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Sampling: The metastabllity issue,
and a possible cure




Description of the system

» Configuration = € D, distributed according to 7(dz) = Z~1 f(z) dx

» Statistical physics:
s positions ¢, momenta p = Mg
s Microscopic description of a classical system (/N particles):

(Q7p):(Q17'“7QN7 p17'°°7pN) €D

s Forinstance, D = M x R3Y with M = R3N or T3V

» Hamiltonian (all the physics is contained in V)

N

H(g,p Z

7QN)

» Example: pair interactions V(qy,....qn) = > o(l ¢ — ¢ |)
1<i<j<N
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Extracting macroscopic properties: Statistical physics

# Given the structure and the laws of interaction of the particles, what are
the macroscopic properties of the matter composed of these particles?

» Equilibrium thermodynamic properties (pressure,...):

(4) = /D A(q, p) du(q, p)

# |Integral in a high dimensional space...

# Choice of thermodynamic ensemble = choice of probability measure du:
s microcanonical (NVE, constant energy) ;
s canonical (NVT, “constant temperature”) : Boltzmann measure

1

ZNVT

dunyt = exp(—fH (q,p))dgdp, B =1/(kgT)

s Other choices are possible (grand-canonical, constant pressure,. . .)

# Certain properties can not be computed this way (free energy, entropy)!
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Sampling a Gibbs measure: Overdamped Langevin dynamics

#» SDE on the configurational part only (momenta trivial to sample)
dqt = —VV(qt) dt -+ O'th,

where (W,),>¢ is a standard Wiener process of dimension d N

# Invariance of the canonical measure

dr(q) = 7—1,=BV(q) dq, 7 / e~ BV I(a) dq
M

2
If steady state of Fokker-Planck equation 0;¢; = div (vat + %th>

» Fluctuation/dissipation relation o = (2/3)!/?

# Invariance + irreducibility (elliptic process):

1 /7
lim —/ A(qy) dt:/ A(q)dr a.s.
1" Jo M

T'— o0
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Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

" =q¢" — AtVV(¢") + oVALU"

where U™ ~ N(0,1) i.i.d.
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Projected trajectory in the z variable for At = 0.01, 5 = 6.
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Metastability (2)

» Although the trajectory average converges to the phase-space average,
the convergence may be slow...

» Slowly evolving macroscopic function of the microscopic degrees of
freedom

# Two origins : energetic or entropic barriers (in fact, free energy barrier)

y coordinate
y coordinate

X coordinate

X coordinate

(@) Entropic barrier. (b) Associated free energy.
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Metastability (3)

# Assume the free energy F' associated with the slow direction x has been
computed, and sample the modified potential V(z,y) = V(x,y) — F(x).

o P
o o

y coordinate
X coordinate

| | | | | | | ] I T T T T T T T T T |
15 -1 05 o o5 1 1is 0.0 2000 4000 6000 8000 10000
x coordinate Time

Projected trajectory in the z variable for At = 0.01, 8 = 6.

o Many more transitions! The variable z is uniformly distributed.

» Reweighting with weights e~#7(®) to compute canonical averages
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Computation of free energy differences (1)

» Absolute free energy

1
F=—--lnz,  Z-= / e PE@) qy
B D

# Motivation (Gibbs, 1902):
s canonical measure u(dqdp) = Z exp(—3H(q,p)) da dp
s start from the thermodynamic identity ' =U — TS

s average energy U = /H,LL

s entropy S = —kp /Mlnu
# Can be computed for ideal gases, and solids at low temperature

# Usually only free energy differences matter!
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Computation of free energy differences (2)

» Alchemical transition: indexed by an external parameter X\ (force field
parameter, magnetic field,...)

e PELE) g
F(1) - F(0)=-8""'In /D

/ e PE(T) g
D

Y

Typically, £y = (1 — M) Ey + AE;

# (given) reaction coordinate ¢ : D — R™ (angle, length,. . .):

/ e PE@) 55(:1:)—z1 dx
D

F(z1) — F(z) =—-p""In

Recall ¢ (). (dx) = |VE(z)| " ox, (dz), submanifold X, = {2}
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Cartoon comparison of the methods

