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Why using stochastic optimization?

We aim to tackle uncertainties in Energy Management System.

Problem: we do not know in advance the uncertainties, common in the
management of energetical systems:

Electrical demands

Hot water demands

Outdoor temperature
Wind's speed

Solar irradiation

e etc.
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Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

e Electrical demands

e Solar irradiation
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Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

e Electrical demands

e Solar irradiation

We compare two classes of algorithm:

The Mainstream: Model Predictive Control (MPC)
(use forecasts to predict the future uncertainties)

The Challenger: Stochastic Dual Dynamic Programming (SDDP)
(model uncertainties with discrete probability laws)
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A brief recall of the single house problem
Physical modelling
Optimization problem

Resolution Methods
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Framing the optimization problem

We aim to

e Minimize electrical’s bill

e Maintain a comfortable temperature inside the house

To achieve these goals, we can

e store electricity in battery;

e store heat in hot water tank.

We control the stocks every 15mn over one day.

We formulate a multistage stochastic programming problem
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Microgrid’s description

&
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A brief recall of the single house problem

Physical modelling

Handling solar irradiation
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We introduce states, controls and noises

e Stock variables X; = (B, Ht,B’;,Bf)
e By, battery level (kWh)
e H;, hot water storage (kWh)
e 0., inner temperature (°C)
0y, wall's temperature (°C)
e Control variables U; = (Fg ,,Fg ,,Fa:,Fn¢)

Fg,t, energy stored in the battery

T m
=1

E7]
e

Fg.. energy taken from the battery

Fa,:, energy used to heat the hot water tank

Fh,:, thermal heating
e Uncertainties W, = (DE, DPHW %)
o DE, electrical demand (kW)

e DP?"W domestic hot water demand (kW)

e @3, external radiations (kW)
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Discrete time state equations

So we have the four state equations (all linear):

1 __
Bui =agB: + AT (e, — -F5,)
e~ Fe,

AT | 6. —6Y 6c—6Y R; , R,
w :GW + t t t t + F + ! Pmt + e ¢s
L T R R RmtRe M R TR TR.+Rm ¢
. . AT |6Y—0. 6c—0. 6:—6. R. .
’ t+1 =0; + Lttt ot (1—y)Fu+ ———P"
LT T T I RTIR, R, Ry (A= Fue+ o= P

Her1 =auH: + AT[F4, — DPHW]

which will be denoted:

[ X1 = (X, Ur, Wern) |
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A brief recall of the single house problem

Optimization problem

Handling solar irradiation
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Prices and temperature setpoints vary along time

o Tf=24h, AT = 15mn
fos § °
e 75 = 1.5 euros/kWh
(10x higher than usual)
|

e Temperature set-point
6, =16°C or 20°C
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The costs we have to pay

e Cost to import electricity from the network

E E
— by max{0, —Fne t+1} + 7 max{0, Fye t41}

selling buying

where we define the recourse variable (electricity balance):

E + -

F/\IE.t il = Dt+1 + FB,t - FB,t + I:H,t + FA,t - va,t

—— ~—~ —_——— ~—~ ~—~ N~
Network Demand Battery Heating Tank Solar panel

e Virtual Cost of thermal discomfort: (0. — 0. )
——

deviation from setpoint

Kth
Piecewise linear cost
Penalize temperature if
below given setpoint
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Instantaneous and final costs for a single house

e The instantaneous convex costs are

Lt(Xt~ U, W, 1) = —th max{O, _FNE,H-I} +7Tf max{O, FNE,t+1}

buying selling

+ ken(0; — 6)
————
discomfort

e We add a final linear cost
K(X7) = —n"Hr — 7®B1

to avoid empty stocks at the final horizon T
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That gives the following stochastic optimization problem

T-1
min  J(X,U)=E ; Le(Xe, Ur, Wer) + K(XT)

instantaneous cost final cost

s.t Xpp1 = ft(Xt, Ut, Wt+1) Dynamic
X' < X < X
U < U, < U*
Xo = Xini
o(U) C o(Wha,...,W;) Non-anticipativity
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gives the following stochastic optimization problem

