 is an invariant measure due to general results on Metropolis-Hastings algorithms [215].
Therefore, condition (3.7) is satisfied. Condition (3.8) is also trivially satisfied whenever the support
of f is a subset of the support of g. This is the case here since we have chosen a function g whose
support is the whole position space M.

Since conditions (3.7) and (3.8) are satisfied, a Law of Large Numbers (LLN) holds for almost
all starting points, and Question 1 can therefore be answered positively. Indeed, recall the following
theorem:

Theorem 3.1 ( [240, Theorem 17.1.7]). Suppose conditions (3.7) and (3.8) are satisfied. Then,
for any measurable function A € L(x),

. 1
ngnoo NSN(A):/MAdW a.s.

for almost all starting points ¢° € M, where Sy (A) is defined by (3.10).

To obtain a convergence rate on Sy(A), an additional condition is needed, such as:

There exist two measurable functions L > min{1, A} and W > 0, a real number b
and a petite set C' such that (3.11)
AW (q) < —L(q) + blc(q), m(W?) < 400,

where A is the observable under consideration and AW (q) is defined by
Vo € M, AW(g) = (PW)@) = Wia) = | Pla.dyW) W) (3.12)

The definition of petite sets can be found in [240]. Let us make the following remark, which
will be very useful:
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Remark 3.1. Under some regularity conditions that will always be met here (including the fact
that the chain is weak Feller [240, Chap. 6]), all compact subsets of M are petite sets and the
Markov chain is Doeblin [89]. As a consequence, when the state space M is compact, the condition
(8.11) holds true (choose C = M, W and L arbitrary smooth functions and take b large enough).

Condition (3.11) allows one to obtain a Central Limit Theorem (CLT). For a given measurable
function A such that 7(JA|) < 400, let us formally define the function A by the following Poisson
equation:

—AA=A—7(A), (3.13)

where A is defined as in (3.12). It is not clear in general whether A is well-defined. This turns out
to be the case when condition (3.11) is satisfied, and allows to state a CLT:

Theorem 3.2 ( [240, Theorem 17.5.3]). Assume conditions (5.7), (5.8) and (3.11) hold true,
and let A be a function such that |A| < L. Let Sy(A) be defined by (3.10). There exists a function
A which satisfies (3.13), and the constant v = w(A% — (PA)?) is well-defined, non-negative and
finite. If ¥4 > 0, then, defining A = A — w(A),

(NY2) 7255 (A) — N(0.1),

N —o0
this convergence being in law.

Since conditions (3.7), (3.8) and (3.11) are satisfied for the MIS chain, Question 2 can be

3

answered positively for almost all starting points ¢°.

Convergence of the densities

To handle convergence of densities, it is necessary to introduce the total variation norm for a
signed Borel measure v, defined as

v|| = sup v(h)|= sup v(A)— inf wv(A). 3.14
|| || h measurable, \h|§1| ( )| AeB(M) ( ) AeB(M) ( ) ( )

Notice that convergence in total variation implies weak convergence.

Definition 3.1. A chain on M is ergodic when
Vge M,  lim [[P"(q,-) — [ =0

where 7 is the invariant measure and P™ is the n-step probability transition kernel.

Recall the following theorem:

Theorem 3.3 ( [240, Theorem 13.3.4]). If conditions (3.7) and (3.8) hold true, then
1P (q,) ==l =0 asn— oo

for m-almost all starting points q.

The convergence in total variation norm implies convergence of the expectations only for boun-
ded observables A. It is therefore not sufficient in practice. Fortunately, the ergodicity results can
be strengthened in a straightforward way. For a given measurable non-negative function W > 1,
let us define the W-total variation norm for a signed Borel measure y as

[pllw = sup [(P)]. (3.15)
h measurable, |h|<W

Then Theorem 3.3 can be readily extended to m-integrable functions A.
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Theorem 3.4 ( [240, Theorem 14.0.1]). Suppose that A > 1 is measurable and w(|A|) < 4o0.
If conditions (3.7) and (3.8) hold true, then for mw-almost all ¢ € M,

[[P"(q,") =7l 4y =0 asn— oo

Since conditions (3.7) and (3.8) are satisfied, the MIS Markov chain is ergodic and Theorems 3.3
and 3.4 hold true. This answers Question 3.

Under an assumption which is reminiscent of the Rejection method setting, a simple uniform
convergence rate (independent of the starting point ¢°) can be obtained:

Theorem 3.5 ( [237, Theorem 2.1]). If the probability density g used in the metropolized in-
dependence sampling scheme is such that

de, Vg e M, flq) < cy(q),
then the scheme is geometrically ergodic with a uniform bound. In this case, for all ¢° € M,
1P™(q% ) =7l < (1 —eh)m.

This theorem gives an answer to Question 4. Note that in the particular case when ¢ = 1 (that
is when f = g since both functions are probability densities), the convergence is already achieved
for n = 1. This is actually clear since in this case the MIS scheme samples from the true density!

3.1.4 Importance sampling

Importance sampling is a well-known general stochastic integration method. The underlying
idea is to recast the integral E (A) = / A(q) f(q)dq as
M

B = [ (a0 50) s

and to approximate the latter integral through a random sample (¢")o<n<n—1 drawn according
to the density g (see e.g. [215, Section 2]).

The choice of the trial function g is crucial for the overall efficiency of the method. It should be
a good approximation of f or, better, of f(q)A(q). Since f is typically of exponential or Gaussian
form, and A is most often bounded by a polynomial, f is usually the most important term in the
product f(q)A(q) as far as sampling issues are concerned. Besides, in applications, it is often the
case that several integrals have to be computed, with different functions A. So g is often looked
for as a good approximation of f.

Let us note that, for the computation of static quantities, the importance sampling method
based on a density g outperforms the Rejection method based on the same density g [64].

3.2 Stochastically perturbed Molecular Dynamics methods

We first present in Section 3.2.1 the general framework of deterministic microcanonical (NVE)
MD. In Section 3.2.2, we describe the Hybrid Monte Carlo (HMC) method, from both the theo-
retical and the numerical viewpoints, and give some new convergence results (see Theorems 3.7,
3.9, 3.10). We then present the biased Random-Walk (BRW) in Section 3.2.3, and the Langevin
dynamics in Section 3.2.4.

We assume in the sequel that 7% M is globally diffeomorphic to M x R3*V and actually identify
the two sets for simplicity. We also assume that M is globally diffeomorphic to R*" in Sections 3.2.3
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and 3.2.4, and identify the two sets as well. Straightforward modifications allow to handle the
other cases (such as systems with periodic boundary conditions or isolated systems parametrized
by rigid-body motions and internal coordinates).

3.2.1 General framework for NVE Molecular Dynamics

The equations of motion

W= Gy a) = a0 (3.16)
dfz_g’f) _ —aa—zl(q(t),p(t)) = —VV(q(t)),

associated with the Hamiltonian (3.4) can be numerically integrated e.g. by the celebrated velocity-

Verlet algorithm [360]
At

prE=pt = VIV ("),
g™t = ¢+ At M/, (3.17)
At
pn—i-l _ pn+1/2 _ 7vv(qn+l),

where At is the time step. The velocity-Verlet scheme is an ezplicit integrator: recall that in
Statistical Physics one often considers systems with a large number of particles, making implicit
algorithms untractable. The numerical flow associated with the velocity-Verlet algorithm shares
two qualitative properties with the exact flow of (3.16): it is time reversible and symplectic, which
are very important properties as far as the long time numerical integration of Hamiltonian dyna-
mics is concerned (see [146, Chap. VIII and IX] and [205]). This algorithm also asks for a unique
evaluation of the forces F' = —VV per time step. For all these reasons, it is the most commonly
used algorithm in molecular dynamics.

The dynamics (3.16) cannot be used to generate points according to the canonical measure,
because the energy (3.4) is preserved by the flow. Hence, the trajectory of the system remains on
the submanifold of constant energy

T*M(Eo) = {(q,p) € T*M; H(q,p) = Eo}

where Ey = H(qo,po) is the energy of the initial data. Under some assumptions, the dynamics
(3.16) can be used to compute microcanonical (NVE) ensemble averages, that is, averages over
T*M(Ep). The numerical analysis of this method (in the very simple case of completely integrable
systems) can be read in [48,49,203]. To generate points according to the canonical measure, there
is a need for stochastic perturbations to ensure that different energy levels will be explored, and
eventually all of them. These considerations straightforwardly extend to the numerical case since
symplectic methods such as (3.17) almost preserve the energy over extremely long times [146, Chap.
IX].

3.2.2 Hybrid Monte Carlo
Presentation of the method

The Hybrid Monte Carlo method allows one to generate points in the position space distribu-
ted according to the canonical measure (3.6). It aims at combining the advantages of molecular
dynamics (that approximates the physical dynamics of the system) and of Monte Carlo methods
(that explore the position space more globally). It is in fact a Metropolis-Hastings algorithm, in
which proposals are constructed using the NVE Hamiltonian flow of the system. This method has
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been first introduced by Duane et al. in [88] and partially analyzed from a mathematical viewpoint
by Schiitte in [301]. This method can be seen as a generalization of the Andersen thermostat me-
thod [7]. It has been used in [302,303] to identify the metastable conformations of some biological
systems.

In the standard HMC setting, the sequence of generated positions forms a Markov chain of
order one defined as follows:

HYBRID MONTE CARLO

Algorithm 3.3. Consider an initial configuration ¢ € M and 7 > 0. For n > 0,

(1) generate momenta p™ according to the canonical distribution (3.5) and compute the
energy E™ = H(q",p"™) of the configuration (¢", p");

(2) compute @, (g™, p™) = (p™7,¢™"), that is, integrate the NVE equations of motion (3.16)
on the time interval [0, 7] starting from the initial data (¢”, p");

(3) compute the energy E™™ = H(¢™7,p™7) of the new phase-space configuration. Accept
the proposal ¢™7 with probability

o™ = min (1,e7ﬁ(EnJ*En)) ;

more precisely, generate a random number U™ ~ [0, 1], and set ¢"*! = g7 if U™ < "

and ¢"T! = ¢" otherwise;

(4) replace n by n + 1 and go back to step (1).

Let us emphasize that the proposal ¢™7 would always be accepted at step (3) if the NVE
equations of motion, that are energy conserving, were integrated exactly. In practice, the time-
step At used in the numerical integrator (3.17) can be chosen larger than in standard applications
of MD since the dynamics of the system used to generate proposals is not constrained to accurately
reproduce the physical dynamics of the system. On the other hand, it should not be too large;
otherwise, the rejection rate would be large and the efficiency of the method would be low.

Let us notice that in the standard HMC method, only the end points of the MD trajectories are
part of the sample. It is not completely clear whether taking into account the intermediate points
of the generated MD trajectories in the sample would bias the sampling, e.g. if the final point is
rejected, should these intermediate points be kept? See [256] for some work in this direction.

Let us also mention that there exist several refinements of the standard HMC scheme. In order
to improve the acceptance rate, one could use a criterion based on a shadow Hamiltonian to
accept or reject the new point [150,184]. The idea is that this shadow Hamiltonian is preserved
more accurately than the Hamiltonian (3.4) by the numerical trajectory. The bias introduced by
this modification is corrected by a convenient reweighting, in the spirit of importance sampling.
Another improvement consists in generating, after each NVE trajectory of length 7, some new
momenta which are correlated with the previous ones [173,191]. Of course, both approaches can
be combined [2].

Convergence of the average along one realization

As above, let us denote by A some observable on the position space and by (¢")nen one
realization of the HMC Markov chain starting from a given ¢°. Let IT; be the first coordinate field
of the phase-space: IT1(q,p) = q.

Convergence results for the HMC scheme have been published by Schiitte in [301]. In this proof,
the NVE Hamiltonian flow is assumed to satisfy two conditions:
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(A) a mizing condition, which reads as follows (see [301, Assumption 4.27]): for every pair of
open subsets B, C' C M, there exists ng € N such that

Wi > o, / T"1¢(q)f(g) dg > O,
B

where f is given by (3.6) and the function T'u is defined for any function u : M — R by

Tu(q) = [ u(iho- () P dp (3.13)

where @ is the Hamiltonian flow. This condition amounts to a certain accessibility of the
whole position space when starting from any point;
(B) a so-called momentum invertibility of the flow condition (see [301, Definition 4.1]). The
flow @, is called momentum-invertible if the two following conditions hold true:
(i) for almost every ¢ € M, there is an open set M(q) C R3" such that the function
Yq 1 p— ILiP_-(g,p) is locally invertible in M(q), that is, det V,y, # 0 for p €
M(q)-
(ii) there is an 1 > 0 such that

ess-inf P(p)dp =n.
€M Mg

This condition states that the transition probabilities are bounded from below in some
sense.

The following convergence result is given in [301]:

Theorem 3.6 ( [301, Lemma 4.31 and Theorem A.24]). Under the assumptions (A) and
(B) recalled above, for any measurable function A € L*(x), it follows

N—-1

.1 ny
A}gnoo N Z A(¢™) = /M Adr  as. (3.19)

n=0

for almost all starting points ¢° € M, where (¢")nen is the sequence of points generated by the
HMC Algorithm 3.3 where, at step (2), the NVE equations of motion (3.16) are exactly integrated.

Note that ergodicity results have also been proved [301, Corollary 4.33], as well as convergence
results on the numerical flow [301, page 96] (in this latter case, (¢")nen in (3.19) is the sequence of
points generated by the HMC Algorithm 3.3 where the NVE equations of motion (3.16) are now
numerically integrated).

The conditions (A) and (B) recalled above are difficult to check in practice, and furthermore,
it is not clear whether they are necessary. We present here a new convergence result, that does
not require these assumptions.

Let us first consider the case when the NVE equations of motion are integrated exactly. The
transition kernel P of the HMC Markov chain is defined by

V(0. B) e MxBM).  P@.B)= [ ima men Pl (3.20)

where the density P is the canonical distribution on the momentum space given by (3.5).

As the phase-space canonical measure y = 7 ® k is an invariant measure for @, it is clear that
the position-space canonical measure 7 is an invariant measure for the HMC Markov chain (see
e.g. [215, Section 9.3] for details). Therefore, condition (3.7) holds true.
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We now consider the accessibility condition (3.8). This condition is not satisfied in general, for
any potential energy. Consider for example a one-dimensional particle (M = R) of mass m = 1

1
subjected to the potential energy V(q) = §q2. Then the solution ¢(t) starting from ¢° with

momentum p° is given by
q(t) = q° cos(t) + p°sin(t).

As already noticed by Mackenzie in [221], taking 7 = 27 leads to ¢(7) = ¢” whatever the choice
of p°. The condition (3.8) is therefore clearly not satisfied, and the Markov chain is not ergodic.
Of course this spurious effect only arises for special choices of 7. It is also linked to the fact that
the period of the trajectory of the harmonic oscillator does not depend on the initial momentum.

To prove the accessibility condition (3.8), a first way is to make the additional assumption that
the potential energy is bounded from above. We acknowledge that this assumption is often not
satisfied in practice. Nevertheless, for some potential energies that do not satisfy this assumption,
it is still possible to prove an accessibility condition by some explicit constructions, specific to the
system at hand (especially in the case of a singular central potential energy, see below). We will
also consider in Section 3.2.2 another possibility, based on random integration times 7, that can
be used for a larger class of potentials.

We now turn to proving the accessibility condition (3.8) under the assumption that V is
bounded from above. This is the result of the following Lemmas.

Lemma 3.1 (HMC accessibility - exact flow). Let 7 > 0. Assume that V is in C*(M) and
is bounded from above. Then for any q,q' € M and any neighborhood V' of ¢, there holds

P(q,V') > 0.

Proof. The proof is based on the least action principle (LAP). Let us denote by

st) = [ (597 Méto) - viota)

the action associated with the path ¢ € H = {¢ € H'([0,7], M) | $(0) = q, ¢(7) = ¢'}. Since V
is bounded from above, there exists Fy such that V(q) < Ey for all ¢ € M. Thus, S is bounded
from below:

ﬂwzi[vwmwz—&r

Therefore, there exists a minimizing sequence (¢, )nen € H such that S(¢,) — infyep S(P) = s >
—o0. Without restriction, it can be assumed that s < S(¢,,) < s+ 1 for all n € N. Thus,

/T OF () My, (t) dt = 28 () + 2/T V(hn(t)) dt < 25(¢n) + 27Ey < 2(s + 1) + 27 Ep.
0 0

Therefore, (¢n)nen is bounded in L2([0,7], M). The sequence (¢, )nen is then bounded in the
space H'([0, 7], M). Let ¢ € H*([0, 7], M) such that (up to extraction) ¢, — ¢ in H*([0, 7], M)-
weak and ¢,, — ¢ almost everywhere. Since H is convex and closed in H*([0, 7], M), the limit ¢ is
actually in H. Besides, it is easy to check that liminf,, ., S(¢,) > S(¢) (by lower semi-continuity
on the kinetic energy and Fatou lemma on the potential energy), and this gives immediately

inf S(v) = min S(v) = S(¢).

YeH YeH

Thus ¢ minimizes S on H. Therefore, the equation

M¢p=—-VV(p) (3.21)
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holds true on (0,7) in the distributions sense. By standard regularity results, ¢ € C2%([0, 7], M)
and (3.21) holds true in the sense of continuous functions. Hence the function ¢ is simply the
solution of the Hamiltonian dynamics with ¢(0) = ¢, ¢(7) = ¢’ and initial velocity ¢(0).
Consider eventually a neighborhood V' of ¢’. Then P(q,V’) > 0 is a straightforward conse-
quence of the continuity of the solutions of (3.21) with respect to the initial velocity ¢(0). 0

Lemma 3.1 gives accessibility from any point to any open set. It is therefore not enough for
condition (3.8) to hold true since it requires accessibility from one point to any arbitrary Borel set
of positive Lebesgue measure. This asks for some regularity of the transition kernel, and in fact,
some regularity of the dynamics, inferred from stronger assumptions on the potential energy V.
More precisely, we have the following lemma:

Lemma 3.2 (HMC irreducibility - exact flow). Assume that V € C'(M) is bounded from
above and VYV is a globally Lipschitz function. Then the transition kernel of the HMC Markov

chain satisfies
Vg e M, VB € B(M), u*"(B)>0= P(q,B) > 0.

Proof. Consider B € B(M) such that p"¢*(B) > 0, and ¢ € M. We want to show that P(¢q, B) > 0
for P defined by (3.20). For the sake of simplicity, we assume here that all particle masses are
equal to 1.

The proof is based on volume conservation in the phase space: any Borel set of final positions of
strictly positive measure can be reached from ¢ and a set of momenta of strictly positive measure.
Denote I5(q) = {p € R*N | II,®,(q, p) € B}, and consider the function § : I(g) — B such that
0(p) = I, (q, p). This function is surjective according to the proof of the accessibility Lemma 3.1,
so that 6(Ig(¢)) = B. Moreover, P(q,B) = / P(p) dp. Therefore, since P is positive and

I5(q)
continuous, it is enough to show that p"**(Iz(q)) > 0 in order to get P(q, B) > 0.

We proceed by contradiction. Suppose pt°?(I5(q)) = 0. We first note that 6 is Lipschitz (of
constant Lip(#)) since VV is continuous and globally Lipschitz by assumption, and 7 > 0 is fixed.
Indeed, denote C' the Lipschitz constant of VV and note that a solution of the equations of motion
can be written as

q(1) =q+pr - /OT(T —5)VV(q(s))ds.

For two different initial momenta p; and ps, we have

t
06) = 0] < o1~ polt +.C [ (= 5)laa(s) ~ (sl

0

By Gronwall lemma, there exists ¢, < 400 such that

lq1(7) — q2(7)| < ¢r|p1 — p2l,

hence 6 is Lipschitz.

Since the Lebesgue measure and the Hausdorff measure H3Y agree on R3Y (see [101, Sec-
tion 2.2, Theorem 2]), and since the behavior of the Hausdorff measure under Lipschitz mappings
is known [101, Section 2.4, Theorem 1], we obtain

Pt (B) = P (0(15(a))) = KN (0(I5(a))) < Lip(0)*VH*N (Ip(q)) = Lip(0)*" u"" (15 (q)) = 0.
This gives u*?(B) = 0, in contradiction with the assumption p*®(B) > 0. 0

Since conditions (3.7) and (3.8) are satisfied, a Law of Large Numbers (LLN) holds true for
almost all starting points (see Theorem 3.1). We can therefore answer positively to Question 1:
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Theorem 3.7. Assume that V. € C*(M) is bounded from above and VV is a globally Lipschitz
function. Let (¢")nen be the sequence of points generated by the HMC Algorithm 3.3 where, at
step (2), the NVE equations of motion (3.16) are exactly integrated. Then

| Nl §
N ;A(q )—»/M A(q)dr a.s.

for almost all starting points ¢° € M.

Convergence of the HMC scheme has been established above for smooth potentials, possibly
under certain boundedness assumptions on the potential V or its derivatives. However, in many ap-
plications, non-globally smooth potentials are used. Central potentials, such as the Lennard-Jones
or the Coulomb potential, are some famous examples of singular potentials commonly considered
in biology or physics. We present here some results concerning the convergence of the HMC scheme
for a single particle in a central potential decaying sufficiently fast at infinity (such as |¢|™® for «
large enough). Only the accessibility properties of the chain are stated explicitely, the rest of the
proof following the same lines as for the usual HMC scheme.

In view of the reversibility of the NVE equations of motion, to show that any point ¢, can be
reached in two steps from a point ¢y, is equivalent to showing that the end points of the trajectories
starting from ¢; and ¢o coincide. This is the following

Proposition 3.1 (HMC accessibility for one particle in a decreasing central potential).
Consider a central potential V(q) = V(|q|) € C1(R?\ {0}) such that q¢-V'(q) <0, VV is lipschitz
on R3\ B,(0) for all a > 0 with a constant C, such that lim,_.., C, = 0, and |VV| is bounded on
R3\ B,(0) for all a > 0. Consider qi,qz2 € R3\ {0} such that q1, the singularity 0 and g2 are not
aligned in this order (there is no A > 0 such that ¢¥ = —\qS). Then there exist p1,p2 such that the
solutions of the equations of motion

Z=-VV(z)
starting respectively from qi1,qs with momenta p1, p2 coincide at the time T.

The proof is based on an explicit two-step construction. If ¢;, 0 and g2 are aligned in this order,
then an additional configuration g3 not aligned with the previous ones should be considered. Hence,
one can go from ¢; to g2 by four trajectories of time length 7. These results can be extended to
more general potentials such as the Lennard-Jones potential in a simple way.

Proof. We consider two points ¢, ¢9 and the corresponding initial momenta p?,p3. The two par-
ticles are assumed to be of identical masses 1, the general result following after straightforward
modifications. Then,

qi(t) = qf +pt — /0 (t—s)VV(qi(s)) ds,

0 0
and, setting p = p — L= + p (using a “small” parameter p),

0_ 0 t
q2.p(t) = 3 + <p(1) - g) t+pt — / (t —5)VV(ga,p(s))ds. (3.22)
0

We look for p such that g2 ,(7) = ¢1(7). This condition can be rewritten as

p=1 [ 6=V aapls) - TV (@) ds = Flo)
0

Under this form, we recognize a fixed-point equation, trivially verified by p = 0 in the case VV = 0.
The idea is then solve this equation for VV small. This can be done if the trajectories move away
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from the singularity in 0. To this end, the momentum p{ has to be taken large enough, and p has
to be small compared to p{.

We now formalize these heuristic considerations. Notice first that the initial momentum p{ can
be chosen so that the particle moves out from 0. Indeed, using polar coordinates (r,0) for the
particle position ¢ € R?,

O (r?) = Ou(x - ) =2(1¢]* —q- VV(q)) = —2rV'(r).
By integration,

Oe(r?)(t) — 9 (r?)(0) > — /Ot 2r(t)V'(r(t))dt > 0. (3.23)

So, if the initial conditions are such that d;(r?)(0) > 0, the distance r of a particle to the origin is
increasing. Let us set
M= sup [VV(q)|, K=Mr. (3.24)

lg|>min(|q?|,93])

Since

(g1 - 01)(0) = 247 - pY,
0 0 qg - q?
O(q2,p - q2,p)(0) = 25 - (pl +p - T) )
and considering p and p{ such that
% —qf

Pl <K, dy-pl>a =—+Klgl, ¢l -p) >0, (3.25)

it follows 9;(g1 - ¢1)(0) > 0 and (g2, - g2,)(0) > 0. Let us note that, because ¢?, the singularity
0 and ¢J are not aligned, such p{ exist. Therefore,

Vt>0, Vp| <K, lap®)|=lel la®) =6l (3.26)
Next, we show that there exists ¢, small enough such that p — g¢2 ,(¢) is Lipschitz with uniform

bound on [0, t,]. Indeed, from the expression (3.22), and since VV is lipschitz of constant C' = C|qg‘
on R3 \ B)g9/(0), we obtain

t
|G2.p(t) = q2.p ()| < |p = '[t + C/ (t = 5)|g2,p(t) — qa,pr (1)| ds.
0

This Gronwall inequality implies

t
2(0) = 22,0 O] < 9~ 1| | sexp(Clt - )i

0

Taking t. < 7 small enough, we get for all 0 <t <,

1
|Q2,p(t) —q2p (t)| < Elp —p'|~ (3.27)

This time ¢, is now fixed in the remainder of this proof.

Thus, p{ being fixed, the distance between two trajectories can be controlled for small times.
For larger times, we use the fact that we can go arbitrary far from the origin by an appropriate
choice of the initial momentum. Indeed,
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|42.5(8)] =

0 0 qg —Q? 2
qs + (p1 +p— f) t‘ —7° sup |VV(q)|. (3.28)

la|>a3]

Let € > 0. Since VV is lipschitz on R3 \ B,(0) with a constant C, such that lim, .., C, = 0,
there exists R(e) such that Cr() < €. If view of (3.28), there exists an momentum p{ large enough
satisfying (3.25) such that

Vp,Ipl S K, VE>t., |a2p(t)] = R(e). (3.29)

Considering two momenta |p|, |p’'| < K, a Gronwall inequality can again be obtained. There exists
a constant C (that does not depend on € < 1) such that

Vt, te St <7, gep(t) — g (B)] < Crlp —p'). (3.30)

The proof can now be concluded. Recall that we look for a fixed-point of the function

mm=14%>aww%Am—VWm@w&

-
The mapping F maps Bx = {|p| < K} into itself when p{ satisfies (3.25). Indeed, the bound (3.26)

is verified in this case, so that (3.24) implies

|F(p)| < l/ (r—s)2Mds = Mt = K.
0

T

Picard theorem can then be applied provided F' is contractive. Choosing momenta such that (3.25)

holds true and such that e < min{1, ;7—1,

W@—FwnscAWwﬂﬁ—%mww+lﬁvw%Am—vvwﬁ@nw

Using (3.27) for the first term and, (3.29), the fact that VV is lipschitz on R? \ Bp()(0) with a
constant Cr(e) < €, and (3.30) for the second term, there holds

1
Vipl, [p'| < K, |F(p)—F(p)| < 5l -7

The function F is then contractive on the ball {|p| < K}. There is therefore a fixed point p = F(p)
with |p| < K. O

Convergence of the densities

Since condition (3.7) is satisfied, and condition (3.8) holds true under the assumptions of
Lemma 3.2 on the potential energy (V is C!, bounded from above and VV is globally Lipschitz)
the HMC Markov chain is ergodic (see Theorem 3.3). In particular,

3

1P7(¢% ) = [ =0

for almost all starting points ¢° € M, where || - || denotes the total variation norm (3.14). We also
get convergence in the |A|-total variation norm (3.15) provided m(|A|) < +oco0 and |A] > 1 (see
Theorem 3.4). This answers Question 3.
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Convergence rates

We have not been able to state more sophisticated convergence results (Central Limit Theorem,
geometric ergodicity) in the general HMC framework since they require stronger results on the
Markov chain such as a drift condition (3.11) or a Lyapunov condition such as

There exist a measurable function W > 1, real numbers ¢ > 0 and b,
and a petite set C' such that (3.31)
Vg e M, AW (q) < —cW(q) + blc,

where AW (q) is defined by (3.12). Let us however make the following remark:

Remark 3.2. Under some regularity conditions that will always be met here (including the fact
that the chain is weak Feller [240, Chap. 6]), and when M is compact, condition (3.31) is straight-
forwardly satisfied with the choice C = M (in view of Remark 3.1, M is a petite set and the Markov
chain is Doeblin [89]) for any arbitrary smooth function W (taking b large enough).

When the state space is compact, conditions (3.11) and (3.31) hold true (in view of Remarks 3.1
and 3.2). We thus obtain a positive answer to Question 2 (see Theorem 3.2). We also obtain a
positive answer to Question 4, in view of the following theorem:

Theorem 3.8 ( [240, Theorem 15.0.1]). Assume conditions (5.7), (5.8) and (3.31) hold true.
Then there exist p < 1 and R < +00 such that, for all q satisfying W(q) < 400,

[P"(q,-) = wllw < RW(q) p",

where P™ is the n-step probability transition kernel and || - ||w is the norm defined by (3.15).

Numerical implementation: Method and convergence results

It is standard to use the velocity-Verlet scheme (3.17) to integrate numerically the trajectories
over times 7 = kAt for some integer k. Let us point out that the acceptance/rejection step (3)
in Algorithm 3.3 ensures that the HMC Markov chain correctly samples the canonical measure T,
so that no bias is introduced by the numerical discretization. The situation will be different for
the Biased Random-Walk and the Langevin equation (see Sections 3.2.3 and 3.2.4). We denote
by Pa; the transition kernel of the Markov chain using the velocity-Verlet integrator (3.17) with
time-step At.

The theoretical proof of convergence for the numerical version of HMC follows the same lines
as the proof of convergence for the exact version using the Hamiltonian flow. The only difference
lies in the additional acceptance/rejection step which does not modify the structure of the chain
(for it does not change the accessibility properties of the chain). We only precise here the changes
that have to be considered for the accessibility Lemma.

Lemma 3.3 (HMC accessibility - numerical flow). Let 7 > 0. Assume that V is in C1(M)
and is bounded from above on M, and consider the numerical discretization scheme (3.17). Then
for any q,q' € M and any neighborhood V' of ¢', there holds

PAt(q,V/) > 0.

Proof. The proof of Lemma 3.1 is based on the minimization of the action S over some space H.
Here, we extend this proof to the discretized case using a convenient approximation of this varia-
tional problem. There are several ways to discretize the variational problem, leading to different
numerical schemes. In particular, the velocity-Verlet algorithm can be derived by minimizing the
discretized action [226]
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k—1 i i\ 2 i i
Sae(@) — ALY B <q+1At—q> V(g + V() (332)
1=0

2 3

where 7 = kAt (we again assumed here that all particle masses are equal to 1).

The minimization is performed on the sequences & = {¢°,¢',...,¢*} with the constraints
¢° = ¢ and ¢* = ¢’. The quantity S, is still bounded from below for a potential energy bounded
from above. Hence, there exists a minimizing sequence (@, )nen = ({¢*7, ¢"", ..., ¢*"})nen. Each
difference ¢**1'" — ¢»" is easily seen to be bounded, thus each component ¢“™ is in fact bounded.
We can consider ¢ = (@, ... ,cjk) such that, upon extraction, we have ¢*” — @ when n — oo for

each i. Moreover, S(®) = ming S(®). The optimality conditions then read
qi-‘rl _ 2q7, _ qi—l _ At2vv(qz)

for 1 < i < k—1. We recognize the Verlet scheme. As in addition ¢° = g and ¢° = ¢/, this shows that
given two points q, ¢/, there is a path connecting them using a numerical velocity-Verlet trajectory

~1 _ =0 At
with initial velocity p° = ¢ Atq + TVV(q_O). By continuity, for initial velocities close to p°, the
endpoint of the resulting trajectory remains in a neighborhood of ¢'. 0

We can now state a Law of Large Number theorem (see Theorem 3.1):

Theorem 3.9. Assume that V € C1(M) is bounded from above and V'V is globally Lipschitz. Let
(¢")nen be the sequence of points generated by the HMC Algorithm 3.3 where, at step (2), the
NVE equations of motion (3.16) are numerically integrated by (3.17). Then

1 Nl
N > Algh) - /M A(q)dr as.
n=0
for almost all starting points ¢° € M.

Random Time Hybrid Monte Carlo

In order to prove convergence of the classical HMC scheme, we have assumed in the previous
section that the potential energy is bounded from above. As explained in the discussion just above
Lemma 3.1, another possibility is to modify the HMC scheme as in [221]. The modification consists
in transforming the fixed parameter 7 into a random variable, distributed with a density 7 (7).
This ensures that resonance effects are avoided. We call this scheme "Random Time Hybrid Monte
Carlo" (RTHMC).

The only property required on 7 is that 7 is continuous and positive on R;.. The corresponding
Markov transition kernel reads, for ¢ € M and B € B(M)

3

P@B) = [ meiamemPO)T() dpdr (3.39
RaNXR+

Notice that 7 is still an invariant probability measure for this Markov chain, so condition (3.7)
holds true. Therefore, to get convergence results, we only need to show condition (3.8). This is
done in two steps, as for the classical HMC scheme.

The first lemma states that there is a positive probability to go from one state ¢ to any
neighborhood of any state ¢’ in one RTHMC iteration.

Lemma 3.4 (RTHMC accessibility). Assume that V € C*(M) and D>V € L*(R?). Then for
any qo,q1 € M, and there exists 7% > 0 such that, for all 0 < 7 < 7*, there ezists p € R3N with

9 (q0,p) = q1-
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Proof. A similar idea is used in [301] in a slightly different context. If V' is identically equal
to zero, then going from ¢o to ¢; is possible through the choice of (say) the initial momenta
p* = M(q1 — qo)/7 for some evolution time 7 > 0. We then consider the rescaled equation

Mg (t) = —eVV(qe(t)) (3.34)
and the associated flow ¢.. Setting

F(G,p) = ¢6(T7 (Joap) —dq1,

the function F is C1(R x R3M) (we use here the assumption D2V € L*>(R3)), F(0,p*) = 0 and
9, F(0,p*) = TM~1 is invertible. In view of the implicit function theorem, there exists €* > 0 such
that for all 0 < e < €*, there exists p, such that F(e,pe) = 0.

This shows (by the change of variables ¢ — et in (3.34) for 0 < e < €*) that II1P.; (qo,pc/€) =
qi- 0

Condition (3.8) can then be obtained in the same way as for the classical HMC scheme, the
proof following the same lines as for Lemma 3.2.

Lemma 3.5 (RTHMC irreducibility). Provided that V€ CY(M) and D*V € L*(M), the
transition kernel (8.33) of the RTHMC Markov chain satisfies condition (3.8).

Proof. Consider B € B(M) such that p**(B) > 0, and ¢ € M. We want to show that P(g, B) > 0
for P defined by (3.33). For the sake of simplicity, we assume here that all particle masses are
equal to 1.

The proof relies on the fact that, for a given ¢ and for 7 > 0 small enough, the mapping
p — IL®,(q,p) is invertible. Denote Jp(q,7) = {p € R3*N | II1®,(¢q,p) € B}, and consider

¥+ Jp(g,7) — B such that ¢ (p) = 112, (q,p).
We first show that v, is an injective function for 7 > 0 small enough. From the equations of
motion,

br(p) =+ pr / "7 — )YV (e (p)) ds.

Hence

Vptr(p) = 71d — /OT(T = 8)D?V (¥5(p)) - Vs () ds. (3.35)

Set ar(s) = sup ||Vps(p) — sld||s. Since VV is a globally Lipschitz function, we have
Ip|<R

an(r) <€ ( [[ = ants ds + %) (3.36)

with C = [[D?*V|| L (p1)- We now consider 77 = sup{r’; ar(r) < 7/2 for all 7 € [0,7']}. From
(3.36), we obtain that 7% > /2/C. Hence, we have

VT € [0, \/2/—6'} , ar(r) < %

Inserting this inequality in (3.36), we also obtain that
3
VT e [O, \/2/0} , ag(r) < C’TZ.
It follows that X
.
a(s) = sup ||Vpths(p) — sld||ee < C’Z. (3.37)

pERSN



70 3 Phase-space sampling techniques

Now,

1
(o (p1) — r (p2)) - (1 — p2) = /0 (1 = p2) - Vs (s + 5(p1 — p2)) - (p1 — p2) ds

1
= /O (1 = p2) - (Vpr(p2 + s(p1 — p2)) — 71d) - (p1 — p2) ds
+ 7lp1 —p2|?

Let us suppose that 1, (p1) = - (p2). Then
-
7lpy = pof* < al7) |p1 = p2f* < 5 [Py = p2l?

and we obtain p; = po. Hence, the mapping Jg(q,7) 3 p — ¢, (p) € B is an injective function for
T <4/2/C.
We now show that this mapping is onto. We consider, for ¢’ € B, the C' function

G(1,p,q") =¥ (p) — ¢

Let us fix ¢* € B such that, for all € > 0, u**(B N B.(¢*)) > 0. Lemma 3.4 shows that there
exists 7% > 0 such that

V7, 0 <7 <min(r*,/2/C), I e R*N st. G(r,p,q*) = 0.

Since 0,G = 0,1 is invertible (using (3.35) and the bound (3.37)), we obtain from the implicit
function theorem that there exists a neighborhood V;(p) of p and a neighborhood V;(¢*) of ¢*
such that, for any ¢’ € V,(¢*), there exists p’ € V.(p) with G(r,p’,q") = 0. This gives the desired
result.

Thus, for 0 < 7 < min(7*,/2/C), the mapping v, is one-to-one from V,(p) onto V.(¢*).
Using (3.37), we also have Det(V 1, (p)) = 73V (1 + o(1)) uniformly in p. Hence, the mapping v,
is invertible and Det(V,1-1(q)) = 773N (1 + o(1)).

We are now in position to show that P(q, B) > 0. By contradiction, assume P(q, B) = 0. Then

/gN 11,6, (2.p)eB}P(p) dp = 0 for almost all 7. Therefore, for almost all 0 < 7 < min(7*, \/2/C)
R‘

we have 1411,®, (z,p)eBAV, (¢*)} P(P) dp = 0. Thus, a change of variable shows that
R3N

[ P @) et @)l da =0
BNV (q*)

for almost all 0 < 7 < min(7*, 1/2/C). This is however not possible since P is continuous and
positive, u=°*(B NV, (¢*)) > 0, and |Jac(v71(q))| ~ 773N when 7 — 0 so that |Jac()71(q))] > 0
for 7 small enough.

We then get convergence of the average along a sample path (see Theorem 3.1):

Theorem 3.10. Assume that V € C*(M) and D*V € L>®(M). Let (¢")nen be the sequence of
points generated by the RTHMC algorithm where the NVE equations of motion (3.16) are exactly
integrated. Then

| Nl §
N 7;3 A(¢") — /M A(g)dm a.s.

for almost all starting points ¢° € M.
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We also obtain ergodicity and convergence of the densities as for the classical HMC scheme
under the assumptions of Lemma 3.5 (see Theorem 3.3).

For the numerical discretization, we have to consider times 7,, = nAt, and a probability 7 on
N such that 7 (n) > 0 for all n (a Poisson law for instance). The time-step At has to be chosen
small enough such that no resonance effect can appear.

3.2.3 Biased Random-Walk

The so-called biased Random-Walk, also known as the Brownian dynamics, or the overdamped
Langevin dynamics, is defined by the fictitious dynamics

dqt = —VV(qt) dt + O’th, (338)

where (W;);>0 is a 3N-dimensional standard Wiener process and o = (2/3)'/2. The term “biased”
refers to the fact that the brownian trajectories are affected by the drift term —VV which tends
to draw them toward the local minima of V. The infinitesimal generator A associated with the
biased Random-Walk (3.38) is defined by

2
Ag=—-VV . -Vg+ %Ag, (3.39)

for g € C?*(R*Y). We denote by P! the Markov semigroup associated with (3.38). Trajectorial
existence and uniqueness for (3.38) is classical for globally Lipschitz force-fields [152,224], namely
for potential energies V satisfying for some positive constant L

V(z,y) e RN xRN |VV(2) = VV(y)| < L]z -yl (3.40)

When this condition is not satisfied, it is possible to conclude to trajectorial existence and uni-
queness for locally Lipschitz force-fields under the following hypothesis [152,224]: there exist a
function W (q) € C?(R3*Y) that goes to infinity at infinity and a positive constant ¢ such that

AW < cW. (3.41)

Besides, under assumption (3.40) or (3.41), one can prove that the Markov process (3.38) is
Feller [241].
From the Fokker-Planck equation associated with (3.38), it is easy to check that

7 is an invariant probability measure of (3.38), (3.42)

where 7 is the canonical position space distribution (3.6).

Convergence of the time average along one sample path
Let us consider the time average

1

T
Sr(A) = 7 / Alg?) dt. (3.43)

where ¢F is a sample path of (3.38) with the deterministic initial condition gy = x. Convergence
results analogous to the results obtained for Markov chains can be extended to Markov processes,
with an average (3.43) still taken only over one realization of the process (see [335] for a seminal

contribution (that also considers discretization issues), [336,337] for improvements and refinements,
and [265] for a recent review).
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To obtain an almost sure convergence of Sy(A) to the position space average (and thus a
positive answer to Question 1), the following theorem can be used:

Theorem 3.11 ( [241, Theorem 8.1]). Assume that the process q; defined by (3.38) is Feller,
that condition (3.42) holds true as well as the following condition:

for all t, for all ¢ € R*N and all open sets O c R3N, P'(q,0) > 0. (3.44)

Then, for w-almost every q € R*N and for any A € L'(n),

lim Sp(A) = A(q)dm  a.s.

T—o0 R3N

If VV is globally Lipschitz, then (3.44) holds true by standard results [287]. In other cases, a simple
way to check condition (3.44) is to use a controllability argument inspired from [231, Lemma 3.4].
Central Limit Theorems (which would provide a convergence rate of Sp(A) towards its limit and
thus provide an answer to Question 2) can also be stated. We refer for example to [172].

Convergence of the densities

Ergodicity holds true whenever conditions (3.42) and (3.44) are satisfied (see [241, Theo-
rem 6.1]). Question 3 can therefore be answered positively. To get an exponential convergence
rate (in the W-total variation norm (3.15)), that is, to answer Question 4, one needs to show the
stronger condition

AW (q) < —cW(q) + blc(q), (3.45)

where W > 1 is a measurable function going to infinity at infinity, ¢ > 0, b € R and C is a
compact set (compare this condition with condition (3.31) for Markov chains). We do not address
this question in the present here (see [231,336,337] for examples of such studies).

Numerical implementation

The Euler-Maruyama numerical scheme associated to (3.38) reads, when taking integration
steps h = At?/2:

n+1 n At2 n —-1/2 n
T =q" - TVV(q )+ 3P ALR", (3.46)

where (R™),en is a sequence of i.i.d. 3N-dimensional standard Gaussian random vectors.

For globally Lipschitz force-fields, the Euler-Maruyama scheme (3.46) converges: if the process
qr defined by (3.38) is ergodic, then the numerical Markov chain is ergodic and its invariant measure
is close to the invariant measure of the original process (for At¢ small enough) [231, Theorem 7.3].

However, for non-globally Lipschitz force-fields, it is not sufficient to consider the discretiza-
tion (3.46) of the diffusion process alone. Indeed, examples of non-globally Lipschitz force-fields
are known for which the Euler-Maruyama scheme fails [231,283]. There are two ways out of
this situation. First, convenient discretizations of (3.46) using some implicit integration can be
used. Under some assumptions on the potential energy V', the corresponding numerical scheme
converges: (i) there exists an invariant probability measure for the Markov chain formalizing the
algorithm; (ii) empirical averages of observables (with at most polynomial growth) converge to po-
sition space averages up to O(At) terms (see |337]). However, implicit methods become untractable
for large systems. Another approach may then be considered, the so-called “Metropolis-adjusted
Langevin® algorithm” (MALA), proposed by Roberts and Tweedie in [283], which corrects the

3 The term “Langevin” does not refer here to the Langevin dynamics as known in the Physics literature
(see Section 3.2.4). In the Probability and Statistics fields, it is, for some authors, the name for the
biased Random-Walk.
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Euler-Maruyama discretization (3.46) by an additional acceptance/rejection step in a Metropolis-
Hastings fashion. Therefore, there is no bias in the measure sampled. The algorithm consists in
generating proposal steps using (3.46), and accepting or rejecting them according to a Metropolis-
Hastings rule with the proposal density

B B
P(a:q) =\ 57 4 P <_ AL

In the case of the MALA algorithm, using a potential energy V € C'(R3N) is enough to
satisfy condition (3.8). Since = is by construction an invariant probability measure (and therefore
condition (3.7) holds true), the Markov chain formalizing the algorithm is ergodic for almost all
starting points, and the convergence results stated in Theorems 3.1 and 3.3 apply. On the other
hand, conditions ensuring the Central Limit Theorem and geometric ergodicity (conditions (3.11)
and (3.31), see Theorems 3.2 and 3.8) are not easy to check. We refer to [283,285] for such studies.

The only adjustable parameter of the algorithm is the time-step At. The rejection rate is a
good indicator of efficiency. It is indeed well-known that a good sampling is a trade-off between
decorrelation (to this end, larger time-steps are required) and acceptance rate (the larger the
time-step, the larger the rejection rate). We refer for example to [284] where it is shown that,
for tensorized distributions, the asymptotical optimal acceptance rate, when the dimension of
the position space M goes to infinity, is 0.574. This theoretical result does not extend to more
complicated situations. However, numerical experiments show that an acceptance/rejection rate
about 50% leads to a rather efficient method.

In Section 3.4, we present numerical results obtained both with the Euler-Maruyama scheme
and with the MALA scheme.

Comparison of MALA and the one-step HMC' scheme

Note that choosing the time step h of the MALA algorithm such that h = At?/2 makes the
comparison between the MALA algorithm and the one-step Hybrid Monte Carlo methods easier
since both schemes use (3.46) to generate a proposal. Indeed, when 7 = At and M = I3y, the HMC

velocity is randomized every time-step and thus formally reads p™ = \/%MR", where R™ is a 3N-

dimensional standard Gaussian random variable. Notice however that the acceptance/rejection
steps differ since the HMC acceptance/rejection step involves the comparison of total energies
and the Biased Random-Walk acceptance/rejection step involves the comparison of the potential
energies alone. As far as the acceptance/rejection step is concerned, the MALA scheme uses the
acceptance rate

a7 ) = min { Lexp (< | 3AG - ) (T ) - TVi) + 0| )}

and "t — ¢" = \/%R” + O(At?). On the other hand, considering Algorithm 3.3, the accep-

tance/rejection rate of the hybrid Monte Carlo algorithm reads

exp (—6ﬁ”+1)
exp (=BH") [’

ravc(¢”,¢") = min< 1,

where H" is the initial energy and H™1 i the energy at the end of the trajectory. If a Velocity-
Verlet scheme is used to compute the trajectory,

At

ravelas ) = min {1 (5 [ G011 @V () - Vi) + ocai| ).
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So the acceptance/rejection steps of the MALA algorithm on the one hand and of the HMC
algorithm on the other are the same up to second order terms.