>> (( D

(a) Thermodynamic integration

(C) Nonequilibrium switching dynamics (d) Adaptive dynamics
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Mathematical classification (april 2008)

Free energy perturbation Homogeneous MCs and SDEs
Projected MCs and SDEs
Nonhomogenous MCs and SDEs
Nonlinear SDEs and MCs

Particle systems and jump processes

Thermodynamic integration
Nonequilibrium dynamics

Adaptive dynamics

b bl

Selection procedures
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Adaptive dynamics: The example of
ABF




Adaptive dynamics (1)

o Adaptive methods (Adaptive biasing force,® nonequilibrium metadynamics,” etc)
s General framework®

s Convergence proof in a limiting case®

» Simplified setting: A € R/Z, Va(q) =V (q, A)

dgr = =V oV (q, M) dt + /26~ dW/
d\t = —O\V (qs, A¢) dt + /2871 thA

so that F'(A\2) — F(\1) = =3 '1n feq(&) , With P, (A) = / e AV(@N) qq

eq\"1 D

?Darve and Pohorille, J. Chem. Phys. (2001)

PBussi, Laio and Parrinello, Phys. Rev. Lett. (2006)
“T. Leliévre, M. Rousset and G. Stoltz, J. Chem. Phys. (2007)

4T. Lelievre, M. Rousset and G. Stoltz, Nonlinearity (2008)
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Adaptive dynamics (2)

» Metastable sampling in the X variable. .. Introduction of a bias in the
dynamics of )\ to force the exploration

# The ideal case would be

[ dg = =V V(g M) dt+ /2871 AW
9 d\i = =0\ [V(gr, \e)—F(N\)] dt + /2671 dW
| O\F(z) = Eeq(é’AV(q, )\))

# A natural approximation is to use the current estimate of the force

( dg = —V¢V(qi, M) dt++/2671dW{
< A = =0\ [V(qe, ) Foins(t, \)] dt + /25~ dW
| O\Fiaslt,2) = E(@AV(qt,z))
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General case: some geometry...

# Additional terms related to the fact that |V¢| # 1

® Reaction coordinate case

75 (dz) = </ Z-te PE@) \e(2)| 7t O5(2) (dw)) dz = e PFE) 4z,
3(z)

» Mean force VF(z) = f(z) 7 (dz | z) with
3(z)
oy = TELIVE) 1, (96 )
VE()|? B \|VE(x)]?
( dg, — —V(V—Fto£>dt+ %th

#» Dynamics <

0.F(2) = E(f(@)|&a) =)
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Adaptive dynamics (3)

# In practice, the following conditional expectation is required for the update
of the bias:

/8>\V q,\) ¥i(q, A) dg

E(0\V (g, A)
(A q ) /¢tQ7

# There are two (complementary) strategies to compute it:

s using a large number of replicas (¢, \i™);—1.... s of the system

which all contribute to the same free energy profile

| M

e :

~ M 25 (g7 A= (a0
i=1

s resorting to some time average

1 t
Vi(q, \) ~ T/ 0% (gs,xe)—(q,\) S
t—T
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Adaptive dynamics: convergence

# Adaptive biasing force = nonlinear PDE on the law (g, A):

[ Oy = div (VY = Fras (1, ) + 87108,

< / a)\v Q7 wt(cb )
aAFbias(t )\)

\ | /wt q, A

» Simple diffusion for the marginals 0,1, = Oxx 1,

# Entropic method: decomposition® of the total entropy
H (s | 1)s0) = / In ( P ) 1 INto @ macroscopic contribution

MXT o0
(marginals in \) and a microscopic one (conditioned measures)

» Convergence of the microscopic entropy provided some uniform
logarithmic Sobolev inequality on the conditioned measures holds

2 T. Lelieévre, M. Rousset and G. Stoltz, Nonlinearity 21 (2008) (merci Felix Otto)
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Application: Solvatation effects on conformational changes (1)