T-1
min  J(X,U)=E ; Le(Xe, Ur, Wer) + K(XT)

instantaneous cost final cost

s.t Xpp1 = ft(Xt, Ut, Wt+1) Dynamic
X' < X < X
U < U, < U*
Xo = Xini
o(U) C o(Wha,...,W;) Non-anticipativity

Because of the non-anticipativity constraint, we can not solve the optimization
problem with standard methods (such as stochastic gradient)
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A brief recall of the single house problem

Resolution Methods

Handling solar irradiation
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MPC vs SDDP: uncertai

The two algorithms use optimization scenarios to model the uncertainties:

MPC SDDP

Load [(kw]
Load [kw]

IR
N

Lyt
it

St

12
Time () Time (h)
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MPC vs SDDP: online resolution

At the beginning of time period [7, T + 1], do

e Consider a rolling horizon [, 7 + H|

e Consider a deterministic scenario of
demands (forecast)
(WT+17 e 7W7—+H)

e Solve the deterministic optimization
problem

T+H
)TiTJ > Le(Xe, Ur, Wiiq) + KXy 1)
U=+

s.t. X =Xry .o Xei )
=Ury o Urpy—1)

Xey1 = f(Xe, Up, Wegq)
x> <X < xt

v << ut

e Get optimal solution (Uﬁﬁ7 ceey UiH)

over horizon H = 24h

e Send only first control Uf to
assessor, and iterate at time 7+ 1

SDDP

We consider the approximated value
functions (Vt)g—

Vi < W
~—~
Piecewise affine functions

Solve the stochastic optimization
problem:

min By [Lr (e, ur, Woi)

+ Vg (fT (Xt ur, W7—+1))}

=> this problem resumes to solve a LP at each timestep

Get optimal solution Uf

Send U] to assessor
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A brief recall on Dynamic Programming

Dynamic Programming

1y is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vr(x) = K(x)

Vi(xt) = nz}in Eu, [Lt(Xh U, Weg1) + Vi (f(Xn Ut, WH—I)) ]
t | S ———

current cost

future costs
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A brief recall on Dynamic Programming

Dynamic Programming

1y is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vr(x) = K(x)

Vi(xt) = nz}in E,.. [Lt(Xh U, Wip1) + Vigr (f(Xn U, WH—I)) ]
t | S ———

current cost

future costs

Stochastic Dual Dynamic Programming

Convex value functions V; are approximated as

a supremum of a finite set of affine functions

Affine functions (=cuts) are computed during
forward /backward passes, till convergence

SDDP makes an extensive use of LP solver

Vi(x) = 1r<nka<><K{)\‘t(X + B} < Vi(x)
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Handling solar irradiation
Academic modeling

Realistic modeling
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How to forecast solar irradiation?

We suppose that we have available at midnight a forecast ®, with error
bounds (e, ...,e7). The realization of ®; is equal to

¢t:d\)tx(1+€t).
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How to forecast solar irradiation?

We suppose that we have available at midnight a forecast ®, with error
bounds (eg,...,e7). The realization of ®; is equal to

<Dt:<13t><(1+5t).

Objective
We aim to identify the sensitivity of the two algorithms w.r.t the
modelling of &;

We model the error ¢; as a random variable. Different models are
available:

e First with gaussian white noise, supposing that the process
(20, .--,e7) is time independent,
e Then with an autoregressive process, to have a more accurate

modelling of the time dependency
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A brief recall of the single house problem

Handling solar irradiation

Academic modeling
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White noise process

We recall that the irradiation corresponds to a forecast and an error:

¢t:€|\>t><(1-|—€t)

We first consider that for all ¢, ¢; is
Gaussian:

1400

1200

Et N(0,0’t)

1000

8

Irrad. [Wh/m2]

and that the standard-deviation
increases linearly over time

3

400

t
or =00+ (o1 — 00)7
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Discretizing the pro

Numerical optimization requires the discretization of continuous

variables.

We use optimal quantization to approximate the continuous gaussian
distribution of &; with a discrete probability distribution.