3.2.4 Langevin dynamics

The paradigm of Langevin dynamics is to introduce in the Newton equations of motion (3.16)
some fictitious brownian forces modelling fluctuations, balanced by viscous damping forces model-
ling dissipation. More precisely, the equations of motion read here

_ -1

dpt —VV(qt) dt—gMilpt dt"—O’th,

where (W;):>0 is a 3N-dimensional Wiener process. The parameters £ and o represent the ma-
gnitude of the fluctuations and of the dissipation respectively, and are linked by the fluctuation-
dissipation relation:

o= (26/B)"?, (3.48)

where 3 = 1/kpT. Therefore, there remains one adjustable parameter in the model. Let us remark

that the biased Random-Walk (3.38) is obtained from the Langevin dynamics (3.47) by letting

the mass matrix M go to zero and by setting £ = 1, which amounts here to rescaling the time.
The infinitesimal generator A associated to the SDE (3.47) reads:

Aglq,p) = M~'p-Vag(q,p) — (€M 'p+VV(q)) - Vpg(q,p) + U—Qﬂpg(q,p), (3.49)

2
for g € C?(R? x R3N). The proof of trajectorial existence and uniqueness follows the same lines
as for the biased Random-Walk case, with the same kind of assumptions (globally Lipschitz force
fields VV or a Lyapunov condition analogous to (3.41)). It is straightforward to show that the

canonical probability measure (3.3) is a steady state of the Fokker-Planck equation associated
with (3.47).

Convergence results

The same results hold true for the Langevin process as the ones stated in Sections 3.2.3 and 3.2.3
for the biased Random-Walk, the proofs following the same lines. We refer to [231] for further
details concerning condition (3.44) (where R3Y is to be replaced by R3" x R3" and P? is now the
Markov semigroup associated with the Langevin dynamics). We also refer to [159] for a remarkable
work allowing, under some assumptions of local regularity and growth at infinity on the potential
energy V, to obtain geometrical convergence of the density P!(q,-) toward the invariant measure,
in some weighted Sobolev norms. In particular, estimates of the convergence rate involving M, &,
B and V', can be explicitely derived.

Questions 1 and 3 can therefore be answered positively. Question 4 can also be answered
positively when a convenient drift condition can be stated (condition (3.45) where A is now the
infinitesimal generator associated to (3.47)).

Numerical implementation

There are several ways to compute numerically an invariant distribution using a Langevin
dynamics:
(i) with a Metropolized scheme as for the biased Random-Walk case (see [298] and Sec-
tion 6.1.2 for an application to Variational Monte-Carlo);

(ii) with convenient discretizations and a step-size At sufficiently small ensuring the sampling
from an invariant measure close to the canonical measure (3.3);
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(iii) by extending usual NVE schemes used in deterministic MD simulations to the case of the
Langevin dynamics (the quasi-symplectic schemes of [242]);
(iv) by using splitting ideas borrowed from integration methods for deterministic flows (see
e.g. [146]).
It is not completely understood which integration scheme is the most efficient [244, 311, 369],
especially because the comparison benchmarks vary from one field to another. The last two ways
are the most convenient in many applications, and allows usually to take larger time steps than
for pure NVE simulations since the scheme is intrinsically more stable in view of its dissipative
properties. Unfortunately, to our knowledge, there is no theoretical proof of convergence for the
resulting schemes. Let us now detail successively the last three approaches.

First-order schemes with invariant probability

General results of error analysis hold true for the numerical discretization of the Langevin
equation for globally Lipschitz force fields [231]. In this case, the resulting numerical Markov
chain is ergodic for usual discretization schemes (including the Euler-Maruyama disretization)
and their invariant measures are close to the invariant measure of the original process (for At
small enough).

The results are not the same for only locally Lipschitz force fields. Some classes of discretized
schemes however behave properly under additional assumptions on the potential energy. This is
the case for the so-called split-step Backward Euler-method proposed in [231]. Applied to the
Langevin equation (3.47), this algorithm reads

¢"tl= g+ At M~ p*
p* =p" — EAtM p* — AtVV (¢ 1) (3.50)
anrl: p* +o /Ath

where (G™),en is a sequence of 3N-dimensional i.i.d. Gaussian random vectors. Unfortunately,
this method is implicit (see the first two equations, to be solved for (¢"*!,p*)), therefore not
convenient for MD simulations of large systems. The following ezplicit scheme is therefore prefered

pto=pt = EAtM T pt — AtVV (¢")
¢ t= ¢" + At M~ 1p* (3.51)
pn+1: p* + 0'\/EG"

where (G™)nen is a sequence of 3N-dimensional i.i.d. Gaussian random vectors.

We now turn to the numerical analysis of (3.51). Let us denote by F,, the o-algebra of events up
to and including the n-th iteration. We need to prove condition (3.7) and condition (3.8) to state
a Law of Large Number theorem (see Theorem 3.1). The accessibility condition (3.8) is easily seen
to be satisfied (by arguments similar to those of Section 3.2.3 in this time discrete case). We now
prove condition (3.7), that is, the existence of an invariant probability measure. For this purpose,
we need to make some assumptions on the potential energy V, similar to those of [231], to state
a Lyapunov inequality for the discretized process. Indeed, we want to make use of the following
theorem:

Theorem 3.12 ( [231, Theorem 2.5]). Denote by P the transition kernel associated with the
Markov chain formalizing (3.51), assumed to be Feller. Assume that (3.8) is satisfied and that
there exist a function Wai(q,p) > 1, going to infinity at infinity, and two real numbers b € (0,1)
and ¢ > 0 such that

E(Wai(g"* 0" ) [ Fo) < b E(Wailg",p")) + ¢, (3.52)

where (¢",p™) is the discrete trajectory given by (3.51). Then there exists an invariant probability
measure g, and condition (3.7) holds true.
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The numerical scheme then converges (with respect to the measure dpa;) in the sense of
Questions 1 to 4. The question of estimating the distance between ua; and the canonical measure
i has been addressed in e.g. [231,337].

Let us now find Wa,, b and ¢ satisfying (3.52). We assume that the potential energy V is in
C?(R3N) and satisfies a one-sided Lipschitz condition: there exists C' > 0 such that

Ya,b e RN, (VV(a) = VV (b)) - (a—b) < Cla— b (3.53)
We also assume that there exist A, B > 0 such that
2
VgeR*N, -VV(q)- M 'q<A-B (V(q) + %qTM_lq) . (3.54)
These conditions are satisfied for example for potential energies growing quadratically at infinity.

The following result, strongly inspired from [231], can then be stated:

Lemma 3.6. Let (¢",p") be the discrete trajectory given by (3.51). Let us assume that 'V is boun-
ded from below and let us set m = max {mq,...,mn},

€

1 2
Wi(g,p) =1+ §pTM_1p + %qTM_lq +V(g) —infV + pTM q (3.55)

and Wai(q,p) = Wiq,p) + %At|p|2. When (8.53) and (3.54) are satisfied, and that
m

£

<At —
0= S o e

(3.56)

Then Wy satisfies (3.52) for some ¢ >0, 0 <b < 1.

Proof. Consider the numerical scheme (3.51). Some computations give

2m?2 2m
+ V(" + At M~ p*) = V(q") — AtVV (¢™) - M

W (", p*) = W(q",p") < 4t (1 - 5—At) p*]* — 5AtVV( ") M

The one-sided Lipschitz condition (3.53) allows to handle the term V(¢g" + AtM ~'p*) — V(¢") —

At
AtVV (g")- M ~'p*. The condition (3.54) allows to handle the term —%VV(q") -M~'¢™. When
(3.56) is satisfied, it then follows

A A 2
W) - Wig ) < A B t(V(gH%qn-M—lqn)— Atlp[2. (3.57)

4m?2

Recalling Wa¢(q,p) = W(q,p) + %At|p|2, we obtain
m

Wai(g"th, p*) — War(g", p") < 5——35 (V(q )+%q -M™'q ) —#Atlp 2

§A

< AT - B/WAt(qnapn)

for some B’ > 0. The final step p"*! = p* + 0/ AtG" leads to

E(Wai(¢"th, p" ) | Fr) = E(War(q" ', p%)) + EloVAIG™ 2,
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so that
E(Wae(q" ™, p" ) | Fo) SO EWai(q",p")) + ¢ (3.58)

for some ¢ > 0,0 < b < 1.
Algorithms derived from the Verlet scheme

Let us now turn to the second approach, and describe algorithms generalizing the Verlet algo-
rithm, and therefore widely used in practice; on the other hand, there are no convergence results at
this date to our knowledge (only consistency results are known). One such algorithm is the BBK al-
gorithm, proposed by Briinger, Brooks and Karplus [45]. Another example is the quasi-symplectic
algorithm of [242].

We focus in the sequel on the BBK algorithm, which is well-suited only for small values of £ [244,
299] (otherwise, algorithms from [4] or the Langevin impulse scheme [310] (see below) should

be used). It is a modification of the usual velocity-Verlet scheme obtained by adding a term
Pi <&

mi AL
made precise below). This may explain its popularity since it only asks for slight modifications of
standard MD codes. The random forcing terms G (i € {1,..., N} is the label of the particles, n
is the iteration index) are standard i.i.d. Gaussian random variables. The scheme reads:

G? to the force f; exerted on particle i (the relation between & and o; will be

n1/2_ o, At V. V(g™ — i, O an
pz pz + 2 qi (q ) §mz + \/E 2 )
pflz+1/2
1 At VAL
ntl _ ntl/2 g y(gntt _ Gt
p; 1+ g—ﬁf <p7, 9 Vi (g )to 2 i :

We now make precise the relation between £ and o; by considering the case when there are no
forces. When VV = 0, the BBK algorithm reads

VAL
<1 + 25 At> prtt = <1 - 25 At> i+ o (GP + G . (3.60)

m; m;

We see that, if E(p?) = 0, then E(p/™!) = 0. Choosing p such that E(p?) = 0, we have E(p?) = 0

t
for all n. Let us now denote by K" = E((p?)?) the variance of pl'. Setting ~; = 5y One has
m

2

T+y/) 0 (L+5)3

The above recursion is of the general form z,1 = ax, + b, and has a fixed point provided a < 1,
which is always the case here since ; > 0. This fixed point K is such that

1 302
e — T 3.61
m; " 26(1+v) (3.61)

oAt — \/25(1; Vi) _ \/2_65 (1+ §2t> (3.62)

, which is indeed the expected value (the kinetic temperature is correct).

Setting o; to the value

m;

3
we see that K;° =

Note that (3.62) gives the magnitude of the random forcing that should be used in numerical
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simulations if one wants the kinetic temperature to be correct. Otherwise, if o is chosen according
to (3.48), the time-averaged kinetic temperature is lower than the target temperature 7, and the
error is of order At, as can be seen from (3.61). This is consistent with the results obtained in [369]
from a modified equation approach. Note that using (3.62) instead of (3.48) does not improve the
configurational sampling accuracy (the error on the configurational sampling is of order At with
both choices (3.48) and (3.62)).

Another modification of the BBK algorithm has been proposed in [306]. It amounts to using
the same Gaussian random variables in the first and the third lines of (3.59). In this case, there is
no bias on the kinetic temperature with the choice (3.48).

Schemes based on splitting

A third approach, more recent, is to design algorithms based on a operator splitting method.
The Langevin Impulse algorithm, proposed in [310], is such an algorithm. When VV = 0 and
M =1d, the Langevin dynamics

dq; = p dt,
3.63
{dptz—vptdwodwt, (363)

can be integrated explicitely by integrating first the Ornstein-Uhlenbeck process on the momentum,
and integrating once again to obtain the evolution of the positions. It holds

t
pe=re"po+ cr/ e 179 qW, = e py + P,
0
where P, is a gaussian process such that
t 1— e—2'yt
E(P?) = 02/ e =) gy = ———
0 B
Then,
t 1—e”’t t s 7(7) 1—67’}/1E
Qt:q0+/ Ps ds:q0+7p0+0'/ / e 7T qW, ds = qo + ———— po + Qs
0 v 0 Jo Y
where the random variable @; can be rewritten as

t t
Qi = / / oe 76 dsdw,.
0 u

Therefore, @; is a centered gaussian process of variance

t t 2 2 gt 9 1 3— et 4 2t
E(Q} :/ [/ ge s ds} du = 0—/ 1—e W) gy = — [Qt — } :
@)=/ =) ( ) du=g ;

However, the variables Q; and P; are correlated since

E(P,Q,) =E K /O t% (1 _e*v@*“)) qu) ( /O emt-w qu)] .

t
_c et ) g L a2
E(PtQt)_W/o(l e )e du_Wﬁ(l e )

Therefore

Combining the integration of the flow (3.63) with the straightforward integration of the flow
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{th = 07
dp; = —VV(q)dt,

the discretization proposed in [311] is recovered. Other discretizations of Langevin dynamics were
obtained using splitting ideas (see e.g. [107,280] and Section 4.3.1 for a precise statement of the
corresponding scheme).

This approach is more rigorous than other classical algorithms to integrate the Langevin dy-
namics such as the ones described in [4]. The idea of those algorithms is to exactly integrate the
dynamics when the forces vary linearly with respect to time. In practice, forces are interpolated
in time between two successive time steps.

3.3 Deterministic molecular dynamics sampling

We now turn in this section to purely deterministic methods. These methods rely on the
following idea: a system in the canonical ensemble can be considered as a system interacting
with an external heat bath, the interaction being such that, at equilibrium, the physical system
variables are distributed according to the canonical measure (3.3). Thus, the idea is to consider
an extended system composed of the physical variables and some additional variables modelling
the bath. Various dynamics have been proposed in this vein.

In this section, we first consider the Nosé-Hoover dynamics and its generalization to the Nosé-
Hoover chains [171,229, 260, 346]. Then, we consider the Nosé-Poincaré method [35] and the Re-
cursive Multiple Thermostats method, which has been recently proposed in [206].

3.3.1 The Nosé-Hoover and Nosé-Hoover chains methods

The Nosé-Hoover (NH) method, proposed by Hoover, consists in describing the heat bath by
two scalar variables, its “position” n and its “momentum” &, and to postulate the following dynamics
for the extended set of variables [171,260]:

dai _ pi
élt mﬁ é‘
Pi _ _ _ bis
a VeV Q'
dn € (3.64)
at  Q’
N
dg P
= =Y 2 gkgT
i =2 o

where V' is the potential energy of the system, g is a parameter we will fix later and T is the target
temperature. The parameter () represents the mass of the thermostat; it is a free parameter that
the user has to choose. The quantity

N 2

2
- D; ¢

Hnug = — 4V + = + gkgT 3.65
NH 2 2m; (q) 20 grkBLM ( )

is an invariant of the dynamics (3.64), which also preserves the measure

dunn = exp(3Nn) dq dp dn d§. (3.66)
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We refer to [113] for details on the origin of this dynamics. Let us just note here that (3.64) is not
a Hamiltonian dynamics?. Since the dynamics preserves (3.65), it cannot be ergodic with respect

to dpnp. Let us introduce the manifold Myu(Ep) = {(q,p,n,g) e RON+2 | Hyu(q,p,n,€) = Eo}

and the measure
dUNH

ONH__ 3.67
|V Hxull2 (367

dpnm =
where dony is the area measure induced on Myy(Ep) by the measure (3.66), V Hyy is the gradient
of (3.65) with respect to all variables and || - ||2 is the Euclidian norm. Then dpny is an invariant
measure for the Nosé-Hoover dynamics (3.64).

Suppose now that the dynamics is ergodic with respect to dpng (note that this implies that
Hyy is the unique invariant of (3.64)). Let us set g = 3N, where N is the number of particles.
An easy computation (see |204,346]) shows that the dynamics (q(¢), p(t)) is ergodic with respect
to the canonical measure (3.3), and thus provides a sampling of the phase space according to the
canonical measure (at least before numerical discretization).

We emphasize the fact that, to the best of the authors knowledge, there is no rigorous proof
in the literature showing that (3.64) is ergodic with respect to dpnp. Furthermore, it has been
numerically observed that, for some systems, the dynamics (¢(t),p(¢)) does not seem to sample
the phase space according to the canonical measure. For instance, this is the case with the one-
dimensional harmonic oscillator, for which it is actually observed that the trajectory stays in a
ring, namely that there exist ¢, C' > 0 such that ¢ < ¢2(t) + p?(t) < C for all ¢ (see [229, 346]).
Some mathematical analysis of this fact can be read in [204].

To circumvent this difficulty, a generalization of the Nosé-Hoover dynamics (3.64) has been
proposed by Martyna et al. in [229]. The idea consists in coupling the physical variables with a
first thermostat as in (3.64), and to couple this thermostat with a second one, which can be coupled
to a third one, and so on. The variables now include 2M additional scalar variables n; and &;,

j=1,..., M, where the number M of thermostats is arbitrary. The corresponding dynamics is
the so-called Nosé-Hoover chain dynamics (NHC) [229], in which there are M free parameters,
Q1,...,Qn, representing the masses of the M thermostats. The dynamics preserves an invariant

Hyxuc and a measure dunpc (which are the generalization of (3.65) and (3.66)).

As for the Nosé-Hoover dynamics, if the NHC dynamics is ergodic with respect to a measure
dpnuc built in the same way as dpnp, then the dynamics (q(¢),p(t)) is ergodic with respect to
the canonical measure. Provided that the number M of thermostats is large enough (M > 3 or 4
in practice), numerical simulations seem to show that this dynamics samples the phase space ac-
cording to the canonical measure, even for systems such as the harmonic oscillator. Again, there
is no rigorous proof showing that the NHC dynamics is actually ergodic with respect to dpNuc.

Regarding numerical integration, it seems interesting to work with algorithms that preserve
the qualitative structure of the dynamics, that is time reversibility and measure preservation.
Reversible-in-time and measure-preserving algorithms have been proposed in [230] (let us just
mention here that they are based on a splitting of the dynamics). Simulation results discussed in
Section 3.4 have been obtained with these algorithms.

3.3.2 The Nosé-Poincaré and the Recursive Multiple Thermostat methods

Both the Nosé-Hoover and the Nosé-Hoover chain dynamics suffer from not being Hamiltonian
dynamics. As a consequence, the quasi-conservation by the numerical flow of the invariants Hyy

4 The Nosé-Hoover dynamics can be recast, after changing variables and time, as a Hamiltonian dynamics,
the so-called Nosé dynamics [259]. However, the time of this dynamics does not correspond anymore to
the physical time.
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(see (3.65)) and Hypmc is not guaranted. On the contrary, when working with a Hamiltonian
dynamics, it is known that the energy can be preserved by the numerical flow over very long
times, provided symplectic algorithms are used (see [146, Chap. IX] and [278]). Another problem
with Nosé-Hoover chains is the choice of the number of thermostats as well as their masses @,
which seem to have an influence on the results.

The Recursive Multiple Thermostat method (RMT) has been recently proposed by Leimkuhler
and Sweet [206] to solve the difficulties that have just been highlighted. It is a Hamiltonian dyna-
mics which, like the Nosé-Hoover or Nosé-Hoover chains dynamics, couples the physical variables
with a heat bath. This dynamics is a generalization of the Nosé-Poincaré (NP) method [35], which
is also a Hamiltonian method. The Nosé-Poincaré method consists in adding a single thermostat,
whereas the RMT method consists in adding an arbitrary number M of thermostats, which are
all coupled together and to the physical particles. This is not the case in the Nosé-Hoover chain
dynamics, where only the first thermostat is coupled to the physical particles (and not the other
thermostats).

The Nosé-Poincaré method is based on the following Hamiltonian:

p

2
5) : +gksT Inn — Ho) ; (3.68)

Hxp(g:pin.§) =1 <H (q, +30

where H is given by (3.4), Hy is chosen such that Hyp = 0 for the initial conditions, and where
(@ is some free parameter. Sampling properties and numerical algorithms are discussed in [35]. Let
us just mention here that, as for the Nosé-Hoover dynamics, one has to set g = 3N if the only
invariant of the dynamics is Hyp.

The motivation for introducing the RMT method is the observation that, at least for some
systems, numerical results seem to depend much less on the thermostat masses (which are user-
chosen parameters) than with the Nosé-Poincaré method (see [206, 333]).

The numerical results that are presented in Section 3.4 have been obtained with the algorithms
proposed in [35] and [206]. Let us note that different algorithms may have different numerical
stabilities, and so different abilities to adequately sample the phase space with a trajectory of
a given number of time steps. A new algorithm for the RMT dynamics has been proposed very
recently in [20].

3.4 Numerical illustrations

The different methods presented above can be used to compute numerical approximations of
phase space integrals. In some cases, theoretical convergence rates can be obtained. Typically,
when a CLT holds true, the error is bounded by Cn~'/? (where n is the number of evaluations of
the potential energy and/or of the forces; see the Central Limit Theorem 3.2) for some unknown
prefactor C, depending on both the system and the observable A. An important issue is the value
of the prefactor in numerical computations, which can greatly vary from one method to another
one.

However, since this prefactor depends on A, it is not easy to compare the different methods
in a general way. After a brief description of the alkane model in Section 3.4.1, we present in
Section 3.4.2 an abstract criterion defined without any explicit dependence on an observable A. The
criterion measures the deviation between the empirical distributions and the canonical distribution.
This comparison can be performed for a fixed sample size (bearing in mind the computation
of autocorrelation functions with a fixed computational cost for example), or, more fairly, at
a fixed computational cost. Some improvements can also be achieved when combining different
sampling techniques, or when resorting to strategies different from the computation of a single long
trajectory. This is made precise in Section 3.4.5. In Section 3.4.6, we consider a specific case of a
time-dependent observable A, which corresponds to a correlation function. The numerical results
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that are obtained with this physical choice illustrate the conclusions drawn from the abstract
criterion in Section 3.4.2.

3.4.1 Description of the linear alkane molecule

Linear alkanes are chemical compounds of the form CHs-(CHs),-CHs. In this study, the so-
called united-atom model [294] is used, in which the conformation of the molecule is completely
characterized by the positions of the Carbon atoms. The presence of the Hydrogen atom is impli-
citely taken into account in the definition of the interaction potential energy the Carbon atoms
are subjected to. The Carbon atoms of the linear alkane molecule are indexed from 1 to N, and
their positions are described by the vector ¢ = (¢1,...,qn) € (RB)N. We set r; ; = ¢; — ¢; and we
denote by d; ; = |r; j| the distance between the Carbon atoms ¢ and j.

In the model presented here, the interatomic potential energy involves two-, three-, and four-
body interactions :

(1) two Carbon atoms connected by a covalent bond interact via a harmonic potential energy
1 2
Va(d) = §k0(d —do)"; (3.69)

(2) two Carbon atoms that are separated by three covalent bonds or more interact via a Lennard-

o= ((3)" - 3))

The parameters € and o depend on the atoms that interact, and can have three values:
€cHy—cH, and ocu,—cu, when two CHg groups interact (the end groups), ech,—cn, and
OCH4—CH, When an interior group interacts with an end group, and ecn,—cn, and och,—cH,
when two CHs groups interact;

Jones potential energy

(3) three consecutive Carbon atoms C;-C;11-C;42 interact via the three-body interaction po-
tential energy

1
Va(6;) = §k0(9i — 0o)?, (3.70)
where
f; = arccos ( Tihl ' Titdi+2 ) (3.71)
7ijit1| - |Tis1,iv2]

is the bending angle of the C;-C;11-C;42 chain;

(4) lastly, four consecutive Carbon atoms C;-C;11-C;12-C; 3 experience the four-body interac-
tion potential energy
‘/Al((bz) = Utors (COS ¢1); (372)

where ¢; is the dihedral angle defined by

(rii+1 X Tig1it2) * (Piv1it2 X Tig2,i+3)
(3.73)
|(riivr X Tigrav2)| - [(Piv1ive X Tiv2,i3)]

cos ¢ = —

and where the function u..s is given by
Ugors () = 1 (1 — x) + 2co(1 — 27) + c3(1 + 3z — 42).

The potential energy of the linear alkane molecule eventually reads

N-1

N-2 N-3 N-4 N
Vig) =Y Va(diy1) + Z Vs(6;) + Z Va(di)+ > Y Vialdiy), (3.74)

=1 =1 j=1i+3
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where the term V1,5 depends on the type of interaction considered.

The values of the parameters dy, €, o, kg, 6y, c1, co and c3 are taken from [228]. In the system
of units where the length unit is lp = 1.53 x 107'° m and the energy unit is such that kT =1
at T = 300 K, the time unit is £ = 364 fs, and the numerical values of the parameters are dy = 1,
€cHs—CHy = 0.294, ecn,—cH, = 0.241, ech,—cH, = 0.198, 0cH,—CH; = OCH3—CHy; = OCH,—CH, =
2.55, kg = 208 rad ™2, fy = 1.187 rad, ¢; = 1.18, ¢ = —0.23 and c¢3 = 2.64. Notice that for these
values of the parameters ¢;, the function uos has a unique global minimum (at ¢ = 0) and two
local non-global minima. As far as the parameter kg is concerned, we set kg = 1000 (another
possibility [228] is to constrain the C-C covalent bond length to be equal to dp). We set the unit
of mass such that the mass of each particle is equal to 1.

We note that va 1 V4V =0, and that Efv 1% X Vg,V = 0. As a consequence, the Newton
equations (3.16) not only preserve the energy, but also preserve the linear momentum Z _,piand
the angular momentum Zi:l @; X p;. Similarly, the Nosé-Hoover dynamics (3.64) also has additional
invariants: besides (3.65), it preserves e” Efvzl p; and e" Zf\]:l q; X p;- As a consequence, it cannot
be ergodic with respect to (3.67). One can nevertheless recover correct sampling properties in the
q variables by

starting from an initial condition that satisfies Zfilpi(O) =0 and Zfil ¢:(0) x p;(0) = 0,
so that the linear and angular momenta are always equal to 0;

— setting g = 3N — N,, where N, is the number of conservation laws (besides the energy (3.65)).
In the case under study here, N. = 6. The same kind of remarks also hold true for the Nosé-Hoover
chain dynamics, the Nosé-Poincaré dynamics and the RMT method. The simulation results that
we present below have been obtained with these choices. Note that there is no need for any
modification for the stochastically perturbed MD methods.

The linear pentane CHs-(CHy)3-CHgs is the shortest linear alkane for which a two-body
Lennard-Jones interaction (coupling the variables d;;y1, 6; and ¢; all together) has to be ta-
ken into account. In addition, it involves only two dihedral angles and these two angles essentially
determine the conformation of the molecule. Indeed, the covalent stretching and bending potential
energies (namely, V5 and V3) are stiff and consequently the bond lengths and bending angles are
statistically close to their equilibrium values at room temperature. Therefore, the linear pentane
molecule is a good test case for it allows a simple reduced representation of the conformation while
being a non-trivial model in which the internal degrees of freedom are coupled all together. For
completeness, tests on longer molecules are performed in order to investigate the robustness of the
numerical methods with respect to increasing configurational space dimensions.

Some reference empirical densities for the dihedral angles obtained through Importance sam-
pling techniques are presented in Figure 3.1. They correspond to pentane, with N = 10° sample
points.

3.4.2 Discrepancy of sample points

In order to quantitatively assess the quality of the samples generated by the various methods
described above, we use a discrepancy criterion. Recall that the discrepancy D, of a sequence
7 = {Zm }o<m<n—_1 with values in [0, 1]¢ is defined as (see [200])

1
Dn(x) = sup -

0,14 |1 Z Liz,,efo,y)} — Volume([0, y])|, (3.75)
yel B

where, for d-dimensional vectors y, z, we write y < z when y; < z; for all 1 < ¢ < d, and note
[0,y] = {z €[0,1]¢, 2 <y}. The fact that D, (z) — 0 when n — oo is equivalent (see [200, p.15])
to the fact that, for any Riemann integrable function A defined on [0, 1]¢,
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Fig. 3.1. Empirical probability distribution of the dihedral angles (¢1,¢2) of the pentane molecule
generated with Tmportance sampling, for 8 = 1 (Left) and 8 = 2 (Right), with sample size N = 10° and
€cHsz—cH3 = 0.29, ecuz—cu, = 0.

In addition, for functions A which have bounded variations Vik(A) in the sense of Hardy and
Krause [257], the following error estimate holds true:

—1

! A(xm) — / A(x) dx
n 0 [0,1]4

< Vit (A4) Dy (2). (3.76)

If A€ C4([0,1]%), then its variation Vik(A) has a simple expression (see [257, page 19]). If d = 2,
which is the case we will be interested in below, then
1
—(,Il, 1)’ dCCl +/
0

1
Vi (A) :/ +/
[0,1]2 0 (91:1

As a consequence of (3.76), the convergence of D,,(x) toward 0 implies the Law of Large Numbers,
and the rate of convergence of D,,(x) gives information about the convergence rate of the observable
average.

In this framework, we intend for example to characterize the repartition of sample points in
the subset [—m, 7|2 of the (¢4, ¢;)-plane for two of the dihedral angles ¢;, ¢;. This can be achieved
by considering the marginal v;; of the canonical density m with respect to the other degrees of
freedom. Unfortunately, there is no simple exact expression of this marginal. We therefore consider
the situation when all € = 0 (that is when the Lennard-Jones interactions are all turned off), in
which case the marginal has the simple expression

0A
6—:102(1’ x2)

0?A
(91:1 6$2

0A

dCCQ.

dvij($i, ¢5) = Z; e PVA0De™ VA dg,dg;, (3.77)

with Vj given by (3.72).
We then introduce the discrepancy criterion

n—1
m 1
Dn({q™}) = sup = Lipm<osom<e;} —/ dvij (Vi ¥5)| (3.78)
(pi,pj)€l—m,7)2 | TV 0 {Yi<¢ibj<o;}
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which provides a bound on the L distance between the empirical distribution functions and the
exact ones. Notice that the second integral factorizes as

/ dvij (i b5) = 2 / o PVt dyy o VA dyyy,
{Yi<dib;<o;} hi<o; ) <¢;
and can therefore easily be computed using standard numerical techniques.

Numerically, we compute an approximate value of D,, as follows. Suppose that we have par-
tioned the (¢;,®;)-plane into K2 boxes By = [Pk, Pri1[X[Pr, Pri1] with & = —7 + %7” for
0 <k < K — 1. The supremum in (3.78) is now taken over a finite set of elements:

n—1

1
- Z Lpm<a,,om<a) —/ dvij (Yi, ;)

DF(q)= sup
=0 (i <Pp b, <P}

1<k,I<K

. (3.79)

We then compute the discrepancies for the sample points obtained by different methods with a
fixed computational cost. The computational cost measures here the number of force or energy
evaluations.

3.4.3 Choice of parameters

We describe here how we choose the parameters of the numerical methods for a fixed computa-
tional cost in the case of pentane. The cost has to be understood with respect to forces or energies
evaluations. Notice that there is no parameter to tune for purely stochastic method such as the
Rejection method and Importance sampling. For the Metropolized independence sampler, the only
improvement that could be done is an undersampling. However, the quality of the samples is not
changed by some reasonable undersampling (in the range 1 — 100).

Stochastic methods

For the purely stochastic methods, we have worked with g(q) = Z;* exp(—BV (q)), where

) N1 N—2
Vig) = Z Vo(dig1,i) + Z V3(0;)

and Zq is a normalization constant. When expressed in internal coordinates (with the change of
variables R = (d2.1,...,dNn,N-1,01,...,0nh_2) = h(q)), the functions V5 and V3 are quadratic (see
(3.69) and (3.70)), which makes it possible to actually sample from g(R) dR (and so, from g¢(q) dgq
up to a Jacobian term).

Hybrid Monte Carlo

The only relevant parameters are the time 7 = kAt and the time-step At. We generate several
samples of size N with a computational cost equal to 10° forces or energies evaluations. Therefore,
the product kN is a constant equal to 10°. We compute the discrepancy (3.79) for each parameter
values, averaging over 10 realizations (see Table 3.2). We found no systematic improvement using
an undersampling procedure. We present the results under the form m (o) where m is the mean
of the discrepancies and ¢ the square-root of the variance.

The optimal choice within this set of parameters is At = 0.025 and 7 = 10. This corresponds
to an acceptance rate of 0.7. When 3 # 1 and/or the molecule is longer, we choose a new time
step At such that the acceptance/rejection rate is still around 0.7. Actually, the choice At = 0.025
remains convenient (though maybe not optimal) for a broad range of temperatures and sizes.
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Table 3.2. Discrepancy results for the HMC algorithm.

At 7 Discrepancy (e = 0) At 7 Discrepancy (e = 0)

0.02 1 0.106 (0.0310) 0.01 1 0.0224 (0.0894)
5 0.0750 (0.0143) 10 0.0692 (0.0352)
10 0.0532 (0.0141) 100 0.0690 (0.0242)
20 0.400 (0.0107) 0.03 1 0.0860 (0.0322)
50 0.0389 (0.00869) 5 0.0486 (0.00875)
100 0.0550 (0.0163) 10 0.503 (0.00704)

0.025 1 0.103 (0.0406) 20 0.410 (0.0111)
5 0.467 (0.0249) 50 0.0563 (0.0176)

10 0.0389 (0.0183) 100 0.0540 (0.0157)
20 0.0447 (0.0114) 0.035 1 0.130 (0.0458)
50 0.0481 (0.0201) 10 0.0478 (0.195)
100 0.0524 (0.0181) 100 0.561 (0.347)

Biased Random-Walk

The only relevant parameter is At. We study the quality of the sampling for different values
of this parameter for samples of size N = 10° (there is one computation of forces and energies per
time step), see Table 3.3. We found no systematic improvement using an undersampling procedure.

Table 3.3. Discrepancy results for the biased random-walk.

At Rejection rate Discrepancy (e = 0)

0.01 0.022 0.190 (0.466)
0.02 0.18 0.125 (0.0298)
0.025 0.33 0.0920 (0.0362)
0.028 0.45 0.104 (0.0446)
0.03 0.53 0.110 (0.0362)
0.035 0.73 0.112 (0.0544)

The choice At = 0.025 or At = 0.028 seem reasonable. Notice that according to the discussion
in Section 3.2.3, the optimal choice of At at = 1 (giving the best symmetry estimate and the
lowest discrepancy) is indeed expected to correspond to a rejection rate close to to the asymptotic
optimal rejection rate for tensorized distributions (which is 0.426 [284]). When § # 1 and/or the
molecule is longer, we choose a new time step At such that the acceptance/rejection rate is still
around 0.5. Actually, the choice At = 0.025 remains convenient (though maybe not optimal) for
a broad range of temperatures and sizes.

Discretized Langevin process

The only relevant parameters are the friction coefficient £ and the time-step At. We study the
quality of the sampling for different values of this parameter for samples of size N = 10¢ (there
is one computation of forces and energies per time step), see Table 3.4. We found no systematic
improvement using an undersampling procedure.

The results show that too small values of £ have to be avoided (the random fluctuations are
not large enough to cross barriers) as well as large values of £ (where the stochasticity prevents the
system to follow the physical dynamics). We set £ = 1 and At = 0.02 in the sequel. This choice
remains convenient (though maybe not optimal) for a broad range of temperatures and sizes.
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Table 3.4. Discrepancy results for the Langevin dynamics.

At ¢ Discrepancy (e = 0) At ¢ Discrepancy (e = 0) At ¢ Discrepancy (e = 0)

0.010.1 0.0582 (0.0175) 0.020.1 0.0529 (0.0144) 0.030.1 0.0487 (0.0134)
0.5 0.0580 (0.0208) 0.5 0.0354 (0.00740) 0.5 0.0376 (0.00937)
1 0.0689 (0.0219) 1 0.0339 (0.0142) 1 0.0311 (0.0120)
5 0.0548 (0.0232) 5 0.0350 (0.0106) 5 0.0488 (0.0140)
10 0.0427 (0.00849) 10 0.0441 (0.0161) 10 0.0575 (0.0155)

Nosé-Hoover chains

The parameters are the number M of thermostats, their masses, and the integration time step
At. We set At = 0.003, which ensures a conservation of the energies up to a few percents in
general. We use the two above statistical indicators of the quality of the sampling, as well as the

T DD D IS o
3N ha? 3N ha

1=1 a=x,y,z 1=1 a=x,y,z

time average of

In the long time limit, they should converge to 1/4 and 3/4%. We also display AH/H, which is
the relative conservation of energies. We have observed that, in the case e = 0, the invariant is
preserved with a much better accuracy than in the case e = 0.29 (this is due to the fact that, when
€ # 0, the end atoms of the chain should not be too close; we thus have to handle collisions, which
lower the energy conservation accuracy). The results are presented in Table 3.5 for N = 1,000, 000
and 3 =1 (the values for AH/H, (As) and (A4) have been computed in the case e = 0.29).

Table 3.5. Discrepancy results for the Nosé-Hoover dynamics.

M Q AH/H (Ap) (A4) Discrepancy (e = 0)

1 0.1 6 % 0.999981 3.06987 0.127
1.0 4% 0.999962 3.01696 0.074

10.0 0.3 % 0.999922 4.37835 0.238

2 0.05;0.06 1.5% 1.00007 2.95343 0.080
0.1; 0.1 1.2 % 1.00009 2.91847 0.143
0.3; 0.3 3% 1.00043 2.95486 0.169
1.0; 1.0 0.4 % 0.999555 2.88511 0.232
10.0; 10.0 0.1 % 0.997356 2.92125 0.189
0.15; 0.01 3.7% 0.998261 2.92262 0.217
0.75; 0.05 3.3% 0.998902 2.95794 0.163
1.5; 0.1 0.1 % 0.993824 2.92667 0.242
4.5;0.3 0.2 % 0.995765 2.89965 0.277
15.0; 1.0 0.2 % 0.971896 2.80145 0.338
150.0; 10.0 0.15 % 0.988531 2.89529 0.352

We first see that the Nosé-Hoover chain dynamics is more stable than the Nosé-Hoover dy-
namics (for a given time step and given values of the thermostats, the drift of the invariant is
smaller). The best results in term of discrepancy and closeness of (As) and (A4) to their target
values (1 and 3 here) are obtained here for M = 1 with Q@ =1 or M = 2 with Q1 = Q2 = 0.05. We
choose to work with the latter choice because the conservation of the invariants is better in this
case. Note that different initial conditions lead to different discrepancy results. However, making
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again the same test with different initial conditions (but still with A¢ = 0.003), we have observed
that the choice Q1 = Q2 = 0.05 seems to give better results than other choices.

On the other hand, if we set the time step to At = 0.001, it seems that the best choices
are now Q1 = @2 = 0.1 and @1 = 0.15,@2 = 0.01. In the following, when appropriate, we will
comment the results obtained with these two different choices. Unless otherwise stated, we work
with Ql = Qg = 0.05.

The Nosé-Poincaré and RMT methods

The parameters are the number M of thermostats, their masses, and the integration time
step At. We set At = 0.001, which ensures a conservation of the hamiltonian up to a few percents
in general. Note that we have decreased the time step in comparison to the Nosé-Hoover type
method. This decrease is not due to energy conservation problems (the hamiltonian is preserved
with a reasonnable accuracy when At = 0.003), but because it is quite hard, from the numerical
results at At = 0.003, to select parameter values. In particular, discrepancy results vary in a large
range for different initial conditions, so it is hard to assess that one parameter choice is better
than another one. Selecting parameters has proved to be easier when working with At = 0.001.

We use the two above statistical indicators of the quality of the sampling, as well as the time
average of As and A4 given above. As with the NHC method, we have observed that, in the case
€ = 0, the invariant is preserved with a much better accuracy than in the case e = 0.29. The results
are presented in Table 3.5 for N = 1,000,000 and § = 1 (the values for AH/H, (As) and (Ay4)
have been computed in the case e = 0.29).

Table 3.6. Discrepancy results for the Nosé-Poincaré dynamics.

M Q AH/H (Ay) (A4) Discrepancy (e = 0)

1 0.1 0.02 % 0.999981 3.21418 0.269
1.0 0.08 % 1.0 2.69515 0.304

10.0 0.2 % 1.00024 4.98638 0.350

2 0.05;0.06 0.15 % 1.0059 2.46228 0.320
0.1; 0.1 0.2 % 1.00905 2.63986 0.460
0.3;0.3 0.3% 1.01655 3.35365 0.360
1.0; 1.0  0.06 % 1.01059 3.03896 0.373
10.0; 10.0 4%  1.0292 2.85634 0.328
0.15;0.01 1% 1.00538 3.09675 0.344
0.75; 0.05 0.3 % 1.00799 2.82565 0.297
1.5; 0.1 0.1 % 1.01253 3.00398 0.281
4.5;0.3 0.1 % 0.996809 2.84965 0.225
15.0; 1.0 0.6 % 1.03506 3.16739 0.377
150.0; 10.0 0.03 % 1.02456 3.26963 0.310
0.05;0.1 1% 1.00577 2.91749 0.277
0.1; 0.2 1% 1.00094 2.87149 0.292
0.3; 0.6 2% 1.02247 3.34102 0.347
1.0; 2.0 0.03 % 0.999142 2.73679 0.263
10.0;20.0 1.2 % 1.02031 3.15916 0.341

The best result in terms of discrepancy leads to select Q1 = 4.5, Q2 = 0.3. This choice seems
robust with respect to the initial condition. Depending on the numerical results at hand, other
choices could be made. For a trajectory length of 106 steps, Q1 = 1.0, Q2 = 2.0 seems to give also
good results. However, when the trajectory length is increased to 107 steps, the two more robusts
choices seem to be @1 = 4.5,@Q2 = 0.3, that we selected above, and @1 = 0.1, Q2 = 0.2. We will
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comment in the following the results obtained with the latter choice. Unless otherwise stated, we
work now with Q1 = 4.5,Q2 = 0.3.

3.4.4 Numerical results

The results are presented in Tables 3.7 to 3.9. For each method, 10 different simulations have
been performed, and we give in the Tables the mean and the square-root of the variance (in
brackets) of the 10 different results.

Table 3.7. Numerical results for the discrepancy (3.79) for the pentane (¢1, ¢2) distribution in the case
B =1and K = 100.

Method Parameters Discrepancy Discrepancy
for 10 evaluations for 107 evaluations
Importance sampling - 0.00428 (0.00114) 0.00115 (1.60.10~%)
Rejection - 0.00856 (0.00204) 0.00256 (4.98.10~%)
MIS - 0.0228 (0.00416) 0.0225 (7.75.107%)
HMC T =10At, At =0.025 0.0389 (0.0183)  0.0119 (4.87.10~%)
BRW (Euler-Maruyama) At =0.028 0.0791 (0.0265) 0.0231 (0.00619)
BRW (MALA) At =0.028 0.104 (0.0446) 0.0343 (0.0139)
Langevin At=0.02, £=1 0.0339 (0.0142) 0.0157 (0.00393)
NHC Q1 = Q2 =0.05, At =0.0025  0.103 (0.036) 0.0456 (0.0117)
RMT @Q1=5,Q2="7.5, At =0.0025 0.196 (0.142) 0.178 (0.177)

Table 3.8. Numerical results for the discrepancy (3.79) for the (¢1,¢3) distribution for CoHgo in the
case B =1 and K = 100. The computational cost is fixed to 107 force or energy evaluations.

Method Parameters Discrepancy
Importance sampling - 0.0205 (0.00544)
Rejection - 0.192 (0.0379)
MIS : 0.521 (0.0151)
HMC T =10At, At =0.02 0.0261 (0.00846)
BRW (Euler-Maruyama) At = 0.025 0.0402 (0.0229)
BRW (MALA) At = 0.025 0.0477 (0.0129)
Langevin At =0.025, £=1 0.0144 (0.00544)
NHC Q1 = 0.15,Q5 = 0.01, At = 0.0025 0.0292 (0.0102)
NP Q =5, At =0.0025 0.0386 (0.0095)

One can see that purely stochastic methods are very efficient for small alkane chains, but
rapidly loose their efficiency when the length of the chain increases. Thus, the Langevin dynamics
and the HMC method seem to be the most efficient methods, although other non purely stochastic
methods also give good results. The Langevin, the HMC and the BRW (with Euler-Maruyama
algorithm) methods keep the same efficiency whatever the length of the chain. This seems also to
be the case for the NHC method. The efficiency of the BRW (with the MALA algorithm) decreases
when the chain length increases. There seems to be a problem with the RMT method applied to
the pentane molecule. A careful analysis of the results show that the numerical dihedral angle
distribution corresponds to (3.77) but with a temperature significantly different from the target
temperature. If longer chains are considered, this problem disappears and the RMT method results
are of the same order of magnitude as the results from other methods (see Tables 3.8 and 3.9).
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Table 3.9. Numerical results for the discrepancy (3.79) for the (¢1, ¢3) distribution for C12Hgg in the
case 3 =1 and K = 100. The computational cost is fixed to 107 force or energy evaluations.

Method Parameters Discrepancy
Importance sampling - 0.102 (0.0436)
Rejection - 1.0 (0.0)
MIS - 0.493 (0.222)
HMC T =10A¢, At =0.02 0.0207 (0.00730)
BRW (Euler-Maruyama) At =0.023 0.0312 (0.0102)
BRW (MALA) At =0.023 0.0610 (0.0201)
Langevin At =0.025, € =1 0.0173 (0.00726)
NHC @1 =0.15,Q2 = 0.01, At = 0.0025 0.0350 (0.00865)
RMT Q1 =5,Q2="7.5, At =0.0025 0.0428 (0.0194)

We can also see that, for short chains, the biased Random-Walk (MALA) is more efficient than
the NHC method. However, for chains of 9 and 12 particles, the NHC method is more efficient.
The biased Random-Walk with the Euler-Maruyama algorithm always seems to be a little more
efficient than the biased Random-Walk with the MALA algorithm.