. . . (r —rg —w)? ’
# Two particules (q1,q2) interacting through Vs(r) = h |1 — 2
# Solvent: particules interacting through the purely repulsive potential
o\ 12 o\6 . .
VWCA(T):4€ [(;) — (;) ] +eifr <rg, 0ifr > rg
# Reaction coordinate £(q) = @ —2613 —0 compact state £-1(0),
stretched state ¢71(1)
s = = - =
=
. s . =
§ = & = &
< . = s s
s © S & = =
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Application: Solvatation effects on conformational changes (2)
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Blue: without biasing term. Red: adaptive biasing force.
Parameters: h = 10, density p = 0.250 2, w=1,=3,¢=1,7=0.1
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Selection strategies

» Add a selection term in the dynamics 0y = L, ¢ + (SW — ?t,w)w
A5 (2)

» Forinstance, S; ,¢(2) = c(t)

Ohy(N) = (B~ +c(t)) Ayt

(z) leads to an enhanced diffusion

0.5

0.4+

0.3+

Escape rate
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0.0 0.1 0.2 0.3 0.4
Time

Transition rates with increasing selection strenghts.
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Application to Bayesian statistics:
sampling mixture models




Description of the model

» Distribution of Ng.t, Values approximated by a mixture of N Gaussians

® Parameters of the mixture

— (Q17 e N1 U1y s UN, VT, .. ,’UN) < SN—lx[MmimMmax]Nx[’Umina —|—OO)D
N—1
where Sy_; = {(ql,---,qwl) 0<q<1, ) @< 1}
i=1

» Weightqy =1 - V"1,
» Corresponding mixture f(y|z) = Zqﬂ/—exp( 5 —(y — i) )

» Likelihood I(y =) = || f(uil=).
» |Initial conditions: equal weights, means and variances for the gaussians
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Description of the prior

o Random beta model® for mixtures: 3 ~ I'(g, h) is an additional variable

R2
(Q17-'°7QK)NDiriChletK(17°'°71)7 :ukNN<M7 I) ) kaF(aoﬁ)

o Parameters: M is the mean of the data, the range

R = . — i sanda=2,g=0.2and h = 100 R?
1§im§?v}§ata y 1§7"r£}\rilata y “ g g/(a )

#» Monte-Carlo dynamics: Metropolis random walk with gaussian proposals
characterized by (o, 0,,0.,03)

# Binning procedure: mean force and bias in bin (z;, z; 1)

Z f(%) 1Z¢§€(J¢j)§2i+1 i—1 1
e = A= 8 E (ke )
Z 1z@-§£(fﬂj)§zz'+1 =
§=0

2S. Richardson and P. J. Green. J. Roy. Stat. Soc. B, 59(4):731-792, 1997.
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Fish data
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Data value Iterations

Left: Fish data, and a possible fit using the last configuration from the

trajectory plotted in the right picture.
Right: Typical sampling trajectory, gaussian random walk with

(04, 0u,04,08) = (0.005,0.025,0.05,0.005).
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Fish data: biasing ¢,
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Iterations q

Left: Typical sampling trajectory when the reaction coordinate is ¢ .
Right: Associated biasing potential at the end of the simulation.

BigMC seminar, IHP, june 2009 —p. 26/32




Fish data: biasing u
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Left: Typical sampling trajectory when the reaction coordinate is .
Right: Associated biasing potential at the end of the simulation.




Fish data: biasing 5
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Left: Typical sampling trajectory when the reaction coordinate is (.
Right: Associated biasing potential at the end of the simulation.
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Hidalgo data
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Left: Hidalgo data, and a possible fit using the last configuration from the

trajectory plotted in the right picture.
Right: Typical sampling trajectory, gaussian random walk with
(6q,0u,04,03) = (0.001,0.05,0.1,0.005).
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Hidalgo data: biasing ¢;
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Left: Typical sampling trajectory when the reaction coordinate is ¢ .
Right: Associated biasing potential at the end of the simulation.
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Hidalgo data: biasing
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Left: Typical sampling trajectory when the reaction coordinate is .
Right: Associated biasing potential at the end of the simulation.
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Hidalgo data: biasing (3
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Left: Typical sampling trajectory when the reaction coordinate is (.
Right: Associated biasing potential at the end of the simulation.
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