The probability measure of ¢, is

Quantization of a gaussian

040 approximated as

o»25 ’u,[gt} ~ Z’]‘ri(swl_
i=1

Distribution
o o o
B b
5 & 8

where 7; is the probability that the
0.00 event £; = w; occurs.
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Decision-Hazard or Hazard-Decision?

e In Decision-Hazard, the decision U; is taken before the realization of
the uncertainties W1 in [t, t + 1].
e In Hazard-Decision, the decision U; is taken after the realization of

the uncertainties W1 in [t, t + 1].

Hence irrealistic, Hazard-Decision gives a lower-bound of the
Decision-Hazard problem.
(the more information, the better the algorithm is)
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Hazard-Decision

In HD, we know the realization w, ; of the uncertainties W,
during the following interval [, 7 + 1[.

MPC forecasts:
(WT+17 E(WT+2)7 000 7]E(WT))

and solves the deterministic optimization problem.
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Hazard-Decision

In HD, we know the realization w, ; of the uncertainties W,
during the following interval [, 7 + 1[.

MPC forecasts:
(WT+17 E(WT+2)7 000 7]E(WT))

and solves the deterministic optimization problem.

SDDP solves the following LP problem:
min [LT(XT, Ury Wri1) + 0}
st Xrq1 = fr(Xr, Ur, Wry1)
0> <)\-Cr+1 aX‘r+1> + B-i+1 Ve e (CT+1

where C, 1 is the set of cuts uses to approximate the value function V, ;.
25/33



Decision-Hazard

In DH, we know only the probability distribution of the
uncertainties W, ;

MPC forecasts:
(E(WT+1) ) E(WT+2)7 oco 7E(WT))

and solves the deterministic optimization problem.
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Decision-Hazard

In DH, we know only the probability distribution of the
uncertainties W, ;

MPC forecasts:
(E(WT+1) ) E(WT+2)7 oco 7E(WT))

and solves the deterministic optimization problem.

SDDP solves the following LP problem:

nLLI'n Zﬂ—l( XT7UT7 T+1)+0>

st x! r = (X.,-,UT,W;_+1) Vi
0’ = <AT+1 ,X7I_+1> + ﬂ$+1 \V/I7 (NS (C7—+1

where C..1 is the set of cuts uses to approximate the value function V.4
and n is the size of the discrete probability law. 26/33



Numerical settings

We compare different level of uncertainties, corresponding to different
final standard-deviation oT.

cr=5% or =20 % or = 40%
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Assessment scenarios

We generate nggess SCENarios

0’7’25%
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And then, let’s roll!

Initialization:
Feed with marginal probability laws of {W;}7 "

Al
Sl ..M

give current state X; and last uncertainty W

MPC 4 SDDP
— . \_ L

. [ ASSESSOR .
C

ost += C(X¢, Uy, W)

kgt

t t+1 Time
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Cost

1.25

1.20

115

1.10

1.05

1.00

——

MPC DH
SDDP DH
MPC HD

SDDP HD

0.05

0.1

0.2

or

0.3

0.4

HD DH
oT SDDP MPC SDDP MPC
5% 0.976 0.987 0.984 1.006
10 % 0.979 0.999 0.984 1.038
20 % 0.981 0.994 1.034 1.104
30 % 0.984 1.027 1.077 1.187
40 % 0.983 1.070 1.202 1.296
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A brief recall of the single house problem

Handling solar irradiation

Realistic modeling
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Modelling solar irradiation with white noise is a shortfall.

We rather have to model the process (eg,...,e7) as an ARMA process.

We define the nebulosity as:
b,

= clear
&f

S
nt

o Oclar is given by some trigonometric laws
(position of the sun in the sky).
e n; can be modelled with an AR process.
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Modelling solar irradiation with white noise is a shortfall.

We rather have to model the process (eg,...,e7) as an ARMA process.

We define the nebulosity as:
b,

= clear
&f

S
nt

o Oclar is given by some trigonometric laws
(position of the sun in the sky).
e n; can be modelled with an AR process.

Still a work in progress! :-)
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Conclusion

e The more uncertainties, the better SDDP is towards MPC

e We obtained similar results while tackling electrical and
hot water demands

e We have to study more realistic uncertainties, corresponding to
real data

e We aim to use decomposition algorithms to tackle bigger problems,
with a lot more houses! :-D
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