3.4.5 Improvement of the convergence rates
Convergence rate improvements using several shorter realizations

We already mentionned that, instead of running a single long trajectory, it might be more
efficient, for a given computational cost, to run several shorter trajectories. This can be done
for methods of Type 2 to 4. For methods of Type 2 and 3, this strategy relies on the following
numerical approximation. Assuming that the methods are ergodic, it follows

E.(A(g™)) —»/§4fuq>dw (3.80)

when N; — +o00. In some cases, this convergence is exponentially fast. The term E,(A(¢g™)) is
the expectation of the realizations of the chain conditioned at starting from x € M. It can be
approximated by Ny independent realizations of the Markov chain. Each realization is labelled by
an index k € {1,..., N2}, and the associated sample path is (¢%*,..., ¢V ~1F). Notice that, for all
samples, ¢"F = 2. An approximation of E,(A(¢"*)) is then obtained as

N>

B (AWG™) = (@) = 3 > Al (3.81)
k=1

Notice that we expect the error between Iﬁ; () and the space average / A(q) dm to be of the
M

form C(z)p™Nt + C(gc,Nl)Ngl/2 for some 0 < p < 1.
When a short trajectory of length Nj is computed for Ns realizations starting from a given
initial point x, we can also consider the following approximation of the position space average

Ni—1

1 m
/M Algydr = Y I, (a), (3.82)

m=0

where the right hand side is the Cesaro average of (3.81).
The results are presented in Table 3.10 in the case of a Langevin sampling for the pentane
molecule at 3 = 1. As can be seen, there is a slight improvement when generating several shorter
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trajectories, provided these trajectories remain long enough. Note however that such an improve-
ment is not always observed. But we emphasize that there is no degradation of the results either.
This is an interesting point since it allows a straightforward parallelization of the method.

Table 3.10. Numerical results for the discrepancy (3.79) for the pentane (¢1, ¢2) distribution in the case
f =1 and K = 100, using a Langevin method with £ = 1 and At = 0.02. The discrepancy has been
computed with all points appearing in (3.82) (that is all points of the N> trajectories of length N7), with
a computational cost fixed to 107 force or energy evaluations.

Number N of realizations Discrepancy

1 0.0157 (0.00393)
5 0.0117 (0.00388)
10 0.0132 (0.00210)
20 0.0149 (0.00701)
50 0.0120 (0.00330)
100 0.0112 (0.00263)
200 0.0130 (0.00419)
500 0.0308 (0.00834)
1000 0.0528 (0.00740)

Convergence rate improvements at fixed computational cost, using an appropriate

initial distribution

Another improvement is as follows. Instead of considering a fixed initial point, we can make a
first approximation of the canonical distribution. Let us denote by 7V the following approximation

of 7

For each initial point z° (1 < i < N3), an approximation (3.82) can be computed, for Ny realiza-
tions of the Markov chain with trajectories of length Nj. The total number of points generated in
this way is therefore N1 NoN3. The important issue is then to optimize the choices of Ny, Ny and
N3 in order to have the best accuracy for a given total cost.

For the method to be efficient, the empirical measure 73 has to be a good approximation of 7.
To this end, the points z* are chosen as follows. We first generate N* points (y!, ... ,yNtOt) with
weights (w1, ..., wptor ), using (say) an Importance sampling method. We then generate N3 points

. 1. . . yey e w1 W N tot Ntot
from this list with replacement with probabilities (W, ST ) where W =3%"." | w;, and run

one or several trajectories for each starting point. This can improve the rate of convergence of some
methods. An example is the biased Random Walk at 3 = 1 with At = 0.028 for 10° operations.
We consider N** = 10% N3 = 99, N; = 10* and N, = 1. The discrepancy is lowered from
0.104 (0.0446) (with N3 = 10%, Ny =1 and N3 = 1, see Table 3.7) to 0.0430 (0.0144). In general,
it is observed that convergence occurs faster when starting from an approximate distribution.

Effect of undersampling

As a final improvement, we can test the influence of a systematic undersampling, which consists
in picking only some of the points generated instead of considering all of them. Indeed, some
techniques generate points (¢°,...,¢"~!) that may be very much correlated, and it can happen
that the sequence (¢°,q", ..., ¢"), the undersampling rate r being such that N — 1 = rs, is better
distributed than the original sequence.
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The results are presented in Table 3.11 in the case of a Langevin sampling for pentane at § = 1.
As can be seen, the efficiency of the method remains stable when undersampling the data. This is
particularly interesting when computing autocorrelation functions or time-dependent integrals of
the form (3.2) since a NVE trajectory has to be computed for each starting point generated from
the canonical distribution.

Of course, it is still possible to try to improve the quality of a single realization by filtering out
the corresponding sequence of configurations, as is done for NVE simulations in [48,49], but we
will not detail this strategy any further.

Table 3.11. Numerical results for the discrepancy (3.79) for the pentane (¢1, ¢2) distribution in the case
[ =1 and K = 100, using a Langevin method with £ = 1 and At = 0.02. The computational cost is fixed
to 10° force or energy evaluations.

Undersampling rate  Discrepancy

1 0.0339 (0.0142)
5 0.0369 (0.0121)
10 0.0350 (0.00996)
50 0.0391 (0.0194)
100 0.0385 (0.0169)
500 0.0343 (0.0102)
1000 0.0539 (0.0173)

3.4.6 Computation of correlation functions

We present, as a final application, the computation of some correlation function, namely the
transition rate from the set A = {g € M ; |¢1| > 1,|¢2| > 1} (both dihedral angles are not in
their ground states) to the set B = {q € M ; |¢1] < 1,|p2| <1} (both dihedral angles are in their
ground states). This transition rate is expressed as

(14(¢°) 1511194 (q,p)))
(14(q%))

We proceed as follows. We first sample M = 10? initial conditions according to the canonical

measure dy (at 8 = 1) using 10° force evaluations and the parameters given in Table 3.7 (i.e. in all
cases except for the HMC algorithm, we undersample at rate 100 a single trajectory that always

C(t) =

(3.83)

starts from the same equilibrium position; the HMC trajectory is undersampled at rate 10 only
since 7 = 10At). We then integrate the Newton equations of motion from each initial condition
using the velocity Verlet scheme (3.17), for a time ¢ = 100 (with A¢ = 0.005). This procedure is
repeated 100 times. The results are presented in Figure 3.2, and are compared with a reference
result obtained starting from 106 initial conditions sampled with a rejection method.

As can be seen from the results, the methods yielding large discrepancies (such as Nosé-Hoover
and BRW) predict a correlation C(¢) quite different from the reference result. On the other hand,
the HMC and Langevin methods give much better results, especially HMC.

3.5 Stochastic boundary conditions
The vast majority of molecular dynamics simulations use periodic boundary conditions to si-

mulate bulk conditions (see Section 2.2.1). When averages at fixed temperature are computed,
Newton’s equation of motion (associated with constant energy simulations) are modified so that
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Fig. 3.2. Plot of the correlation function C'(¢) starting from initial conditions generated with the rejection
method (solid line), BRW/EM (x), Langevin/BBK (+), HMC (*) and Nosé-Hoover chain (©).

the resulting dynamics is (hopefully) ergodic with respect to the canonical measure. Examples of
such modifications are the Nosé-Hoover or the Langevin dynamics (see respectively Section 3.3
and 3.2.4). However, the quantities to compute may be time-dependent quantities, such as corre-
lation functions:

@0 = [ B@an). 0.0 dr

where p is the canonical measure and @, the flow of the dynamics. It is not clear which dynamics
should be used in this definition. It turns out that the results depend in general of the specifities
of the chosen dynamics. For instance, the response of the system to an increased thermostat
temperature depends on the parameters chosen for the Nosé-Hoover dynamics [113].

The system under study is usually a small system which should be embedded in a much
larger microcanonical system. The larger system acts as an energy reservoir which ensures that
the temperature is correct (this is actually the usual derivation of the canonical ensemble [61]).
Some ways to obtain such a coupling between the simulated subsystem and the ideal energy
reservoir (which should not be explicitely simulated, due to its size), present through some mean
action, have been proposed. Section 3.5.1 reviews the most important ones (to our knowledge). In
Section 3.5.2, a very simple model of stochastic boundary conditions (already used in [82], but only
roughly described) is presented precisely: the core region of the simulated system is governed by
NVE dynamics, while the parts of the system close to the boundary follow a Langevin dynamics
with random perturbations decreasing as the distance to the boundary increases. In this way, a
seamless coupling can be achieved.

3.5.1 Review of some classical stochastic boundary conditions

The first steady-state nonequilibrium molecular dynamics simulations were performed in the
70s by Ashurst and Hoover (see e.g. [12]). Their model uses perturbations limited to the boundary
of the system (external force field or thermal fluctuations). This idea of partitioning the system
between inner region (governed by Newton’s equation of motion) and outer region (the surface of
the system, or some small region around the surface), where the effects of the environment are taken
into account, has been widely used. It is possible to propose a somehow arbitrary classification of
stochastic boundary conditions:

thermal boundary conditions;
mechanical boundary conditions;
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mixed thermal and mechanical boundary conditions;
— “grand-canonical” boundary conditions to model system whose number of particles may vary.
Let us also notice that some directions of the system can still be modelled using periodic boundary
conditions, while the remaining ones are treated with stochatic boundary conditions.

Thermal boundary conditions

The methods presented in this section take into account the thermal fluctuations of a system
through its exchanges with its environment. These exchanges can be modelled

— by constraining the kinetic temperature in the regions close to the boundaries;
by using “thermal walls”, which lead, mathematically speaking, to jump processes (pertur-
bations of the momenta of the impacting particles);

— by using a Langevin dynamics for the region of the system close to the boundary, and the
usual Hamiltonian dynamics elsewhere, so that the resulting process is a diffusive process,
which is (hopefully, but not trivially) hypoelliptic.

Velocity renormalization

In the first studies [12], the kinetic temperature in the regions close to the boundaries was
kept fixed. This was done by velocity rescaling. Some refinings were proposed (see e.g. [27,133]),
rescaling only some components of the velocities (in one direction, typically), or by including

the renormalization step directly in the equations of motion. This method is not used anymore
nowadays.

Thermal walls

Following a work of Lebowitz and Spohn [201], Ciccotti and Tenenbaum introduce thermal
walls modelling the contact of impacting particles with a heat reservoir [67]. The system has free
boundary conditions, but when a particle leaves the simulation domain, another one enters at the
same place where the leaving particle went out, with a momentum generated from the probability
distribution C~1(e - p) fr(p)lep>0, where e is the local normal vector, fr the distribution of the
momenta at equilibrium at the temperature 7' (maxwellian distribution) and C' is a normalization
constant. Therefore, the momenta of the entering particles are not drawn according to a maxwellian
distribution of momenta. A numerical study for an ideal gas or a hard sphere gas confirms that
the model of [67,201] is indeed the right strategy [339].

The first simulations relying on thermal walls [67,340] with different temperatures on both
sides of the system have shown that dynamical properties could be computed, but that surface
effects were important near the thermal walls (especially the local density and the temperature).
This is why such a strategy asks for additional mechanical boundary conditions (see Section 3.5.1)
to limit surface effects.

Coupling with a Langevin dynamics

One of the first simulation coupling a Hamiltonian and Langevin dynamics is due to Adelman
and Doll [1]. The aim of this coupling was to reduce the number of degrees of freedom in the
simulation by replacing the environing particles by some mean action, modelled by a random
forcing term and a friction with memory (in the Mori-Zwanzig way). The first study were only
a part of the system is governed by a Langevin dynamics, whereas the remaining part obeys
Hamiltonian dynamics was proposed by Berkowitz et MacCammon [28], with a mechanical forcing
to confine the system (some slices of a crystalline lattice at rest). To reduce surface effects, the idea
of coupling Langevin and Hamiltonian dynamics was refined by Brooks et Karplus [43,45], using
especially some averaged confining force. Some studies also mention the use of a Langevin dynamics
with a friction depending on the distance to the boundary of the system [82]. Similar ideas were
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used in the framework of Nosé-Hoover dynamics [165,209]; a seamless coupling is however less
clear (Nosé masses depending on the distance to the boundary should be considered). These ideas
were developed in the field of biology and the reference textbooks for condensed matter molecular
dynamics (such as [113]) do not mention it.

Mechanical boundary conditions

Free boundary conditions and some thermal boundary conditions (such as thermal walls) may
create surface effects (local density variations, or temperature differences). Periodic boundary
conditions are a convenient way to reduce surface effects, though numerical studies [223], and then
theoretical studies [273,274], have shown that periodic boundary conditions also have spurious
effects, especially for small systems. More importantly, PBC are problematic when long-range
interactions are considered - such as coulombic forces for non-neutral systems (charged defects in
solids) or solvant effects (dipole corrections) for biological systems. As an alternative to PBC to
confine free boundary systems, one may consider

forces or constraints arising from short-ranged interactions;

— mean-force effects arising from avarges over a large number of (non-simulated) degrees of

freedom.

The second approach was developed in the field of biology. For example, in [192], the sys-
tem is split into three regions, a core region (Hamiltonian dynamics and averaged electrostatic
potential), a buffer region (thermal fluctuations through some Langevin dynamics, forces on the
boundaries and averaged electrostatic potential), and an outer region (not explicitely simulated)
which determines the averaged electrostatic potential. Such a modelling is refined in [181].

The first approach, more used for mechanical studies of solids, can be implemented in several
ways. For instance, a given (macroscopic) displacement can be modelled by layers of surface atoms
following rigidly the displacement, and kept fixed for the simulation [68, section I1.2.C].

"Grand-canonical" boundary conditions

There are two general strategies to deal with systems whose number of particles varies:
consider that the system is open and specify a flux of ingoing particles to compensate particle
losses;
use grand-canonical sampling techniques.

The first approach is used in [123] for a model case of non-interacting particles, in which case
particle fluxes can be derived. The extension to interacting particles requires additional forcing
terms on the boundaries, as well as density-dependent ingoing particle fluxes.

The second approach was presented in [182], for a model system of ionic channel, and refined
in [372] to deal with protein solvatation. In a buffer region aroung the boundary, particles are
inserted and deleted according to the local chemical potential, using standard grand-canonical
sampling techniques [113]. Therefore, the number of particles is preserved in average, and the core
region is not perturbed.

3.5.2 An example of thermal boundary conditions

We present more precisely in this section a seamless coupling between a Langevin and a Ha-
miltonian dynamics (in the spirit of [28,43,45,82]), with periodic boundary conditions. The aim
of this coupled model is therefore only to provide interesting thermal boundary conditions, so
that time-dependent observables can be computed by averages performed in the core region of the
system.
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Description of the model

We consider a simulation box 2 € R? (d = 2 or 3) with periodic boundary conditions (the
configuration space therefore has the geometry of a torus). The simulation box {2 is decomposed
into two non-overlapping domains (2; and (2. (see Figure 3.3), the outer region (2. being for
example the set

Q. ={z e 2| d(x,00) <r},

where d(z,0(2) is the distance from x € (2 to the boundary 92, and r. some positive cut-off
radius.

PBC

FB
¢ PBC

PBC

Fig. 3.3. Decomposition of the simulation box {2 into two non-overlapping domains (2; and (2.

The dynamics we propose is as follows. The particles that are located in §2; are only subjected
to the forces that derive from the interaction potential V', whereas the particles that are located
in {2, also experience some random forcing. More precisely, we consider the dynamics

{th = M~'p, dt,

3.84
dpy = —VV(q)dt — I'(q:)M 'pydt + X(q;) dWs, (384

where (W;)i>0 is a dN-dimensional Wiener process, and where the matrices X' and I" represent
the magnitude of the fluctuations and of the dissipation respectively. They are linked by the
fluctuation-dissipation relation:

2
E(Qt)E(Qt)T = BF(%)- (3.85)
In this expression, 3 = (kgT)~! is the inverse temperature of the bath. In the sequel, we choose
a diagonal matrix for I'(q):

I'(q) = Diag(v(q1), - -, v(an))s

where the function « is taken to be a smooth decreasing function of d(z,df2) such that v(x) =0
in £2; and y(x) > 0 in £2.. We also consider

Y(q) = Diag(o(q1),---,0(qn)), with o(+) = 2775) (3.86)

It is easy to check that the canonical probability measure (3.3) is an invariant probability measure
for (3.84) since it is a stationary solution of the associated Fokker-Planck equation.

It is not clear whether the stochastic differential equation (3.84) is ergodic since X' = 0 in
£2;. However, in the following numerical simulations, it is observed that, whatever the starting
distribution, the correct kinetic temperature is quickly attained.
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In the numerical examples presented in Section 3.5.2 and 3.5.2, we have used the following
numerical implementation of (3.84), inspired from the classical BBK scheme used to integrate the
Langevin equation [45]:

p?+1/2 :p?—kﬁ <—tiV(q”)— V(g )p. o(q; ) )

2 VA
n+1 At n+1/2
¢ =+ —p (3.87)
‘ n+1 n+1
n+l  _ 7_z+1/2 At Vi(g"tt FY(qi ) n+1 U(qi )G7_H.1
pz pz + 2 ( vlh ( ) m; pz + \/E 7

where o is still given by (3.86), and {GI}1<i<n,nen are identical and independently distributed
(ii.d.) standard gaussian random variables.

Thermal conductivity of Lennard-Jones systems

We first describe the Lennard-Jones system and the thermalization procedure we have consi-
dered. The NVE-NVT heating and cooling processes are then dealt with in Section 3.5.2, and
alternative approaches to determine the thermal conductivity are briefly reviewed. Some simula-
tion results are finally provided.

Description of the system

We consider a three-dimensional (d = 3) Lennard-Jones system, with standard periodic boun-
dary conditions. The potential energy is given by

N
V= > VLJ(|Qi_Qj|)+%Z > Vislla — g5 + k), (3.88)

1<i<j<N ,j=1 keR\{0}

where R is the Bravais lattice and V1,5 the usual Lennard-Jones potential
12 6
Vig(r) = 4e ((E) - (2) ) ) (3.89)
r r
with € > 0 and a > 0.

The system is first thermalized at an inverse temperature 3 using a full Langevin dynamics
(that is, I'(q) = volsn in (3.84)) for a time ¢y large enough, starting from an equilibrium position
such as a FCC lattice for solid state simulations, or a square lattice for liquid phase simulations,’
and generating the momenta of the particles from the kinetic part of the canonical measure.

Computation of the thermal conductivity

The thermal conductivity A of a system can be computed either at equilibrium, using a Green-
Kubo formula [113], or in a non-equilibrium setting. The former method relies on the integration
of the heat flux correlation function, and often requires long simulation times for the time integral
to converge. Non-equilibrium molecular dynamics (NEMD) approaches assume a linear response
regime, so that the heat flux depends linearly on the temperature gradient. To specify this linear
relation, external fictitious mechanical forces can be added [100,128] to the NVE dynamics, or a
temperature gradient can be specified, while the heat flux is then measured. Since these methods
also suffer from slow convergence, a different approach has been proposed, where the heat flux is
specified, and the temperature field is measured [251].

® This initial configuration is much less stable than a FCC lattice, and thermalization is therefore expected
to occur faster.
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A recent interesting alternative method [175] relies on transient simulations. A small fraction
of the system is instantaneously heated, and the kinetic temperature relaxation is monitored.
The thermal conductivity can then be computed by comparison with the Fourier law. However,
the approach of [175] is based on NVE simulations of relatively small systems, so that complete
relaxation toward the canonical ensemble cannot be observed.

We now show that the NVE-NVT model (3.84) is fairly suited for thermal conductivity compu-
tations. Let us consider a Lennard-Jones system modeled by (3.84) initially at thermal equilibrium
with temperature T} (such an equilibrium state is obtained as described in Section 3.5.2) and let us
suddently change the temperature of the thermostat to 7. The inner system §2; is then heated or
cooled down through energy exchanges with (2., itself thermostated by the environing heat-bath,
and the kinetic temperature of {2; as a function of time can be monitored. To reduce statistical
errors, several independent relaxations must be performed, starting from initial configurations
sampled independently from the canonical measure.

The thermal conductivity can then be recovered as follows. Assuming that the Fourier law
holds in the domain £2; =]0, L[3, the local temperature obeys the heat equation

pCod, T = \AT,

where p denotes the density of the system (expressed in mol/m?), C, the specific heat capacity
(in J/K/mol), and A the thermal conductivity (in W/m/K). For variations in a small temperature
range, it can indeed be assumed that C), and )\ remain constant in space and time. The specific
heat capacity can be found in thermodynamic tables, or computed as a time-independent, canonical
average according to

g g - N,
~ NkpT?

where NV, is the Avogadro number and (-) denotes a canonical average.

Cy ((H?) — (H)?),

A
Setting o = o it follows
h 8tT = O'AT
Consider the heating or cooling of the sytem from T} to Ty = T} + 0T with |6T'| < Ty, Ts. Setting
u= (T —T)/0T, the evolution of u is governed by the Cauchy problem

Ou = oAu in (2,
’U,|t:0 = 1 in Qi, (390)
u = 0 on 0f2;.

The initial condition ug can be expanded on the Fourier modes

Srim )= 2 3/2, krx\ . Iry\ . (mWZ)
kim\T,Y,2) = 7 S 7 Sin I Sin i

~ 16V2L3/?

1
uo(,y, ) = 3 . zZm:>o 2k + )20+ 1)(2m + 1)¢2k+1,2l+1,2m+1($7yaz)-

as

Let us denote by

h(t,z) = l;) (2%4‘1) exp (—a%t) sin (@) .

k2 112 2)2
L L_;m i Okim., it follows,

Since A¢klm = —
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64
ult 2,9, 2) = Z5h(t,w) hit,y) h(t, 2).

The deviation to the target temperature T5 is therefore, on average on the domain (2;,

_ 1 512
u(t) = T3 /]07“3 u(t,z,y,z) dedydz = Fk(t) ,

where, setting A = om2L "2,

1 (2k + 1)%72 _ At I gar 1 oqny
k(t) = E —_— —0o————1 | = 1+ = — R I 3.91
" k>0 (2k + 1) P ( 7 L2 ¢ N a5 i (390

It then holds

u(t) _ (k@) 3Ne—3A(t—t0)
u(to) (k(to))

for t > to and tg large enough. Therefore, the value of A (and thus of A provided C, is known)
can be computed by fitting 4(t)/u(tg) to an exponential function.

Numerical results

The kinetic temperature for a given number N; of particles is defined as

N P
3Nikn 2~ 2m,

We also define, in analogy with the previous section, uyin = (T2 — Tkin) /0T

Figure 3.4 shows a plot of the instantaneous kinetic temperature in {2; in the case of a heating
process for fluid Argon from T} to T», and the corresponding plot of Uiy /Ukin(to) (with o = 5 ps),
averaged over 30 realizations of the heating process conducted from independent initial conditions.
The parameters of the model are N = 64,000, ¢/kp = 119.8 K, a = 3.405 x 1071 m, T} = 400 K,
Ty =420 K, At = 2.5 x 10715 5. We use a truncated Lennard-Jones potential with a cut-off radius
7. = 2.5a. The molar mass is M = 39.95 x 1072 kg/mol, and the density is p = 35044 mol/m?.
The simulation cell {2 is then a cubic box of edge length L = 37.51 a. The parameters used for the
thermalization are o /m = 1012 s7! and #;,;; = 20 ps. Then, the independent initial configurations
are obtained from this thermalized configuration by running an additional Langevin dynamics for
15 ps before each realization of the heating process.

For the coupled NVE-NVT dynamics, we have used

v(-) =7 cos (2%) (3.92)

with 41 /m = 5 x 102 s~!. We have checked that the thermal response is not sensitive to the
specific shape of the friction function nor to the value of 77 in a broad range.

As can be seen from Figure 3.4 (Left), the kinetic temperature in the inner region of the
system converges toward the target value determined by the temperature of the thermostat. The
function @y, /Ukin(to) is plotted on the time interval [to,¢1] with ¢ = 5 ps and ¢; = 75 ps.
Notice that, as we discard the initial relaxation, the higher order exponential terms in (3.91)
can be neglected, so that we can indeed approximate iy, /Uxin(to) by e 3A(t=t0) A least-square
fit gives A = 0.01438 s~!. A numerical computation of C, at T = 400 K (using a Langevin
NVT sampling with 6 x 10° time-step as described in [51]) gives C,, = 18.01 J/K/mol, in good
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Fig. 3.4. Left: Kinetic temperature in (2; as a function of time. Right: Plot of tikin /@xin (o) as a function
of time with to = 5 ps (solid line), as well as its exponential fitting function (dashed line). Notice that the
exponential approximation seems to be justified.

agreement with the experimental value C, = 18.12 J/K/mol®. Therefore, the computed value of
is A = 0.1509 W/m/K, which is in good agreement with the experimental value A = 0.1557 W /m/K
at T' = 400 K.

Thermal relaxation of a displacement cascade in Pu

We finally present in this section some simulation results on the irradiation induced displace-
ment cascades in metallic crystals. When an atom of a crystal ("the primary knock-on atom’;, PKA)
undergoes a nuclear reaction or is hit by a high-energy particle, its kinetic energy is dramatically
increased. This will give rise to a cascade of collisions between the neighboring atoms, together
with a sudden increase of the local kinetic temperature. These cascades result in the production
of numerous defects in the lattice (such as interstitial atoms or vacancies), the so-called 'primary
damage state’. A large fraction of the defects quickly disappear due to the recombination between
interstitial atoms and vacancies, while the system returns to its original temperature (the kinetic
energy in excess is dissipated). This first stage of relaxation lasts about a nanosecond. An experi-
mental investigation of these phenomena is difficult, since the time and length scales involved are
too small for a direct observation, but it can be simulated by MD. The remaining defects created
by the various cascade relaxations will then interact on much larger time scales (from a second
to several years) to form clusters of defects, that will alter the macroscopic mechanical behavior
of the material. This is the source of the ageing of radioactive and irradiated materials. Kinetic
Monte-Carlo (KMC) models [77] are necessary to deal with such long time scales; these models
can be parametrized by the results of MD simulations of the first stage of the cascade relaxation.

Our purpose is to model the thermalization occuring in this first stage. It is important to
describe correctly this process, since it has an influence on the distribution of the remaining
defects, hence on the parametrization of the KMC model. More specifically, we focus on the
example of a FCC Pu crystal (recall that Pu undergoes alpha decay). Since the PKA is launched
with a large kinetic energy, the kinetic temperature of the system increases at the beginning of the
simulation. Therefore, unless the system is infinitely large (in which case the temperature increase
is negligible, and the initial energy excess concentrated in the center of the crystal diffuses over
the whole system), there is a need for some dissipation, in order to ensure thermal relaxation.
The MD model of [77] considers a crystal with PBC, where the atoms in the unit cells close
to the boundary obey a full Langevin dynamics, while the other atoms experience a pure NVE

5 The experimental values used in this section are taken from the NIST Chemistry Webbook,
http://webbook.nist.gov/chemistry/fluid/
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dynamic. We propose here to consider a Langevin forcing of decreasing magnitude as explained
in Section 3.5.2. This can heuristically account for the finite size of the crystal, dissipation being
then understood as energy transfer from the simulated box to the rest of the crystal.

Simulations have been carried out for a FCC Pu lattice of 13,500 atoms at Ty = 300 K,
using a MEAM potential [21,22,24] for Pu [23]. An initial thermalization is performed for a time
to = 10 ps, using a full Langevin dynamics. The PKA is then launched with an energy of 100 eV
in the direction (5 1 3). The first stage of the simulation is performed during the time ¢; = 4 ps
with the time step At = 5.107° ps. The second part is performed during the time ¢, = 35 ps. The
friction function used in this simulation is still given by (3.92), with q9/m = 2 x 102 s7! and
Teut = 4.5 x 10710 m (this is the cut-off range used for the MEAM potential). The evolutions of
the kinetic energy of the whole system as a function of the iteration step are displayed in Figure 3.5
for both simulation stages.

Kinetic temperature Kinetic temperature
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Fig. 3.5. Kinetic temperature as a function of the iteration step for a FCC Pu system experiencing
a self-decay-induced cascade of 100 €V. The time-step is At = 5 x 107° ps for the picture on the left
(first stage of the simulation), and At = 5 x 10~* ps for the picture on the right (second stage of the
simulation).

At the end of the second stage of the simulation, the kinetic temperature of the system has
returned to the desired value T' = Tj.

3.6 Some background on continuous state-space Markov chains and
processes

3.6.1 Some background on continuous state-space Markov chains

This section is intented to give a quick overview of the most important notions and results for
continuous state-space Markov chains. We refer the interested reader to [240], and to [127, Chap-
ter 4] for a simple short introduction to continuous state-space Markov chains. The article [349]
is also a beautiful introduction to the topic, making remarkable parallels between the countable
case and the continuous state-space case.

Different levels of stability for Markov chains.

We first present in an informal manner the spirit of the characterization of stability for Markov
chains {®,, },en on a general state space X (in particular, we do not restrict ourselves to countable
spaces). This general introduction is strongly inspired from [240, Section 1.3]. A useful concept is
the first hitting time from a point to a set. Define
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g =inf {n>1|®, € B},

the first time when the chain reaches the set B. The weakest form of stability is that the space
accessible to the chain does not dramatically change when taking another initial condition, so
that all “reasonably sized” sets can be reached from any starting point. This is the concept of
¢-irreducibility, which can be stated as follows, for x € X,

¢(B) > 0= P,(15 < 00) >0,

where P, is the probability induced by the Markov chain starting at x (i.e. the probability of
events conditional on the chain starting from z). The measure ¢ precises the class of sets that can
be “reasonably” reached.

A strengthening of this condition is that not only all sets can be reached, but in fact they are
attained almost surely, in the sense that

Ve e X, ¢(B)>0=P,(rp <o0)=1.
This can be further strenghtened by requiring the expected hitting time to be finite:
¢(B) >0=E,(15) < o0,

where E,, is the expectation under PP,.. This level of stability is refered to as recurrence. Heuristically,
it ensures that the chain does not drift, but returns often enough to “central” parts of the space.
This kind of behaviour already implies some convenient behaviour along sample paths (@¢, @1, .. .),
leading to a Law of Large Numbers (LLN).

The last level of stability is relevant for recurrent chains, and deals with convergence to a
limiting regime independently of the initial condition. This is known as ergodicity, and is linked
to the convergence of the distribution of the chain. In this case, Central Limit Theorems (CLT)
can be stated to precise the behaviour along one sample path.

The different levels of stability introduced are summarized in Figure 3.6, together with condi-
tions ensuring them. Denoting by B(X) the Borel o-algebra of X and by u“" the Lebesgue
measure on X, these conditions read

(C1) Yz € X, VBeB(X), p*"(B)>0= P(z,B) >0,

(C2) m is an invariant probability measure,

There exist measurable functions L > min{1, A}, W > 0, a real number b
(C3) and a petite set C' such that

/XP(x,dy)W(y) —W(z) < —L(z) + blc(z), ©(W?) < +oo.

There exist a measurable function W > 1, real numbers ¢ > 0 and b,
(C4) and a petite set C such that
AW (z) < —cW(z) + blc.

The notion of petite set C' will be precised below. Notice that Conditions (C1) and (C2) are
usually quite easy to show in a MD setting, already giving ergodicity (without convergence rate
however). Conditions (C3) and (C4) can be easily shown when the state space X is compact (when
it is a d-dimensional torus for example, as in MD with periodic boundary conditions), under certain
regularity conditions on the transition kernel.

These concepts are precised below, and presented in a more rigorous way. We end this section
with a simple example, the Random Walk on a (half-)line, in order to see the theory of general
state-space Markov chains at work.
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Fig. 3.6. The different levels of stability for Markov chains.

Some fundamental results.

We first precise the probability structure induced by a Markov chain on the state space. We
consider a continuous state-space Markov chain given by its transition probability kernel

P={P(z,B), z€ X, BeB(X)}

where B(X) is the set of Borel sets of X. The transition probability kernel is such that P(-, B) is
a non-negative measurable function on X for all B € B(X), and P(x,-) is a probability measure
on B(X) for all z € X. Given a transition probability kernel, one can define a time-homogeneous
Markov chain @ = (P¢, Py, ...) with initial distribution p. This chain is defined on 2 = []2, X;
(where each X; is a copy of X), and is measurable with respect to the product o-field F =
@22, B(X;). There exists a probability measure P, on F such that, for any any n € N and any
measurable B; € B(X;) (1 <i<n)

Pu@o € Boodye b= [ f (o) Pyo, dyn) .. (g1, Bn).
Yyo€ Bo Yn—1€Bn_1

If an event occurs P, = Ps_-a.s. for all z € X, we say that it occurs P,-a.s. We also inductively
define P", the n-step transition probability by P°(x, B) = §,(B) and the induction rule

P”(x,B):/XP(:C,dy)P”_l(y,B).

We then successively turn to the three important notions presented in the introduction of this
section.



104 3 Phase-space sampling techniques
Irreducibility.

Definition 3.2. The chain @ is said to be ¢-irreducible if there exists a measure ¢ on B(X) such
that, for all z € X and B € B(X) such that ¢(B) > 0, there ezists some n (possibly depending on
x and B) such that P™(x, B) > 0.

Notice that the Condition (C1) above implies g **P-irreducibility. When a chain is ¢-irreducible,
there exists a maximal irreducibility measure 1 (see [240, Theorem 4.2.2]). The maximality is to
be understood with respect to the domination relation for two measures, denoted as ¢ < 1,
and defined through ¥(B) = 0 = ¢(B) = 0. Any other irreducibility measure is absolutely
continuous with respect to 1. The equivalence of maximal irreducibility measures allows then to
define BT (X) = {B € B(X) | ¥(B) > 0}.

Definition 3.3. A set B is full if ¥(B¢) =0 and absorbing if P(x,B) =1 for all x € B.
Recurrence.

As in the countable case, irreducible continuous state-space chains have essentially two possible
behaviours: they may drift to infinity (transient behaviour) or remain almost always in a bounded
region of space (recurrence). The occupation time npg is defined as the number of visits of @ to a

set B € B(X):
nB = Z 1ys,eB)-

n=1
Recall that E, denotes the expectation under P, = IP5,_, that is, the expectation under the proba-
bility generated by the chain starting from x.

Definition 3.4. A chain @ is called recurrent if it is 1-irreducible and E,(ng) = > 2

n:an(‘T7B):
+oo for all x € B and B € BT (X).

Let us precise some criteria ensuring that a Markov chain is recurrent. A simple case is when
an invariant probability measure exists for the system. Let us emphasize that the existence of a
(non-normalized) invariant measure is not sufficient, since this measure may be non-normalizable
(see an example below).

Definition 3.5. A -irreducible chain @ is said to be positive if it admits an invariant probability
measure .

It is heuristically clear in this case that the chain cannot be transient. The following proposition
holds:

Proposition 3.2 ( [240], Proposition 10.1 and Theorem 10.4.9 ). If a chain ® is positive
then it is recurrent and admits a unique invariant probability measure equivalent to 1.

Notice that Conditions (C1) and (C2) above imply positive recurrence for the chain. When no
invariant probability measure is known, stronger conditions are needed to get recurrence, such as
drift criteria [240, Chapter 8]. In statistical physics however, it is often the case that an invariant
probability measure is known.

Law of Large Numbers.

The concept of recurrence can (and has to) be somewhat strengthened to get convergence
results such as the Law of Large Numbers (LLN).
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Definition 3.6. A set B € B(X) is called Harris recurrent if P,.(ng = c0) = 1 for allx € B. A
set B is called maximal Harris if it is a mazimal absorbing set such that @ restricted to B is Harris
recurrent. A chain @ is called Harris recurrent if it is -irreducible and if every set in BT(X) is
Harris recurrent. A Harris recurrent and positive chain @ is called a positive Harris chain.

Actually, any recurrent chain is already almost a Harris recurrent chain. Indeed, the following
theorem holds:

Theorem 3.13 ( [240], Theorem 9.1.5 ). If ¢ is recurrent, then X = H U N where H is a
non-empty mazimal Harris set, and N is y-null.

Therefore, starting from an initial value x € H, a positive chain remains in H and is positive
Harris on H. This amounts to replacing the whole space X by its full subset H. Note that 7 is
also an invariant measure for the chain on H.

We now turn to the convergence of the average along one sample path. Consider the sum
Sn(A) = Zfil A(®,,). We recall a Law of Large Numbers (LLN) result:

Theorem 3.14 ( [240], Theorem 17.1.7 ). Suppose D is positive Harris. Then, for any mea-
surable function A € L*(7),

lim iSN(A):/ Adr  as. [Py].
n—oo [N P'e

Remark 3.3. Therefore, since the chain starting from H remains in H and is positive Harris on
H, the LLN holds true for any chain {®, }nen starting from &g = x € H. Therefore, it holds for
a.e. starting point, H being a subset of full measure by Theorem 3.13. This result can actually be
extended to all starting points [239,241]. It holds whenever Conditions (C1) and (C2) are verified.

Small sets and petite sets

The following definitions of small and petite sets are used for the convenience of other definitions
and are particularly well-suited for general proofs in the Markov chain setting. However, they will
not be used as such in this chapter, for we will be able to work with compact sets, that are small
or petite under certain regularity conditions on the Markov transition kernel. We also warn the
reader that the terms ’small’ and ’petite’ do not refer to the size of the spaces involved. They
merely refer to some useful uniform lower bounds on the transition kernel.

Definition 3.7. A set C € B(X) is called a v,,-small set if there exist m > 0 and a non-trivial
measure Uy, such that for all x € C' and B € B(X),

P™(x, B) > vy (B).

Though it is far from obvious from this definition, any -irreducible chain has small sets C C B
for any B € B(X)™" (see [240, Theorem 5.2.2]). In fact, the whole space X can be recovered by
a countable union of small sets (see [240, Proposition 5.2.4]). This allows many properties of
continuous state space Markov chains to be stated in the same manner as for countable state
space Markov chains.

The notion of small sets is generalized with the notion of petite sets. Setting K,(x, B) =
>0 o P"(z, B)a(n) for x € X,B € B(X) and with a = {a(n)},en a probability measure on N,
the expression K, defines a transition kernel.

Definition 3.8. Let v, be a non-trivial measure on B(X). A set C € B(X) is v,-petite if
K,(x,B) > v4(B)

for all x € C and all B € B(X).
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Notice that a v,,-small set is vs,_-petite. We will now see that compact sets are petite, under
certain regularity conditions on the transition kernel.

Definition 3.9. If x — P(z,0) is a lower semi-continuous function for any open set O € B(X),
then the chain is said to be weak Feller.

Notice that the lower semi-continuity condition is usually easy to check in practice. It will even
often be the case that P(-, B) is a continuous function for any Borel set B. We then have the
following

Theorem 3.15. If the ¥-irreducible chain @ is weak Feller and if supp ¥ has a non-empty interior,
then all compact subsets of X are petite.

Ergodicity.

We first introduce the total variation norm for a signed Borel measure p. It is given by

[l = sup lu(h)| = sup p(A)— A).

inf  pu
h measurable, |h|<1 {AeB(X)} {AeB(X)}
Notice that convergence in total variation implies weak convergence.

Definition 3.10. A chain @ is ergodic when
Vere X, lim ||[P"(x,-)—m||=0.

In particular, ergodicity implies E.(A(®,)) — [y A(®) dr when n — +oo for any bounded
measurable function A.

Ergodicity is actually quite easy to get once the chain has been shown to be recurrent. It is
sufficient to show that the chain is aperiodic. We need here the notion of small and petite sets
to state the definition of aperiodicity, though in practice much simpler criteria will be used. We
introduce the set E¢ associated with a vys small set C:

Ec ={n >1| the set C is v,-small with v,, = Kk, for some k,, > 0}.

We see that M € E¢. Let us denote by d the greatest common divisor of the set E¢. In fact d is
independent of the initial small set chosen. Therefore, the following definition makes sense:

Definition 3.11. Suppose that & is a -irreducible Markov chain. If d = 1, the chain is called
aperiodic. If there exists a v1-small set C with v1(C) > 0, the chain is called strongly aperiodic.

It is often easy to check strong aperiodicity in the MD setting using some global accessibility
results. In particular, Condition (C1) implies aperiodicity (see [240, Theorem 5.4.4]). The following
theorem then states the ergodicity of recurrent aperiodic chains.

Theorem 3.16 ( [240], Theorem 13.3.4). If & is positive recurrent and aperiodic, then for every
initial distribution X such that \(N) =0 (where N is the w-null set defined in Theorem 3.13),

—0 asn— oo.

H/A(d:c)P"(:c, yen

In particular, the case A = 0, can be considered for a.e. point = (i.e. for x € H). This result holds
as soon as conditions (C1) and (C2) are verified.

The convergence in total variation norm implies convergence of the expectations for bounded
observables A. It is therefore not sufficient in practice for non-bounded observables A (see for
instance the examples presented in the Introduction). Fortunately, the ergodicity results can be
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strengthened in a straightforward way. For a given measurable non-negative function W, let us
define the W-total variation norm for a signed Borel measure u as

pllw = sup (R
h measurable, |h|<W

Then Theorem 3.16 can be readily extended to integrable functions A.

Theorem 3.17 ( [240], Theorem 14.0.1). Suppose that A > 1 is measurable and w(|A|) < 4o0.
If @ is positive recurrent and aperiodic, then for m-a.e. x € X,

—0 asn — oo.
A

‘L/A@mgpnw,)_w

Rate of convergence for the LLN: a Central Limit Theorem.

Additional conditions are required to get not only a LLN, but a CLT, precising the rate of
convergence of a sample path average toward its limit. The drift AW is defined, for z € X, as

AW (z) = /X Pz, dy)W (y) — W(z).

We then consider the following

Criterion 3.1. Assume @ is ergodic, and there exist a measurable function L : X — [1,00[, a
petite set C € B(X), b < +o00 and a finite-valued measurable function W such that

AW (z) < —L(x) + ble(z), Vo e X.

Denoting by 7 the invariant measure of the chain, we also assume w(W?) < co.

Heuristically, this drift condition ensures that AW is decreasing outside a petite set C' (in practice,
a compact set). Therefore, we expect the chain to spend most of its time in the set C. The dynamics
of the chain is then almost that of a chain in a compact set. That is why we can expect some
stronger recurrence properties and some better convergence results.

For a given measurable function A such that 7(]A|) < oo, we formally define the function A
by the following Poisson equation:

A—PA=A—-n(A).
It is not clear in general whether A is well-defined. This turns out to be the case when Criterion 3.1
is verified, and allows to state a CLT (see [240, Theorem 17.5.3]):

Theorem 3.18 (CLT). Assume Criterion 3.1 holds, and let A be a function such that |A| < L.
Then the constant v := w(A% — (PA)?) is well-defined, non-negative and finite. If v% > 0, then,
defining A = A — w(A), it holds

(n73) 7280 (A) — N(0,1),

this convergence being in law.

Notice that we get convergence results only for observables |A| < L, while the LLN applies for
any integrable function. Theorem 3.18 holds true as soon as Conditions (C1), (C2) and (C3) are
verified.

Remark 3.4. In particular, under the assumptions of Theorem 8.15, the whole state space is petite
when it is compact. Therefore, Condition (C8) is straightforwardly verified with the choice C' = X
and W and L arbitrary smooth functions (taking b large enough).
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Geometric ergodicity.

The ergodicity property implies the convergence E.(A(®,)) — [y A(g)dr for measurable
integrable functions A. A convergence rate can be obtained by resorting to the stronger notion of
geometric ergodicity, generalizing the notion of ergodicity. The following Criterion, analogous to
the drift condition for Criterion 3.1, is of paramount importance.

Criterion 3.2. There ezist a function W > 1 finite at some xo € X, a petite set C € B(X), and
b < +o00, ¢ > 0 such that

AW (x) < —cW(z) + ble(x), Vze X. (3.93)

This drift criterion can be heuristically interpreted in the same way as Criterion 3.1. We then get
the following

Theorem 3.19 ( [240], Theorem 15.0.1). Assume Criterion 3.2 holds. Then there exist p < 1
and R < 400 such that, for all x € {y € X | W(y) < +o0},

1P (z, ) = mllw < RW(x)p".

In particular, we get

< RW (z)p"

B.(A@,)) - [ A@)dr

for any starting point = € X such that W(z) < +oo. This result holds as soon as Conditions (C1),
(C2) and (C4) are verified.

Remark 3.5. When X is compact, Condition (C4) is straightforwardly verified with the choice
C = X for any arbitrary smooth function W (taking b large enough). When X is not bounded and
the chain is weak Feller (with an irreducibily measure of non-empty interior), Condition (C4) is
satisfied when (3.93) holds for a compact set C and for a smooth function W such that W(z) —
+o00 when x| — +oo.

A simple example: The Random-Walk on a (half-)line.

We now present a simple example, taken from [240]. We hope that it illustrates relevantly
many of the notions introduced in this section. The setting is the following. Consider a collection
of real-valued random variables & = {®g, ®1, ...}, defined as

Ppy1 = P + Wi,

where {W},} are independent and identically distributed (i.i.d.) random variables, that we do not

precise further for the moment. The distribution of @y can be chosen arbitrarily. A convenient

choice is for example to initialize the chain with a deterministic point zy € R, which amounts to

considering the initial measure d,,. The so-defined Markov chain is called a “random-walk” (RW).
We can also consider a random-walk on the half-line (RWHL), defined as

Dpt1 = [Pr + Wi,

where [a]; = max(a,0). We examine successively to the questions of irreducibility, recurrence and
ergodicity for those two Markov chains.
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Irreducibility.

Under reasonable assumptions on the increments {W}}, irreducibility is easy to check, and
asks only for little comprehension of the behaviour of the system.

Consider first the case of random-walk when the W) have values in Q and are such that
P(Wy, = x) > 0 for all z € Q. Starting then from z¢ € Q, it is easily seen that Q is absorbing. If
the chain was irreducible, any irreducibility measure ¢ would be supported by Q. For zy &€ Q, the
chain has values in zg + Q. So, considering the chain starting from xg, we see that P"(xo,Q) =0
for all n € N. This shows that ¢ cannot be an irreducibility measure. The chain is not irreducible
in this case, and it has an uncountably infinite number of absorbing sets.

In the case when W} has a smooth positive density -, the chain is seen to be irreducible with
respect to the Lebesgue measure p"®® (more general conditions could also be considered [240]).
Indeed, for any € R and B € B(R) such that x“**(B) >0

P(z,B)=P(W, € B—x) = / ~v(y)dy > 0.
B—x
In addition, there exists §, > 0 such that y(x) > § > 0 for |z| < 27. Setting C = {|z| < n}, and
considering z € C' and B C C, one has

Pz, B) = P(W, € B — 1) — / ~(y)dy > 552"(B) > 0. (3.94)
B—x

Setting for example ¢ = (u*®(C))~'1¢(-), the relation (3.94) shows that C is a ¢-small set.

For the random-walk on the half-line, we assume that P(1W; < 0) > 0. It is then straightforward
to show that, for all x € R, there exists n such that P™(xz,{0}) > 0. This shows that dy is an
irreducibility measure for RWHL.

Recurrence

In the case of RWHL, it is intuitive that the chain will be recurrent when the mean displacement
is negative. In the case when the mean displacement is positive, we expect on the contrary the
chain to drift to infinity without coming back (except maybe a finite number of times in average).

We now precise these heuristic arguments. Set m = / axy(x)dz. When m > 0, Proposition 9.5.1

R
in [240] shows that the chain is transient (the proof uses a comparison with a convenient Markov

chain on countable state-space). When m < 0, a drift criterion can be stated, ensuring recurrence
+oo
m
of the chain (see [240], Section 8.5). Indeed, consider z, < 0 such that / xy(x)de < 5 and

T s

take W(x) = . Then, for = in [0, —xz.]

3

AW(:E)=/RP(:E7dy)(y—w)=/>OP(:E7dy)(y—w)=/>O(y—w)7(y—w)dy§ <0.

m
2
This shows that a drift criterion holds with C' = [0, —z.]. Heuristically, this means that the values
of W cannot grow too much, which implies that the chain remains in a vicinity of the origin. We
resort to Theorem 8.0.2 in [240] to prove that the chain is recurrent. It then has a unique invariant
measure (see below for conditions ensuring that this invariant measure is finite).

For the random-walk on the full line, it is still quite clear that non-zero mean increments will
lead to a transient behaviour. Conditions for recurrence in the case when the mean increment is zero
can be precised when the increments have bounded range. We refer to [240, Section 9.5]. However,
the chain can never be positive recurrent since the Lebesgue measure is invariant (see [240, Section
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10.5]), and is therefore at best null recurrent. Ergodicity does not make sense for the general RW
model.

Ergodicity for the Random-Walk on the half-line

We still assume that the mean drift m = / ay(x)dx is negative in order to ensure recurrence
R

of the chain, and the existence of an invariant measure. We need however a better drift criterion
to ensure that the invariant measure is a probability measure (that is, a finite measure) and to get
ergodicity. To this end, we assume in addition that f0+oo esty(t)dt < +oo for 0 < s < n for some
1 > 0. Notice that this can be interpreted as sufficient fast decrease in the increments. Then, for
0 <s<n,and L(z) = e**,

1fR (@ dy)(Ly) L) _ [ et 1
o /Rvm .

dr —m

when s — 0 by dominated convergence. There exists 0 < s9 < n such that, setting W(z) =
exp(sox),
AW (z) < %SQW(!E) + blc(x)

for some b > 0 and with C' = [0, ¢ for some ¢ > 0 large enough (see [240, page 399] for precisions).
The chain is therefore W-uniformly ergodic, in the sense that there exists R > 0 and 0 < r < 1
such that

Ve e Ry, ||P"(x, ) —7llw < RW(x)r "

3.6.2 Some convergence results for Markov processes.

We extend here the results of Appendix 3.6.1, stated for Markov chains, to Markov processes.
We will focus on diffusion equations of the form

dd, = b(P,)dt + LW, (3.95)

where @, is a stochastic process with values in X, b is a C* function, Y is a matrix of dimension
d = dim(X), and W, is a d-dimensional standard Wiener process.

We assume that trajectorial existence and uniqueness hold true for (3.95). This is classical for
globally Lipschitz drifts [152, Theorem I11.3.2], namely for functions b satisfying for some positive
constant D

V(z,y) € X2, [b(x) —b(y)| < D [o —yl. (3.96)

When this condition is not satisfied, it is possible to conclude to trajectorial existence and unique-
ness under the following hypothesis (see [152, Theorem I11.4.1]): there exist a C? function W (x)
that goes to infinity at infinity and a positive constant ¢ such that

AW < cW. (3.97)

Besides, under assumption (3.96) or (3.97), one can prove that the Markov process (3.95) is Feller.
That means that, for each bounded measurable function g : X — R, the mapping

z — E.(g(P7))

is continuous, where @7 is the solution of (3.95) with initial condition @§ = z. We assume in the
sequel that either (3.96) or (3.97) is satisfied. Some extensions for less smooth functions b and
Y = XY(x) can be found in [328].

The transition kernel P! is defined, for ¢t > 0 and B € B(X), as
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P'(z, B) = Py(®; € B),

where P, is the probability generated by the process starting at . The infinitesimal generator A
associated with (3.95) is

B 1 T 0%g
Ag(z) = b(x) - Vg(z) + 5[22 Jij D0 x (3.98)
for g € C%(X).
Main convergence results.
(C2) Existence and
, - uniqueness of an
(C1) —— Irreducibility l - / invariant probability
S (positive) Uniqueness measure

Recurrence of invariant measure

Ergodicity Positive Harris recurrence
for ae. starting point

Ex(A(®1)) = [x A(®) drt

Aperiodicity
Convergence dong a sample path
(€3) LT
/ T Jo A(P)dt — [y A(P) drtas.
Geometric
ergodicity

[Ex(A(®T)) = Jx A(®) dr] < A(x)Rp™
Fig. 3.7. The different levels of stability for Markov processes.
Figure 3.7 summarizes the main results, as in the discrete time case. The definitions of the

different concepts and the proofs of the implications can be found in the remainder of this Section.
Recall that we made the following general assumption throughout this Section

(C0’) Condition (3.96) or (3.97) holds.
The conditions (C1’), (C2’), and (C3’) read:
(C1") For all ¢ € X and open set O € B(X), P'(¢q,0) >0,

(C2’)  is an invariant probability measure for the process,

There exist a measurable functions W > 1 going to infinity at infinity,
(C3) real numbers ¢ > 0, b € R and a compact set C' such that
AW (z) < —cW (z) + blc.
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Notice that conditions (C1’) and (C2’) are usually quite easy to show in a MD setting, already
giving ergodicity (without convergence rate however). Conditions (C3’) can be easily shown when
the state space X is compact (when it is a d-dimensional torus for example).

Stability concepts.

We first precise the concepts of irreducibility, Harris recurrence and ergodicity in the continuous
time setting, which are quite analogous to the corresponding discrete time concepts [86,241].
Consider, for B € B(X), the random variables

T =inf{t > 0| &, € B}, np = /0+°° 1(p,epy dt.
Definition 3.12. A Markov process is said to be ¢-irreducible if for a o-finite measure ¢,
Ve X,VB € B(X), #(B)>0=E;(ng)>0.
A process is Harris recurrent if, for a o-finite measure 1,
Vo e X,VB € B(X), ¥(B)>0= P,(rp < +0) = 1.

When a Harris recurrent process has a finite invariant measure (which can be normalized into a
probability measure), it is called positive Harris recurrent.

Note also that a Harris recurrent process is irreducible.

Irreducibility can be checked in two steps. First, one can show open set irreducibility, which
is usually easy to check using controllability arguments (see e.g [231, 336, 337]). We then get
irreducibility using the continuity of the transition kernel (resulting from the Feller property).

When an invariant probability measure for the stochastic differential equation (3.95) exists,
and when the process is irreducible, it is also recurrent, since there is also a dichotomy between
recurrence and transience as in the discrete-time case [348, Theorem 2.3]. When @ is recurrent,
we also have existence of a maximal absorbing Harris set of full measure, and uniqueness of
the invariant measure [348]. Therefore, the results of the discrete-time case can be completely
transposed.

(Weak) Regularity of the transition kernel.

In contradiction with the Markov chain case, we often need some (weak) regularity properties
on the transition kernel in the continuous-time setting. The minimal assumption that has to be
made is that the process is a T-process.

Definition 3.13. The Markov process is a T-process if there ezists a probability measure a on R4
and a kernel T such that T (-, B) is lower semi-continuous for all B € B(X) and

+oo
K, :/ a(dt)P* > T.
0

In particular, this property holds whenever the process is Feller since in this case, for all t5 > 0
and all B € B(X), P'(-, B) is continuous.

Convergence of the average along one sample path.

The concepts introduced above allow us to state a result concerning the asymptotic behaviour
of the average
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T
Sr(4) = 7 [ A@)

for some observable A € L!(r). Notice that this average is in fact a random variable.

Theorem 3.20 ( [241], Theorem 8.1). Suppose that ¢ is a positive recurrent T-process. Then
for any m-a.e. x € X and A € L(n),

St(A) — /X A(q) dm = P, — aus.

Therefore, as in the discrete time case, we obtain convergence over a single sample path reali-
zation. Notice that this result can be extended to all starting points in X, and not only for starting
points in the full maximal Harris subset [241]. Some results also exist for non-irreducible Markov
process [241], but we restrict here to positive recurrent processes, which is the natural MD setting.

Central Limit Theorems can also be stated for the convergence of St (A). However, the setting
is not as clear as in the discrete time case. We refer for example to [172].

(Geometric) Ergodicity.

As for the discrete time case, convergence of the expectations E;(A(®;)) to the state space
average fX A(®P) dr can be stated under certain conditions. This is precisely the notion of ergodi-
city. As in Appendix 3.6.1, || - || denotes the total variation norm, and ||- || the W-total variation
norm.

Definition 3.14. The Markov process is called ergodic if an invariant probability w exists and
vz e X, ||P'(z,:)—n|—0
when t — +00.

The fact that the process is Harris recurrent and that some skeleton chain is irreducible is
enough to ensure ergodicity. A skeleton chain is a Markov chain obtained by sampling the process
at times A > 0, and is thus the Markov chain with the associated transition kernel P2.

Theorem 3.21 ( [241], Theorem 6.1). Suppose that ¢ is positive Harris recurrent. Then @ is
ergodic if and only if some skeleton chain is irreducible.

Notice that Condition (C1’) immediately gives the irreducibility of the skeleton chain. There-
fore, ergodicity holds whenever (C1’) and (C2’) are verified. This gives the convergence E, (A(P;)) —
Jx A(®) dr for bounded measurable functions A.

A rate of convergence can also be obtained and extensions to non-bounded functions can be
stated, as in the time-discrete case, using drift criteria. These criteria have to be checked on the
generator A given by (3.98). We still need the process to be aperiodic. The definition of this
notion for Markov processes is quite analogous to the corresponding discrete-time definition. We
therefore refer to [86,241] for more precisions, and simply note that the Feller property of the
chain and (C1’) are sufficient to conclude to aperiodicity. The definition of petite sets is also a
straightforward extension of the discrete-time case, so we also refer to [86,241] for example for a
more formal definition. The following result shows that it is often enough to consider compact sets
in applications.

Theorem 3.22 ( [241], Theorem 4.1). For a Harris recurrent T-process, every compact set is
petite.

We then have the following
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Theorem 3.23 ( [86], Theorem 5.2). Consider a v-irreducible aperiodic Markov process, and
assume there exist a measurable function W > 1 such that

AW < —cW + ble (3.99)

fore¢>0,b< 400 and a petite set C € B(X). Then the process is W -geometrically ergodic in the
sense that there exist R > 0 and 0 < p < 1 such that for every t > 0,

|P!(x,-) = w|lw < RW (z)p'.

Together with conditions (C1’) and (C2’), Condition (C3’) then gives geometric ergodicity.
As in the time-discrete case, Condition (C3’) holds whenever the state space is compact. Another
common situation is when the drift condition (3.99) is verified for some smooth W going to infinity
at infinity and for some compact set C'.
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The free energy of a system is a quantity of paramount importance in statistical physics. It is

defined as
F= —llnz, Z :/ e PH .
B “M

The constant Z is the partition function of the system, and the space T* M is phase-space (see
Section 2.2 for notations). In many applications, the quantity of interest is the free energy difference
between an initial and a final state. These differences are related to transitions from an initial to
a final state, and can be classified in two categories:

(i) the so-called alchemical case considers transitions indexed by an external parameter A.
The system is then governed by a Hamiltonian H) (or a potential V}), such as Hy(q,p) =
(1 —XN)Ho(q,p) + AH1(q,p). The corresponding free energy difference is

/ e~ BH1(a:p) dq dp
*M

AF = —f7'In
/ e—BHo(a:p) dq dp
*M

)
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(ii) in the reaction coordinate case, the transition is indexed through some level set func-
tion £(q) indexing disjoint submanifolds of the configuration space, and

/ e~ BH(ap) 55((1)_21 dq dp
—1 In *M

e~ BH(a:p) 55((1)_% dq dp
T M

AF = -3

Therefore, free energies can be expressed in both cases as
F=—-3"1'InZz, Z = / exp(—BV) dv (4.1)
=

where 3 = 1/(kgT) (T denotes the temperature and kg the Boltzmann constant). The Boltzmann-
Gibbs measure exp(—SV)dv is defined for a reference positive measure dv, which has support X.
We will consider here that X is a submanifold of R, but all the results extend to the case when
¥ is a submanifold of T3V (the 3N-dimensional torus, which arises when using periodic boun-
dary conditions). The statistics of the system are completely defined by (V,v). We consider here
that (V,v) is labeled using a d-dimensional parameter z (with d < 3N) which characterizes the sys-
tem at some coarser level. Examples of such parameters are £(¢) or A with the above notations. In
the alchemical case, the parameter z = ) is independent of the current configuration of the system.

This chapter is organized as follows. In Section 4.1, we recall the usual Jarzynski equality when
computing free-energy differences using nonequilibrium dynamics (stated for alchemical transi-
tions), and present an extension to the reaction coordinate case. We then present, in Section 4.2,
an equilibration of the nonequilibrium dynamics, which ensures that the sample is always canoni-
cally distributed even for fast switchings. In Section 4.3, we present a new algorithm for sampling
paths governed by stochastic dynamics. Sampling paths can be useful to compute free energy
differences, and in any cases, uses techniques reminiscent from free energy computation schemes.
Finally, we present adaptive dynamics in Section 4.4, proposing a unified framework, new parallel
implementations and a proof of convergence using entropy estimates in a specific case.

4.1 Nonequilibrium computation of free energy differences

4.1.1 The Jarzynski equality (The alchemical case)
Markovian nonequilibrium simulations

The usual way to achieve a nonequilibrium switching is to perform a time inhomogeneous
irreducible Markovian dynamics
t— Xt, XO ~ Lo, (42)

for ¢ € [0,T], and a smooth schedule ¢ — A(t) verifying A\(1) = 0 and A\(T) = 1. The variable z

can represent the whole degrees of freedom (g, p) of the system, or only the configuration part g.
Depending on the context, the invariant measure p will therefore be the canonical measure

1
dpr(g,p) = e PP dg dp, (4.3)
Zx
with Z) = fT*M e PHA(@P) dg dp or its marginal with respect to the momenta, which reads

. 1 _
djir(q) = z—e~ "W dg,
A
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with Z) = fM e~ PVAl9d) dg. When we do not wish to precise further the dynamics, we simply call
x the configuration of the system, Hy(z) its energy and du(x) the invariant measure. The actual
invariant measure should be clear from the context.

The dynamics is such that for a fized A € [0, 1], the Boltzmann distribution duy is invariant.
For example, the Langevin dynamics (3.47) or its overdamped limit (3.38) can be considered. In
this last case, X; = ¢ and the evolution of the system is given by

dqt == —VV(qt) dt + O'th,

with 0% = 2/3 and W; a standard Wiener process.
Denoting by ps..(z,y)dy = E (X, € dy|Xs = x) the density kernel of the process, the evolution
of the process law is characterized by the backward Kolmogorov equation (¢ and y being given):

85[)5715(-, y) - _L)\(S) (pS,t('vy)) )

or its forward version (s and z being given):

Oeps,t(x,.) = LYy (psit(x,.)) .

The operator Ly is called the infinitesimal generator of the dynamics, and L} ,, is its dual. The
invariance of ;) under the instantaneous dynamic can then be expressed through the balance
condition:

Vo, /LA(t)(<P)dU>\(t) =0. (4.4)

When the schedule is sufficiently slow, the dynamics is said quasi-static, and the law of the
process X is assumed to stay close to its local steady state throughout the transformation. This
is out of reach at low temperature (more precisely, large deviation results [112] ensure that the
typical escape time from metastable states grows exponentially fast with 3, which compells quasi-
static transformations to being exponentially slow with (). It is therefore interesting to consider
approaches built on switched Markovian dynamics, but able to deal with reasonably fast transition
schemes.

Importance weights of non equilibrium simulations.

For a given nonequilibrium run X; we denote by

¢ 8H)\( )
14Y :/ D (XN (s)ds

the out of equilibrium virtual work induced on the system during the time interval [0,¢]. The
quantity W, gives the importance weights of nonequilibrium simulations with respect to the target
equilibrium distribution. Indeed, it was shown in [187] that

E(e—PWt) = e~ BF()=F(0), (4.5)

This fluctuation equality is known as the Jarzynski’s equality, and can be derived through a
Feynman-Kac formula [177], as follows: consider the Feynman-Kac density kernel defined by

/w(y)pit(x, y)dy =E (gp(xt)efmwﬁm)

X, = :1:) , (4.6)

and characterized by the following extended backward Komogorov evolution:
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8HA(S)

aspgt('a y) = _L)\(S) (Plf,t(-ay)) + 5T)\/(S)P§it(-ay)-

Using this identity and the balance equation (4.4) gives:

and thus after integration on [0, ¢], we get the fundamental Feynamn-Kac fluctuation equality:

VA _
Z—;/gpdu)\(t) =E (p(X)e ™). (4.7)

Therefore, taking ¢ = 1, it follows

E(e ") = e AEA®)—F(0))
and Jensen’s inequality then gives
EW;) > F(A(t)) — F(0).

This inequality is an equality if and only if the transformation is quasi-static on [0, ¢]; in this case
the random variable W; is actually constant and equal to AF. When the evolution is reversible,
this means that equilibrium is maintained at all times.

As an improvement, we will see how to avoid the exponential importance weights of the none-
quilibrium paths by a selection rule between replicas (see Section 4.3.3).

4.1.2 The Jarzynski equality (The reaction coordinate case)

Nonequilibrium computations of free energy differences in the reaction coordinate setting using
stochastic dynamics could be performed using soft constraints to switch between the initial state
centered on the submanifold {{(¢) = 2o} and the final state centered on {{(q) = z1}. Steered
molecular dynamics techniques use for example a penalty term K (£(q) — 2)? in the energy of the
system [267] (with K large) to 'softly’ constraint the system to remain close to the submanifold
{&(q) — z = 0}, and varying the value z from 0 to 1 in a finite time 7. Tt is shown in [177] how to
use such a biasing potential to exactly compute free energy differences (even for a finite K'), which
is of particular interest for experimental studies. From a computational viewpoint however, it is
expected that large values of K require small integration time steps. Moreover, it is observed in
practice that the statistical fluctuations increase with larger K (see [267]). Instead, we propose to
replace the stiff constraining potential K (£(q) — z)? by a projection onto the submanifold {£(q) —
z = 0}. This situation is reminiscent of the case of molecular constraints, that can be enforced
using a stiff penalty term, or more elegantly and often more efficiently, using some projection
of the dynamics involving Lagrange multipliers. This is the spirit of the well known SHAKE
algorithm [295].

We present here a nonequilibrium stochastic dynamics and an equality that allow to compute
free energy differences between states defined by different values of a reaction coordinate. The
dynamics relies on a projection onto the current submanifold at each time step, and we use the
Lagrange multipliers associated with this projection to estimate the free energy difference. More
precisely, we use the difference between these Lagrange multipliers and the external forcing term
required for the finite time switching (see for example the discretization (4.43)). The main results
of this section are the Feynman-Kac equality of Theorem 4.1 (which extends the proof of [177] to
hard constraints), as well as the associated discretizations (4.45) and (4.46).

We first present the equilibrium computation of free energy differences using projected sto-
chastic differential equations, before turning to the extension to the non-equilibrium case.
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Equilibrium computation of free energy differences in the reaction coordinate case

The aim of this section is to introduce the definitions of the free energy and the mean force in the
reaction coordinate setting, and to recall how thermodynamic integration is used to compute free
energy differences. The computation of the mean force is based on projected stochastic differential
equations (SDE). The presentation is done for a one-dimensional reaction coordinate (the extension
to the multi-dimensional case being postponed until the end of this section) and the dynamics used
is an extension of the overdamped Langevin dynamics.

Free energy and mean force

The state of the system is characterized by the value of a reaction coordinate £ : M — [0, 1].
The function ¢ is supposed to be smooth and such that V&(q) # 0 for all ¢ € M. For a given value
z € [0, 1], we denote by X, the submanifold

Lo={geM &g =2} (4.8)

and we assume that Uze[o 1] Y, C M. For each point ¢ € X,, we also introduce the orthogonal
projection operator P(q) onto the tangent space to X, at point ¢ defined by:

VE® VE

—q - SE VS
P =14 T

(@), (4.9)

where ® denotes the tensor product. The orthogonal projection operator on the normal space to
X, at point ¢ is defined by P*(q) = Id — P(q).
The free energy is then defined as

F(z)=—-p""In(Z,), (4.10)

with
Zz:/ exp(—0V) dos._, (4.11)
b

z

where for any submanifold X of R3*V, o5 denotes the Lebesgue measure induced on X as a
submanifold of R3V. The associated Boltzmann probability measure is

dus. = Z;  exp(—pV) dos. . (4.12)

Remark 4.1 (On the definition of the free energy). Two comments are in order about
formula (4.10). First, this formula is valid up to an additive constant, which is not important
when considering free energy differences. Second, the potential V in (4.11) may be a potential
different from the actual potential seen by the particles. More precisely, if the particles evolve in
a potential V', the standard definition of the free energy in the physics and chemistry literature
is (4.10) with

Z, = /GXP(—ﬁv) O (q)—z2>

where d¢(q)—. 18 a measure supported by 3. and defined by: for all test functions ¢,

/ $(0)0e(q)—» = /E GIVE| do..

This amounts to considering (4.10)—(4.11) with V replaced by an effective potential V + 71 In|V¢|
(see Remark 4.2 for the case of a multi-dimensional constraint). With this definition,

/ A(&(g))e V1D dg :/ A(z)e PP gz,
M M
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but the free energy differences F(z1) — F(22) depend on the choice of the reaction coordinate (and
not only on the level sets X,).

Since the results we present here hold irrespective of the physical signification of the poten-
tial V', we may assume without loss of mathematical generality that the free energy is indeed given
by (4.10)—(4.11), and the choice of the definition of the free-energy is left to the user. Let us
emphasize that, in practice, the cumbersome computation of the gradient of the additional term
B~ In |VE| in the modified potential (which intervenes in the projected SDEs we use, see (4.39)
(4.40) or (4.41)-(4.42)) can be avoided resorting to some finite differences, as explained in [66].

Using the co-area formula (see (4.33) and Proposition 4.3 for a proof in the multi-dimensional
case), it is possible to derive the following expression of the derivative of the free energy F' with
respect to z (the so-called mean force) (see [83,320]):

o g1 [ VE LB exco AV
P =20 [ e (V0 ) espl V)i, (4.13)
where ve ve

is the mean curvature vector field of the surface X,. The free energy can thus be expressed as an
average with respect to px.:

F'(z) = | f@dus.(0), (4.15)
where f is the local mean force defined by:

V§ 1
f=—=—= - (VV+3'H). (4.16)
[VE[?
We explain next how it is possible to compute this average with respect to px_, without explicitly
computing f, by using projected SDEs. This avoids in particular the computation of the mean
curvature vector H which involves second-order derivatives of &.
The principle of thermodynamic integration is to recast the free energy difference

AF(z) = F(z) — F(0) (4.17)
between two reaction coordinates 0 and z as an integral over the mean force:
z
AF(z) :/ F'(y) dy. (4.18)
0
Therefore, in practice, thermodynamic integration computation of free-energy is as follows. First,

the free energy difference AF(z) is estimated using quadrature formulae for the integral in (4.18),
such as for example a Gauss-Lobatto scheme:

K
AF(z) ~ Z%‘F/(yi)
i=0
where the points {yo,y1,...,yx} are in [0, z] and {wp,w1,...,wk} are their associated weights.

Second, the derivatives F’(y;) are computed as canonical averages over the submanifolds X,
using projected SDEs (see next section).

To obtain a free-energy profile (and not only a free-energy difference for a fixed final state),
it is possible to approximate the function AF(z) on the interval [0, 1] by a polynomial. This can
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be done for example by interpolating the derivative F’ by splines, and integrating the resulting
function (consistently with the normalization AF'(0) = 0).

Projected stochastic differential equations

We now explain how to compute the mean force F’(z) defined by (4.13) using projected SDEs,
for a fixed parameter z. We consider the solution @; to the following SDE:

{QO €2 (4.19)

dQi = —P(Q)VV(Qy) dt + /2671 P(Q4) o dBy,

where By is the standard 3/N-dimensional Brownian motion and o denotes the Stratonovich pro-
duct. It is possible (see [66]) to check that pyx_ is an invariant probability measure associated
with the SDE (4.19). Under suitable assumptions, which we assume in the rest of the section, on
the potential V' and the surface X', the process @); is ergodic with respect to px.. Moreover, the
SDE (4.19) can be rewritten in the following way:

dQ = —=VV(Qq) dt + /23~ dB, + VE(Qy)dAs, (4.20)

where A; is a real valued process, which can be interpreted as the Lagrange multiplier associa-
ted with the constraint £(Q¢) = z (see the discretization in Section 4.1.3). This process can be
decomposed into two parts:

dA; = dA™ 4 dAL (4.21)

The so-called martingale part A} (whose fluctuation is of order v/ At over a timestep At) is

A7 =~V S () B, (4.22)

where - implicitly denotes the It6 product. The so-called bounded variation part Al (whose fluc-
tuation is of order At over a timestep At) is

V¢

A} = W( ) - VV(Qq)dt + 5~

1_V¢€
V|2

(Qr) - H(Qq) dt = f(Qy) dt, (4.23)

f being the local mean force defined above by (4.16). Thus, since @; is ergodic with respect to
s, the mean force can be obtained as a mean over the Lagrange multiplier A;:

Proposition 4.1. The mean force is given by:

F(z) = lim Td/l— lim TdAf 4.24
(Z)_Tgr;of/o t_Tl—{r;oT/o t (4.24)
Notice that the martingale part dA}", which has the largest fluctuations, has zero mean. In order
to reduce the variance, it is thus numerically convenient to perform the mean over the bounded
variation part dAf rather than over the whole Lagrange multiplier dA; (see Section 4.1.3).

We refer to [66] for a proof of Proposition 4.1, as well as for formulae involving higher di-
mensional reaction coordinates. Such ideas have been used for a long time in the framework of
Hamiltonian dynamics (see [83,320]).

The interest of Equation (4.24) is that the SDE (4.20) can be very naturally discretized as
explained in Section 4.1.3 below. Then, the average over a discretized trajectory of the process A;
converges to F(z). This is particularly convenient for numerical purposes since it does not ask for
explicitly computing the local force f. For further details, we refer to [66] and to Section 4.1.3. In
the next section, we use these ideas for the computation of the free energy difference given through
the Jarzynski equality.
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Nonequilibrium stochastic methods in the reaction coordinate case

We wish here to extend the Feynman-Kac formula derived in [177] (see Section 4.1.1) for a
parameter z which appears only in the potential V', to the reaction coordinate case, where z labels
submanifolds X, (defined by Equation (4.8)) of the state space. To this end, we need to make
precise the evolution of the constraints.

We consider a C! path z : [0,7] — [0, 1] of values of the reaction coordinate &, with 2(0) = 0,
and z(T) = 1. Recall that the associated family of submanifolds of admissible configurations is
denoted by

Y.y ={a€ M, &(q) = 2(t)},
and that the associated Boltzmann probability measures are
dps., = Z5 exp(=pV)dos, .

We construct a diffusion (Q¢)ejo,7] so that Q; € X, for all t € [0,7] and (Q¢)¢e(o,7] satisfies the
following properties:

- QO ~ /1422(0):

— For all t € [0,T], Q¢4ar is the orthogonal projection on Y. (t+ar) of the position obtained by

the unconstrained displacement: Q; — VV(Qy)dt + /26~ 1dB;.

More precisely, the considered diffusion reads, in the Stratonovich setting:

QO ~ ,U‘Ez(o)a

dQ; = —P(I?t))VV(Qt)dt + /2671 P(Q¢) 0 dB; + VE(Qy) dAT, (4.25)
Aext — Z(t .

= weop”

With a view to the discretization of @y, let us notice that ¢); can be characterized by the following
property:

Proposition 4.2. The process @Q; solution to (4.25) is the only Ité process satisfying for some
real-valued adapted It6 process (At)ieo,1):

QO ~ /1422(0)7
dQy = —=VV(Qy)dt + /267 1dB; + VE(Qy) dAy,
§(Qr) = 2(t).

Moreover, the process (At)iejo,r) can be decomposed as
Ay = AP 4 AL 4 A (4.26)

with the martingale part

dAy = —\/25—1|VV§|2 (Qt) - dBu,

the local force part (see (4.16) for the definition of f)

dAf = %(Qt) A(VV(Q)dt+ 57 H(Qr)) dt = f(Qu) dt, (4.27)

and the external forcing (or switching) term

ext __ Z/(t)
aa* = meor
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The proof of Proposition 4.2 is easy and consists in computing d€(Q;) by Ité’s calculus and
identifying the bounded variation and the martingale parts of the stochastic processes.

The difference with the projected stochastic differential equation (4.19) considered in the ther-
modynamic integration setting is that the out-of-equilibrium evolution of the constraints z(t)
creates a drift VE(Q¢) dAS*! along the reaction coordinate. This drift can be interpreted as an
external forcing required for the switching to take place at a finite rate, and must be subtracted
from the Lagrange multiplier A; in order to obtain a correct expression for the work W(t) involved
in the Feynman-Kac fluctuation equality (see Equations (4.43) and (4.45) below). This correction
is quantitatively important when the switching is not slow.

The Feynman-Kac fluctuation equality

Let us define the nonequilibrium work exerted on the diffusion (4.25) by:

W(t) = /0 f(Qs) 2 (s) ds, (4.28)

where f is the local mean force defined above by (4.16). Notice that, at least formally, in the
limit of an infinitely slow switching from z(0) = 0 to z(T') = 1, Formula (4.30) corresponds to the
thermodynamic integration formula (4.18). Formula (4.30) enables the computation of free energy
differences at arbitrary rates, through a correction consisting in a reweighting of the nonequilibrium
paths.

In practice, the nonequilibrium work W(t) can be computed by using the local force part dAf
(see (4.27)), as in the thermodynamic integration method (see (4.24)). Thus, the formula we use
to compute W(t) is rather:

W(t) = /Ot 2'(s)dAL, (4.29)

since Al can be obtained by a natural numerical scheme (see Section 4.1.3), avoiding the cumber-
some computations of the mean curvature vector H in the expression of f (as already explained
above).

We can now state the generalization of the Jarzynski nonequilibrium equality to the case when
the switching is parameterized by a reaction coordinate.

Theorem 4.1 (Feynman-Kac fluctuation equality). For any test function ¢ and Vt € [0,T],

it holds 7

z(t _

T / pdus,, = (p(Q)eM0).
2(0) J X,

In particular, we have the work fluctuation identity: Vt € [0,T],

AF(2(t)) = F(2(t)) — F(2(0)) = - In (E (e_ﬁw(t))> . (4.30)

As in the alchemical case [177], the proof follows from a Feynman-Kac formula (see Theorem 4.2
for a proof in the general multi-dimensional case ).

Extension to the general multi-dimensional case and proofs

In this section, we generalize the previous results for nonequilibrium computation of free energy
differences presented for a one-dimensional reaction coordinate to the case of multi-dimensional
reaction coordinates.
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Geometric setting and basic notation and formulae.

We consider a d-dimensional system of smooth reaction coordinates & = (£1,...,&) : R*Y —
R?, non-singular on an open domain M C R3¥

Vg € M, range(V&i(q),...,VEi(q)) =d,
and a smooth path of associated coordinates
z=(2z1,...,24) : [0,T] — R%
Accordingly, we define for all ¢ € [0,T] a smooth submanifold of codimension d contained in M:
. ={a e RN, &(q) = 2(t)} c M.

In the constraints space R?, coordinates are labeled by Greek letters and we use the summation
convention on repeated indices. In the configuration space RV | coordinates are labeled by Latin
letters and we also use the summation convention on repeated indices. We denote by X - Y = X,Y;
the scalar product of two vector fields of R*V, by M : N = M, ;N; ; the contraction of two tensor
fields of R3M, and by (X ® Y); ; = X;Y; the tensor product of two vector fields of R3V.
The d x d matrix
Gany = V& - V&,

is the Gram matrix of the constraints. It is symmetric and strictly positive on M. We denote by
G}, the (a,7) component of G™', the inverse matrix of G. At each point ¢ € M, we define the
orthogonal projection operator
1 -1
P =G,V @ VE,

onto the normal space to X¢(,) and the orthogonal projection operator
P=1d- P+

onto the tangent space to X¢(4). The mean curvature vector field of the submanifold is defined by:

H=-V ((detG)l/QG;}WVfW) (detG)~1/2ve, (4.31)

and satisfies:
H; = P ;V;Pi.

We recall the divergence theorem on submanifolds: for any smooth function ¢ : R3N — R3V
with compact support,

/ leE((b) dUZ‘Z = —/ H - ¢d022 (4.32)
X, PO

where divs(¢) = P; jV;¢; denotes the surface divergence, and o, is the induced Lebesgue mea-
sure on the submanifold X, of R3*". We will also use the co-area formula: for any smooth function
¢ :R3N SR,

#(q)(det G(q))"/?dq = /]R ) /E pdos. dz. (4.33)

R3N

These definitions and formulae are provided with more details in [66].
Free energy and constrained diffusions for multi-dimensional reaction coordinates

Asin the one-dimensional case, the Boltzmann-Gibbs distribution restricted on the submanifold
X, is defined by:
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dps, = Z; " exp(=pV)dos,,
with
Z, = / exp(—pV)dos. .
=

The associated free energy is:

F(z)=-3"In(Z.).
Remark 4.2 (On the definition of the free energy: the multi-dimensional case). As in
the one-dimensional case (see Remark 4.1), if the particles initially evolve in a potential V', the
classical definition of the free energy is as above, but with V replaced by an effective potential
V+ 57t ((detG)l/Q). The computation of the gradient of this potential in the dynamics then
involves second-order derivatives of &, which can be approzimated in practice by finite differences

(see [66]).

For any 1 < o < d, we now introduce the local mean force along V¢, (which generalizes (4.16)):
fa=G Ve, - (VV +57H). (4.34)

As in the one-dimensional case (see Equation (4.15)), we obtain the derivative of the mean force
by averaging the local mean force:

Proposition 4.3. The derivative of the free energy F with respect to z. is given by:
VaoF(z) = /fa dps. .
P

Proposition 4.3 is a corollary of

Lemma 4.1. For any test function ¢ with compact support in M, we have:

Va (/cpexp(—ﬁV)da;z) = /(G;,lvvgv -V — ﬁfagp) exp(—fV)dos. .
X, X

Proof. 1t is enough to prove the formula in the case V' = 0, up to a modification of the test
function ¢. For any test function g : R — R with compact support, we have (using successively an
integration by parts on R, the co-area formula (4.33), an integration by parts on R3V, and finally
again (4.33)):

/ 9(26)Va </g0dagz> dz = —/ /g’(za)gadagzdz,
Rd =, R J 5,

= —/ g/ 0ly (detG)1/2 dq,
R3N

‘/ Gl Ve - V(goa) ¢ (detG)? dg,
R3N
_ / 906V (G4 Ve, ¢ (detG)'"?) dg,
R3N
_ /Rdg(za)/v' (G;}vvw(detml“) (detG) ™2 dos. dz,

which gives the result using the expression (4.31) of the mean curvature vector H.

We now define the constrained diffusion (which generalizes (4.25)):

QO ~ ,UJEZ(O)v

dQ; = —P(Q)VV(Qu)dt + /287 1P(Q) 0 dB; + V& (Qr)dASS, (4.35)
dASY = G (Qu)2L (t)dt, Vli<a<d
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The stochastic process @)y can be characterized by the following property:

Proposition 4.4. The process Q: solution to (4.35) is the only Ité process satisfying for some

adapted Ito processes (A1, ..., Adat)iefo,r) with values in R?:
QO ~ ,UEZ(O);
dQi = —=VV(Qu)dt + /267 dB; + V& (Q1)d a1,
§(Q¢) = 2(1).

Moreover, the process (/laﬂg)te[Qﬂ can be decomposed as
Aa,t = A?,t + Afx,t + Az’fi,

with the martingale part
Ay, = —\/2671GL L VE(Qy) - dBy,
the local force part (see (4.34) for the definition of f.)

dA(fx t — fa(Qt)dt

and the external forcing (or switching) term
dAT) = G5 (Q) 2, (t)dt

The proof consists in computing d¢(Q;) by Ito’s calculus and identifying the bounded variation
and the martingale parts of the stochastic processes.

The Feynman-Kac fluctuation equality

Theorem 4.1 is generalized as:

Theorem 4.2 (Feynman-Kac fluctuation equality). Let us define the nonequilibrium work
exerted on the diffusion Q; solution to (4.35) by:

Wi = [ @ o)as = [ i,

Then, we have the following fluctuation equality: for any test function , and Vt € [0,T],

Z(t)

Z2(0)

[ edus., =B (0@ 0). (4.36)
P
In particular, we have the work fluctuation identity: Vt € [0,T],

AF(2(t)) = F(2(t)) — F(2(0)) = - In (E (e_ﬁw(t))) . (4.37)

Proof. For any s € [0,T] and € M, let us introduce (Q;"*);¢[s 17, the stochastic process satisfying
the SDE (4.35), starting from z at time s:

QYT =,
dQ7* = —P(Qy")VV(QL")dt + /267 P(Q]™) 0 dB; 4 V& (Q7 ") d ALY, (4.38)
dASS = M(Qf “)zh (t )dt, Vi<a< d.

Notice that for any s € [0, 77, there is an open neighborhood (s~,5%) x Mj of (s, X.(5)) in R x M
such that the diffusion (Qf’z)te[s)T] remains in M almost surely. This holds since this process
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satisfies d€(Q}™) = 2/(t) dt and therefore £(Q;™) = &(x) + 2(t) — 2(s). This gives usual regularity
assumptions sufficient to get a backward semi-group (¢ being from now on fixed in (0,7) and s
varying in [0, ¢]):

) = (o@iew (- [ 1@ ar)).
satisfying the following partial differential equation (PDE) on (s7,s7) x M,:
Dt = —Lu(uls, ) + Bz (5) fat,
where L is the generator of the diffusion @, solution to (4.35):
Ly=p"'P:V?—PVV -V+ B 'H -V+2(s)G, V& - V.

Now, using Lemma 4.1, we have:

d
d_/ u(s,.)exp(—ﬁV)dagz(s)
S X

= [ (FLaluls, )+ (96 VE, - Vs, ) exp(—3V)dos. .

= —/ (B7'P:V?u(s,.) = PVV - Vau(s,.) + 7" H - Vu(s,.)) exp(—V)do s
Yas)

z(s)?

=—p7! /2 (divz (Vu(s,.)exp(=8V)) + H - Vu(s,.) exp(—ﬂV))da;z(s),
2(s)

by the divergence theorem (4.32). Therefore
/ u(t,.)exp(=pV)dos,,, = / u(0,.) exp(=BV)dos, 4
P X0

which yields
t
[ eexpl-pVidos.,, = 2B (so@t)exp (—ﬁ / fa@r)z;(r)dr)),
Ez(t) 0

where Q) satisfies (4.35). This proves (4.36), and (4.37) is obtained by taking ¢ = 1. U

4.1.3 Practical computation of free energy differences

We present in this section numerical strategies suited for the reaction coordinate case, the
numerical discretization of the alchemical case being trivial.

Discretization of the projected dynamics

The main interest of the above formulae (4.18) (4.24) and (4.29) (4.30) is that they admit
natural time discretizations. The principle is to use a predictor-corrector scheme for the associated
dynamics (4.19) and (4.25), and to use the Lagrange multiplier A; to compute the local mean
force f.

Discretization of the projected diffusion (equilibrium case)

For the projected SDE (4.20) onto a submanifold X, = {{(q¢) — z = 0}, two discretizations of
the dynamics, extending the usual Euler-Maruyama scheme, are proposed in [66]. These numerical
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schemes for constrained Brownian dynamics are in the spirit of the so-called RATTLE [8] and
SHAKE [295] algorithms classical used for constrained Hamiltonian dynamics, and also related
with the algorithms proposed in [6,262, 358].

The first one is:

Qn-l—l = Qn - vV(Qn) At + V 2At ﬁ_l Un + A/ln-l-l vf(Qn-l—l)a (4 39)
where AA,, 41 is such that £(Q 1) = 2, '

where At is the time step and U, is a 3N-dimensional standard Gaussian random vector. Notice
that (4.39) admits a natural variational interpretation, since @),,+1 can be seen as the closest point
on the submanifold X, to the predicted position @, —VV(Q,) At++/2At3-1 U,,. The real AA, 1
is then the Lagrange multiplier associated with the constraint £(Q,+1) = 2.

Another possible discretization of (4.20) is

QnJrl = Qn - VV(QH) At + V 2At571 Un + AAnJrl vf(Qn)a (4 40)
where AA,, 41 is such that §(Qny1) = 2. ’

Although this scheme is not naturally associated with a variational principle, it may be more
practical since its formulation is more explicit. Notice also that we use the same notation AA,, for
the Lagrange multipliers for both (4.39) and (4.40) (and later for (4.41) and (4.42)), since all the
formulas we state in terms of AA,, are verified whatever the constrained dynamics.

To solve Equation (4.39), classical methods for optimization problems with constraints can be
used. We refer to [135] for a presentation of the classical Uzawa algorithm, and to [36] for more
advanced methods. Problem (4.40) can be solved using classical methods for nonlinear problems,
such as the Newton method (see [36]). We also refer to Chapter 7 of [205] where similar problems
are discussed, for the classical RATTLE and SHAKE schemes used for Hamiltonian dynamics with
constraints.

Both schemes are consistent (the discretization error goes to 0 when the time step At goes to
0) with the projected diffusion (4.20) (see [66]). Accordingly, AA, 41 is a consistent discretization
of ftt:“ d/A; and therefore, it can be proven [66]:

T/At

S _
fim iy 2 A= F1E)

which is the discrete counterpart of the trajectory average (4.24). In [66], a variance reduction
technique is proposed, which consists in extracting the bounded variation part AAf of AA,
(resorting locally to reversed Brownian increments). We give some details of an adaptation of
this method for evolving constraints in next section.

Discretization with evolving constraints

When nonequilibrium dynamics are considered, the constraint is stated as £(Q;) = z(¢). The
reaction coordinate path is first discretized as {z(0),...,z(¢tn,)} where Np is the number of
timesteps. For example, equal time increments can be used, in which case At = NLT and t, = nAt
(we refer to Remark 4.3 below for some refinements). The initial conditions ()¢ are sampled
according to ux,. A way to do that is to subsample a long trajectory of the projected SDE on Xy
(using the schemes (4.39) or (4.40)).

The projected SDE on evolving constraints (4.25) is then discretized with the scheme (4.39)
or (4.40), taking into account the evolution of the constraint:

{QnJrl = Qn - VV(Qn) At + V 2At671 Un + AAnJrl v&(QnJrl)a (4 41)
where AA,, 41 is such that £(Qpni1) = 2(tnt1), '
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or

{QnJrl =Qn — VV(Qn) At + /24t 71 Up + Adyi1 VE(Qn), (4.42)
where AA,, 41 is such that §(Qpn11) = 2(tn+1)- '

It remains to extract the force part AAf | from the discretized Lagrange multiplier A4,
(consistently with (4.26)). We propose two methods. First, this can be done by simply subtracting
the drift and the martingale part

Z(tnt1) — 2(tn) VE(Qn)
IVE(Qn)|? IVE(Qn)I?

Another possibility in the spirit of the variance reduction techniques used in [66] can also be used.
Consider the following coupled dynamic with locally time-reversed constraint evolution (written
here for the scheme (4.41)):

QE—H = Qn - VV(Qn) At — V 2At 6_1 Un + AAE—H vf(QE—i—l)a

with AAR, | such that:

AN = ANy — + V24t 1 - Un. (4.43)

S(EQM) +E(Qnin)) = EQu).

The position QY is computed as Q,,+1 in (4.41), but with a projection on X0¢(Qn)—£(Qn ) instead
of X.(,..), and using the Brownian increment —V/At U, instead of VAt U,. Notice that in case
of a constant increment for the constraints, we have £(QR, ;) = 2£(Qn) — £(Qn+1) = z(tn—1). The
force part AAL | is then obtained through

1
Afy = S(Adnya + AL (4.44)

which can be shown to be a consistent time discretization of f:”“ dAL.
Computation of free energy using a Feynman-Kac equality

The consistent discretization of @, and more precisely of f:"“ dAf, we have obtained in the
previous section can now be used to approximate the work W(t) defined by (4.29) by

Wy =0,

4.45
Wn+1 = Wn + ( )

Z(tn+1) - Z(tn)

AL
tn—i—l - tn el

using either the dynamics (4.41) or (4.42), and the local force part of the Lagrange multiplier
computed by (4.43) or (4.44). Averaging over M independent realizations (the corresponding works
being labeled by an upper index 1 < m < M), an estimator of the free energy difference AF(z(T))
is, using Theorem 4.1,

M
E(Z(T)) ="' <% Z e_ﬁWpT> . (4.46)

The estimator ZF‘(Z(T)) converges to AF(z(T)) as At — 0 and M — +o0. It is clear that the
estimation of AF(z(T)) by (4.46) is straightforward to parallelize since the (W} )i<m<n are
independent.

For a fixed M < 400, notice that, even in the limit At — 0, ﬁ'(z(T)) is a biased estimator. In-
deed,
exp(—ﬁﬁ'(z@)) is an unbiased estimator of exp(—8AF(z(T))), and therefore, using the conca-
vity of In, E(AF(2(T))) > AF(2(T')). Recent works propose corrections to this systematic bias
using asymptotic expansions in the limit M — 400 (see for instance [286, 378]).
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Remark 4.3 (On practical implementation). Notice that it may be useful to adaptively refine
the time step over each stochastic trajectories, using for example the work evolution rate (W, —
Wh—1)n>1 as a refinement criterion. As noticed in [286], it is also possible to optimize the evolution
of the constraint z(t), for example by minimizing the variance of the results obtained for a priori
schedules for the evolving constraint on a small set of preliminary runs.

The numerical scheme in the multi-dimensional case

The adaptation of the algorithm we propose for the one-dimensional case to the multi-
dimensional case is straightforward. Indeed, the generalizations of schemes (4.41) and (4.42) to
the multi-dimensional case are, respectively:

Qn+1 = Qn - VV(Qn) At + V 2AL /871 Un + AAa,nJrl vfa(QnJrl)v
where (AAq n41)1<a<d is such that £(Qpi1) = 2(tn41),

Qn-i—l = Qn - VV(Qn) At + V 2At ﬁ_l Un + AAa,n-i-l vfa(Qn)a
where (AAq n+1)1<a<d 18 such that £(Qni1) = 2(tnt1)-

The force part AAL, |, of AA, , is obtained by similar procedures as those described in Section 4.1.3.
For example, the generalization of (4.43) is:

AAz,n-',-l = Ao n1 — G;,ly(Qn) (Zw(tn-i-l) - Zv(tn)) + v 2Atﬁ_1G;,lyV§v(Qn) - Un.

The generalization of (4.44) is also straightforward.
Now, the estimator AF(z(T')) of the free energy difference AF(z(T')) is given by (4.46), with
the following approximation of the work W(t):

Wy =0,

Za tn — Za tn
Wags = W, Zalloet) = Zalbn) gge
thrl - tn ’

which generalizes (4.45). Notice that Remark 4.3 also holds for a multi-dimensional reaction co-
ordinate.

4.1.4 Numerical results

We present in this section some illustrations of the algorithm we have described above to
compute free energy differences through nonequilibrium paths. In Section 4.1.4, a two-dimensional
toy potential V' is used, for which we can compare the results with analytical profiles. A more
realistic test case in Section 4.1.4 demonstrates the ability of the method to compute free energy
profiles in presence of a free energy barrier.

Our aim in this section is not to compare the numerical efficiency of the thermodynamic
integration method presented (or any other method) with nonequilibrium computations, since it
is difficult to draw general conclusions about such comparisons. However, we compare on a simple
example in Section 4.1.4, the numerical efficiency of out-of-equilibrium computations using a few
long trajectories or many short trajectories, at a fixed computational cost.

A two-dimensional toy problem
We consider the two-dimensional potential introduced in [365]:

V(x,y) = cos(2nz)(1 + dry) + day?, (4.47)



4.1 Nonequilibrium computation of free energy differences 131

0.005

Fig. 4.1. Plot of some probability densities corresponding to the potential (4.47) for 3 = 1, do = 272,
and di = 0 on the left or di = 10 on the right.

where d; and dy are two positive constants. Some corresponding Boltzmann-Gibbs probability
densities are depicted in Figure 4.1.

We want to compute the free energy difference profile between the initial state x = g = —0.5
and the transition state x = x7 = 0. Notice that the saddle point is (z1,y1) = (0,0) for d; = 0, but
is increasingly shifted toward lower values of y; as dy increases. We parameterize the transition
along the z-axis, either with the reaction coordinate

Tr — X

{(z,y) = (4.48)

T — o

or with the reaction coordinate (n > 2)

M (,) = 2n1_1 KH%)RJ}. (4.49)

For these reaction coordinates, the initial state (resp. the transition state) corresponds to a value of
the reaction coordinate z = 0 (resp. z = 1). The analytical expression of the free energy difference
that we consider here is, for a reaction coordinate v(x,y) (such as £ or 7, defined above)

Joz @ VDS )
ez 0 PV :

AF,(2)=—3""'In (

v(z,y)

where the distribution ¢, (, ) is defined in Remark 4.1 above. Notice that even though the initial
state Xy = {o = —0.5} and the final state Xy = {& = 0} are the same for the reaction coordinates
¢ and 7, the associated free energy differences differ. This is due to the fact that V& # Vn,,, and
therefore 0¢ (. y)—> # Oy, (x,y)—=- More precisely,

(dy)?
4dy

AFe(z) = — cos(2mxg) + cos(2mxe(z)) + (cos®(2mzg) — cos? (2mxe(2))),

with
ze(2) = mo + 2(x1 — 20),

and
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(d1)?

AF,
4ds

e (2) = — cos(2mag) + cos(2may, (2)) +

Loty <1+7‘T""(z)_$0>,

T1 — Zo

(cos?(2mxg) — cos? (27, (2)))

with
T, (2) = 20 + (2" = 1)z + DY — 1) (21 — 20).

Free energy profiles for the two reaction coordinates considered here can then be computed
using the discretization proposed in Section 4.1.3. Averaging over several realizations, error esti-
mates can be proposed: in particular, the standard deviation can be computed for all intermediate
points z € [0,1], so that, for all values z, a confidence interval around the empirical mean can
be proposed. We represent on Figure 4.2 the analytical profiles, and the lower and upper bounds
of the 95% confidence interval for M = 103 and M = 10%, using here and henceforth a linear
schedule: z(t) = t/T. The initial conditions are created by subsampling a trajectory constrained
to remain on the initial submanifold Xy. As announced above, the profiles obtained with 7,, and &
are not exactly the same, though the general shape is preserved. These figures also show that the
variance increases with z. Therefore, to further test the convergence of the method, it is enough
here to characterize the convergence of the value for the end point at z = 1.

Free energy difference A F(z)
©
T

Free energy difference A F(z)
®
s
.

. . . . . . . . . . . . . . . . . .
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Reaction parameter z Reaction parameter z

Fig. 4.2. Free energy profiles using the potential (4.47) with 3 = 1, di = 30 and d> = 27?, and the
reaction coordinate (4.48) on the left, or the reaction coordinate (4.49) with n = 5 on the right. Analytical
reference profiles are in dotted lines. The dashed lines (resp. the solid lines) represent the upper and lower
bound of the 95% confidence interval (obtained over 100 independent realizations) for nonequilibrium
computations with M = 10% replicas (resp. with M = 10* replicas). The switching time is 7' = 1 and the
time step is At = 0.005 on the left and A¢ = 0.0025 on the right.

We study the convergence of the end value AF (1) computed with the out-of-equilibrium dy-
namics with respect to the number of replicas M and the time step At, using the reaction coordi-
nate (4.48) as an example. The results are presented in Table 4.1. The time step At does not seem
to have any noticeable influence on the final result, as long as it remains in a reasonable range. As
expected, the error gets smaller as M increases.

In Table 4.1, we also show that, in this particular case, for a fixed computational cost and
provided that the switching time is large enough', computing many short trajectories is as efficient
as computing a few longer ones (the mean and the variance are essentially unchanged). This
conclusion also holds for the more realistic test case presented in next section. The computation
of many trajectories can be straightforwardly and very efficiently parallelized.

1 Of course, this threshold time depends on the system under study.
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We finally mention that we are able to exhibit the bias of the Jarzynski estimator in this
particular case (see Section 4.1.3 and [378]). We observe that the estimator E(Z(T)) is generally
greater than AF(z(T)). More precisely, averaging over 10* realizations, with the parameters T = 1
and At = 0.005, we obtain the following 95 % confidence intervals for ZF‘(Z(T)) for various values
of M: AF(2(T)) = 2.0576 £ 0.0059 for M = 103, AF(=(T)) = 2.0095 + 0.0026 for M = 10*, and
AF(2(T)) = 2.00075 4 0.0010 for M = 10°. As expected, the bias goes to zero when M — oco.

Table 4.1. Free energy differences AF(1) obtained by nonequilibrium computations for the reac-
tion coordinate (4.48) with 8 = 1, di = 1 and d2 = 30. The results are presented as follows:

E (E’(z(T))) ( Var (ﬁ(z(T)))) (the estimates of these quantities are obtained by averages over
100 independent runs). The exact value is AF (1) = 2.

At T M AF(x(T))

0.001 1 103 2.056 At T M AF(z(T))
0.0025 1 10% 2.033

(0250
4
0.005 1 103 2.076 ( . ) 0.005 1 103 2.014 (0.116)
( )
( )
(0.045)

- 0.005 100 10% 2.001 (0.025)
0.005 1 1072.076 0.005 1000 10" 1.997 (0.022)
0.005 1 10*2.014

0.005 1 10° 2.001

Model system for conformational changes influenced by solvation

We consider a system composed of N particles in a periodic box of side length [, interacting
through the purely repulsive WCA pair potential [79,329]:

Voroa (r) = 46[(%)12—(%)6%6 if r < 1o,

0 if > 1o,

where 7 denotes the distance between two particles, ¢ and o are two positive parameters and
ro = 2'/%0. Among these particles, two (numbered 1 and 2 in the following) are designated to
form a dimer while the others are solvent particles. Instead of the above WCA potential, the
interaction potential between the two particles of the dimer is a double-well potential

2

(r—ro —w)*1" (4.50)

Vs(r)=nh|1— .
where h and w are two positive parameters. The potential Vg exhibits two energy minima, one
corresponding to the compact state where the length of the dimer is » = ry, and one corresponding
to the stretched state where this length is r = r¢ + 2w. The energy barrier separating both states
is h. Figure 4.3 presents a schematic view of the system.

The reaction coordinate used is

§(q) _ |Q1 - (J2| —To

4.51
BT, (451)

where ¢; and ¢ are the positions of the particles forming the dimer. The compact state (resp. the
stretched state) corresponds to a value of the reaction coordinate z = 0 (resp. z = 1).

The parameters used for the simulations are: § = 1, ¢e =1, 0 =1, h = 1, w = 0.5 and
N = 16. We still use a linear schedule: z(t) = t/T. The side length [ of the simulation box
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Fig. 4.3. Schematic views of the system, when the dimer is in the compact state (Left), and in the
stretched state (Right). The interaction of the particles forming the dimer is described by a double well
potential. All the other interactions are of WCA form.

takes two values: [ = 1.3 (high density state) and [ = 3 (low density state). Figure 4.4 presents
some plots of the free energy difference profiles computed using nonequilibrium dynamics, as well
as thermodynamic integration reference profiles. The results show that nonequilibrium estimates
are consistent with thermodynamic integration. Qur experience on this particular example also
shows that it is computationally as efficient to simulate several short nonequilibrium trajectories
(provided the switching time is not too small, say, T ~ 1 in the units used here, so that the
diffusion process can take place), or one single long trajectory where the switching is done slowly
(as already observed in the previous example).

The free energy profiles highlight the relative stabilities of the two conformations of the dimer:
at low densities (Figure 4.4, Left) the stretched conformation has a lower free energy and is thus
expected to be more stable (this can indeed be verified by running long molecular dynamics
trajectories and monitoring the time spent in each conformation). When the density increases,
the compact conformation becomes more and more likely. At the density considered in Figure 4.4
(Right), the compact state already has a free energy slightly smaller than the stretched state.
Notice also that the free energy barrier increases as the density increases, so that spontaneous
transitions are less and less frequent. But since we know here a reaction coordinate, we can enforce
the transition. This prevents us from running and monitoring long trajectories to get sufficient
statistics to compare relative occurrences of both states.

4.2 Equilibration of the nonequilibrium computation of free energy
differences

We present in this section a complementary approach to the above nonequilibrium strategies in
the Jarzynski way, to prevent the degeneracy of weights. It is similar to the method of [174], known
as "population Monte-Carlo", in which multiple replicas are used to represent the distribution
under study. A weight is associated to each replica, and resamplings are performed at discrete
fixed times to avoid degeneracy of the weights. This methodology is widely used in the fields of
Quantum Monte Carlo [13,289] or Bayesian Statistics, where it is referred to as Sequential Monte
Carlo [84,85]. Note that in the probability and statistics fields, each simulation is called a *walker’
or 'particle’; we use here the name 'replica’, which is more apppropriate to the Molecular Dynamics
context.

The method used here extends the population Monte-Carlo method to the time-continuous
case. It consists in running M replicas of the system in parallel, resorting typically to a stochastic
dynamic, and considering exchanges between them, according to a certain probabilitic rule depen-
ding on the work done on each system. This procedure can be seen as automatic time continuous
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Free energy difference A F(z)
Free energy difference A F(z)

0.1 0.2 0.3 0.4

0.6 0.7 0.8 0.9 1 [ 0.1 0.2 03 0.4

05 0.5 0.6 0.7 0.8 0.9 1
Parameter z Parameter z

Fig. 4.4. Comparison of free energy difference profiles using the reaction coordinate (4.51), at low densities
(I = 3) on the left, and high densities (I = 1.3) on the right. The double well potential Vg is represented
in dashed line. The reference free energy difference profile computed with a very precise thermodynamic
integration is represented in dotted line. We used Ntr = 101 thermodynamic integration points (uniformly
distributed over (0,1)) and averaged the mean force over Mt = 107 configurations for each fixed value of
z. The upper and lower bounds of the 95 % confidence interval (obtained over 50 independent realizations)
for out-of-equilibrium computations are represented with solid lines. We used M = 1000 nonequilibrium
trajectories, a switching time 7" = 1, and a timestep At = 0.0005 (left) or At = 0.00025 (right).

resampling, and all replicas have the same weight at any time of the simulation. This method
drastically increases the number of significative transitions paths in nonequilibrium simulations.
The set of all replicas (or walkers) is called an ’Interacting Particle System’ (IPS) [248], and can
be seen as a genetic algorithm where the mutation step is the stochastic dynamics considered.

This method also allows to end up the simulation with a well distributed sample of configura-
tions. It is therefore a way to perform simulated annealing [193] rigorously: the idea is to switch
slowly from an initial simple sampling problem, to the target sampling problem, through a well
chosen interpolation. This allows to attain deeper local minima, but, due to its nonequilibrium
nature, is not efficient as such to sample accurately the target measure. We mention that varia-
tions have been proposed, especially tempering methods (see [180] for a review), the most famous
being parallel tempering [225]. These methods consider an additional parameter describing the
configuration system (e.g. the temperature), and sample those extended configurations according
to some stochastic rules. However, these methods asks for a prior distribution of the additional
parameters (for example a temperature ladder in parallel tempering method), which are usually
estimated through some preliminary runs [180].

We first present the IPS approximation (in the alchemical case for simplicity, though the
results can easily be extended to the reaction coordinate case), as well as convergence results of
the discretized measure to the target measure. A justification through a mean-field interpretation
is then proposed in Section 4.2.2. The numerical implementation of the IPS method is eventually
discussed.

4.2.1 The IPS and its statistical properties

We use here the notations and definitions of Section 4.1.1. Recall that the potential of mean
force defined in the alchemical case by

OH
Faw) :/6—;(1’) dpice) ()

is the average force applied to the system during an infinitely slow transformation. The first step is
to rewrite the Feynman-Kac formula (4.7) by introducing a dichotomy when a replica is receiving
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either excess or deficit work compared to the potential of mean force. To this end, we define
respectively the excess and deficit force, and the excess and deficit work as

x OHy) ' c OHy) )
re = (Tl - o) @ 7@ = (TR -A0) @)

WX = / t (XN (s) ds, Wie = / t fE(X N (s) ds, (4.52)
0 0

where 27 = max{z,0} and 2= = max{—z,0} (so that z = 2+ — 7). We then rewrite

E (w(Xt)e‘ﬁ Wﬁox_WSC))
MA(t)(SD) = E (e—ﬁ(Wf"—Wtde))

(4.53)

We now present the particle interpretation of (4.53) enabling a numerical computation through
the use of empirical distributions. Consider M Markovian systems described by variables X[
(1 <k < M). We approximate the virtual force and the Boltzmann distribution by their empirical
counterparts, which read respectively

aH}\t
Py = Mk 1 LX), Ay (@) stk da).

This naturally gives from definitions (4.52) empirical approximations of excess/deficit forces
ftM’ex/de and works 1/\/]C ex/de ppe replicas evolve according to a branching process with the follo-
wing stochastic rules (see [289,290] for further details):

INTERACTING PARTICLE SYSTEM PROCESS

Process 4.1. Consider an initial distribution (X{¢,..., X}¥) generated from djo(z). Generate
independent times Tf’b,le’d from an exponential law of mean 3~! (the upperscripts b and d
refer to ’birth’ and 'death’ respectively), and initialize the jump times T4 a5 T(f’d =0, Téc’b =
0.

For 0 <t <T,

(1) Between each jump time, evolve independently the replicas X} according to the dyna-
mics (4.2);
(2) At random times Tnle defined by
k, k e
W :); _W }ce,); = n+17

Tn +1 T

an index [ € {1,..., M} is picked at random, and the configuration of the k-th replica
is replaced by the conﬁgura‘rlon of the [-th replica. A time kf2 is generated from an
exponential law of mean 37!;

(3) At random times Tnle defined by

k,de k,de k,b
WT:+d1 - hed = = Th+t1s

an index [ € {1,..., M} is picked at random, and the configuration of the I-th replica
is replaced by the configuration of the k-th replica. A time T,Iff2 is generated from an
exponential law of mean 37!.
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The selection mechanism therefore favors replicas which are sampling values of the virtual work
W; lower than the empirical average. The system of replicas is ’self-organizing’ to keep closer to a
quasi-static transformation.

In [248,289], several convergence results and statistical properties of the replicas distribution
are proven. They are summarized in the following

Proposition 4.5. Assume that (t,z) — %(m) is a continuous bounded function on [0,T] X

T*M (or [0, T] x M in the case of overdamped Langevin dynamics), and that the dynamics (4.2)
is ergodic. Then for any t € [0,T],
(i) The estimator

exp (—5 /0 t FalogX (s) ds> (4.54)

is an unbiased estimator of e~ PFA®)=F(0)).
(ii) For all test function @, the estimator fga duf‘\/{t) is an asymptotically normal estimator of
fcp dpux(ey, with bias and variance of order M1

The proof follows from Lemma 3.20, Proposition 3.25 and Theorem 3.28 of [248] (see also [289,
290] for further details). The unbiased estimation of un-normalized quantities is a very usual pro-
perty in particle system methods. It comes from the fundamental property that at each “time step”,
each replica may branch with a number of offsprings equal in average to its relative importance
weight.

Let us emphasize that the sample (XF);<k<as is in particular an empirical approximation of
the canonical measure dy () for all ¢, and that no exponential reweighting of the works needs to be
done at the end of the simulation to obtain the free energy differences. In the case of interacting
replicas, the exponential reweighting of the Jarzynski equality (4.5) is replaced by the simple
average

/ TBH)\ kY y/
AFps = / FatpN( Z / V(XN () dt,

which, by Proposition 4.5, is asymptotically normal with bias and variance of order M~ and the
estimator e~ #4F1Ps is unbiased estimator of e~ #4F . Defining the work along one trajectory as

Ton
W, = / 2O (X)X (t) dt,
0

it therefore holds in the limit M — +oo,

EW:) = F(A(t)) — F(0), (4.55)

which should be compared to (4.5). Notice however that the notion of a single trajectory is only
formal and has no meaning since all trajectories interact continuously. The above equality has
only a pedagogical purpose.

4.2.2 Counsistency through a mean-field limit

In order to prove the consistency of the IPS approximation, we consider the ideal setting where
the number of replicas goes to infinity (M — +o0). This point of view is equivalent to a mean-field
or Mc Kean interpretation of the IPS (denoted by the superscript 'mf’). In this limit, the behavior
of any single replica, denoted by X, is then independent from any finite number of other ones.
We shall consider the mean field distribution
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Law(X{™) = duf"! =y (a)da,

and the mean-field force

The associated mean field excess/deficit force ftmf’m(/dC and works Wflf’cx/dc are defined as
in (4.52). In view of Process 4.1, the stochastic process X™ is a jump-diffusion process which
evolves according to the following stochastic rules:

MEAN-FIELD JUMP-DIFFUSION PROCESS

Process 4.2. Generate X" from dpug(z). Generate idependent clocks (72,7%),>; from an

exponential law of mean 37!, and initialize the jump times 7%? as T¢ =0,T¢ = 0.
For0<t<T,

(1) Between each jump time, ¢ — X evolves according to the dynamics (4.2);

(2) At random times T4, | defined by

n

f.ex mf,ex d
Wi — Wi =
T, T n+1s

the process jumps to a configuration x, chosen according to the probability measure
dpxy (x);
n+1

(3) At random times T, | defined by
mf,d mf,d
E(OWV; e)|t:Tnb+1 -EW, e)|t:T}; = Tg+1=

the process jumps to a configuration x, chosen according to the probability measure
mf,de

proportional to ngH (x)duA(T3+1)(x).

Remark 4.4. Note that, in the treatment of the deficit work, we take in Process 4.2 the point of
view of the jumping replica; whereas in Process 4.1, we take the point of view of the attracting
replica which induces a branching.

From the above probabilistic description, we can derive the Markov generator of the mean-field
process, given by the sum of a diffusion and a jump generator:

LY = Ly + Jy e

where the jump generator Jt)#;nf is defined as

T @)a) = BN (0) [ (610) = @) (7 (a) + 170" o).

A straightforward integration gives the fundamental balance identity of the jump generator:

* mf m 8H>\ t m
Jt,u;"f(ﬂt j) =0 <-7:t - T()> N () d

which implies, by forward Kolmogorov,

at/i]tmf = LA(t)(Mt f) + 0 (-7:15 - —(t)) N (t) !
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so that finally

3H>\(t

/ Bfofmfds
B DN ()l

o, ( o Bl ds) = L}y (Mltmfe—ﬁ J&Fme ds) Y it U]

The latter is exactly the forward evolution equation of the Feynamn-Kac kernel pg, defined in (4.6),
and thus [ pg,(z,.)dpo(z) = prte=p F'ds Using (4.7), this gives the identities:

m m mf,ex/de ex/de
Ntf:NA(t)a ftfzf)\(t)u t / = A(t/) .

and proves the consistency of the IPS approximation scheme.

4.2.3 Numerical implementation

In the previous section, we discretized the measure by considering an empirical approxima-
tion. For a numerical implementation to be tractable, it remains to discretize the time evolution.
Notice already that the IPS method induces no extra computation of the forces, and is therefore
unexpensive to implement. However, although the IPS can be parallelized, the processors have to
exchange informations at the end of each time step, which can slow down the simulation.

For the discretization of the dynamics, we refer to the corresponding sections in Chapter 3. It
only remains to precise the discretization of the selection operation. We consider for example the
following discretization of the force exerted on the k-th replica on the time interval [iAt, (i + 1) At]:

k, At

OH, ., _ OH mt)( 4 OH )\ ((i+1)At) (210
o\ 2 o\ o\ '
The mean force is then approximated by
k At

MAt o Z : 1+1/2
)\1+1/2 M '

To get a time dicretization of the IPS, Process 4.1 is mimicked using the following rules:
the time integrals are changed into sums;
the selection times are defined as the first discrete times ezceeding the exponential clocks
rb/d,
Further details about the numerical implementation can be found in [291]. Note that one can find
more elaborate methods of discretization of the IPS (see [290]), but this one seems to be sufficient
in view of the intrinsic errors introduced by the discretization of the dynamics.

4.2.4 Applications of the IPS method
Computation of canonical averages

The most obvious application of the IPS method is the computation of phase-space integrals,
since an unweighted sample of all Boltzmann distributions (g )sefo, 77 is generated. The sample
obtained can of course be improved by some additional sampling process (according to a dynamics
leaving the target canonical measure invariant). This will decorrelate the replicas and may increase
the quality of the sample.

We consider for example a pentane molecule, and a cooling process from =1 to § = 2, in
the case when the Lennard-Jones interactions involve only extremal atoms in the chain, so that
ects-ciy, = 0.29 and ecm, cm, = 0 (see Section 3.4.1 for more precisions on the model). The
simulations are done as follows. We first generate an initial distribution of configurations from
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the canonical measure at inverse temperature § = 1 using a classical rejection method so that
no initial bias is introduced. We then first perform a bare simulated annealing from 3 = 1 to
[ = 2, using a Langevin dynamics. We then compare the resulting empirical distribution for the
dihedral angles with the one arising from an IPS simulation. Figure 4.5 presents the results for
M = 10,000, At = 0.01 and T' = 1, with a linear scheme \(t) = t/T.

Fig. 4.5. Empirical probability distribution of the dihedral angles (¢1,¢2) at 3 = 2 of the pentane
molecule generated from a sample at § = 1, using simulated annealing (Left), and IPS (Right), with
sample size M = 10,000. The reference distribution is drawn in Figure 3.1 (Right).

As can be seen in Figure 4.5, the distribution generated with IPS is much closer to the reference
distribution than the distribution generated with simulated annealing. Of course, as the time 7" is
increased, the difference between both methods is reduced. However, this simple application shows
the interest of TIPS for computing distributions at low temperature starting from distributions at
a higher temperature, even if the driving scheme is quite fast. This is indeed almost always the
case in practice when there are several important metastable states.

Initial guesses for path sampling

The problem of free energy estimation is deeply linked with the problem of sampling meaningful
transition paths (see also Section 4.3). In the IPS method, one can associate to each replica X} a
genealogical continuous path (Xf’ge“)se[oyt]. The latter is constructed recursively as follows for a
replica k (for 0 <t <T):

at each time ¢, set X" = Xk

— at each random time T,, when the replica jumps and adopts a new configuration (say of

replica 1), set (X58™) g 7 = (X&) (0 7,1
This path represents the ancestor line of the replica, and is composed of the past paths selected for
their low work values. For the study of the set of genealogical paths, see [247] for a discussion in the
discrete time case. However, let us mention that for a given ¢ € [0, T, the set of genealogical paths
is sampled, in the limit M — oo, according to the law of the non-equilibrium paths (Xs)se[o,4
weighted by the factor e™#"¢ (with statistical properties analogous to those of proposition 4.5).
These paths are thus typical among non-equilibrium dynamics of those with non-degenerate work.
Therefore, they might be fruitfully used as non-trivial initial conditions for more specialized path
sampling techniques (as e.g. [374]).
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A toy example of exploration abilities

Consider the following family of Hamiltonians (Hx)xe[o,1]:

2 2 3 4
with
-1 —4
Ql( )78:10274—1’ Q2(I):m,
Qs () 0 Qu(x) Lk

T 32 -3/22+1 T 6z — T/ + 1

Some of those functions are plotted in Figure 4.6. This toy one-dimensional model is reminiscent
of the typical difficulties encountered when g is very different from p;. Notice indeed that several
transitional metastable states (denoted by A and B in Figure 4.6) occur in the canonical distri-
bution when going from A = 0 to A = 1. The probability of presence in the basins of attraction of
the main stable states of H; (C and D in Figure 4.6) is only effective when A is close to 1.

0 3/5

H4/5 Hl

Fig. 4.6. Plot of some Hamiltonian functions, as defined by (4.56).

Simulations were performed at = 13 with the overdamped Langevin dynamics, and the above
Hamiltonian family (4.56). The number of replicas was M = 1000, the time step At = 0.003, and
A is linear: A(t) = t/T. Figure 4.7 presents the distribution of replicas during a slow out of
equilibrium plain dynamic: T" = 30. Figure 4.8 presents the distribution of replicas during a faster
dynamics with interaction: 7" = 15.

When performing a plain out of equilibrium dynamics (even ’slow’) from A = 0 to A = 1,
almost all replicas are trapped by the energy barrier of these transitional metastable states (see
Figure 4.7). In the end, a very small (almost null) proportion of replicas have performed interesting
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A=4/5

Fig. 4.7. Empirical densities (in dots) obtained using independant replicas.

A\ \ L

A=4/5 A=1

Fig. 4.8. Empirical densities (in dots) obtained using interacting replicas.

paths associated with low values of virtual work WW. When using (4.7) to compute thermodynamical
quantities, these replicas bear almost all the weight of the degenerate sample, in view of the
exponential weighting. The quality of the result therefore depends crucially on these rare values.

On the contrary, in the interacting version, the replicas can perform jumps in the configuration
space thanks to the selection mechanism, and go from one metastable basin to another. In our
example, as new transition states appear, only few clever replicas are necessary to attract the
others in good areas (see Figure 4.8). In the end, all replicas have the same weight, and the sample
is not degenerate. Notice also that the final empirical distribution is fairly close to the theoretical
one.

We have also made a numerical estimation of the error of the free energy estimation, with 40
realizations of the above simulation. The results are presented in Table 4.2, and show an important,
reduction of standard deviation and bias up to a factor 2 when using the IPS method.

Table 4.2. Error in free energy estimation.

Method Bias Variance

Plain ~ +0.25 0.19
Interacting +0.15  0.10

Application to the computation of free energy differences

Our numerical comparisons using (4.55) often turned out to give similar free energy estimations
for the IPS method and the standard Jarzynski method. However, we have mostly considered the
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issue of pure energetic barriers, where the difficulty of sampling comes from overcoming a single
high barrier. The observed numerical equivalence may be explained by the fact that the selection
mechanism in the IPS method does not really help to ezplore those regions of high potential energy.

When the sampling difficulties also come from barriers of more entropic nature (e.g. a suc-
cession of very many transition states separated by low energy barriers), the IPS may improve
the estimation. Indeed, the selection mechanism helps keeping a statistical amount of replica in
the areas of high probability with respect to the local Boltzmann distribution p) throughout the
switching process (see the numerical example in testing the explotation ability). This relaxation
property may be crucial to ensure at each time a meaningful exploration ability.

Gradual Widom insertion

We present here an application to the computation of the chemical potential of a soft sphere
fluid. This example was considered in [156,261] for example. We consider a two-dimensional (2D)
fluid of volume |£2|, simulated with periodic boundary conditions, and formed of N particles
interacting via a pairwise potential V. The chemical potential is defined, in the NVT ensemble, as

oF

/L:W,

where F' is the free-energy of the system. Actually, the kinetic part of the partition function Z
can be straightforwardly computed, and accounts for the ideal gas contribution puiq. In the large
N limit, the chemical potential can be rewritten as [113]

M = Hid + Hex,

— 4 |£2|
pia = =8 "In (m) )

with

where A is the “thermal de Broglie wavelength” A = h(2xmB~')~/? (with h Planck’s constant).
The excess part flex iS

_ -1 anHeXP(—ﬁV(qNH))quH
prox == m( 2] [ exp(=BV(gN)) dgN )

where V(¢"V) is the potential energy of a fluid composed of N particles. We restrict ourselves to
pairwise interactions, with an interaction potential @. Then, V(¢V) = Yi<icien (g — 4j)-
Setting 7(¢") = Z ! exp(—BV(¢Y)) (with Z = fQN exp[—BV (¢V)]dg") and AV (¢V,q) =
VgVt = V(¢V) with ¢+ = (¢V, q), it follows

_ 1 _
Mex = —ﬁ L In (m /Q e ﬁAV(q’qN)dﬂ'(qN) dq) . (457)

The formula (4.57) can be used to compute the value of chemical potential using stochastic methods
such as the free energy perturbation (FEP) method [380]. In this case, we first generate a sample
of configurations of the system according to w, and then evaluate the integration in the remaining
q variable by drawing positions ¢ of the remaining variable uniformly in (2.

Another possibility is to use fast growth methods, resorting to the following parametrization

N+1 p2 N+1 p2
Hy(@" L pN ) = 30 SE 4+ A = Y o+ V(eY) +AAV(eY.g).

i=1 i=1
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In this case, the interactions of the remaining particle with the IV first ones are progressively
turned on.

As in [156,261], we use a smoothed Lennard-Jones potential in order to avoid the singularity at
the origin (Let us however note that, once the particle is inserted, it is still possible to change all
the potentials to Lennard-Jones potentials, and compute the correponding free-energy difference).
The Lennard Jones potential reads here

ouin =2 (5 (7)" - (2)').

and the modified potential is

a—br?, 0<r<08o0,
B(r) = PLy(r) +c(r—re) —d, 080 <r <r,
0, r>re.

The values a,b, ¢ are chosen so that the potential is C'. The distance 7. is a prescribed cut-off
radius. We consider the insertion of a particle in a 2D fluid of 25 particles, at a density po® = 0.8,
with ro = 2.50, fe = 1, At = 0.0005, and a schedule A(t) = t/T where T is the transition time.
The results are presented in Table 4.3, for different transitions times, but at a fixed computational
cost, since MT is constant. Some work distributions are also depicted in Figure 4.9. A reference
value was computed using FEP, with 10® insertions, done by running M = 103 independent
Langevins dynamics for the system composed of N particles, for a time tpgp = 50 (after an initial
thermalization time to decorrelate the systems), and inserting one particle at random after each
time-step. The reference value obtained is pex = 1.32 kgT (£0.01 kgT).

Table 4.3. Free energy estimation for one realization of each method, depending on the switching time 7'
and the number of replicas M used, keeping MT constant. The results are averaged over 10 realizations,
and are presented under the form < p > (y/Var(u)). The reference value obtained through FEP is
tex = 1.32 kT (£0.01 k7). Notice that the results are quite comparable.

Method M =10° M=5x10*M =2x10* M = 10*

T=1 T=2 T=5 T =10
Jarzynski 1.31 (0.015) 1.33 (0.017) 1.32 (0.023) 1.32 (0.038)
IPS  1.37 (0.025) 1.35 (0.040) 1.33 (0.033) 1.32 (0.037)

As can be seen from the results in Table 4.3, the IPS algorithm has a comparable accuracy to
Jarzynski’s estimates provided the switching time is long enough. However, the work distribution
is very different, and has a stable gaussian shape for all switching rates considered, whereas the
work distribution obtained through the fast growth method are much wider (see in particular
Figure 4.9, Left), so that the relevant part of the work distribution (the lower tail) is only of small
relative importance.

4.3 Path sampling techniques

The Transition Path Sampling (TPS) formalism, first proposed in [272] and further developped
in [80] (see also [34,81] for extensive reviews), is a strategy to sample only those paths that lead to
a transition between metastable states. It also gives some information on the transition kinetics,
such as the rate constant as a function of time or the activation energies [78]. Recent practical
and theoretical developments (such as Transition Interface Sampling [355,356]) are still aiming at



4.3 Path sampling techniques 145

10000

1200
9000~

8000 1000-
7000
800
6000
5000
600
4000
3000

2000

1000

0

L
40 50 60 -4 -2 0 2 4 6 8 10 12 14

Fig. 4.9. Left: Comparison of the work distribution for 7" = 1. Right: Comparison of the work distributions
for T = 10. The IPS results appear in darker colors. The target value is 1.32 k7. Notice that the IPS
work distribution is Gaussian with low variance even for the fast switching simulation.

increasing the power of the method. State of the art applications of path sampling, such as [189],
now involve as much as 3,000 atoms with paths about 3 ns long.

Recently, relying on the Jarzynski formula [186,187] (see also Section 4.1), path sampling
techniques have also been used to compute free energy differences more efficiently [261,331,374]
by precisely enhancing the paths that have the larger weights (which correspond to the unlikely
lower work values). More precisely,

/ eV drp (z)

/ drp () 7

where dry, is a measure on a discrete path of length L, and W(x) is the work along a given path .
In the case of the overdamped Langevin dynamics (3.38) with A\(t) = ¢/(LAt), the probability to
observe the path = = (qo,qat, .-, qrAt) 1S

o BAF _

L
1 B 2
drp(z) = ZL1 e #Volao) HeXp <—E ‘Q(H—l)At — giar — AtVVi/L(QiAt)’ dz,
i=1

and the work is approximated by

L
1
WAt(ﬂU) = Z Z —/\ ) (QiAt)-
; A=i/L

Importance sampling techniques can then be used, such as rewriting

/ oW/ 41T, (1)

o BAF _
/ AW/ T, ()

)

where the paths are sampled according to the modified measure dIT,(z) = e W@ /24, (2), which
enhances the paths with lower work values. Methods to sample paths can be found in [34,81,325].

Many path sampling studies (especially TPS studies) have used deterministic dynamics (Path
sampling in the NVE ensemble has already been thoroughly studied, see [81] for a review). However,
path sampling with stochastic dynamics is of great interest for nonequilibrium simulations [74].
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Besides, some models are stochastic by nature (see e.g [5] where the authors consider a model
system of protein pulling in implicit solvent, and a chemical reaction simulated with kinetic Monte
Carlo). Finally, we believe that there is room for improvement in the path sampling techniques
for stochastic dynamics. We therefore restrict ourselves to the stochastic setting in this section.

To this date, the usual equilibrium sampling of paths with stochastic dynamics is done either
with the usual shooting dynamics inspired from the corresponding algorithm for deterministic
paths [81]; or with the so-called "noise history" algorithm introduced in [74], which relies on the
description of paths as a starting point and the sequence of random numbers used to generate the
trajectory. It is one of our aims here to relate both strategies and generalize them by introducing
a new way to propose paths: namely by generating random numbers correlated with the ones
used to generate the previous path. When the correlation is zero, the usual shooting dynamics is
recovered. When the correlation is one everywhere except for some index along the path where it is
zero, the noise-history algorithm is recovered. This generalization may be useful for example when
the dynamics are too diffusive (Langevin dynamics in the high friction limit) since the shooting
dynamics are inefficient in this limit; or to enhance the decorrelation of the paths generated using
the noise history algorithm.

We also consider nonequilibrium sampling of paths, using some switching dynamics on
paths [122], inspired from the Jarzynski out-of-equilibrium switching in phase-space [186, 187].
This switching can be performed whatever the underlying dynamics on paths. It can be used to
transform a sample of unconstrained paths to reactive paths (ending up in some given region).
This approach was already followed in [122], and allows to compute rate constants. However, the
final sample of paths is very degenerate, and cannot be used as a reliable equilibrium sample of
reactive paths. In the same vein, one could imagine doing simulated annealing on paths (simulated
tempering on paths has already been investigated in [363]), in order to obtain typical transition
paths at temperatures where direct sampling is not feasible. However, unless the annealing process
is very slow, the final sample is usually not correctly distributed. We therefore also present the
application to path sampling of the IPS birth/death process of Section 4.2. The corresponding
reequilibration is of paramount importance for the end sample to be distributed according to the
canonical measure on paths. Besides, since the sample of paths follows the canonical distribution
at all times, the properties of interest can be computed in a single simulation for a whole range of
values. For example, the rate constant could be obtained for a whole range of temperatures, which
allows to compute the activation energy following the method presented in [78].

This section is organized as follows. We first present the path ensemble in Section 4.3.1, and turn
to equilibrium sampling of paths in Section 4.3.2. We introduce in particular in Section 4.3.2 the
"brownian tube" proposal function which generalizes the previous algorithms for path sampling
with stochastic dynamics, and compare this new proposal functions to the previous ones using
some two-level sampling indicators. Finally, we present in Section 4.3.3 the switching dynamics
on paths, with the IPS extension enabling a reequilibration of the paths distribution at all times,
even when the switching is done at a finite rate.

4.3.1 The path ensemble with stochastic dynamics
The canonical measure on discretized paths

We consider a system of N particles, with mass matrix M = Diag(my, ..., my), described by a
configuration variable ¢ = (q1, ..., qn), and a momentum variable p = (p1,...,pn). The dimension
of the space is denoted by d, so that ¢;,p; € R% for all 1 < i < N. We consider stochastic dynamics
of the form

dX; = b(X:) dt + XdWs, (4.58)
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where the variable X; represents either the configurational part ¢, or the full phase space variables
(qt,pt). The function b is the force field, the matrix X is the magnitude of the random forcing,
and W; is a standard Brownian motion (the dimension of W; depending on the dynamics used).

We restrict ourselves in this study to the most famous stochastic dynamics used in practice,
namely the Langevin dynamics

dg, = M~ p, dt,
dpy = —VV(q) dt —yM'p,dt + o dW,,

(4.59)

where W; denotes a standard dN-dimensional Brownian motion, and with the fluctuation-
dissipation relation 02 = 2v/3. In this case, the variable z = (g, p) describes the system and
the energy is given by the Hamiltonian E(x) = H(q,p) = V(q) + %pTMflp. Some studies (see
e.g. [374]) however resort to the overdamped Langevin dynamics

2
dqt = —VV(qt) dt + \/%th,

in which case * = ¢ and E(x) = V(q). The ideas presented in the sequel can of course be
straightforwardly extended to this case.

In practice, the dynamics have to be discretized. Considering a time step At and a trajectory
length T' = LA, a discrete trajectory is then defined through the sequence

x = (x0,...,2L).
Its weight is
L—1
m(x) = Z1 " p(xo) H p(Zi, Tig1), (4.60)
i=0

where p(zg) = Z(;le_ﬁE(wO) is the Boltzmann weight of the initial configuration, p(x;, z;41) is the
probability that the system is in the state x;11 conditionally that it starts from x;, and Zp is a
normalization constant. This conditional probability depends on the discretization of the dynamics
used.

Denoting by 14(x),1g(z) the indicator functions of some sets A, B defining respectively the
initial and the final states, the probability of a given reactive path between the sets A and B is

then
L—1

map(®) = Zyp1a(@o)p(xo) [ pwi, wi1)1s(2r). (4.61)
i=0
Transition Path Sampling [80,81] aims at sampling the measure? 74, using in particular Monte-
Carlo moves of Metropolis-Hastings type.

Discretization of the dynamics

We present here a possible discretization of the Langevin dynamics, and the corresponding
transition probability p(x;, x;41). This discretization, called “Langevin Impulse” [310], relies on an
operator splitting technique, and is more appealing from a theoretical viewpoint than previous
discretizations (such as the BBK algorithm [45], or schemes proposed in [4]). For particles of equal
masses (up to a rescaling of time, M = Id; the extension to the general case is straightforward),
the numerical scheme we use here reads [310]:

2 Notice that the measure Tap = ﬁi’BAt depends in fact explicitely on the length of the paths, and of
the time steps used in practice. See [147] for a continuous formulation using SPDEs. In this case, the
measure on paths is formulated at a continuous level.
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At
Dit1/2 = Di — TVV(%‘),
Gi+1 = qi +c1piy1/2 + Ui, (4.62)
t
Pit1 = CoDiy1/2 — 7VV(%'+1) + Ua,

with ) A
— exp(—yAt
co = exp(—yAt), ¢ = LZEP(1AY
Y
The centered gaussian random variables (U ;, Uz ;) with Uy ; = (u,lm-, . ,ugg) are such that
E [(ullz)2] = U%v E [(ulzz)z] = 0'%7 E [Ullz : UIQJ = €120102,

with

At 3 — e VAt e 2At 1 1

U%Z - (2— ¢ te ) s 0'52 —(1—6_2VAt), C120109 = — (1_e—wAt)2'
By vAt B By

In practice, the random vectors (Uj ;,Us ;) are computed from standard gaussian random vectors
(Gl,ia G2,i) with Gk,i = (gli,iﬂ ey gl(ijy)

ullz =01 gll,z'a Ulzl =02 (Cl2 glu +4/ 1- C%z géz) . (4.63)

We will always denote by G standard gaussian random vectors in the sequel, whereas the notation
U refers to non-standard gaussian random vectors.
Denoting by

di = di((giv1.Pit1), (@i, 0:)) =

3

At
Giv1 — ¢ —C1Di +C1 TVV(%')

At
Pit1 — copi + = (c0VV(q:) + V(git1))

d2 = da((gi+1,Pit1), (i pi)) = 9

)

the conditional probability p((¢it+1,pi+1), (¢i,pi)) to be in the state x;41 = (¢it1,pitr1) starting
from z; = (g;, p;) reads

prnnn = 2o gt (8 (2) -2 (2) (2))] wes

—dN
where the normalization constant is Z = (27r0102\/1 — c%2> .

4.3.2 Equilibrium sampling of the path ensemble

The most popular way to sample paths is to resort to a Metropolis-Hastings scheme [153,238|.
Other approaches may be considered in some cases , see [81] for a review of alternative approaches.
Those approaches however require some force evaluation (see e.g. [80] for a Langevin dynamics
in phase space in the case of a toy two-dimensional problem). But the force exerted on a path is
proportional to V(In), and is difficult to compute in general since it requires the evaluation of
second derivatives of the potential in conventional phase space.

We first precise some specifities of the Metropolis-Hastings algorithm, especially when sampling
reactive paths. We then recall a usual technique to propose paths in Section 4.3.2, and generalize
it in Section 4.3.2. We finally propose some benchmarks to compare the efficiencies of all these
proposal functions.
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Metropolis-Hastings sampling techniques for path sampling

For a general introduction to the Metropolis-Hastings scheme, we refer to Section 3.1.3. In the
case of reactive paths, a study of the acceptance rate asks to decompose the acceptance/rejection
procedure in two successive steps: (i) the proposition of a path starting from A and going to B;
(ii) the acceptance or rejection of such a path according to the Metropolis-Hastings scheme. The
difficult step is the first one, since paths bridging A and B are only a (small) subset of the whole
path space. In particular, diffusive dynamics such as the overdamped Langevin dynamics are
often not convenient to propose bridging paths; the situtation is however better for dynamics with
some inertia, such as the Langevin dynamics. When the paths are constructed using deterministic
dynamics (NVE case), some studies have shown that the optimal acceptance rate is about 40 %
for the cases under consideration [81].

For path sampling with stochastic dynamics, the "shooting" proposal function is classically
used [81]. However, even for moderate values of the friction coefficient « in the Langevin dynamics,
this proposal function may have low acceptance rates, especially if the dimension of the system is
high or/and the barriers to cross are large. An alternative way of proposing paths, relying on the
so-called “noise history” of the paths [74] (i.e. the sequence of random numbers used to generate
the trajectory from a given starting point) is to change only one of the random numbers used and
to keep the others. In this case, a high acceptance rate is expected, but the paths generated may
be very correlated.

A natural generalization of both approaches is to rely on the continuity of the dynamics with
respect to the random noise forcing, and to propose a new trajectory by generating new random
numbers correlated with the previous one. We call this approach the “brownian tube” proposal.
In this case, an arbitrary acceptance rate can be reached, and there is room for optimizing the
parameters in order to really tune the efficiency of the sampling.

The shooting proposal function

The acceptance rate of the Metropolis-Hastings algorithm is

7T(11)7’(11,1?))
m(x)P(z,y) )

The shooting technique described in [81, Section 3.1.5] consists in the three following steps, starting

r(z,y) = min (1,

from a path z™:

SHOOTING ALGORITHM FOR PATH SAMPLING

Algorithm 4.1. Starting from some initial path 2°, and for n > 0,

(1) select an index 0 < k < L according to discrete probabilities (w;)o<i<r (for example
a uniform probability distribution can be considered, unless one wants to increase trial
moves starting from certain regions, for example the assumed transition region);

(2) generate a new path (yg+1,...,yr) forward in time, using the stochastic dynamics (4.59),
with a new set of independently and identically distributed (i.i.d.) gaussian random
vectors (UinJrl)]H_lSjSL_l;

(3) generate a new path (yg_1,...,y0) backward in time, using a discretized "backward"
stochastic dynamics correponding to (4.59), with a new set of i.i.d. gaussian random

—nt1
vectors (U?Jr )0§j§k—1§

(4) set 2"*! =y with probability r(z",y), otherwise set z" ™1 = ™.
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It remains however to precise how the “backward” part of the trajectory is computed in Step (3),
which determines the conditional probability p(y,+1,¥;) to go to y; from y;44 in a backward man-
ner. The proposition density P(x,-) is then also determined. Indeed, The probability of generating
a path y = (yo,...,yr) from z, shooting forward and backward from the k-th index, is

k—1 L
P(z,y) =we [[ Wi, u) [ plyi-1,u)- (4.65)
=0 J=k+1

Notice that the previous path z is present only through the term y; = xi. It then follows

T("E7 y) = min (17 1A(y0)1B(yL)Cexact($7 y)) )

with

= yg+1, ZJJ) p(Tj, Tj+1)

Cexact (:E y

It is clear that, for reasonable discretizations, P2 (z,y) > 0 for all paths z,y of positive probability
(under mild assumptions on the potential) so that the correponding Markov chain is irreducible.
Since the measure (4.61) is left invariant by the dynamics (this is a classical property of Metropolis-
Hastings scheme), the corresponding Markov chain is ergodic [240]. Notice also that it is enough to
consider only the forward or the backward integration steps for the ergodicity to hold, as long as
both have a positive probability to occur (and that the possible asymmetry in the corresponding
probabilities is accounted for).

Backward integration of the trajectory

There are two ways to generate proposal paths backward in time (which are precised in specific
cases in the remainder of this section), using either

(i) a time reversal (linked to some detailed balance property): The forward dynamics are used
to generate the points y; from ;11 in a time-reversed manner. This means that variables
odd with respect to time reversal (such as momenta) are inverted, and variables even with
respect to time reversal (such as positions) are kept constant. Denoting by S the reversal
operator, Sy; = y; = ¢; for overdamped Langevin dynamics, and Sy; = (¢;, —p;) when
yi = (qi, p;) for Langevin dynamics. The usual one-step integrator @ a; is then considered
to integrate the corresponding trajectory, using S? = Id:

Yi = (S0 Par 0 S)yit
The time-reversed conditional probability prr(yi+1,¥:) to go from y; to y;11 is then
PR (Yi+1,Yi) = P(SYit1, SYi).
The detailed balance assumption reads

(i) PWi, yiv1) = p(Yiv1) D(SYiv1, Syi)-

When this condition is met with a good precision, some cancellations occur in the expres-
sion (4.66) of the acceptance rate [81]. In this case, the acceptance rate

Cexact (T, Y) =~ crr(T,y) = sz)) (4.67)

In the case when y; = z; (which is often the case in practice for path sampling on sto-
chastic paths), crr(z,y) = 1. However, as will be precised later in this section, numerical

b
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tests suggest that the detailed balance is not always met with a good precision when the
dynamics are discretized with large time steps (which is useful in order to avoid too long
paths), even if it is usually the case in some mean sense for usual regimes. However, even
in those cases, it may be the case that detailed balance is not fulfilled along a whole path
(especially since unlikely regions of high gradients are somewhat enhanced), so that the
cancellations mentionned above are not always strictly valid.

(ii) a backward integration: in this case, the change of variables ¢ — —t is done directly in the
numerical scheme, so that

Yi = P Ac(Yit1)-

The corresponding backward probability will be denoted by pPuek(Yit1,¥:). The backward
schemes are such that a reversibility condition is approximately met (since @ p;0®P_ A¢ =~ 1d)

P(Yis Yit1) = Poek (Vit1,Yi),

at least in some conditions that can be precised on a specific example.

Let us emphasize that the above approximations are used in some computations to obtain simpler
expression for the acceptance rate, but their validity should be carefully checked in any cases, as
we now do.

Backward overdamped Langevin dynamics.

The time reversed version of the overdamped Langevin dynamics is still the usual overdamped
Langevin dynamics for the Euler-Maruyama discretization

2At
Giy1 = ¢ — AtVV (q;) + \/ R R;, (4.68)

R; being i.i.d. dN-dimensional random vectors. It holds

dN/2 6
P(Qz, QZ+1) (47TAt) exp ( 4At|%+1 qi + Atvv(%)l ) ) (469)

and
prr(q2,q1) = P(g2, q1)- (4.70)
Therefore, time reversed paths are generated using the discretization (4.68), and a correction has

to be accounted according to (4.66). The validity of the reduced acceptance rate (4.67) can be
checked by monitoring

CTR  Cexact
RTR = max y ——
Cexact CTR

for the reactive paths generated. Notice that the ratio ¢Tr/Cexact 1S exactly 1 when the detailed
balance assumption is strictly fulfilled, so that Rtg = 1 in this case. Therefore, the validity of
this assumption along the whole path is related to the magnitude of the values of Rrr > 1 (since
Rrr > 1 in all cases).

The discretized backward stochastic dynamics are, for the overdamped Langevin dynamics

Gi—1 = qi + AtVV(gi) + o Ry, (4.71)

with 02 = 2At/3, and where the random variables (R;) are i.i.d. dN-dimensional standard Gaus-
sian random vectors. Note already that the scheme (4.71) is unstable in general (except near
saddle points of the energy landscape) since the sign of the force has to be changed in a backward
integration, so that only small time steps must be considered. The resulting backward conditional
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probability to be in ¢;—; starting from ¢; is therefore

dN/2 3
7). . . e - - . . 2
Dok (i, gi—1) (47rAt) exp ( 4Athz gi—1 + AtVV (q;)| ) - (4.72)

The reversibility assumption, made for example in [374], can also be checked here by computing

Chck  Cexact
Rb ck — mMax E—

)
Cexact  Cbck

for the reactive paths generated. The behavior of Ry, should be close to the behavior of Rrg.
To test the above assumptions, we consider the following one-dimensional double well potential:

V(x) = 0.5h(z — 1)%(z + 1)?,

where h is a factor allowing to modify the barrier height at the transition state x = 0.

We first test the detailed balance and reversibility assumptions, for a certain range of time
steps and barrier height (the inverse temperature is set to 3 = 1). To this end, we sample n
initial configurations (¢*)1<;<n of the system according to the canonical measure (using a rejection
algorithm, so that no additional bias is added to the intrinsic statistical bias arising from the
finite size of the sample) and perform a realization of the one step moves using the integration
scheme (4.68). We denote by ¢’ the outcome for a given initial configuration ¢/. We then compute
the quantities

1 < o 1 < o
<TDB> = g erDB(qjuq])u <Trev> — E ZlTreV(qjuq])u
j= j=

with
p(q1,q2)
Pbek (92, q1)°

p(q1) P(a1, g2)
p(q2) Prr (g2, 1)
where p,prr and Ppex are given by (4.69), (4.70) and (4.72) respectively. We also compute the

associated variances. We then turn to the path sampling algorithm, using the above mentio-
ned shooting algorithm with a forward and a backward shooting (the dynamics being either the
time reversed or the backward dynamics). The acceptance/rejection step is done using the exact
rate (4.66), and the values Rrr and Rycx are computed over reactive paths of size L = 200 At,
with the sets A = [-1—6,—1+0], B = [1—6,1+] with § = 0.2, and performing n = 10° iterations
of the path sampling algorithm. The canonical averages rpp and 7, are computed using n = 106
points. The results are presented in Table 4.4.

The reversibility assumption is verified for time steps and barrier heights small enough (which
is usually not the interesting range of study for path sampling). Moreover, we studied here this
property from an average point of view, and it is expected that the situation will get worse when
unlikely regions will be enhanced through the path sampling algorithm. Besides, even if the detailed

balance is almost verified for one integration step, it is likely that the precision will deteriorate

TDB(QlaQ2) = s Trev(q17q2) =

when considering successive integrations.

As can be seen from the results, the reversibility assumption along the whole path is hardly
valid, except for low barriers and small time steps. Besides, it may be the case that the reversibility
assumption can be considered to hold as a canonical average (i.e. 1y is indeed close to 1 with a
small variance), but not along a path?. The errors are somewhat magnified by the length of the
path, and the enhancement of the high gradient regions. However, the detailed balance assumption
is more easily verified in practice than the reversibility assumption. The acceptance results shows
that few paths bridging initial and final states are proposed. The overdamped Langevin dynamics
is too erratic to provide efficient proposals (the overall acceptance rates are 1-2% at most).

3 See for example the case At = 2.5 x 1072 with h = 20.
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Table 4.4. Results for the reversibility and detailed balance study for the discretization (4.68) of the
overdamped Langevin dynamics. All the results are presented under the form "(A) (y/Var(A))".

Parameters DB Trev Rrr Ry ex

At =0.001 h=0.51.000 (0.0003) 1.002 (0.0060) 1.001 (0.0007) 1.040 (0.0559)
At =0.001 h=1 1.000 (0.0005) 1.003 (0.0096) 1.002 (0.0015) 1.096 (0.1177)
At =0.001 h=2 1.000 (0.0011) 1.006 (0.0163) 1.003 (0.0027) 1.157 (0.1863)
At =0.001 h =10 1.000 (0.0075) 1.040 (0.0770) 1.017 (0.0149) 5.864 (6.777)
At =0.001 h =20 1.000 (0.0186) 1.094 (0.1838) 1.044 (0.0362) -

At =0.0025 h =1 1.000 (0.0021) 1.009 (0.0255) 1.006 (0.0056) 1.635 (1.640)
At =0.0025 h = 10 1.001 (0.0307) 1.121 (0.3174) 1.084 (0.0786) 1.584 x 10° (6.047 x 10°)
At = 0.0025 h =20 1.006 (0.0800)  1.471 (22.09)  1.244 (0.2809) -

At =0.005 h=1 1.000 (0.0059) 1.019 (0.0577) 1.021 (0.0230) 13.46 (153.0)
At =0.005 h =10 1.007 (0.0961) 1.573 (34.04)  1.363 (0.4454) -

At =0.005 h =20 1.053 (0.7521) 9431 (2.930 x 105) 2.107 (1.709) -

Langevin dynamics.

We present first a numerical study similar to the one done for the overdamped Langevin case.
We do not consider backward integration using negative time steps (which is even more unstable
than in the overdamped case), and limit ourselves to proposal functions for Langevin paths using
the time reversed dynamics. More precisely, we use the discretization (4.73), which is a classical
integration scheme [4], traditionally used in transition path sampling:

n+l _ n no_ 2 n n
{q = ¢" + a1 At p" — e APVV(¢") + WY, (4.73)

pitl = eT7ALn (c1 — ) AtVV (¢") — ca AtVV (¢ + w3,

where the random numbers are the same as in (4.62) (only the deterministic part of the dynamics is
modified). The time-reversing operation amounts to reverting the momenta, integrating forward in
time, and reverting the momenta again. We also test the validity of a detailed balance assumption,
both as a static property, and along paths. The computed variables rpg and Rrgr are defined as
for the overdamped case.

We consider as a toy example the two-dimensional (2D) potential

V(z,y) = % [401- 0% =22 42062 =22 + (@ +9)* = 1)+ (0 -p? - 1)), (@74

which was introduced in [80]. The numerical study is conducted in the same manner as for the
overdamped case, and the results are presented in Table 4.5. The detailed balance assumption is
indeed satisfied with a very good accuracy for a broad range of parameters regimes. The detailed
balance along paths is also satisfied with a good accuracy, though discrepancies of the static detai-
led balance study are still somewhat magnified, and it could be the case in some more complicated
situations (such as higher dimensional dynamics with constraints) that those discrepancies become
non negligible. Further numerical studies suggest that the most influential parameter is the time
step At.

We also tested those assumptions on the model system for conformational changes of Sec-
tion 4.1.4. The canonical averages rpg are computed using n = 10° iterations. The values Ryg are
computed over reactive paths of size L = 500 At, at 3 =1, using lp = 1.3, 0 =1, e =1, w = 0.5,
At = 0.0025, with the sets A = {r(¢) < ro + 0.60},B = {r(q) > 79 + 1.40}, and performing
n = 10% iterations of the path sampling algorithm.



154 4 Computation of free energy differences

Table 4.5. Results for the detailed balance study for the discretization (4.73) of the Langevin dynamics.
The canonical averages rpp are computed using n = 10° points. The values Rrr are computed over
reactive paths of size L = 200 At, with the sets A = {|z + 1> + 4> < 6}, B = {|z — 1> + ¢* < §} with
§ = 0.6, and performing n = 10° iterations of the path sampling algorithm. All the results are presented

under the form "(A) (\/Var(A4))".

Parameters DB Rrr

At =0.02,6=1,3=1 1.000 (0.0002) 1.002 (0.0024)
At =0.01, ¢ =1, 8 =10 1.000 (0.0000) 1.001 (0.0014)
( ) ( )
( ) ( )

At =0.025, £ =5, § =5 1.000 (0.0004) 1.004 (0.0033
At =0.05, £ =2, =20 1.000 (0.0023) 1.022 (0.0180

Table 4.6. Results for the detailed balance study for the discretization (4.62) of the Langevin dynamics
in the WCA case. All the results are still presented under the form "(A) (y/Var(A))".

Parameters DB Rrtr

h=1 1.0000 (0.0031) 1.002 (0.0653)
h=2 1.0000 (0.0031) 1.002 (0.0721)
h=5  1.0000 (0.0032) 1.003 (0.0772)

Once again, as can be seen from the results of Table 4.6, the detailed balance assumption holds
in average with a very good accuracy, but there are noticeable deviations from the detailed balance
assumption along the paths.

Time-reversal as a backward integration scheme

In conclusion, the previous results show that it is more appropriate to resort to time reversal.
We will always denote in the sequel the random vectors used in this process by U. As also shown
in the previous computations, the microscopic reversibility ratio

P(?Ji) P(yi, yi+1)
p(Yi+1) P(Yit1,Yi)

Riev(Yiryiv1) =

is sometimes close to 1, so that cCexact(x,y) ~ 1 and the acceptance/rejection step is greatly
simplified. However, this assumption should always be checked carefully using some preliminary
runs since it is sometimes the case that, even if the reversibility ratio rpg is close to 1 pointwise
(with a good approximation), it may be false that cexact(z,y) =~ 1 along the path, especially if the
paths are long.

The brownian tube proposal function

A path can also be characterized uniquely by the initial point xy and the realization of the
brownian process W; in (4.58). When discretized, the paths are then uniquely determined by
the sequence of gaussian random vectors U = (Up,...,Ur_1) used to generate the trajectories
using (4.62) (or any discretization of another SDE). This was already noted in [74], where a new
trajectory was proposed selecting an index at random and changing only the gaussian random
number associated with this index.

Since the trajectory is continuous with respect to the realizations of the brownian motion, any
convenient small perturbation of the sequence of random vectors is expected to generate a path
close to the initial path. Still denoting by p(z;,x;11) the probability to generate a point z;4; in
phase-space starting from z;, using the gaussian random vectors U; and U; obtained from standard
gaussian random vectors G; and G}, the transition probabilities for all classical discretizations we
consider can be writtten as
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p(zi,xit1) = Z " exp —§Gi ra;),
and .
PrR(Tiv1, i) = Z texp <—§GiTFGi)

where Z is a normalization constant. In the case of the discretization (4.62) of the Langevin
equation for example, I' = VTV where the matrix V allows to recast the correlated gaussian
random vectors U; = (Uy 3, Us ;) (or U;) as standard and independent gaussian random vectors G;
(or G;) through the transformation U; = VG; (or U; = VG;) with (see Eq. (4.64))

oy M dagn 0
V= C12 1
——F——=Idavy —F—=1Idan
o1/ 1— e, oa/1 =3,

The idea is then to modify the standard gaussian vectors G; by an amount 0 < a; < 1 as

éi = o;G; + A/ 1-— OélzRi, (475)

where R; is a 2dN-dimensional standard gaussian random vector. A fraction «; is associated with
each configuration z; along the path. The usual shooting dynamics is recovered with «; = 0 for
all 7 (all the Brownian increments are uncorrelated with respect to the Brownian increments of
the modified path), whereas the so-called ’noise history’ algorithm proposed in [74] corresponds
to a; = 0 for all ¢ but one iy for which a;, = 1 (in this case, all the Brownian increments but one
are re-used).

The dynamics we propose looks like the shooting dynamics:

BROWNIAN TUBE PROPOSAL

Algorithm 4.2. Starting from some initial path 29, and for n > 0,

(1) select an index 0 < k < L according to discrete probabilities (w;)o<i<r (for example
a uniform probability distribution can be considered, unless one wants to increase trial
moves starting from certain regions, for example the assumed transition region);

(2) compute a new random gaussian vector starting from the previous one, using (4.75);

(3) generate a new path (yg41,...,yr) forward in time, using the stochastic dynamics (4.59),

with a new set of independently and identically distributed (i.i.d.) gaussian random
vectors (UinJrl)]H_lSjSL_l;

(4) generate a new path (yg—_1,...,y0) backward in time, using a discretized "backward"
stochastic dynamics correponding to (4.59), with a new set of i.i.d. gaussian random
—nt1
vectors (U?Jr )0§j§k—1§

(5) set 2! = y with probability (2", y), otherwise set "1 = z™.

It remains to precise the proposition function P(z,y). Denoting by (G¥)o<i<k—1, (GF)r<i<ri-1
the standard random gaussian vectors associated with the path = (the first ones arise from the
time reversed integration, the last ones from a usual foward integration), it follows

P(%y) = Wk H pai(éfv ley) H pai(va Gzy)v

0<i<k—1 k<i<L—1

where wy, still denotes the probability to choose k as a shooting index, and
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) 1 o (G — aQ)T(G - aG)
Pa(G,G) = (7)> exp (— > .

27r(1 — a? 2(1 —a?)

A tuning of the coefficients «; can then be performed in order to get the best trade-off between
acceptance (which tends to 1 in the limit «; = 1 for all i) and decorrelation (which arises in
the limit «; — 0). An interesting idea could be that « has to be close to 1 in regions where the
generating moves have a chaotic behavior (in the sense that even small perturbations to a path lead
to large changes to this path), and could be smaller in regions where the generating moves have
less impact on the paths (so as to increase the decorrelation). From a more practical point of view,
a possible approache to obtain such a trade-off to propose a functional form for the coefficients
«; and to perform short computations to optimize the parameters with respect to some objective
function. Some simple choices for the form of the coefficients «;, involving only one parameter (so
that the optimization procedure is easier), are:

(i) constant coefficients a; = «;

(ii) set a; = 1 far from the shooting index, and «; close to 0 near the shooting index. This can
be done by considering «; = min(1, K|i — k|) for some K > 0.
From our experience, the efficiency is robust enough with respect to the choice of the coefficients
a;. Notice also that the second functional form allows to recover both the usual shooting and the
noise-history algorithm, respectively in the regimes K — 0 and K > 1. It is therefore expected
that, optimizing the efficiency with respect to K € [0,1], both the shooting algorithm and the
noise-history algorithm should be outperformed.

Intrinsic measure of efficiency

Our aim here is to propose some abstract measure of decorrelation between the paths, so as to
measure some diffusion in path space. This approach complements the convergence tests based on
some observable of interest for the system. We refer to [81] for some examples of relevant quantities
to monitor (and applications to path sampling with deterministic dynamics).

The intrinsic decorrelation is related to the existence of some distance or norm on path space.
Given a distance function d(z,y), the quantity

Do) = ([ [ ) P arto)) v

(with p > 1) precises the average amount of decorrelation with respect to the distance d for the
measure 7 on the path ensemble. Notice that two averages are taken: one over the initial paths z,
and another over all the realizations of the Monte Carlo iterations starting from z (i.e. over all
the possible end paths y, weighted by the probability to end up in y starting from z). In practice,
assuming ergodicity, D,(n) is computed as

1 N 1/p
_ : - (. k+n .k
D,(n) N1—1>I-r|-loo (N ];d (" x )) .

Usual choices for p are p = 1 or p = 2. This last case is considered in [59] since a diffusive behavior
over the space is expected with stochastic dynamics, the most efficient algorithms having the
largest diffusion constants lim,,_ 4. \/D2(n)/n.

It then only remains to precise the distance d, which depends on the system of interest. Some
simple choices are to

(i) consider a (weighted) norm || - || on the whole underlying phase-space (for position or
position/momenta variables) and set



4.3 Path sampling techniques 157

1 L 1/10/
d(z,y) = <z ZwinEi — il [” )
i=0

with p’ > 1;
(ii) cousider only a projection of the configurations onto some submanifold, such as the level

sets of a given (not necessarily completely relevant) reaction coordinate or order parame-
ter &:

1 L / 1/p’
d(z,y) = <z Z%‘K(%) —f(yi)|p> ;
i=0

with p’ > 1.

(iii) align the paths projected onto some submanifold around a given value of the reaction
coordinate &:

2K +1

i=—K

1 K 1/p
d(z,y) = ( > wilb@ri) - g(yJ+i)|p,> ; (4.76)

with p’ > 1, and I,J such that &(z7) = &(ys) = &* where £* is fixed in advance (for
example, if A is characterized by £ = 0 and B by £ = 1, then £* could be 1/2). The integer
K represents some maximal window frame so that the distance is really restricted to a
region around the expected or assumed transition point. In the case when J— K, I — K <0
or J+ K, I+ K > L, the sum is accordingly restricted to less than 2K + 1 points.

The weights w; should be non-negative in all cases.

A reasonable choice for non-trivial systems is for example to use (4.76) with p’ = 1 and w; = 1.
This approach ensures that the decorrelations arising in the initial and final basins A and B are
discarded, and that only the decorrelation arising near the transition region are important. In
this sense, we term this decorrelation as ’local decorrelation’ since we measure how different the
transition mechanisms are. As a measure of ’global decorrelation’, we will consider the transition
times. A numerical study based on those lines is presented below.

Numerical results

We test the different proposal functions on the model system of conformational changes of
Section 4.1.4. We consider the distance (4.76) for reactive paths (7 = wap in this case), using
p=p =1land w; =1, &(q) = |@1 — q2|, & = ro + w. We use the parameters L = 500 At,
B8 =1, N = 16 particles of masses 1, [p = 1.3, 0 =1, e =1, w = 0.5, At = 0.0025, with the sets
A={&(q) <ro+0.6w}, B={&(q) >rp =10+ L.4w} and averaging over a total of n =5 x 10*
Monte Carlo moves. We set K = 30 since the typical length of the transitions is about 60 time
steps with the parameters used here.

We also consider the correlation in the transition times. We denote by 7(x) the transition index
of some path 2. Here, those indexes 7 are such that £(¢,a¢) = £*. The correlation function for this

observable is therefore, in the case of reactive paths,

. / / (r(9) — (Pmnn)(7(2) — (T)man) P™ (@, dy) dmas ()
C(n) =
/ (r(2) — (T)pan ) dmas ()

)

with (7)r,, = [ 7(z)dmap(z) This observable is in some sense complementary to the measure of
decorrelation in the transition zone defined above since it measures some global spatial decorrela-
tion of the paths. In practice, assuming ergodicity, C' is approximated as



158 4 Computation of free energy differences

1 1Y 1Y
5 2@ () (N > T<x"+k>> (N > T<:v’“)>
. k=1 k=1 k=1
Cn) = NEIEOO L X L& 2
N ZT(,Tk)Q — (N ZT(l'k))
k=1 k=1

Figures 4.10 to 4.12 present some plots of D(n) and C(n) for h = 5,10,15, for the usual
shooting dynamics, the noise-history algorithm, and the brownian tube proposal (with «; = 0.8
for all 7). The average acceptance rates are also presented in Table 4.7. Notice that no shifting
moves [81] are used in order to compare the intrinsic efficiencies of the proposal functions. It is
likely that these moves would help improving the decorrelation rate of the sampling.
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Fig. 4.10. Comparison of efficiencies for different Metropolis-Hastings proposal moves for h = 5. Left:
Plot of the correlation of the transition times C(n) (related to some global sampling efficiency). Right:
Plot of D(n) (local sampling efficiency) for the brownian tube proposal with a = 0.8 (solid line), usual
shooting dynamics (dashed line), and noise history (dotted line).
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Fig. 4.11. Comparison of efficiencies for different Metropolis-Hastings proposal moves for h = 10.

For the shooting algorithm, many paths are rejected so that the local decorrelation (measured
by D(n)) is rather poor, especially at short algorithmic times and for high barriers (in any cases,
lower than for the brownian tube proposal). But when a path is accepted, it is already very
decorrelated from the previous one, so that the global decorrelation (measured by C(n)) is indeed
decreasing rapidly enough. For the noise-history algorithm, the picture is somewhat inverted:
since the acceptance rate is very high, even for high barriers, the local decorrelation is quite
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Fig. 4.12. Comparison of efficiencies for different Metropolis-Hastings proposal moves for h = 15.

Table 4.7. Acceptance rate (%) as a function of h for the three proposal functions considered.

h 5 10 15
Shooting 244 181 152
Noise history 96.7 85.7 81.2

Brownian tube (o; =0.8) 47.2 481 33.0

efficient, but the global decorrelation is not since small local changes make it difficult to change
the global features of the paths. The brownian tube approach tries to balance the local and global
decorrelations. This is also reflected by a more balanced acceptance/rejection rate.

In conclusion, the brownian tube proposal with the above correlation function is the most
efficient sampling scheme in the case considered here. The efficiency could be further increased
by a more systematic tuning of the parameters of the correlation factors «;, possibly depending
on the shooting index k. In general, since the usual proposal functions are specific cases of the
brownian tube proposal function, it is expected that there is always a parameter range such that
this new algorithm outperforms the previous ones.

4.3.3 (Non)equilibrium sampling of the path ensemble

The previous section was dealing with equilibrium sampling of paths. However, when (free)
energy barriers in path space are large, direct sampling of paths can be inefficient, since the
existence of metastable path sets may considerably slow down the numerical convergence. It is
therefore appealing to perform some kind of simulated annealing on paths. A regular simulated
annealing strategy would be to first sample paths at a higher temperature, and then to cool the
sample to the target temperature (see [363] for a simulated tempering version of such an idea).
Reactive paths can also be otained by constraining progressively the paths to end up in B. This
approach also has the nice feature that it does not ask for an initial guess to start sampling m45.
Finally, a byproduct of such a switching is the ratio of partition functions in path space

ZAB (LAt)

CLAN = 2

(4.77)

where Z 4, Zap are such that

L—-1

ma(r) = Za(LAY)  1a(z0)p(wo) [ [ pi wit1),
1=0



160 4 Computation of free energy differences

and
L—1

7a8(7) = Zap(LAY) " 1a(z0)p(z0) [] ples, wis1)1p(or)
i=0
are probability measures. The function C in (4.77) has to be computed at least once to obtain rate
constants in practice [81]. The associated free-energy difference in path space is AF4_, ap(LAt) =
—In(C(LAY)).

We start this section by recalling the extension of the classical switching dynamics for nonequi-
librium dynamics in phase space to nonequilibrium switching between path ensembles [122]. This
method is convenient to compute free energy differences, but the final sample of paths obtained is
very degenerate. We therefore present the application to path sampling of a birth/death process
introduced in [289,292] (see also Section 4.2), which allows to keep the sample at equilibrium
at all times during the switching. This equilibration may be important in some cases to com-
pute the right free energy values [292], and allows in any cases to end up with a non-degenerate
sample of paths and reduce the empirical variance. We will focus in the sequel on switching from
constrained to unconstrained paths, but an extension to simulated annealing (cooling process) is
straightforward.

Switching between ensembles of paths

We present in this section the approach of [122], where the switching from unconstrained to
constrained path ensembles is done by enforcing progressively the constraint on the end point
of the path over a time interval [0,7]. The constraint is usually parametrized using some order
parameter. This order parameter is the same as the one used for usual computations of reaction
rates in the TPS framework (and even for more advanced techniques such as Transition Interface
Sampling (TIS) [355,356]). The point is that this approximate order parameter needs not to be a
“good” reaction coordinate (or a complete one) since the general path sampling approach should
help to get rid of some problems arising from a wrong choice of order parameter (see e.g [354] for
a recent study on this topic).

Assuming an order parameter is given, we can consider a switching schedule A = (\°,..., \")
such that A\ =0 and A" =1 and a family of functions hy such that

ho=1, hy =1g.

We also introduce the family of probability measures associated with the functions hjy:

L—-1

m(@) = Z; \1a(wo)p(wo) [ plas wig1)ha(er). (4.78)
i=0

We omit in the sequel the explicit dependence of the partition functions Z on L and At. An
energy &, (x) can then formally be associated to a path z as

m(z) = ZL_,lAefgk(:”).

The aim is to sample from 7 = 74 p, which is usually a difficult task, and sometimes not directly
feasible. It may be easier to use a sample of 7y = 74 (which is much easier to obtain), and to
transform it through some switching dynamics into a (weighted) sample of 7. Starting from a
path %9 the weight factor for a resulting path 2*" is of the form e~ where W™ is the work
exerted on an unconstrained path to constrain it to end in B. We now precise the way the work
is computed.

Consider an unconstrained initial path 2 = (z0,...,2%) sampled according to m, and a
discrete schedule (A%, ..., A"). The dynamics in path space is as follows:
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NONEQUILIBRIUM SWITCHING ON PATHS

Algorithm 4.3 (See Ref. [122]). Consider an initial configuration x° generated from 7.
Starting from W° and m = 0,

(1) Replace A™ by A"+
(2) Update the work as WMt = W™ + Eymia (™) — Exm (z™);

(3) Do a Monte Carlo path sampling move using a Metropolis-Hastings scheme with the

mbl . . . .
measure 7 (using for example the usual shooting moves with a Langevin dynamics,

or the Monte Carlo move designed for path switching presented below), so that the

current path £™ is transformed into the new path 2™%1.

This procedure is repeated for independent initial conditions 2%, so that a sample of M end
1,n M,n. . . . . .
paths (zb7 ... 2™") with weights (e=" ",...,e™"W ") is obtained. Besides, an estimation of
the rate constant is given by the exponential average

M
1 kn
CM(LAt) =—1In (M E e_W ) 5

k=1

and it can be shown that C; — C when M — +o0.

Since the realizations of the switching procedure are independent provided the initial conditions
are independent, the random variables {e_Wk’n}k are i.i.d. A confidence interval can be obtained
for Cy; as

CJ\_4,UC < CM < C]\t[,dc’

with

=

M
1 kon
O:I: 1 _E —Wwe + ==
e n( k:le ’ )7

where the empirical variance is

1 M k 1Y 1 ’
VM—M_12<€W ’7l—MZeW’n> .

k=1 =1

A confidence interval on the free energy difference is then
—InCy;, <AFs.ap<—-InCy .

For example, the 95 % confidence interval corresponds to o. = 1.96.

Of course, as usual for nonequilibrium switchings, it may the case that the variance of the work
distribution is large, so that only very few paths are relevant (and the confidence interval for the
rate constant is large), so that an equilibration in the vein of Section 4.2 may be interesting.

Enhancing the number of relevant paths

We present here an extension of the IPS equilibration to the case of path sampling. Then,
each path has weight 1 in the end, and the final sample (z*",..., 2™ ") is distributed according
to m = wap (provided the switching is slow enough and the number of replicas is large enough;
therefore, MnAt should be large enough). More precisely, we consider the
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TIPS EQUILIBRATION OF THE NONEQUILIBRIUM PATH SWITCHING

Algorithm 4.4. Consider an initial distribution (210, .. 2% generated from my. Generate

independent times 7%° 7%¢ from an exponential law of mean 1. Consider two additional
variables X%t X%d per replica, initialized at 0.
(1) Replace A™ by A"+
(2) Update the works as Whm+l = Wwhm o Aghkm — yykm gy (gbm) — Eym (xFm),
and compute the mean work update A" = M~1Y, ., AEF™;
(3) (Diffusion step) Do a Monte Carlo path sampling move using a Metropolis-Hastings
scheme with the measure mym+1, so that «*™ is transformed into z*™+1.

(4) (Birth/death process) Update the variables X% and %9 as
okt = gkt 4 BAE™ — Agb™)~

and
ghd = ghd 4 B(AE™ — Agk™)T

(Death) If X% > 754 select an index m € {1,..., M} at random, and replace the k-th
path by the m-th path. Generate a new time 7% from an exponential law of mean 1,
and set 254 = (;
(Birth) If X** > 7%% gselect an index m € {1,..., M} at random, and replace the m-th
path by the k-th path. Generate a new time 7%° from an exponential law of mean 1,
and set X*b = 0;

In this case, an estimation of the rate constant is given by the simple average
Cur(LAY) Z whn,

and it can be shown that Cjpy — C when M — +o00. A confidence interval for the free energy
difference can be obtained as in Section 4.3.3 as

O]I\ESU* < CIPS < OIPS ,+

IPS,+ VIPS
Citor = 77 ZWk"j:Jc T

)

with

the empirical variance being

M 2

k=1

Specific Monte-Carlo moves for switching from unconstrained to constrained path
ensembles

When an interpolating function h) appearing in (4.78) (or, equivalently, some order parameter
€) is known, it is possible to increase the likeliness of the end point of the trajectory by performing
a move on the last configuration in the direction opposite to Vhy(¢) while keeping the random
vectors used for the transitions. These moves should of course be employed with other MC moves,
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especially MC moves relying on some trajectory generation, in order to relax the shift toward
higher values of hy or &.

More precisely, using for example an overdamped Langevin dynamics to update the end configu-
ration, the associated Metropolis-Hastings Monte-Carlo elementary step is, starting from a path x
for a parameter A\ (in the Langevin dynamics setting):

SPECIFIC MONTE-CARLO SWITCHING MOVE

Algorithm 4.5. Starting from a path = = (zo,...,21),

(1) Compute the sequence of 2dN-dimensional random vectors (U;)o<;<z 1 associated with
the backward (time-reversed) integration from xy, to zo;

(2) Compute a final configuration as ¢¢ = q¥ + 0\VE(gE) + (202/B)Y/% G where G is a
d-dimensional random gaussian vector;

(3) Integrate the path backward (time-reversed) starting from y, using the noises

(Ui)o<i<r—1 to obtain a path y = (yo,...,yr). The probabilty P(z,y) to obtain y
starting from x is therefore the probability to obtain y; from xj, so that

/2
P@,y) = powiten(@royz) = (5 ) oxp (= |qt — qF — xVE(@)P ) -
47r5§ 46y

(4) Accept the new path y with probability

— min w(y)P(y, ‘T) — min 1a (yo)p(yO) Pswitch (yLv :EL)
T(‘Tv y) B <1, ™ > (17 1A(£L‘Q)p($0) Pswitch (:ELv yL)> '

The magnitude ) can be made to depend a priori on \. It is then adjusted in pratice on the
fly by first computing the values of the gradient for the endpoint of each replica, in order to ensure
that the displacement is small enough.

Numerical results

We compute here free energy differences associated with constraining paths for the WCA model
system introduced in Section 4.1.4. This is done either with plain nonequilibrium switching, or
with the IPS equilibration. Let us notice that the energy is fixed in [122] while we rather have to
fix the temperature in the stochastic setting, so that a straightforward comparison of the results
is not possible. We set § = 1 in the sequel. The other parameters are the same as in [122]:
N = 9 particles, h = 6, 0 = 1, € = 1, the particle density p = 0.60 2, w = 0.25, and the sets
A ={&(q) < &s =130},B = {&(q) > & = 1.450}. The trajectory length is L = 320 At and
At = 0.0025, so that LAt = 0.8(mo?/e)'/2.

We perform a total of n MC moves (using the brownian tube proposal function (with «; =
a =028 for all 0 <i < L —1). The function h) is the one given in [122]:

ha(q) = e MK(O-15(0)(Es—£(@)

with K = 100. The switching schedule is A" = (i/n)?.

A typical free energy difference profile is presented in Figure 4.13 for M = 2000 and n = 10000,
as well as the associated weights for the plain nonequilibrium switching. These weights are the
Jarzynski weights renormalized by the total weight (in order to define a probability distribution):

_ k,n
e w

S — (4.79)
Zl]\il e Wi

Wi,
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Table 4.8. Free energy differences AF4_. ap computed for different switching lengths n, using a sample
of M = 2000 paths. The results are presented under the form "Cn (Cy; . — C;&yac)” with 0. = 1.96 (the
value corresponding to a 95 % confidence interval).

M n Backward Forward IPS (forward)

(

2000 2000 4.83 (4.61-5.02) 5.43 (5.28-5.61) 4.82 (4.78-5.85)

2000 5000 5.34 (5.04-5.58) 5.41 (5.32-5.50) 5.19 (5.16-5.23)

2000 10000 5.45 (5.32-5.58) 5.40 (5.34-5.46) 5.40 (5.36-5.43)
( ) ( ) ( )

2000 15000 5.42 (5.35-5.49) 5.40 (5.35-5.45) 5.45 (5.42-5.48

Notice that the sample is very degenerate since very many paths have negligible weights, and the
relevant paths are exponentially rare. Recall also that the paths all have weight 1 with the IPS
algorithm.

Some free energy differences are presented in Table 4.8 for different values of n (keeping M
fixed). The switchings are slow enough when the confidence intervals for free energy differences
computed by constraining paths ("forward’ switching) overlap with confidence intervals for free
energy differences obtained by starting from a sample of constrained paths and removing progres-
sively the constraint ("backward’ switching). This is the case here for n = 5000, 10000, 15000 (but
not when n = 2000). The results show that IPS agrees with the usual Jarzynski switching, the
confidence interval on the results being however lower.
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Fig. 4.13. Left: Free energy profile for a forward switching, computed for M = 2000 and n = 10*, using a
plain nonequilibrium switching. Right: Histogram of the weights wy, of the final sample as given by (4.79).

We also present in Figure 4.14 a final sample computed using a quite fast switching (n = 1000)
with a small sample of paths (M = 100). Notice that all the 100 paths generated with the IPS
switching are reactive, in contrast with the paths generated by a straightforward switching in
the Jarzynski way. Besides, as a consequence of the degeneracy of paths, only 8 paths in 100
have a significant weight (larger than 0.05 when normalized by the total weight, see (4.79)).
This simple example shows why it is difficult to compute averages over the final sample of paths
when performing plain nonequilibrium switching, and why it may be interesting to resort to some
selection process to prevent such a degeneracy.

In agreement with a previous study [292], the results show that the IPS algorithm allows to
reduce the variance on the estimates and to end up the simulation with a well-distributed and
non-degenerate sample, provided the switching is slow enough.
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Fig. 4.14. Comparison, for a nonequilibrium switching of paths for M = 100 systems in n = 1000 steps
without (Left) or with IPS (Right). Only the paths having a weight greater than 0.05 are plotted in solid
lines when plain nonequilibrium switching is used (the other paths are plotted in dotted lines).

4.4 Adaptive computation of free energy differences

Methods relying on nonequilibrium dynamics follow the pioneering work of Jarzynski [187],
or use some adaptive dynamics such as the Wang-Landau approach [368], the adaptive biasing
force (ABF) [75,76,157], or the nonequilibrium metadynamics [46]. These approaches use the
whole history of the exploration process to bias the current dynamics in order to force the escape
from metastable sets. This is done by simultaneously estimating the free energy from an evolving
ensemble of configurations of the dynamics, and using this estimate to bias the dynamics, so that
the effective free energy surface explored is flattened. In the long time limit, the bias exactly gives
the actual free energy profile. Adaptive methods could therefore be seen as umbrella sampling
with an evolving potential. This was already noticed in a previous study presenting an adaptive
dynamics as a ’self-healing umbrella sampling’ [227].

To present the adaptive methods mentioned above in a general and unifying framework, it
is convenient, as is done in [46], to consider ensemble of realizations (see Eq. (4.83)). The sys-
tem is then described by the distribution of the configurations of this ensemble in the limit of
an infinite number of replicas simulated in parallel. The key point is to reformulate the compu-
tation of the bias of adaptive dynamics, using conditional distributions (that is, distribution of
the configurations for a given value of the reaction coordinate) of the latter sample. This was
already proposed in [101] in the equilibrium case, and is somewhat implicit in [46]. This concept
clarifies the presentation of adaptive methods, allows mathematical proofs of convergence [207] or
at least, existence of a stationary state of the dynamics (still in the case of an infinite number
of replicas), and suggests natural numerical strategies: the discretization may be done through
a parallel implementation of several replicas of the system, which all contribute to construct the
free energy profile. Such a parallel implementation was already proposed in [275] in the case of
metadynamics. We show here how an additional selection process on the replicas can enhance the
sampling of the reaction coordinates in comparison with a straightforward parallel implementation.

This section is organized as follows. In Section 4.4.1, we describe the general formalism for
adaptive dynamics, using conditional probabilities, and show how to update the biasing potential
in order to compute the free energy profile in the longtime limit, using a fixed-point strategy. Some
applications of this formalism are then presented, which allow to recover the usual adaptive dy-
namics such as the nonequilibrium metadynamics, the Wang-Landau scheme or the ABF method.
We then discuss possible parallel implementation strategies. In particular, it is shown how a se-
lection process can enhance the straightforward parallel implementation. This is finally illustrated
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by numerical results for a toy model of conformational changes. In Section 4.4.2, we then present
a rigorous proof of convergence for a specific adaptive dynamics in the ABF spirit, using entropy
estimates. The proof uses on a decomposition of the entropy into a macroscopic entropy (related
to the distribution of the values of the reaction coordinate) and a microscopic entropy (depending
on the distribution of the conditioned measures, for a fixed value of the reaction coordinate), and
relies on the assumption that the conditioned measure satisfy a logarithmic Sobolev inequality,
with a constant independent of the value of the reaction coordinate.

4.4.1 A general framework for adaptive methods

For a system described by a potential V(g), the Boltzmann measure in the canonical ensemble
is Z7lexp (—BV(q)) dgq (where Z is a normalization constant, the so-called partition function).
We consider in this section a reaction coordinate £, taking values in the one dimensional torus,
or in the interval [0, 1]. In the latter case, reflecting boundary conditions for the dynamics on the
two extremal values £(q) = 0, £(¢) = 1 are used. Recall that the free energy (or potential of mean
force (PMF)) to be computed is defined up to an additive constant by the normalization of a
Boltzmann average of the configurations restricted to a given value of the reaction coordinate (see
Section 4.1.2 for more details):

F(z)=—-3"'In /M exp(—pV(q)) d¢(q)—=- (4.80)

and the associated mean force is

/ 7Y (g) exp(—BV(0)) Be(ay—»
Fl(z) = 42

: (4.81)
[ exp(-pv@) 3
M
with the local force given by
vv.-ve o V¢
\% 1
YV Ve d1v< ) 182
I = e veP s

Here and in the sequel, we denote by F’ the derivative of F' with respect to z.

Adaptive dynamics are defined through the dynamics used, which dictates the distribution of
the configurations at equilibrium, a biasing potential, and the way this potential is updated (see
below for a heuristic derivation in the equilibrium case motivating the general setting).

Trajectories t — @ are computed according to some dynamics which are ergodic with respect
to the Boltzmann measure when the potential is time-independent. For instance, the Langevin
dynamics or the overdamped Langevin dynamics may be used. We will denote by v;(¢) the distri-
bution (or density) of configurations at time ¢. This distribution will be used to update the biasing
potential Fyias-

From a practical point of view, when M replicas (Qi’M)i:L...,M of the system are simulated
in parallel, the density of states 1:(q) is approximated by the instantaneous distribution of the
replicas

M
vilg) = lim o 2; Sgint_g- (4.83)
=
In some cases, the density of states can also be approximated using the distribution of configura-
tions along the trajectory, relying on some ergodic assumption.

The definition of adaptive methods requires the definition of two important quantities obtained

from the distribution ¢ (q). The first one is the distribution gbf of the reaction coordinate values,
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which is, from a mathematical perspective, the marginal law of ¢; with respect to &:

¥(z) = /M 1(q) Be(g) - (4.84)

This quantity will be useful to propose a biasing potential (see Eqs. (4.91)-(4.93)). Another im-
portant quantity is the conditional average of some function h for some fixed value of the reaction
coordinate:

/ h(q)¥:(q) O¢(q)—-

(h)i,. = =M (4.85)
| @
M
Such averages are used to propose biasing forces (see Eqs. (4.92)-(4.94)).
The biasing potential
In adaptive dynamics, the interaction potential is time-dependent:
Vi(q) = V(q) — Foias(t,£(q))- (4.86)

The biasing potential Fias, whose precise form varies according to the method under study,
depends only on ¢ through the reaction coordinate value £(¢q) and is updated using the history of
the configurations. It is expected that this biasing potential converges (up to an additive constant)
toward the free energy F given by (4.80) in the long-time limit, so that the equilibrium distribution
of the reaction coordinate is the uniform distribution.

The key idea common to all adaptive methods is to resort to a fixed point strategy, in order for
the observed free energy to converge to a constant or the mean force to vanish, and the dynamics
to reach equilibrium (see the updates (4.88) or (4.90) in the equilibrium case and (4.93) or (4.94)
in the nonequilibrium case).

Updating the biasing potential - The equilibrium case

To derive a possible form for the biasing potential, let us first assume that the system is
instantaneously at equilibrium with respect to the biased potential Vy, i.e. Q; has density ¥y (q) =
7t exp(—pV;(q)). In this case, resorting to (4.80), the observed free energy (see (4.91) for a general
definition) is

—p7! ln/ V:4(q) O¢(q)—» = F(2) — Fias(t, 2) + S~ n Z,. (4.87)
M

Thus, for a characteristic time 7 to be chosen, an update of Fj,.s of the form

-1
athias(ta Z) = _6— 111/ wfq(Q) 65((1)7,2 (488)
T M

is such that F{, (t) — F’ when t — 400 exponentially fast with rate 1/7. Notice that we stated
the convergence in terms of the mean force, because, in view of the constant term $~'In Z; in
Eq. (4.87), the potential of mean force only converges up to a constant to the true potential of
mean force.

Similar considerations hold for the mean force: replacing the potential V' with V; given by (4.86),
and resorting to (4.81)-(4.82), the observed mean force (see (4.92) for a general definition) is

/ th (Q) 1/),?(1((]) 5£(q)—z
M

= F'(2) = Fl;,(t, 2), (4.89)
/M Vi (q) O¢(q)—»
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since fYt(q) = fV(q) — F,,.(t,€(g)). An update of F/,

1as

1 fo £ (@) Y5 (g) deiq)-(da)
T fM¢t 55((1) z( q)

(t) — F’" when t — 400 exponentially fast with rate 1/7.

(t) of the form

atFl;ias (t7 Z) =

(4.90)

is therefore such that FY.

bias

Updating the biasing potential - The nonequililibrium case

Now, in general, the system is not at equilibrium for the potential Vy: 1y # ¢7%. We use the
above procedure as a guideline to update the biasing potential Fias (¢, 2). To derive equations for
the biasing potential, let us first define two quantities. The first one is the observed free energy or
the observed potential of mean force, defined as

Fhotobs(t,z) = =47 In /M Y1(q) ¢ (g)—»- (4.91)

This quantity can be interpreted as the free energy associated with the ensemble of configurations
with density of states 1:(q) (see Eq. (4.80)). The observed free energy Fpotobs(t, 2) is high when
the number of visited states with reaction coordinate value z is small. In the long-time limit, the
distribution of the reaction coordinate is expected to be uniform, so that the observed free energy
is constant.

In the same way, the observed mean force is defined as the conditional average of the time-
dependent biasing force for a given value of the reaction coordinate:

/ (@) ¥i(@) Oe(q)—= / £V () ¥ (q) Se(g) =
Fforce obs t Z Flgias (tv Z)
/ Z/}t 55 /M 1/}15 q 5£(q)—z

This quantity can be interpreted as the mean force associated with 1,(q) (see Eqs. (4.81)-(4.82)),
minus the biasing force at time ¢. It is expected to vanish in the long-time limit, so that the
corresponding observed free energy is also constant.

The fixed point strategy relies on two different ways of updating the bias (the updating functions
g¢ and G are increasing functions such that G;(0) = 0):

(i) The first strategy, which may be called Adaptive Biasing Potential (ABP) method, is the
generalization of (4.88) to the nonequilibrium case. The bias is updated in its potential
form, preferably increased (resp. decreased) for reaction coordinate values such that the
observed free energy is high (resp. low):

(4.92)

(ABP) athias (tu Z) = gt(Fpot,obs (t7 Z))7 (493)

(ii) The second strategy, the usual ABF method, generalizes (4.90). The bias is updated
through the mean force: the biasing force is increased (resp. decreased) for reaction coor-
dinate values such that the observed mean force is positive (resp. negative):

(ABF) 8tF];ias (t’ Z) =Gy (Ff/orce,obs (tv Z)) (494)

Let us emphasize at this point that the ABF and the ABP methods yield very different biasing
dynamics, since the derivative of (4.91) with respect to z is different from (4.92) (This is not the
case when the system is at equilibrium: the derivative of (4.88) with respect to z is equal to (4.90)).
This difference becomes critical for multi-dimensional reaction coordinates, where the biasing force
no longer derives from a potential in general.
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Consistency of the method

Let us show that within this formalism, any stationary state of the ABP or ABF methods
gives the true mean force F’ to be computed (and therefore the true PMF up to an additive
constant). For a stationary state where the biasing potential has converged to Fyias(00), the ergo-
dicity property of the dynamics ensures that samples of configurations of the system are distributed
according to e = Z ' exp[—B(V — Fhias(00,8))].

The observed free energy or mean force given by Eqs. (4.91) and (4.92) then both verify

EY obs(00,2) = FY o ons(00,2) = F'(2) — F;, (00, 2). The updating equations Eqgs. (4.93)
and (4.94) yield respectively
9oo (F(2) = Fiias(00,2)) = 0, (4.95)

so that (taking the derivative with respect to z in (4.95)) F,,.(c0o) = F’ in both cases thanks
to the strict monotonicity of the updating functions. Let us also notice that, at convergence, the
values of the reaction coordinate are distributed uniformly: fM Voo (q) O¢(q)—= = 1.

However, let us emphasize that we did not give any convergence result at this point. We
merely showed that, if the dynamics converges, then the limiting state is the correct one. To prove
convergence starting from an arbitrary initial distribution is a difficult task, and can only be done
for certain dynamics (see the corresponding results in Section 4.4.2).

Application to usual adaptive dynamics and convergence results

We present in this section some applications of the above formalism, and show that the usual
adaptive methods can indeed be recovered. This is summarized in Table 4.9, which gives a classi-
fication of adaptive methods.

Table 4.9. Classification of adaptive methods.

Adaptive Biasing Force (0.F},,,) Adaptive Biasing Potential (0; Fhas)

Dimension n (V) ABF [75,76,157] ABP [368]
Dimension n+ 1 (V#) m-ABF m-ABP [46,275]
Metadynamics

Adaptive strategies can be used with metadynamics. The configuration space is extended by
considering an additional variable z representing the reaction coordinate, and the dynamics is
denoted ¢ — (Q¢, Z;). The associated extended potential incorporates a coupling between this new
variable and the reaction coordinate &:

V*(g,2) = V(g) + 5 (= ~ £(0))’,

for some (large) > 0. In this case, the new reaction coordinate considered is &meta(q, 2) = z and
the free energy is thus given by:

Fi(z) = —6'n /M exp(—BV*(q, 2)) dg.

It is easy to check that, up to an additive constant, F'* — F as y — +o0o, with F given by (4.80).
The adaptive strategies presented above applied to this extended dynamics allow to recover the free
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energy F'*. The corresponding dynamics may be called meta-Adaptive Biasing Potential (m-ABP)
and meta-Adaptive Biasing Force (m-ABF) methods.

Strategies relying on biasing potentials are reminiscent of flooding strategies [140] such as the
nonequilibrium metadynamics [46]. The latter is an example of an m-ABP method, where the
biasing potential is applied to the extended variable. The updating function does not depend on
time and is given by g¢(z) = —v exp(—/fz) for some constant vy > 0. The ensemble of configuration
used in the adaptive update is obtained from M replicas (Qi’M, ZZ’M) running in parallel, so that

M
1
Ui@:2) = 57D Ggi 2y g ey
i=1

The resulting biasing potential at time t penalizes the values of the reaction coordinate already
visited according to (see (4.93)):

Fhias(t, 2) =~ FM (¢, 2) Z / 8y, ds. (4.97)

In the case of an overdamped Langevin dynamics with M = 1 for example, the resulting equations
of motion are therefore:

dQy = =VV(Q) dt + p(Z, — £(Qu))VE(Q) dt + /28T dW?,
A2y = —p(Zy = €(Q1)) dit + /25T AW/ — 4V, ( / 02, ds) dt,
0

where the processes WtQ, W# are independent standard Brownian motions. When in the last
equation and in (4.97) the Dirac masses dz,_, are discretized using Gaussian functions, the no-
nequilibrium metadynamics described in [46,275] are recovered. We also refer to [46] for an error
analysis.

The Wang-Landau algorithm

Another famous instance of an ABP dynamics, usually defined in discrete spaces, is the Wang-
Landau algorithm [368]. The biasing potential is constructed in a similar fashion to (4.97), without
extending the configuration space and with only one replica. The updating function is modified
during time as ¢:(z) = —(t) exp(—fx), so that

t
Fbias(t; Z) = —/0 ’Y(S) 55(@5)—2 dS (498)

If v(t) — 0 slowly enough, it is possible to prove the convergence of the dynamics, the rate of
convergence of y(t) being controlled by the nonuniformity of the histogram of the time distribution
of the reaction coordinate (see [14] for more precisions on the convergence results).

The ABF method

The usual ABF bias [157] is given by averaging the local force f¥ over the configurations
visited by the system. It is recovered in the formalism we propose by considering one replica of the
system, and an updating function of the form G;(z) = v in the limit v — oo. This gives indeed:

/fV 464(0) Begay
/'/’t 5&((1) z

Flia(t, 2) (4.99)
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Since there is only one replica, the density v, (s) is approximated by a trajectorial distribution,
for example

1 t
Yi(q) =~ T / 0Q.—qds (4.100)
t=T

for some averaging time 7' > 0 and ¢t > T.
For a rigorous convergence result of the ABF algorithm with the update (4.99) in the case of
an overdamped Langevin dynamics with an infinite number of replicas, see [207] and Section 4.4.2.

Practical implementation strategies

Relying on the definition (4.83) of the distribution of configurations, adaptive dynamics can
be easily parallelized by using a large number M of replicas that interact through the biasing
potential or the biasing force. We first show in this section how to discretize the dynamics and
the biasing potential, and then, how this implementation can be improved using some selection
process.

Discretization of the biasing potential

In order to compute in practice the conditional or marginal distributions needed to update
the biasing potential, there are basically two approaches, relying either on ergordic limits or on
ensemble averages. Both approaches may be combined in practice in order to obtain smooth
profiles. For example, when only a limited number of replicas M is used, the density ¥;(q) given
by (4.83) is not regular, and some local averaging is necessary (see e.g. Eq. (4.101)).

We detail the implementation in the ABF case for example. The ABP case can be treated in a
similar way (see also [275]). The instantaneous conditional average of some function h is typically

approximated by
M

> hQyM)IE@™)
(A)r,z ~ (W)t = = — _ :
> L@
=1

where Qi’M is the i-th replica at time t and 0¢ is some approximation of the Dirac distribution 4.,
such as a gaussian function with standard deviation € or the indicator function of an interval of
size €. In order to regularize these averages over the replicas, some time averagings may be used
(as in (4.100)) such as

+ M
JREEE l_z h(@@M)a,;(g(QiM»] ds

<h>t,z — P M
/0 K. (t—s) [z 62(5(@21‘4»] ds
1=1

, (4.101)

or

! >iz1 h(@i’”)@(&(@i’”))]
hYp . ~ K. (t—s - ds, 4.102
e / e l S s (6(@QE) 10

with a convolution kernel K, (t). For instance, K, (t) = 1,507 'e~*/7. Many other regularizations
relying on a (local) ergodicity property could of course be used.

Enhancing the sampling through a selection process

A general strategy to improve the straightforward parallel implementation (4.83) is to add a
selection step to duplicate "innovating" replicas (replicas located in regions where the sampling of
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the reaction coordinate is not sufficient), and kill "redundant" ones. One way to perform an efficient
selection is to consider an additional jump process quantified by a field S(¢, z) over the reaction
coordinate values. Each replica trajectory (Q%*) is then weighted by exp(fot S(s,£(Q4M)) ds),
which naturally gives birth/death probabilities for the selection mechanism, in the spirit of Se-
quential Monte Carlo (SMC) methods [84] or Quantum Monte Carlo methods (QMC) [13] (see
also Section 4.2, especially for a possible numerical implementation using birth and death times).
A possible choice is

8.5
=z
Py

where ¢ is a positive constant. This method thus enhances replicas in the convex areas of the

S = (4.103)

)

density wf7 where free energy barriers still need to be overcome. When convergence has occured,
wf is uniform and the selection mechanism vanishes.
Consider for example the modified overdamped Langevin dynamics

dQs = —V(V + 26" 1n [VE| = Fomms(t, €))(Q0) [VE]2(Qy) dt
V2B |VETH Q) AW, (4.104)

with the update (4.99): I, (t,z) = (f")¢.. The process W; is the standard Brownian motion.
This dynamics is the usual overdamped Langevin dynamics for the potential V; when |V¢| = 1.
Notice that in the case of a metadynamics-like implementation ('m-ABF’), the modified dynamics
is actually the usual overdamped Langevin dynamics since &meta(q, 2) = 2z and thus [Vmeta| = 1.
For the dynamics (4.104), the distribution ¢ of the reaction coordinate satisfies (see Section 4.4.2)

s = 71,5

When the selection step is used with the overdamped Langevin dynamics (4.104), it can be shown
that the distribution of the reaction coordinate values 1/)5 still satisfies a simple diffusion equation,
but with a higher diffusion constant:

A = (B + €)d..15.

This method thus enhances the diffusion in the reaction coordinate space, but the convergence
rate is still limited by the relaxation in each submanifold £(q) = 2.

Numerical results

We finally present an application of the selection strategy proposed above to the model sys-
tem of conformational change in solution of Section 4.1.4. In practice, the Dirac distribution are
approximated by indicator functions of intervals of size Az = 0.05. The parameters used for these
computations are N = 16 particles, at particle density p = N/I> =0.250 2, 0 =1, w = 0.7, e = 1
and h = 20, § = 5. We consider M = 2000 replicas evolving according to an overdamped Langevin
dynamics, with a time step At = 107%. The reference computation is done with M = 5000 repli-
cas and averaging the mean force profile on the time interval [5,10]. The profiles are regularized
in time by using (4.102) with 7/A¢ = 100. The initial conditions are such that the dimer bond
lengths of all replicas are close to rg. We consider in the sequel the interval [z, 2z1] = [1.1,2.55]
(since 1o ~ 1.122, rg + 2w ~ 2.522 and Az = 0.05), containing n = 30 bins.

We present in Figure 4.15 free energy difference profiles (averaged over K = 100 independent
realizations) obtained with the parallel ABF dynamics (4.99), with and without the birth/death
selection term (4.103) (with ¢ = 10), at a fixed time tggure = 0.1. The standard deviation of the
profiles (F7, ..., F}) for K independent realizations is
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1 K
op(2) = K_1 Z(F;é(z) —F'(2))?,

k=1

where F'(z) = % Zszl F/(z) is the mean force averaged over all the realizations. The associated
95% confidence intervals (or errors bars) are

1.96 1.96
]—"/z,]-"z—[f'z——afz,]:/z—k—a/z . 4.105
FL). Pl = |F2) = S2on (), F2) + =2or () (4105
The curves plotted in solid lines in Figure 4.15 are the averages F’, and the curves plotted in
dashed lines are 7’ and F'_. Notice that the mean force profile obtained when the selection
process is turned on is converged (since the curves 7', /| F! and the reference curve are almost
indistinguishable).

With selection

Without selection

Mean force
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Fig. 4.15. Free energy difference profiles obtained with the parallel ABF algorithm (in reduced units), for
a time tggure = 0.1 and averaged over K = 100 independent realizations: with birth/death process (¢ = 10)
and without birth/death process. The curve corresponding to the reference computation coincides with
the curve obtained when the selection is turned on. Solid line: average mean force; dashed lines: upper
and lower bounds of the 95% confidence intervals (see Eq. (4.105)).

The comparison with the reference profile shows that the selection process improves the rate
of convergence of the algorithm and accelerates the exploration process on the free energy surface.
Indeed, the profile obtained when the selection process is turned on is very quickly really close
to the reference profile. On the other hand, with a straightforward parallelization, only a small
fraction of replicas has escaped from the initial free energy metastable state at time fggure to
explore the free energy metastable set corresponding to bond lengths around rg + 2w.

To precise these qualitative features, we further perform two quantitative studies for several
values of c:

(i) Tables 4.10 and 4.11 make precise the convergence of the profiles to the reference profile
in a quantitative way. The measure of error we consider is

0F = max |F(z) — Fret(2)],

z0<z<21
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where Fiof is the reference profile, and F(z) = f;l F' is the averaged potential of mean
force, obtained as the integral of the mean force averaged over all the realizations. In
practice, we consider the following approximated deviation between PMF profiles:

dF, = max Z]—"(sj) — Fli(sj)| Az. (4.106)
j=1

0<i<n |4

A 95% confidence interval is obtained as [0~ F),, 01 F,], with

1.96
6tF, = Olél%xn ;]:/(Sj) + WUF'(SJ') + Flog(s5)| Az.

(ii) Figure 4.16 presents the fraction of replicas which have crossed the free-energy barrier
(averaged aver the K = 100 realizations), i.e. the instantaneous fraction of particles such
that » > 7o + w. Notice that we expect this fraction to converge to 0.5 (up to some errors
due to statistical fluctuations and to the binning of [zo, #1]).

Table 4.10. Deviation §F, from the reference PMF profile (given by Eq. (4.106)) as a function of the
selection parameter ¢ (¢ = 0 when the selection is turned off) and the simulation time fgmu. The 95%
confidence interval [§~ Fp, 5+Fn] is given in brackets.

¢ tgmu = 0.05 0.1 0.2 0.4

0 9.51(7.73-11.3)  18.0 (14.8-21.2) 19.5 (18.3-20.7)  0.066 (0.056-0.075)
2 204 (17.0-23.8)  5.69 (5.55-5.82)  0.020 (0.016-0.023) 0.034 (0.029-0.038)
5 229 (20.9-24.9)  0.22 (0.19-0.25)  0.027 (0.022(0.032) 0.026 (0.022-0.031)
10 10.4 (10.4-10.4) 0.035 (0.029-0.041) 0.028 (0.023-0.032) 0.032 (0.027-0.037)

Table 4.11. Deviation §F,, from the reference PMF profile (and associated error bars) when ¢ = 10 for
different number of replicas (K = 50 realizations).

number of replicas tsimu = 0.05 0.1 0.4
1000 23.3 (20.4-26.3) 0.45 (0.39-0.50) 0.064 (0.054-0.074)
2000 11.2 (11.2-11.2)  0.034 (0.025-0.042) 0.032 (0.024-0.039)
10,000 2.05 (1.54-2.56) 0.026 (0.019-0.033) 0.022 (0.016-0.028)

As can be seen from the different escaping profiles of Figure 4.16, the selection process really
accelerates the transition from one free energy metastable state to the other. This is due to the
fact that the birth and death jump process triggers non local moves, as opposed to the traditional
diffusive exploration of adaptive dynamics. The numerical results of Table 4.10 show that it is
very interesting to consider a selection process, especially at the early stages of the simulation.
This selection is even more efficient when the number of replicas increases (see Table 4.11). In
conclusion, the selection process seems to be an efficient tool to improve the exploration power of
the adaptive dynamics.
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Escape rate

T
0.0 0.1 0.2 0.3 0.4
Time

Fig. 4.16. Average fraction of the replicas in the region r > ro + w as a function of time, for ¢ = 0 (no
selection), ¢ =2, ¢ =5, ¢ = 10.

4.4.2 Rigorous convergence results for the Adaptive Biasing Force method

We present in this section a proof of convergence for the following dynamics, which is of ABF
type:

Qe = =V(V = Fhias(t,€) + 207 In(|VEN))(Q:) [VE[TH(Q) dt + /2671 VEITH(Qr)dWy, (4.107)

using the update (4.99) for the biasing force, that is

/fV 464(0) Begay
/'/’t 5&((1) z

We assume in this section that the density ; of the distribution of X; is well-defined at all times.
The proof presented here is actually restricted to the case

Fblas t Z

(4.108)

¢=(2qeM=TxR", &g =z

T denoting the one-dimensional torus R/Z. In this case, ¥, = {(2,4), § € R* "'}, and |V&(q)| = 1
so that the dynamics considered coincides with the usual overdamped dynamics when the biasing
term is added. The case of a general one-dimensional reaction coordinate £ : R™ — R is treated
in [Al], where a convergence result for higher dimensional reaction coordinates is also stated,
provided the temperature is large enough.

After a brief review on the most important results for convergence results relying on entropy
estimates, we present a mathematical convergence result in the simplified setting considered in
this section, and finally give the corresponding proof.

Some background on logarithmic Sobolev inequalities and their applications in
statistical physics

The aim of this preliminary section is to give some background on entropy techniques with a
focus on logarithmic Sobolev inequalities, which can be used to show the convergence to the equi-
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librium state. More material can be read in the review papers by Guionnet and Zegarlinski [143],
Ledoux [202] and Arnold, Markowich, Toscani and Unterreiter [10] (this last paper having rather
a PDE approach).

For simplicity, we will consider an invariant measure of Boltzmann-Gibbs type, having a density
with respect to the Lebesgue measure:

Yoolq)dg = Z71e PV @D dq 7= / V@ gy
M

and the overdamped Langevin dynamics on the configuration space M:

dQ, = —VV(Q,) dt + \/% AW, (4.109)

It can be assumed without loss of generality that 8 = 1 (replacing the potential V' by V). The
density ¥(t,-) = 1:(-) of the law of @; evolves according to the Fokker-Planck equation

s (o5 2)

Notice that ¢, is the density of a probability measure, so that fM 1y = 1. Since 1, is a stationary
solution of the above equation, it is expected that 1;(q) — ¥o(q) as t — +oo. This is indeed the
case when the dynamics is ergodic and an exponential rate of convergence can even be obtained
when a convenient Lyapounov function can be found (see Section 3.2.3). However, the Lyapounov
condition (3.45) may be difficult to check.

An alternative way to obtain exponential convergence of the density 1; to the target density
is to resort to entropy estimates. Consider the convex function

S(x) =zlnz—z+1,

and define the relative entropy of 1, with respect to ¥, as

H(@ o) = /M P (%) Yoo = /M In (%) Uy (4.110)

since : = 1. Jensen’s inequality shows that
fM (G q Yy

() ewo(f 2] oo

[e'e] M Yoo

H |v) = [

M

An alternative proof of the non-negativity of the entropy can be done by remarking that @ > 0.
Actually, @(z) > 0 if and only of = # 1, so that H = 0 if and only if ¢y = ¥, almost everywhere.
Straightforward computations also show that

d
G H Wt ldho) = —1(vhe |Ye0), (4.111)
where I is the Fisher information of 1; with respect to 1)o: Denoting fi = 1 /1eo,

IV fi|?
fi

Equality (4.111) therefore implies the decay of the relative entropy. An exponential decay rate can
be obtained when 1, satisfies a logarithmic Sobolev inequality (LSI) with constant p.

Yoo 2 0.

Ilvw) = [
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Definition 4.1. The probability measure 1V (q) dq satisfies a logarithmic Sobolev inequality with
constant p > 0 (in short: LSI(p)) if

2
Vf €L (¢Yoo), f20, /M fthoo =1, /M D(f) Yoo < 2—1p/M |VJ{| Voo (4.112)

In other words, for all probability measures absolutely continuous with respect to the Lebesgue
measure, with density ¢(q) dq,

1
P
Then, combining (4.111) and (4.112), it follows, using a Gronwall inequality:

0< H(@/he | ¢w) < H(¢0 | '@[100)672pt'

The convergence 1)y — 1, can be precised using the Csizar-Kullback inequality:

/M |wt_¢oo| §2VH(¢75|¢00)7

which implies an exponentially fast convergence of 1; to ¥ in L(M).
Obtaining logarithmic Sobolev inequalities

To prove convergence results for the density of the process such as (4.109), it therefore suffices
to show that a LSI of the form (4.112) holds for the target measure ¥ (¢) dg = Z = exp(—V (q)) dgq
(recall that we assumed 8 = 1 thoughout this section). A LSI can for instance be obtained in the
following cases:

(i) when the potential V satisfies a strict convexity condition of the form Hess(V') > pId with
p > 0, then a LSI with constant p holds, as first shown by Bakry and Emery [19];

(i) when o = []1, ¥ and each measure ¢ (q) dg satisifies a LSI with constant p;, then
oo satisfies a LSI with constant p = min{p1,...,pam} (see Gross [139]);

(iii) when a LSI with constant p is satisfied by Z‘;l e_‘./(?) dq, then Z‘;}FW e~ V@+W(9) dg (with
W bounded) satisfies a LSI with constant p = p et W=suPW This property expresses some
stability with respect to bounded pertubations (see Holley and Stroock [169]);

(iv) there are also results on a global LSI for the measure when a marginal and the correspon-
ding conditional law satisfy a LSI (see Blower and Bolley [33]), or when all the marginals
satisfy a LSI under some weak coupling assumption (see Otto and Reznikoff [263]).

A PDE formulation and a precise statement of the result

Since only the law of the process Q; at a fixed time ¢ is used in (4.107)-(4.108), it is possible
to recast the dynamics in terms of a nonlinear partial differential equation (PDE) on the density

U(t,-) of @ (recall that £(q) = £(z,q) = 2):

Opp = div (V(V = Fhias(t, 2))0 + 67'VY)

/ 0.V (2,@) (t, 2,d) d (4.113)
Flias(t, 2) = 22— :

ot 2,4) dq
Rn—1
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Measure of the convergence

Let us introduce the longtime limit of the distribution of X;:

Yoo = exp(=f(V = F o)),
and the longtime limit of the marginal and conditional laws:

o o Yso(2,G)dg
5 = Jo%s) 5 d = 17 d 00,2 - .
Vsol2) = | Yooz, 0)da oo, (d) o)

The “distance” between 1 (respectively 1¢) and 1, (respectively 1S ) is measured using the
relative entropy H (1[1s) defined in (4.110) (respectively H (¢¢|¢S,)). In the following, the “total”
entropy is denoted by

E(t) = H(p(t, ) [tos),
the “macroscopic entropy” by

En(t) = HW (L, )|vS,),

the “local entropy” at a fixed value z of the reaction coordinate by

d](t?Z? ~) wOO(Z7 N) w(t727 ~)d~
em(t,2) = H(pit 2| ploo,2) = /Rnil In < 1/)E(t,zq) ¢§o(z;l ) ¢g(t,qz) q’

and finally the “microscopic entropy” by

E(t) :/Tem(t,z)wg(t,z) dz.

It is straightforward to obtain the following result which can be seen as a property of extensivity
of the entropy:

Lemma 4.2 (Extensivity of the entropy). The total entropy can be decomposed as the sum of
the macroscopic and the microscopic entropies:

E(t) = Ex(t) + En(t).

Remark 4.5 (On the choice of the entropy). In the case of linear Fokker Planck equations, it
1s well known that one can obtain exponential decay to equilibrium by considering various entropies

of the form [ h (%) dp, where h is typically a strictly convex function such that h(1) =0 (see [10]

for more assumptions required on h). For ezample, the classical choice h(z) = 4(x — 1)? is linked

to Poincaré type inequalities and leads to L?-convergence, while the function h(z) = xlnz —x + 1
used here to build the entropy is linked to logarithmic Sobolev inequalities and leads to L'1n L'-
convergence. However, for the study of the non-linear Fokker Planck equation (4.113), it seems
that the choice h(x) = xlnx — x 4+ 1 is important to derive the estimates, since the extensivity
property of Lemma 4.2 is fundamental for the proof presented here.

Let us also introduce another way to compare two probability measures, namely the Wasserstein
distance with quadratic cost:

W(uv) =] inf / G- 7[2dn(@, @)
eIl (p,v) JrRn-1xRn—1

where IT(u,v) denotes the set of coupling probability measures, namely probability measures on
R"~! x R"~! such that their marginals are u and v. We need the following definition:
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Definition 4.2. The probability measure v satisfies a Talagrand inequality with constant p > 0
(in short: T(p)) if for all probability measures p such that p < v (i.e. p is absolutely continuous
with respect to v),

W (,v) < %H(mw.

In the last definition, we implicitly assume that the probability measures have finite moments of
order 2, which will be always the case for all the probability measures we consider. We will need
the following important result (see [264, Theorem 1]).

Lemma 4.3. If v satisfies LSI(p), then v satisfies T(p).
Convergence results
Proposition 4.6. The marginal V¢ satisfies the following diffusion equation on T':
Dt = S0, .y (4.114)
3%
and

VE20,  I((t ) [Pee) < T(W(0,) [1hec) exp(—8m*B1). (4.115)

The proof of (4.114) is straightforward (by inegrating (4.113) with respect to ¢ € R"~!), and
implies the convergence of the marginals (see Lemma 4.4 for the complete proof of this proposition).
To prove the global convergence, we need some additional assumptions (on the potential V):

Theorem 4.3. Let (¢, F{, (t)) be a smooth solution to (4.113), and assume

(H1) The function V is such that |05V || p < M < oo;

(H2) There ezists p > 0 such that for all z € M, the conditional measure ji~ . satisfies LSI(p).
Then,

(i) the “microscopic entropy” E,, satisfies
En(t) < C? exp(—2)t) (4.116)
where C' = 2 max (\/Em(O), MB|p — 42|71,/ é—‘;}) with Iy = 1(¢(0,) | ¥s), and
A = B~ min(p, 47?).

In the special case p = 472, it holds \/Ep,(t) < (\/Em(O) + M,/ é—‘;} t) exp(—4n?p71t).

1) The mean force observed at time t Y. (t) converges to the mean force F' in the following
bias

sense:
2M?
vt >0, / |F () — F'2 ()8 (t, 2) dz < Epn(t). (4.117)
T
Therefore, there exist C,T > 0 such that
vt > t, / | Flias(t) — F'|(2) dz < Cexp(—At). (4.118)
T

This theorem therefore shows that Fy. (t) converges exponentially fast to F’ at a rate
A = B~ !'min(p,47?). The limitations on the rate A are linked to the rate of convergence at
the macroscopic level, on the equation (4.114) satisfied by ¢¢, and the rate of convergence at the
microscopic level, which depends on the constant p of the logarithmic Sobolev inequalities satisfied

by the conditional measures pt .. This constant depends of course on the choice of the reaction
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coordinate. In our framework, we could state that a “good reaction coordinate” is such that p is
as large as possible.

Notice also that a consequence of (4.116), (4.115) and Lemma 4.2 is that the “total entropy” E
also decays exponentially fast to zero, with the same rate A. Therefore, by the Csiszar-Kullback
inequality, 1(t,-) converges exponentially fast to ¢ in L'(R™) norm.

Remark 4.6 (On the initial condition). If 15(0, ) is zero at some points or is not sufficiently
smooth, then I, .(0) may be not well defined or I()%(0,-)|S,) may be infinite. But since we
show that Y¢ satisfies a simple diffusion equation (see item 1 in Theorem 4.3), these difficulties
disappear as soon ast > 0. Therefore, up to considering the problem fort > t, > 0, we can suppose

that (0, -) > 0.

It can be checked that the assumptions (H1) and (H2) are satisfied in this context for a
potential V' of the following form:

V(Za q) = VO(Za q) + ‘/1(27 (j)
where o = infp ge-1 054V > 0, [|[Vi]lze < 00, [|0:,54(Vo + V1)||L~ < oo, with the choice M =
1025V Lo, p = (infrygrn-1 954V0) exp(—osc V1), where osc Vi = suppypn-1 Vi —infryge-1 V1. In
words, the potential V is a uniformly a-convex potential in the ¢ variable (therefore satisfying a
LSI thanks to the Bakry-Emery criterion), perturbed by some bounded potential. The (almost)

a-convexity in the variables orthogonal to the reaction coordinate is indeed natural enough since
it is expected that the metastable features of the potential are in the reaction coordinate variable.

Proofs of Proposition 4.6 and Theorem 4.3

To simplify the presentation of t~he proof, we assume § = 1, up to the following change of
variable: £ = 37't, ¥ (t,q) = ¥(t, q), V() = BV (q)-

Lemma 4.4 (Convergence of the Fisher information). Let ¢ be a positive function defined
fort >0 and z € T, satisfying

Op=0..¢ onT, /Tqﬁ =1. (4.119)
Denoting by ¢oo = 1 the longtime limit of ¢, it holds
VE>0,  I(B(t) | doo) < I((0,-) ] Poo) exp(—8m°t).
Proof. Denoting by u = /9, it follows
1616x) = [ 10.1m0Po =1 [ 0.0l

Moreover, from the diffusion equation (4.119),

2
atu — 6Z7zu + (a’z—u)
u

Therefore,
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d / 9 / / ((Bzu)2>
— o.u)*=210,..udu+2 | 0, o.u,
2
— —2/(8z)zu)2 — 2/ (0:u) 0...u,
T T U
92((9:u)?)
=-2 [ (0. .u)? -2 [ =22,
[0 =2 [ =

=2 /Tr (9..2u)? - /T (823)4,

Wl o

so that finally
d

a 2 - g2 2
p T(azu) < 87 /T(@Zu),

where we have used the Poincaré-Wirtinger inequality on T, applied to 0,u: For any function

fe HH(T), ,
/T<f—/Tf> <o [0

This Poincaré inequality is obtained by studying the spectral gap of the operator 9, , on [0,1]. [
We now turn to the proof of Theorem 4.3. One fundamental lemma for the following is

Lemma 4.5. The difference between the “current mean force” F,, (t) and the mean force F' can
be expressed in term of the densities as

3
Fliaslt) = F' = /RH d.1n (%) % 4G — 0. 1n (gz) |

Proof. This is a simple computation:

A ) o o E
O.In|—)—=dg—9.In| — | = 0, Iny— dq — 0, Ints—dg— 0,1 ,
Lo () gean “<¢£o [ o= [ omunzdi-o.my

0 v
= d 0.(V — F)—=dj — 8. Iny®,
/R e q+/RH V= F)yg di = 0:Inv

= Flia(t) - F,

which concludes the proof. U
We will also use the following estimates:

Lemma 4.6. Under the assumptions (H1) (H2), it holds, for all t > 0 and for all z € T,
/ / 2
[ Fias (£, 2) = F'(2)| < 02,6V [l ;6m(t72)-
Proof. For any coupling measure m € IT (i 2, fico,z ),
| Fiias(t, 2) — F'(2)] =

/ 0.V (2,0) — 0:V (2, 7) n(dd, dq)
Rr—1xRr—1

)

< (102 4V [l / 13— ¢'| 7(dd, d7')

<192,V [l o \//IC]— q'|* m(dg, dq’).
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Taking now the infimum over all m € IT(p 2, ftoo,») and using (2) together with Lemma 4.3, it
follows

2
[ Fias(t,2) = F'(2)] < 1102,V | oo W (1,25 proo,2) < 1102,V || e 5 H (2] proo 2),

which concludes the proof. u

P
0. 1n
()

Lemma 4.7. When (H2) is satisfied,

1
vt >0, E,.(t) < —/
TxR?»—1

Proof. Using (H2), it follows

Em_:/em¢ﬁh<:/, lénl aln(wg >‘ wgd g vt dz,

which yields the result since ¢ /1S, does not depend on §. U

We are now in position to prove the first assertion (4.116) of Theorem 4.3. The equation on 1)
can be rewritten as:

Y

Voo
[ (B - o (v [

Therefore, after integration by parts, using a Cauchy-Schwarz inequality and Lemma 4.5,
2
8 In < 4 >
Yoo

o =aiv (7 (1) ) + 0.0 = Flunl0)0).

d d d
Bl R o
dt dt at M

_ ‘vm(
8111(
¥ (Rnlam
[
L)

Using now Lemmata 4.6 and 4.7,

AYE
0, In <z/1_§o)
P

1 U Y
)z/qu) —dz _/M8Z1n(¢_§w)aln<¢m>w

wﬁ

- fom (w_go) U (Fanlt) — ).

d w
d_E < 2pE +\// |Fl;1as F/| ’lbg (9 ln —go)

< —2pE,, + ||3zqu||L°°\/ ;Em VI(* | 95).

With Lemma 4.4, it then follows

d T(4(0, ) | &%
VB < oV B+ 10:V e\ LG gt
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from which (4.116) is deduced.

Let us now turn to the proof of the second item of Theorem 4.3. Notice first that ||(¢,-) —
Yoo|lLe — 0 when t — +oco. This results from the exponentially fast H!(R3) convergence of
1/)5 — 9§ (which can be proved using Lemma 4.4) and the inequality

Jo- 1

applied to f = 1¢. Since 1§, = 1, it holds

2

< [(8,f)?
Wm_A(ﬂ

[ 1) = 1 = el Fla® = P08 = [ 1) = P15 = [ [Falt) = P10 = )
T T T
< [ 1) = PP 10— buelim [ 1) = P

Thus, for ¢ sufficiently large, [1.|F},.,(f) — F’| is bounded from above by ¢ [ |, (t) — F'[*¢* (for
some ¢ > 0), which yields (4.118) (using (4.117) and (4.116)).
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Multimillion atom simulations are nowadays common in molecular dynamics (MD) studies.
However, the time and space scales numerically tractable are still far from being macroscopic,
so that reduced models are of primary interest when multiscale phenomena are considered. In
particular, the simulation of shock waves is a challenging task, involving very small time and
space scales and large energies near the shock front, and much larger time and space scales and
lower energies for the relaxation of the shocked materials, including the evolution of dislocations
loops for example.

The situation is even worse for detonation waves (Roughly speaking, a detonation wave is
a shock wave combined with very exothermic chemical reactions, see [103] for a fundamental
reference). The simulation of detonation requires the description of a thin shock front, moving at
a high velocity, usually using a complicated empirical potential able to treat the chemical events
happening (dissociation, recombination). To this end, toy molecular models were proposed at the
early stages of the molecular simulation of detonation (see e.g. [269]), until the first all-atom
studies in the 90’s [38,39]. Such computations are nowadays common (see for example [327] for a
state of the art study), but are still limited in spatial and temporal sizes, so that a reduced model
for detonations is of interest.

Some reduced models for shock waves were proposed, for polycrystalline materials [163] or
resorting to mesoparticles with internal degrees of freedom [326] (see a brief overview of all those
methods in Section 5.2.1). The latter approach seems to be the most promising and the most
general one, and consists in replacing a complex molecule by a single particle. The introduction of
an internal degree of freedom describing in a mean way the behavior of several degrees of freedom
is reminiscent from Dissipative Particle Dynamics (DPD) models [98,170], which aim at describing
complex fluids through some mesodynamics with some additional variables.

We present in this chapter reduced model for shock and detonation waves described at the mi-
croscopic level. Starting in Section 5.1 from a very simple one-dimensional (1D) model where the
main features of shock waves are already present, we show how a model reduction of dimensionality
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can be performed under some decoupling or low-coupling assumptions. Though the initial model
is deterministic, the obtained model is stochastic: more precisely, the many-body interactions are
replaced by some generalized friction (with memory) depending on the relative velocities of neigh-
boring particles (which is reminiscent of DPD models), and the system is governed by a generalized
Langevin equation instead of the usual Hamiltonian dynamics. However, the temperature jumps
across the shock front are not reproduced correctly.

Building on this one-dimensional model, a simplified DPD dynamics preserving the total energy
of the system is proposed in Section 5.2. Within such a model, temperature jumps across the shock
front can be treated. It is also a convenient framework for an extension to chemically reactive shock
waves (detonations).

5.1 A simplified one-dimensional model

We begin in Section 5.1.1 with some introduction to 1D lattice motion, and briefly report on
some theoretical results and numerical experiments on piston-impacted shocks. It is shown that,
in the absence of a specific treatment, the shock profiles generated significantly differ from shock
waves. Especially, their thicknesses grow linearly with time [166,359], there is no usual equilibration
downstream the shock front [87,168,359], and relaxation waves do not behave as expected. Indeed,
one would expect the shock wave to be a self-similar jump separating two domains at local thermal
equilibrium at different temperatures. The relaxation waves should then catch up the shock front
and weaken the shock wave until it disappears. So, we have to introduce higher-dimensional effects,
at least in an averaged way. This is performed in Section 5.1.2. The connection of the chain with
a heat bath consisting of a large number of harmonic oscillators, seems to be a good remedy for
spurious 1D effects. The shocks generated have constant thicknesses and relaxation waves appear
to be properly modelled. We also present the stochastic limit of this model in Section 5.1.3, and
an extension to the reactive case in Section 5.1.4.

5.1.1 Shock waves in one-dimensional lattices

The aim of this section is to derive and assess the validity of a simplified microscopic model
of shock waves which can useful for a more general derivation. Shock waves are intrinsically
propagative phenomena. It is thus reasonable to describe them within a 1D macroscopic theory.
In some cases depending on the geometry, this approximation has proven to be correct [73].

A 1D lattice seems an appropriate model that could, in addition, allow for some mathematical
treatment and thus a better theoretical understanding of the phenomena and mechanisms at
play. Indeed, many mathematical results are known about the behavior of waves in 1D lattices,
concerning the existence of localized waves [117,315], the form of those waves in the high-energy
limit [115] or in the low-energy limit [116], or the behavior under shock [104]. There also exist
extended results for a particular interaction between sites, the Toda potential [344] : the structure
of a 1D shock is then precisely known, at least in some regime [359].

Description of the lattice model

Consider a one-dimensional chain of particles with nonlinear nearest-neighbor interactions,
described by a potential V. Initially, the particles are at rest at positions X,,(0) = nd, which is
an equilibrium state for the system. All the masses are set to 1. The normalized displacement
of the n-th particle from its equilibrium position is x,(t) = (X,(t) — X,,(0)). The following

normalization conditions [166] for the interaction potential V' can be used:

V(0)=0, V'(0)=0, V"(0)=1. (5.1)
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The first condition is more a shift on the energy reference, the second one expresses the fact that
x = 0 is the equilibrium position, and the last one amounts to a rescaling of time. The so-called
“reduced relative displacement” is defined as 62, (t) = @py1(t) — z,(¢).

The Hamiltonian of the system is:

HS({Qna pn}) = Z V(Qn-i—l - Qn) + 5]97217 (52)
where (¢n,pn) = (Zn,Zn). The Newton equations of motion read:
Zn =V (Tny1 — 2n) = V' (2p — 201). (5.3)

The potential taken here can either have a physical origin, like the 1D Lennard-Jones potential:

1 1 2

Vi = - — 5.4
LJ(:E) ) ((1—|—I)4 (1+I)2> ) ( )

or more mathematical motivations, like the one-parameter Toda potential [344]:

b 1 —bx

Vipda () = = (e —1+bx). (5.5)
Define b = —V"”(0). The parameter b measures at the first order the anharmonicity of the system.
For the Lennard-Jones potential b = 9, and for the Toda potential, the parameter b introduced in

d3vP
the definition (5.5) is indeed equal to — e (0).
x

Shock waves in the 1D lattice
A brief review of the existing mathematical and numerical results

A shock can be generated using a "piston" : the first particle is considered as being of infinite
mass and constantly moving at velocity u,. We refer to [90] for a pioneering study of those shocks
in 1D lattices, to [164,166,168] for careful numerical experiments and formal analysis, and to [359]
for a rigorous mathematical study in the Toda case. All of these studies identify the parameter
a = bu,, as critical. When a < 2, the velocity of the downstream particles converge to the piston
velocity, in analogy with the behavior of a harmonic lattice! (see Figure 5.1). When a > 2, the
particles behind the shock experience an oscillatory motion (see Figure 5.2). This behavior is quite
similar to what is happening in hard-rod fluids (see [168] for a more precise description of that
phenomenon), and has to be linked to the exchange of momenta happening when two particles
collide in a 1D setting. This was also noticed for other potentials such as the Lennard-Jones
potential, and can be used to define specific 1D thermodynamical averages [87].

In the case of a strong shock (a > 2) and in the Toda case, the displacement pattern is parti-
cularly well understood from a mathematical point of view [359]: the lattice can be decomposed in
three regions. In the first one, for n > c¢paxt, the particles have “almost” not felt the shock yet, and
their displacements are exponentially small. The second region, whose thickness grows linearly in
time (Cmint < N < Cmaxt), is composed of a train of solitons. Recall that solitons are particular
solutions of the Toda lattice model, and correspond to localized waves [344]. In the third region
(n < cmint), the lattice motion converges to an oscillatory pattern of period 2 (binary wave).
The motion behind the shock is asymptotically described by the evolution of a single oscillator
(see [87] for a precise description of this behavior). There is no local thermal equilibrium in the
usual sense (i.e. the distribution of the velocities is not of Boltzmann form). This was already
mentioned in [168].

! Note that we use b = 2 with the notation of [166].
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Fig. 5.1. Relative displacement (left) and velocity profiles (right) versus particle index for a weak shock
at a representative time: number of particles Npars = 500, Toda parameter b = 1, piston velocity u, = 0.2,
so that a = 0.2. The particle are taken initially at rest at their equilibrium positions.
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Fig. 5.2. Relative displacement (left) and velocity profiles (right) versus particle index for a strong shock
at time 7" = 100: b = 10, u, = 1, so that a = 10. The particles are initially at rest.

Density plots.

To get a better understanding of the shock patterns, it is convenient to represent the system in
terms of local density. This local density can be obtained as a function of the local average of the
interatomic distances, both in space and time. We restrict ourselves to a local average in space.
More precisely, the local averaged interatomic distance of the n-th length is denoted by dz,,, and
given by éx, = Z;;OSOO aj 0%y ;. The local density p,, is then defined as p,, = (1 + m)_l. The
weights {«;} are chosen in practice to be non negative and of sum equal to one. For example:

aj =C"1cos (ﬁw) for —M < j < M, a; = 0 otherwise, and with C = ij\ifM cos (QA/}TW)
The integer M is the local range of averaging. Figure 5.3 presents the densities corresponding to

the relative displacement patterns of Figures 5.1 and 5.2.
Simulation of piston compression

We first implement a preliminary thermalization. The particles are taken initially at rest at their
equilibrium positions. We then generate displacements x,, and velocities ,, from the probability
density

o0
dv= R 7 le 250+ dg, diy, (5.6)

n=—oo



5.1 A simplified one-dimensional model 191

1.3 T T T T 15

14

12

"
w
T

Local density
P
N

Local density
=
N

11

L L L L 0.9 L L L L
0 100 200 300 400 500 0 100 200 300 400 500

Particle index Particle index

0.9

Fig. 5.3. Density patterns for the relative displacement pattern of the weak shock of Figure 5.1 (left)
and the strong shock of Figure 5.2 (right). The local averaging range is M = 50.

1
with Z = 27 /f3,. The initial displacements and velocities are then of order —. Notice that

we take small initial displacements, so we approximate the full potential V' (z) b; its harmonic
part %:102. This approximation is of course justified only at the beginning of the simulation, when
displacements are small enough. After this initial perturbation, we let the system free to evolve
during a typical time Ti,;y = 10. The simulations were performed using a Velocity Verlet scheme,

E
the time step being chosen to have a relative energy conservation B of about 1073, At time Tipni¢

the piston impact begins: the first particle is kept moving toward the right at constant velocity u,.

Let us emphasize that the shock patterns are robust, in the sense that they remain essentially
unchanged when initial thermal pertubations are supplied. This point was already noted in [168]
where the authors gave numerical evidence of that fact. While rigorously proven only in the Toda
lattice case for a lattice initially at rest at equilibrium, the above shock description seems then to
remain qualitatively valid for a quite general class of potentials and with random initial conditions.
A comparison of the different profiles is made in Figures 5.4 and 5.5. The profiles are indeed quite
conserved, especially the density profiles.

Relative displacement

-0.15 +

Relative displacement
I
o
s
(5

. . . . . . . .
0 100 200 300 400 500 0 100 200 300 400 500
Particle index Particle index

Fig. 5.4. Relative displacement profiles for a thermalized strong shock using a Toda potential with
b = 10, and comparison with the reference profile corresponding to a lattice initially at rest. The piston
speed is u, = 0.3 (so that a = 3), L\/T = 0.02.
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Fig. 5.5. Local density profiles corresponding to Figure 5.4 with M = 50. Dashed line: reference profile.
Solid line: Thermalized profile. Notice that both patterns almost coincide.
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Fig. 5.6. Relative displacement patterns for the same conditions as in Figure 5.4 (reference case).
Left: Snapshot at time 77 = 200. The shock front corresponds (roughly) to the zone between particle
Nmin = cminT1 = 60 and particle Nmax = cmaxZ1 = 350. Right: Snapshot at time 75 = 800. The shock
front corresponds to the zone between particle number Ny, = 250 and particle number Nyax = 1500.
Thus the shock front is indeed growing linearly in time.

For strong shocks (a > 2), the shock front thickens linearly with time as can be seen in
Figure 5.6. This is in contradiction with what is observed in shock propagation experiments as
well as in 3D numerical simulations. Moreover the velocity distribution behind the shock front
shows that the downstream particles experience a (quasi-)oscillatory motion in the range [0, 2u,)].
This is of course not the case for 3D simulations, where the particle velocities are much less
correlated, and appears to be a pure 1D effect.

We emphasize once again that initial thermal perturbations are not sufficient to remedy these
spurious 1D effects since the patterns obtained in Figures 5.4 and 5.5 are very similar. In the

sequel we are going to build a 1D model that enables us to get rid of these undesired effects.
Simulation of relazation waves

In order to study the relaxation waves, the piston is removed after a compression time tg, and
the systems evolves freely during time t; — to.

The results are once again not physically satisfactory. The soliton train of Figure 5.7, which
was less visible in Figure 5.4, is not destroyed by the relaxation waves. It travels on and widens
since the solitons move away from each others (the distance between the fastest ones, that is,
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Fig. 5.7. Relative displacement and speed profiles for the same parameters as for Figure 5.4. The
compression time is now tg = 50, and the relaxation time is t1 — to = 350.

the more energetic ones, and the slowest ones, increases). We emphasize that the energy remains
localized in those waves, so there is no damping of these solitons. Rarefaction is only observed in
the region behind the soliton train.

On the other hand, in 3D simulations or in experiments, one observes a progressive damping
of the whole compressive wave. This is a second spurious effect of the 1D model we would like to
get rid of and that the model of Sections 5.1.2 and 5.1.3 will be able to deal with.

5.1.2 An augmented one-dimensional model

The results of the previous Section indicate the need for a modeling of perturbations arising
from the transverse degrees of freedom existing in higher dimensional simulations. Such pertur-
bations will interfere with the shock front composed of a soliton train, and possibly damp this
soliton train. Perturbations in the longitudinal direction, such as thermal initialization for the z,,,
cannot do this, as shown by Figures 5.4 and 5.5.

Actually, some facts are already known about the influence of 3D effects on shock waves.
In [162,167] Holian et. al pointed out the fact that even a 1D shock considered in a 3D system (a
piston compression along a principal direction of a crystal for example) may not look like the typical
1D pattern of Figures 5.1 or 5.2. If the crystal is at zero temperature, then the compression pattern
in 3D is the same as the 1D one, with a soliton train at the front. But if positive temperature effects
are considered, the interactions of the particles with their neighbors - especially in the transverse
directions - lead to the destruction of the coherent soliton train at the front, and a steady-regime
can be reached (shock with constant thickness).

Therefore, 1D models are often supplemented with a postulated dissipation. The corresponding
damping term in the equations of motion usually accounts for radiative damping [160,313,314], or
may compensate thermal fluctuations [9] from an external heat bath for a system at equilibrium.
Let us point out that purely dissipative models may stabilize shock fronts. However, temperature
effects then completely disappear. In particular, no jump in kinetic temperature can be observed in
purely dissipative 1D simulations. Besides, we also aim here at motivating the usually postulated
dissipation and memory terms, and show that they arise naturally as effects of (conveniently
chosen) higher dimensional degrees of freedom.

There is no existing model (to our knowledge) that could both account for higher dimensional
effects in non equilibrium dynamics and be mathematically tractable. We introduce a classical
deterministic heat bath model, as an idealized way to couple the longitudinal modes of the atom
chain to other modes. This model is justified to some extent by heuristic considerations in Sec-
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tion 5.1.2. We are then able to derive a generalized Langevin equation describing the evolution of
the system, and recover a stochastic model in some limiting regime.

Form of the perturbations arising from higher dimensional degrees of freedom

Consider the system described in Figure 5.8, which is still a 1D atom chain, but where each
particle in the 1D chain also interacts with two particles outside the horizontal line. These particles
aim at mimicking some effects of transverse degrees of freedom. The transverse particles are placed
in the middle of the springs and have only one degree of freedom, namely their ordinates y,,. The
particles in the 1D chain are still assumed to have only one degree of freedom as well. This means
that we constrain them to remain on the horizontal line. The interactions between the particles
in the chain and the particles outside the chain are ruled by a pairwise interaction potential, for
example the same potential as for interactions in the 1D chain.

Fig. 5.8. Notations for the interaction of a transverse particle with particles on the 1D atom chain.

Consider small displacements around equilibrium positions. The pairwise interaction potentials
can therefore be taken harmonic. Up to a normalization, and for a displacement x from equilibrium
position, V(z) = $22.

We first turn to the case § = § corresponding to a 2D regular lattice. At first order,

1/2

2
1 2 3 1 3
dy = (5(1 + Tny1 — xn)) + <§ + yn> =1+ 2 (@nt1 = 20) + gyn

We now focus on the evolution of x,. All the equalities written below have to be understood
as equalities holding at first order in O(|x,|),O(|yi|). Considering only interactions with the
neighboring particles on the horizontal line, and the additional interaction with the particle v,

9 V3
Ty = g(:cn+1 -2z, +Tp_1) + T(y" — Yn—1)-

The equation governing the evolution of y,, is:
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. 3 V3
Yn = —3Yn — >

5 (Tpt1 — Tn)-

More generally, consider the system of Figure 5.8 with an arbitrary angle 6. The equilibrium

distance is now d° = 26(1)597 and the corresponding normalized harmonic potential is V(d) =

+(#& — 1)%. The normalized distance d,, = — is

dO
dyp =14 cos? O(xp 1 — ) + 2sinbcos b - y,.
The additional longitudinal force exerted on x,, by y, is then
fn = cos?0[cosO(xn 1 — ) + 2500 - y,].

Summing over N particles that do not interact with each other, each one being characterized by
an angle #;, the additional force on z,, is seen to be of the form

N

F, = AN(an =2z, + xnfl) + ZKl(y:z - yfz—l)a
i=1

with K; = 2cos?6;sin; and Ay = Zfil cos® 6;. So, the equation of motion for z,, is

N

Fn = (14 AN)(Tni1 — 220 + 2n1) + Kyl — yh ). (5.7)
i=1

The equations for the y can be obtained in the same way as before:

Uy, = —aiyy, — 2K;(Tnt1 — ). (5.8)

These linear perturbations are only valid for small displacements, i.e. when the approximation
of the full potential by its harmonic part is justified. Notice moreover that we discard any type of
interaction of the y particles with each others. However, this motivates an attempt to take into
account missing degrees of freedom by introducing a heat bath whose form will lead to equation
of motion similar to (5.7) - (5.8). We now turn to this task.

Description of the heat bath model

We consider the following Hamiltonian for a coupled system consisting of the system under
study (S) and a heat bath (B) described by bath variables {y/} (n € Z, j =1,...,N). To use a
heat bath is classical but was never done in the context of 1D chains. The full Hamiltonian reads:

H({qn, pns @, }) = Hs({qn, pn}) + Hsp({ans o, @, 55}), (5.9)

where (gn, pn, @,70%) = (Tn,@n,yl, m;y2), Hs is given by (5.2), and

o) N
s 1 . 1 _i12
Hsg({gn, pns @ L) = D 57— () + 5k [1i(@n1 — an) + @] (5.10)
J

n=-—oo j=1

The interpretation is as follows. Each spring length dx,, = x,11 — z, is thermostated by a heat
bath {yJ}, in the spirit of [108,379]. The parameter k; is the spring constant of the j-th oscillator,
my; its mass, ; weights the coupling between Az, and y. Note that although more general cases
can be considered [198,212], the coupling is taken bilinear in the variables, for it allows for an exact
mathematical treatment. Indeed, a generalized Langevin equation (GLE) can be easily recovered
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(see [108,379] for seminal examples). It is also the only case where the limit N — oo can be
rigorously justified. Other physical motivations may be presented, such as the representation of
extra variables in Fourier modes leading to a Hamiltonian similar to (5.9), see [44]. These extra
degrees of freedom allow for some "transverse” radiation of the energy.

Derivation of the generalized Langevin equation

General procedure

Up to a rescaling of yJ, we may assume that all masses m; are 1. The only parameters left for

the coupling are the coupling factors ;. Introducing the pulsations w; given by w; = kjl/2 the

3

equations of motion read:

N
in - gN(anLl - In) - gN(xn - -Infl) + Z’YJW?(ZJ% - yfz—l)v (511)
j=1
i = —w? [y + 7 (Tns1 — 7)) (5.12)
where
N
gn(z) =V'(@) + | D 7w | = (5.13)
j=1

Notice the structural similarities of (5.11) with (5.7) and of (5.12) with (5.8).

The solutions {yJ } of (5.12) are then integrated and inserted in (5.11) for {x,,}. This procedure
is the classical Mori-Zwanzig projection [250,379]. The integrability of the system is clear (once
initial conditions in velocities and displacements are set) when the force gy is globally Lipschitz.
This is for example the case when the sum Zjvzl szwjz is finite, and when V" is globally Lipschitz,
which is indeed true for the Toda potential (5.5). For the Lennard-Jones potential (5.4) it remains
true as long as the energy of the system is finite (since the potential diverges when x — —1, the
bound on the total energy implies x > x¢p > —1, and a bound on the Lipschitz constant can be
given by V'(z)). The computation gives:

1
1) = 1 (0) cos(iyt) + 222

t
sin(wjt) + / vjwj sin(w;$)(Tn41 — xn)(t — s) ds.
W 0

Integrating by parts and inserting in (5.11):

Zn(t) =V (xpe1 —xn) = V'(2p — p1)

+/tKN(s)(:tn+1 %y 4 )t — ) ds + 1Y (D), (5.14)
0

where
Kn(t) =Y ~jw? cos(w;t),
j=1
and
N ; . ; sin(w;t)
e (1) = > (WA (0) — i1 (0)y;w7 cos(w;t) + (4,(0) — yifl(O))w?T?
j=1 J

+77k;j cos(wjt) (#n 1 — 220 + 20-1)(0).

Formally, (5.14) looks like a generalized Langevin equation (GLE), provided 2 is a random forcing
term. The dissipation term involves a memory kernel K and an "inner” friction &, 11 — 2%, +Z,—1.
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The derivation made here shows that the usually postulated dissipation and memory arise naturally
as effects of higher dimensional degrees of freedom. The dissipation term, classical in elasticity
theory and postulated by some studies [160,314], is derived here, as memory effects, that were also
considered in [314], since the corresponding model was that of a viscoelastic material. So, we are
left with a description of the system only in terms of {x,}. To further specify the terms, we have
to describe the choice of the heat bath spectrum {w,;}, the coupling constant 7; and the initial
conditions for the bath variables.

Choice of the constants

We choose the values [199]:

2 1

R B 5.15
Pl (5.15)

Lk
o= 2 (L)) el = R Pw) Ly, £ =
where (Aw); = wjt1 —wj, a, A >0 and k£ > 0.

The function f? is defined this way for reasons that will be made clear in Section 5.1.3. The heat
bath spectrum {w,;} is more dense as N increases. The exponent k accounts for the repartition of
the pulsations. More general choices could be made, involving randomly chosen pulsations [199].
However, we restrict ourselves to the case of deterministic pulsations. We emphasize here once
again that the constants chosen and the form of the coupling are not new. A similar choice is
made in [199]. The novelty is in the application to a 1D chain, where independent heat baths are
considered, each heat bath corresponding to a spring length.

We now motivate (5.15). Notice that an upper bound to the heat bath spectrum is imposed.
This is related to the discreteness of the medium. Indeed, for a system at rest with particles distant
from 1, the higher pulsation allowed is 7, corresponding to an oscillatory motion of spatial period
2. When particles come closer (for example if the mean distance between particles is a < 1), the
higher pulsation increases to the value 7 since the lowest spatial period is now 2a. Taking then
lower bound d,, for the minimal distance between neighboring particles, we get an upper bound
for the spectrum, namely 2 = d’:n

The choice of the coupling constants between the system and the bath is an important issue. The
only purpose of the heat bath in a 1D shock simulation is to mimic some effects of dimensionality,
such as energy transfer to the tranverse modes. This energy transfer can be quantified using (5.12).
Indeed, the total energy transfer for a harmonic oscillator of pulsation w subjected to an external
forcing o is known [44]. More precisely, consider the following harmonic oscillator:

5+ w?z = h(t), (5.16)

where h is an external time-dependent forcing term. Then the total energy transfered by the
external forcing to the system (from ¢ = —oo to ¢ = 400 for a system at rest at ¢ = —o0) is
AE = %|ﬁ(w)|2 The energy transfer to the heat bath occurs as described by (5.12). This gives a
total energy transfer for a spring =, 11 — x,, considered initially at rest:

Zﬁ 4| Az (w)) 2. (5.17)

As a first approximation, a shock profile can be described as a self-similar jump: Az, (¢t) = 6H (n—
ctn), where § < 0 is the jump amplitude, ¢ the shock speed, and H is the Heaviside function.
Then, |Az, (w)| = w™!. The energy transfer (5.17) is therefore
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With the spectrum (5.15), the condition AE,, — C with 0 < C' < oo is satisfied:

242 242
5/\ Zf w;)(Aw); —>6—>\ ; f2:)\2520(9).

The last expression is bounded since f? is integrable (recall / f? =1). The function o is a C>®

0
function. Notice that the above convergence results from the convergence of the Riemann sum
appearing on the left.

Choice of the initial conditions.

We consider initial conditions {7 (0), % (0)} randomly drawn from a Gibbs distribution with
inverse temperature ,. This distribution is conditioned by the initial data {z,, &, }. More preci-
sely, set

y3,(0) = =7 (Tng1 — ) (0) + (Byk;)~/2€7, (5.18)
§,(0) = (8,) 72y, (5.19)

where &7, 07 ~ N(0,1) are independently and identically distributed (i.i.d.) random Gaussian
variables. With these choices,

N

rn (t) = \/@ Zwﬂg cos(w;t) (&), — &) + wj; sin(w;t) (), — m,_4). (5.20)

The probability space is induced by the mutually independent sequences of i.i.d. random variables
7 n?. Denote D the linear operator acting on sequences Z = {z,} through DZ = {z,, — z,,-1}.

So,

A

New=

For fixed N, the above expressions give

rN(t) = Zf w;) cos(w;t) DEL + f(wy) sin(w;t) Dl (Aw)}/.

E(rN ) (N (s)T) = 6—yKN(t —s)DDT (5.21)

N = (...,rN ...) and the linear operator DD” acts on sequences Z as DDTz = {21 —

where r NP G

22 4 2n—1}. This relation is known as the fluctuation-dissipation relation, linking the random
forcing term and the memory kernel. Notice that the noise term is correlated both in time and in
space. The behavior of the system when NV — oo is then an interesting issue, that can help us to
get a better understanding of the phenomenas at play (see Section 5.1.3).

Numerical results

The equations of motion (5.11), (5.12) are integrated numerically for a given N, using a classical
velocity-Verlet scheme. The system is initialized with velocities and displacements generated from
(5.18) and (5.19) in the y-coordinates, and from (5.6) in the  coordinates. Note that the quantities

1

5_ and 5_ may differ. The system is then first let to evolve freely, so that the coupling between
k2 Yy

transverse and longitudinal directions starts.

Shock waves are generated using a piston in the same fashion as in Section 5.1.1, giving Fi-
gures 5.9 and 5.10. We then study relaxation waves (Figure 5.11). The time-step At is chosen
to ensure a relative energy conservation of 1072 in the absence of external forcing. Typically,
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At = 0.01. The spectrum density parameter k in (5.15) is taken to be k = 1. Other choices lead
to the same kind of simulation results. Notice that, if L represents the size of the 1D chain, the
algorithmic complexity scales as O(LN).

Sustained shock waves

Figures 5.9 and 5.10 show the different patterns obtained in the case of a system coupled to a
heat bath. Notice that the upper bound to the spectrum, (2, is of order 7 since the shock is not
too strong, and hence the medium is not too compressed. The parameter « is taken less or equal
to §2 so that K, and o({2) are sufficiently close from their limiting values.

The parameter A was varied in the range [0,5]. If A is too small, the coupling is too weak and
the profiles look like the pure 1D ones (Note that we recover the purely 1D model with Hamiltonian
(5.2) when XA = 0). If X is too high, the forcing may be too strong, leading to the collapse of two
neighboring particles if the time step is not small enough. A good choice of A involves a good rate
of energy transfer to the transverse modes. The choice of A is completely empirical, but it would
be desirable to estimate it from full 3D simulations.

The results show that the introduction of transverse degrees of freedom has important conse-
quences on the pure 1D pattern. The soliton train at the front is destroyed, and the shock thickness
is constant along time, instead of growing in time as in the pure 1D case. Thus a steady regime can
now be reached, and these simulations really seem to deserve the name “shock waves”. In contrast
to the pure 1D model results, these simulations have now the same qualitative behavior as 3D
simulations or experiments.
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Fig. 5.9. Relative displacement profiles for the system coupled to a heat bath (left), and comparison
with a thermalized shock (right). For the thermalized shock, the parameters are u, = 0.3, b = 10 and
1_ — 0.01. For the system coupled to a heat bath, the additional parameters are —— = 0.02, o = 5,

= By

2 =10, A = 0.5. The number of transverse oscillators is N = 25.

Rarefaction waves

As can be seen in Figure 5.11, a rarefaction wave develops and progressively weakens the
shock (notice that the velocities decrease and that the relative displacement increase compared
to Figures 5.9 and 5.10). This is indeed the expected physical behavior for a viscous fluid. This
dissipation can be interpreted as energy transfer to the transverse modes.

Besides, no soliton train survives, contrarily to the pure 1D case, where the solitons are not
destroyed and move on unperturbed. In the pure 1D case, there is no weakening of the initial wave,
only dispersion. Once again, to our knowledge, this is the first time a 1D discrete model behaves
as expected.
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Fig. 5.10. Same parameters as for Figure 5.9, except for the system coupled to a heat bath, N = 100.
Left: Relative displacement profile. Right: Local density as a function of the particle index.
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Fig. 5.11. Relative displacement profiles for the system coupled to a heat bath (left) and the thermalized
1D system (right). The parameters for the system coupled to a heat bath are —— = 0.04, « = 2, 2 =5,

=

A = 0.5. The system is compressed during to = 50. The relaxation time is t; — to = 350.

Generalizations of the system-bath interaction
Beyond nearest-neighbor interactions

The Hamiltonian of the system can be written in an abstract form as

1. 1. . 1
H(x, yy) = §|:c|2 + F(z) + inTMyN + §|Ax — Byn|? (5.22)
_ _ 1 N 1 N :
where © = (..., Zp—1,Tn, Tnt1,---) ADd YN = (-« o, Yp_1y- s Un—1:Yms -+ Yn 5 - -.). The matrix M
is a mass matrix (operator), A and B are general operators, F(z) = Y 2 V(zy41 — x,). We

chose previously B diagonal. But more generally, B could be considered as tridiagonal: this could
model the interaction of two neighboring heat baths linked to neighboring spring lengths.

Nonlinear coupling with the heat-bath

When the shock strength increases, the heuristic derivation performed in this section (relying
on small displacements) is no longer valid. The approach can however be generalized by considering
a nonlinear coupling between the transverse particles and the particles in the chain. It is hoped
that the thermalization will be more efficient this way, in particular, stronger shocks could be
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sustained with less transverse oscillatory degrees of freedom. We therefore consider the following
Hamiltonian:

H({Qn7 Pn, (jfw ﬁ%}) = HS({qnu pn}) + HNLB({Qnu Pn, ngp ]551})7 (523)
with (gn, pn, @, P2) = (Tn, Zn, ¥l , 92 ), Hs still given by (5.2), and

oS N
Hxig({gn, P, @ 1) = Y D 5P + kUL (gn41 — an) + @), (5.24)

n=—oo j=1

where U is a nonlinear function to be specified. The Hamiltonian (5.9) is recovered when U(x) =
$2?. Typically,
U(,T) = VLJ(]. + ,T),

so that the interactions with the transverse oscillators are similar than the interactions in the
chain. We still consider the distribution of stiffnesses k; and coupling constants ; given by (5.15).
Figure 5.12 presents numerical results obtained for a strong shock (u, = 1). Satisfactory shock
profiles are obtained with N = 8 additional degrees of freedom only.
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Fig. 5.12. Displacement profiles (Left) and velocity profiles (Right) for a strong shock (u, = 1) for the
deterministic model (5.9) using a nonlinear coupling, with N = 8, the parameters of the spectrum (5.15)
being k=1, 2 =10, « =5 and A = 0.2.

5.1.3 The stochastic limit

The model developed in the previous section shows how the introduction of a certain number
of transverse degrees of freedom leads to compression profiles very different from the purely one-
dimensional results. In particular, some energy relaxation is possible due to the heat bath formed
by the transverse oscillators. However, even when the heat bath is nonlinearly coupled, several
degrees of freedom have to be introduced and numerically resolved for each longitudinal degree of
freedom. Therefore, it is interesting to replace the deterministic heat bath with many oscillators
by its average action. Mathematically, this amounts to replacing the deterministic system (5.14)
by a stochastic differential equation (SDE) of lower dimension. The only remaining unknowns are
the positions of the particles (..., x,(t),...).
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Limit of the dynamics (5.14) when N — oo
Limit of the dissipation term

The memory kernel can be seen as a Riemann sum. The limit is then:
Ky(t) =X ZF w;) cos(w;t)(Aw); — )\2/ F2(w) cos(wt) dt = N2Ko(t) (5.25)
=1

when N — oo, the convergence holding in L[0, 7], T > 0.
The special choice (5.15) implies K(t) — e~ ** when 2 — oo in L>°(R, ). The memory kernel
is then exponentially decreasing.

Limit of the fluctuation term

The limit N — oo gives the convergence of the noise term in a weak sense in C[0,7T] toward a
stochastic integral:

N () — M2 (t) =

n

/ f(w) cos(wt)D dW™! + f(w)sin(wt)D dW ™2 (5.26)

VBy

where W1 W2 (n € Z) are independent standard Brownian motions.
Limit of the equation

Formally, a stochastic integro-differential equation (SIDE) is obtained in the limit N — oo :

Zn(t) = V' (zpia " Tn) — V' (xy — xp_1)

5.27
+/\2/ Ko(s)(dns1 — 280 + dn_1)(t — 8) ds + M (1), (5:27)
0
with
2
Kq(t) = f2(w) cos(wt) dw,
0
(¢ \/ﬁ_ / f(w)cos(wt) DAW™ + f(w)sin(wt) D dW ™2,
y
and the fluctuation-dissipation relation
1
E(r? @) (r?(s)T) = ﬁ—Kg(t —s)DDT, (5.28)
y
where 7% = (..., r$ ...). The way the solutions of (5.14) converge to the solutions of (5.27) can

be made rigorous by a direct adaptation of the results of [199]: the convergence of 2 solution of
(5.14) to m, solution of (5.27) is weak in C?[0,7T] (in the sense of continuous random processes,
see below).

The SIDE (5.27) can be rewritten as a stochastic differential equation (SDE). In the limiting
case {2 — oo, a Markovian limit can indeed be recovered when considering an additional variable
[199]. Notice that when 2 — oo, Ko(t) — K(t) = e *'. Denoting Q = (..., Tn—1,Tn, Tnt1,--- ),
P = ( . sznflajnajnJrl; RPN ), V(Q) = Z;.Lo:—oo V(.InJrl —.In) and R = ( . ,Rnfl, Rn, Rn+1, RPN ),
A = /a€, the previous SIDE (5.27) is equivalent to the following SDE:
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th - Pt dt,
AP = (Ry — VV(Qy)) dt, (5.29)
dR; = —a(R, + EDDT P,) dt + a\/26-1€ DdW,,

where W is a standard Brownian motion, and with initial conditions r,,(0) ~ A3~/2 N(0, 1).

The limiting equation (5.26) shows the main effects of the heat-bath interaction: The pure 1D
equation (5.3) is supplemented by two terms, one dissipation term with an exponentially decreasing
memory, and a random forcing. Therefore the heat bath acts first as an energy trap, absorbing
some of the energy of the shock when it passes. This energy is then given back to the system
through the random forcing term to an amount precised by (5.28). This allows the equilibration
of the downstream domain.

Proof of convergence

The proof of the convergence of the solutions of (5.14) to the solutions of (5.27) can be done
as in [199], by a straightforward extension to the multi-dimensional case (in order to deal with
convergence of sequences). Denote by xY the solution of (5.14) for a given number N of transverse
variables. We set dz)) =z, ; — zY. The solution of (5.27) is noted z,,. We set A = 1 to simplify
notations. The extension to more general values of A is straightforward. The space of real sequences
in noted H = RY, and is equiped with the usual {*-norm. For a sequence z = {zn} € H:

|Z|l°° = sup |Zn|
nez

The space ‘H endowed with this norm is then a separable complete metric space.
Counsider the array of spring lenghts

and the array of random forcing terms

1 .
GN T‘N

=™

We similarly define @ and G for the sequence {x.,}.

Recall that the linear operator D, acting on sequences z = {z,} € H, is defined by Dz =
{Dz,} = {2z, — zn_1}. It follows | DD z|; < 4|2|;~. Equation (5.14) can be rewritten as (recall
A=1)

¢
Qn = DDTF(Qy) +/ Kn(s)DDTQn(t — s) ds + DGy (t).
0
Introducing Ky (t) = fot Kn(s) ds and integrating the convolution term by parts, (5.14) becomes
¢
QN — (DDTF(QN) +/ Kn(s)DDTQn(t — s) ds) = DGN(t) — DDTQN(0)KN ().  (5.30)
0

This equation can be rewritten under a fixed point form as

(Id + Ry)Qn(t) = b (t). (5.31)
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As F is Lipschitz, ||[Ry]|| is small for small 7. An usual Picard argument gives the existence
and uniqueness of Qn € C([0,T],’H) solving (5.31) for T small enough (see [148], Section 12,
for an analogous proof). Standard results also give the continuity of Qn on Ky € L'[0,T] and
Uy = DGx — DDTQn(0)Ky € C([0,T],H). The mapping (Ky,Ux) — Qu is then continuous
from L'[0,T] x C([0,T],H) to C([0,T],H) with the corresponding norms.

The convergence of Ky in L'[0,T] is straightforward, and implies the convergence of Ky in
L'[0,T]. The convergence of Uy results from the convergence of Ky € L[0,7] and from the
convergence of Gy to G (in a way to precise). We refer to [125], Section VI.4., Theorem 2.
Considering the collection of continuous real-valued stochastic processes G with values in ‘H
(which is a separable complete metric space), we have to show:

(i) The finite-dimensional distributions of G weakly converge to those of G, which is a
continuous process.

(ii) A tightness inequality of the form
Vi, t+ue[0,T], E[|Gn(t+u)—Gn®)ix] <Clul.

Then it follows Gy = G in C([0, T], H)-weak.

These two points are straightforward generalizations of the proof in [199] (in the case of non-
random pulsations w;) when extended to sequences with values in H, giving the convergence
Uy = U in C([0,T], H)-weak. The convergences of Ky to K in L'[0,T] and Uy to U in C([0, T], H)
in a weak sense then give the convergence of QN in C([0,T],H) in a weak sense. Therefore, Qn = Q
in C2([0, T], H)-weak. This implies the convergence in a weak sense for all the components of Q y
for T small enough.

For general t, consider e~7'Qy for ~ large enough, and rescale appopriately the operators
appearing in (5.31). The proof then follows the same lines.

Numerical implementation
The SDE (5.29) is of the form
dX; =Y (Xy) dt + XdWy, (5.32)
where W; is a standard Wiener process, with the notations

000
2
Xt = (Qt, Pt, Rt), Y(Xt) = (Pt, Rt — VV(Qt), —OéRt + afDDTPt), Z = —6 0 0 0

00Id
The integration is done using the following splitting of the vector field Y:
Y (X) = YNewton(X) + YPr(X) + Yrr(X) + Yrp(X),

with Yp(X) = (0,R,0), Yr(X) = (0,0, —aR + aéDDTP) and Yxewion(X) = (P,—VV(Q),0).

Denote also by ¢4 ion, @2t and ¢4 the associated numerical flows. When X = 0, a consistant

numerical scheme is
gAt _ §At/2 Q5IA3t/2 o PAt 0 BA/2 o A2

R Newton P R
The flow ¢&?.,,. 18 approximated by the Velocity-Verlet scheme @4 . . The flows ¢4t and ¢4t

can be analytically integrated, so that:
3" (Qo, Po, Ro) = (Qo, Po + RoAt, Ry).

PR (Qo, Po, Ro) = (Qo, Po,e "Ry — £(1 —e 2"\ DDT Ry) .
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The random noise is added at the beginning and at the end of the time step. Denoting by ¢ the
index of the particlesn and by n the integration index, the following scheme can be proposed:

n 1 — e—aAt
rl +1/2 _ e—aAt/QT;L _ 5(1 _ e_aAt/2)(DDTpn)i + ag( ﬁe )(DZn)“

n At At o,
pi +1/2 :pzz_ —VV(QH)‘F 77,7; +1/2,

gt =g+ AP (5.33)

n At At o,

p;ﬂrl = +1/2 7v‘/(cgn—i-l) + 77} -1-1/27

Pl qmadt/2, /2 gy _ gmadt/2) (DT pntly, 4 (1 — e—adt) Dz,

T 2 g ﬁ (2]

where {Z"} ey = {(..., 2 ... ) nen and (2])neniez are iid. standard random gaussian va-
riables.

Numerical results

Profiles obtained with a compression at fixed piston velocity u, for one realization of (5.29)
are presented in Figure 5.13, as well as averages obtained over 100 realizations (see Figure 5.14).
Although the profiles show sharp transitions, the temperature (given by fluctuations in velocities
or positions downtream the shock front) is not correct since it is the same as before the shock. This
is contrast with simulation results obtained with a few transverse oscillatory degrees of freedom.
We will see in Section 5.2 how to maintain changes in the temperature across the shock interface,
as observed in all-atom simulations.
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Fig. 5.13. Displacement profiles (Left) and velocity profiles (Right) for a single realization of a sustained
shock compression at u, = 1 for (5.29), the parameters being o = 10, 372 = 0.01 and £ = 1.

5.1.4 Extension to the reactive case

We extend here the one-dimensional stochastic model for shock waves to the reactive shock
waves, where chemical reactions are triggered when the shock passes. The exothermicity of these
reactions first enhances, then sustains the propagation of the shock. The physical theorey behind
these reactive waves is the ZND theory [103,343] of detonation waves, which decomposes the wave
into three regions: an upstream unperturbed region, a shock front (or reaction zone) of constant
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Fig. 5.14. Average over 100 realizations with the same conditions as for Figure 5.13.

width where chemical reactions happen, followed by an autosimilar rarefaction wave. To give some
orders of magintude for real materials, the width of the reaction zone ranges between several
micrometers to several millimeters, and the speed of the shock front may reach several km/s.

Modelling of reaction waves

We consider a reactive potential in the vein of [361]. To this end, an additional parameter r,,
is introduced for each interatomic bond Az, = z,11 — x,, and models the reaction rate of the
zone between x,41 and x,. The interaction potential is also a function of this additional variable,
and since the reaction is exothermic, the ground state of the reaction products is lower than the
ground state of the reactants. We therefore consider the following interaction potential:

Vi(z) = (1 + Kr)Viy(z) — Vii(de) = ! +8KT <(1 —1—1:5)4 @ fx)Q) — VL3(de). (5.34)
The potential stiffens as the reaction goes on. The reaction starts when enough energy has been
stored in the media, for example when the media is compressed enough (a less naive ignition of the
reaction is proposed in Section 5.2.3). For the bond Ax,,, this corresponds to the first time ¢* such
that Az, < d., where d. < 0 is a parameter (critical distance). By construction, the potential is
continous at x = d.. For t > t*, the kinetics of the reaction is assumed to be

drn
dt

dry,

=D if 0<r,()<1,  —2
(t) if 0<r,(t) < 7

(t) =0 otherwise ,

or possibly
dry,
—(t) = D(1 —r,(t
" () = D(L (1)
for a first-order kinetics. The bond Ax,(t) is then described by the potential V,. (), using (5.34).
The exothermicity of the reaction is ensured provided d. < 0, and is parametrized by K and d..
Figure 5.15 presents an example of modification of the potential when a reaction occurs.

Modification of the parameters in the generalized Langevin equation

The derivation of (5.29) uses parameters describing some absorption spectrum. However, as the
chemical reaction goes on, the mechanical properties of the media evolve, and so, the parameters
of the absorption spectrum should evolve as well. Since the interaction potentials get stiffer by
a factor 1+ Kr,, we arbitrarily modify the distribution of the pulsations {w}, and replace w?
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Fig. 5.15. Modification of the potential during the reaction (initial potential: upper curve, final potential:
lower curve). Note that the equilibrium position is preserved, but the ground state is lower.

par (1 + Kr,)w?. analogously, « is replaced by a+/1+ Kr, and X by \\/1 + Kr,, while keeping
the {7;} unchanged.

Numerical results
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Fig. 5.16. Sustained compression of reactive shock waves. Displacement profiles (Left) and velocity
profiles (Right) for a single realization of a sustained shock compression. The parameters are the same as
for Figure 5.13, with K =1, d. = —0.3, D = 0.025 and a first-order reaction kinetics.

Profiles reminiscent of classical ZND profiles are recovered, with shocks stronger than in the
non-reactive case and propagating faster (see Figure 5.16). The shock is also followed by a relaxa-
tion wave. When the piston is removed, a steady-state shock front is finally obtained, which is
not weakened by the downstream rarefactions (see Figure 5.17). However, the material returns to
equilibrium after some relaxation period, whereas a fluid behavior is expected when detonation
takes place (the order in the material being completely lost because of the large energy release).
Therefore, the 1D model, even augmented, is not convenient to model detonation of real materials.
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Fig. 5.17. Same parameters as for Figure 5.16, a compression time Tcomp = 20 and a relaxation

time Tielax = 1500.

5.2 A reduced model based on Dissipative Particle Dynamics

The reduced model (5.29) obtained in Section 5.1 is reminiscent of DPD models since the
friction depends on the relative velocities of the particles. However, the temperature effects are
not correctly taken into account. Let us emphasize at this point that keeping thermal fluctuations
in the microscopic models is of paramount importance to obtain the right relaxation profiles behind
the shock front [162, 323].

It is not possible to resort directly to the classical DPD models to simulate shock waves.
Indeed, the dissipative and random forces arising in DPD are linked through some fluctuation-
dissipation relation, using a local temperature. But when a shock wave passes, energy is transfered
to the material, and the local temperature changes. Therefore, it is necessary to consider DPD
models where the fluctuation-dissipation relation is not fixed a priori, but evolves depending on
the physical events that have happened. DPD with conserved energy [15,95] are such models.

DPD models, introduced in [170], have been put on firm thermodynamics ground in [98].
Some derivations from molecular dynamics where proposed in a simplified case in [94], the more
convincing general derivation being at the moment [106]. These studies motivate the modelling of
the mean action of the projected degrees of freedom through some dissipative forces (depending
on the relative velocities of the particles, so that the global momentum is conserved), balanced
by some random forces. Ergodicity of the dynamics can be shown in some simplified cases [307].
Therefore, DPD dynamics are well established and motivated reduced models.

Coarser models such as SPH (Smoothed particle hydrodynamics) [217,246] are routinely used to
simulate shock waves at the hydrodynamic level, and can also be formulated in a DPD framework
(the so-called Smoothed dissipative particle dynamics [96]). However, these models require the
knowledge of an equation of state Ei,; = Fint(S, P) giving the internal energy as a function of
entropy and pressure, for instance. Therefore, SPH-like models cannot be considered when the
coarse-grained model is still at the microscopic level.

We present in this section a dynamics strongly inspired by those models, and show that it
provides an interesting mesoscopic model for the simulation of shock waves (see Section 5.2.2
and [324]). It also opens the way for an extension to detonation waves, where exothermic chemical
reactions are triggered as the shock passes, with the shock sustained and enhanced through the
energy released (see Section 5.2.3 and [222]).

5.2.1 Previous mesoscopic models

We review here some mesoscopic models [163,326] for shock waves, obtained through a coarse-
graining from microscopic (all-atom) models. The model from [163] is more empirical and has been
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derived to recover certain properties of polycrystalline materials. One particle stand for a grain
in this case, and some assumptions are made on the mechanical behavior at grain boundaries.
The model from [326] considers the elementary coarse-graining, in which a complex molecule is
replaced by a single fictitious particle with internal degrees of freedom (internal energy).

In both [163,326], the dissipation forces acting on the i-th particle are of the form —v(v; — ;),
where v; is a local average of the velocities around the particle. We will focus in the sequel on
the model [326], in which the Hamiltonian equations of motions are then perturbed by additional
terms:

dg; Di
= =2\ VVL (q),
dp;

i _
=-VV,.(q) — —(v; — v;).
dt 4 (9) ml( i i)
It is assumed that the variations of mechanical energy are exactly compensated by the variations
of internal energy. Associating an internal energy ¢, to each particle (see Section 5.2.2), it follows

N N
1
dFot = dBmec + E._l de; = d [§pTMp + V(q)} + 2—1 de; = 0.
Therefore,

dEi

o ni(vi — ;) - vi + x:| VVq, (@) .

The authors of [326] then argue that this energy transfer is not Galilean invariant (in view of the
first term on the right hand side in the above equation: v; — v; is Galilean invariant, but v; is
not), even if the dynamics is. To remedy this problem, they restrain themselves to dissipation
on the position variable ¢ only, and do not consider dissipation in the momenta (n; = 0). A
stable dynamics is obtained by considering a coefficient y; depending on the difference between
the internal and the external (translational or mechanical temperature), and a Berendsen-like
feedback. The resulting dynamics is not completely satisfactory from a physical viewpoint since
it has a structure very different of Newton’s equation. It is also not clear whether an invariant
measure exists.

It is however possible to preserve the Galilean invariance by considering pair friction forces,
depending on the relative velocities of the particles as is done in DPD models. In this case,
the energy exchanges can indeed be symmetrized, and the resulting process is totally Galilean
invariant. The resulting dynamics, of DPD form, are physically more natural then the damped
dynamics of [326].

5.2.2 A reduced model in the inert case
Description of the model

All atom simulations are performed resorting to Newton’s equations of motion. The correspon-
ding microscopic systems are deterministic, Galilean invariant, and have some invariants, such as
the total energy. While stochastic models are natural models to describe systems with reduced
dynamics (since the information lost by the averaging process is modelled by some random pro-
cess), it is however not clear that such a stochastic model can reproduce, even in a mean way, a
deterministic dynamics with invariants.

It turns out however that DPD models are stochastic dynamics which are Galilean invariant
and preserve total momentum. Some refinements were also proposed in order to conserve the total
energy of the system, a model called 'DPD with conserved energy’ (DPDE [15,95]).

We consider a system of N particles in a space of dimension d, described by their positions

(g1,-..,qn) and momenta (p1,...,py), with associated mass matrix M = Diag(my,...,my),
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interacting through a potential V. We assume for simplicity that the interactions between the
particles are pairwise and depend only on the relative distances, so that V(q) = >_,_; V(|lg: — q;])-
Denoting by T the reference temperature and 3 = 1/(kgT), the DPD equations read [98,170]

o (5.35)
2 .
dpi = Z —VV(Tij) dt — ’yXQ(Tij)(’Uij . eij)eij + %X(Tij)dwij €ij,
i

with v >0, rij = |¢; — g5, €ij = (¢ — q5) /735, vij = B- — %7 x a weight function (with support in
[0, 7.] where r. is a cut-off radius), and where W;; are 1-dimensional independent Wiener processes
such that W;; = Wy;.

Notice that, since the dissipation term depends only on the relative velocities, the dynamics are
globally Galilean invariant. Besides, the total momentum is preserved. However, the total energy
fluctuates, so that some refinements in the model are required. Relying on the general DPD picture,
DPD with conserved energy were introduced in [15,95]. The idea is that the variations of the total
mechanical energy H(q,p) = %pTMp + V(¢) through the dissipative forces are compensated by
some reservoir energy variable attached to each particle. Introducing an internal energy ¢; for each
particle, the evolution of the internal energies are constructed such that

dH(q,p) + Zdei = 0.
i
An associated entropy s; = s(¢;) and an internal temperature can be also defined for each particle

aSi -1

For example, when the internal degrees of freedom are purely harmonic, T'(¢) = ¢/C,, where
C, is the specific heat at constant volume. More generally, this microscopic state law should be

as

computed using all-atom MD or ab initio simulations.

The model we counsider is strongly inspired from DPD models with conserved energy [15,95],
so that all the properties of the usual DPD models with conserved energy can be straightforwardly
transposed to this case. The derivation of the model is done as in [15,95]. The main differences
here is that (i) we present the dynamics for particles of unequal masses, and (ii) do not project
the dissipatives and random forces along the lines of center of the particles. The generalization
to particles of unequal masses is done by considering dissipation forces depending on the relative
velocities, and not on the relative momenta. This is important if mixtures composed of (say) two
molecules are simulated, and each molecule is replaced by a single particle, whose mass is the total
mass of the molecule. The dissipative and random forces could be projected as well to conserve
angular momentum, but we restrict ourselves to the simpler and more general case when these
forces are not projected, since we are only interested in Galilean invariance, and have in mind an
extension to reduced models for reactive shock waves, which do not necessarily preserve angular
momentum, even if the dissipative and random forces are projected. Such a model is also closer
to the Langevin picture of the previous reduced models for shock waves [163, 326].

We finally neglect the thermal conduction here, since the contribution to the evolution of the
internal energy arising from the dissipation forces is expected to be dominant in the nonequilibrium
zone near the shock front. Heat diffusion plays a role only after the relaxation towards equilibrium
in the shocked zone is achieved.

The equations of motion for the system read:
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dqi = dt
(5.36)
dp; = Z —VV (rig) dt = ~igx* (rij Joig dt + 03X (rig) AW,

J, J#i

where x is still a weight function (with support in [0, 7] where 7. is a cut-off radius), and W;; are
now d-dimensional independents Wiener processes such that W;; = —Wj;. The friction 7;; and
the fluctuation magnitude o;; will be precised below. As for DPD models with conserved energy,
the dynamics is postulated in a manner such that the total energy E(q,p,€) = H(q,p) + >, € is
preserved. The evolution of dH = — )", de; is inferred from (5.36) using It6 rule (see [95] for more
details). Therefore, we consider the following dynamics:

mg
dpi = Z —VV(TZ'J') dt — ’Yin2 (Tij)vij dt + Uin(Tij)dWij;
J, g (5.37)
1 do? (1 1
de; = 5 Z; (XQ(Tij)%’jUin - (E + m—J) Xz(Tij)> dt — oij x(rij)vij - dWij,
Js JFT

with the fluctuation-dissipation relation [15,95] :
Oij =0, Yij = U26ij/27 6;1 = QkB(T;—l + Tj_1)71

It is then easily checked that measures of the form

dp(q,p,€) = e PH(@P) oxpy (Z %61) — ﬁei> O0p—p, 0p=p, dqdpde (5.38)
B

ZpE -

are invariant [15]. This measure expresses the fact that the translational degrees of freedom are
distributed according to a classical Boltzmann statistics, whereas the internal energies are distri-
buted according to some free energy statistics. The total momentum P, = . p; and the total
energy Ey = E(q,p, €) are also preserved by construction.

If the dynamics is ergodic for the measure (5.38) and in the limit N — 400, it holds

kg (Tiin) = 71, k(T )t =871,

with

A N
Tkinzm;E, ; T

and (A) = [ A(q,p) p(q,p, €) dgdpde. Indeed, as T; ' = s'(e ) nd assuming s(e) — —oo when € —
s(e)/e — 0 when € — +oo (which is the case when s(e) = C, Ine),

oy [l )

ksT; +oo ;
b / exp <M — ﬂel) de;
0 ks

Notice that these relationships provide estimators for the local thermodynamic temperature
B~ 1/kp through the arithmetic average kinetic temperatures, and the harmonic average inter-

1nt
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nal temperatures. Let us emphasize that a straightforward arithmetic average over the internal
temperatures would give wrong results (the corresponding estimator being biased).

A deterministic version of the model

We intend here to introduce a deterministic version of our model, which allows to bridge the
gap between a previous mesoscopic deterministic model [326] (see also Section 5.2.1) and the DPD
framework for shock waves. The model proposed in [326] introduces damping forces on the position
variables directly (and not on the momentum variables as would be expected) in order to preserve
the Galilean invariance. Indeed, the damping terms in the momentum variable are considered to
be of the form —v(v; — v;), where v, is a local average of the velocities around the particle, which
makes the Galilean invariance of the dissipated energy difficult to preserve. If on the other hand
the dissipation term in the momentum variable implies only pairwise velocity differences as for
DPD models, the Galilean invariance follows immediately. The following equations of motion then
mix the deterministic equations of motion of [326] and the DPD philosophy:

dqi dt
Tcxt T_ir_lt
dpi Z VV TU %w(rij)vzj dt,
J J#i . .
Tcx Tln
de; = = Z — (rw)v dt,
J J#

where Tfj"t is the average temperature in the kinetic degrees of freedom of particles ¢ and j (for
example, T = (TP 4+ T9) /2 with T = 2p?/kpdm; the kinetic temperature associated
with particle 7) and Ti’“t is the average internal temperatures of particles 7 and j (for example,
Tlnt (Tint —|—T”’t)/2) The function w is still a weighting function, and ~ determines the strength
of the coupling.

Notice that the dissipation term is in fact a dissipation term only when Tf;"t > Tiij’f‘t, and an
anti-dissipation term otherwise (and so, is a Nosé-like feedback). This ensures that the internal
and external (kinetic thus potential terms) energies equilibriate in all cases. However, the thermo-
dynamic properties of such a model are less clear to state than for the previous stochastic model,
and so, we stick to the model (5.37).

Numerical discretization

We use splitting formulas inspired from [305,306]. Recall that the integration of the equation of
motion (5.37) is not straightforward since the dissipation terms depend on the relative velocities.
We decompose (5.37) into elementary SDEs, and denote by ¢a: the (stochastic) flow map for a
time At. The elementary SDEs are the usual deterministic Newton part and the dissipation part,
which read respectively

dp; = —vij x> (rij)vij dt + ox(ri;) dWi;,
dg= M"pdt, o dp; = —dpi,
{ q p 2 )
277'Lj )

and Vi < j,

dp = —VV(q) dt 7 dei= —4d (&
dﬁj = dei.

Denoting by ¢Newton,ar and qﬁé’ijss A (1 <4 < j < N) the associated stochastic flow maps, an

approximation of ¢, is

o ¢N71,N

1,2
bar ~ ¢diss,At © diss, At © d)Ncwton,At-
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The Newton flow ¢newton, At is approximated using a Velocity-Verlet scheme. For an approximation
Gl A (1< j) of the dissipation part, we first update the velocities at fixed internal temperatures

using a Verlet-like algorithm as proposed in [306]. The energy is then updated as

n n—+1 n n
ntl_n _ ikl _ 1<<pi“>2 ;) en)? (W)

¢ 2m1 ij 27’)’LZ ij

i € =€ € = 5

so that the total energy is indeed conserved by this step. Of course, this integration scheme could
be refined, especially the dissipation part.

Application to shock waves

Some numerical simulations of DPD models with conserved energy where proposed in [16,
282], but were concerned only with the computation of thermal conductivities. The corresponding
nonequilibrium state