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Why using stochastic optimization?

We aim to tackle uncertainties in Energy Management System.

Problem: we do not know in advance the uncertainties, common in the

management of energetical systems:

• Electrical demands

• Hot water demands

• Outdoor temperature

• Wind’s speed

• Solar irradiation

• etc.
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Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

• Electrical demands

• Solar irradiation

We compare two classes of algorithm:

The Mainstream: Model Predictive Control (MPC)

(use forecasts to predict the future uncertainties)

The Challenger: Stochastic Dual Dynamic Programming (SDDP)

(model uncertainties with discrete probability laws)
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Framing the optimization problem

We aim to

• Minimize electrical’s bill

• Maintain a comfortable temperature inside the house

To achieve these goals, we can

• store electricity in battery;

• store heat in hot water tank.

We control the stocks every 15mn over one day.

We formulate a multistage stochastic programming problem
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Microgrid’s description
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We introduce states, controls and noises
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• Stock variables Xt =
(
Bt ,Ht ,θ

i
t ,θ

w
t

)
• Bt , battery level (kWh)

• Ht , hot water storage (kWh)

• θi
t , inner temperature (◦C)

• θw
t , wall’s temperature (◦C)

• Control variables Ut =
(
F+

B,t ,F
−
B,t ,FA,t ,FH,t

)
• F+

B,t , energy stored in the battery

• F−
B,t , energy taken from the battery

• FA,t , energy used to heat the hot water tank

• FH,t , thermal heating

• Uncertainties Wt =
(
DE

t ,D
DHW
t ,Φs

t

)
• DE

t , electrical demand (kW)

• DDHW
t , domestic hot water demand (kW)

• Φs
t , external radiations (kW)
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Discrete time state equations

So we have the four state equations (all linear):

Bt+1 =αBBt + ∆T
(
ρc F+

B,t −
1

ρd
F−

B,t

)
Ht+1 =αHHt + ∆T

[
FA,t − DDHW

t

]
θw

t+1 =θw
t +

∆T

cm

[
θi

t − θw
t

Ri + Rs
+

θe
t − θw

t

Rm + Re
+ γFH,t +

Ri

Ri + Rs
P int

t +
Re

Re + Rm
Φs

t

]

θi
t+1 =θi

t +
∆T

ci

[
θw

t − θi
t

Ri + Rs
+

θe
t − θi

t

Rv
+

θe
t − θi

t

Rf
+ (1 − γ)FH,t +

Rs

Ri + Rs
P int

t

]

which will be denoted:

Xt+1 = ft(Xt ,Ut ,Wt+1)
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Prices and temperature setpoints vary along time
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• Tf = 24h, ∆T = 15mn

• Electricity peak and off-peak

hours

• πE
t = 1.5 euros/kWh

(10x higher than usual)

• Temperature set-point

θ̄i
t = 16◦C or 20◦C
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The costs we have to pay

• Cost to import electricity from the network

− bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

selling

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

buying

where we define the recourse variable (electricity balance):

FNE ,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand

+ F+
B,t − F−

B,t︸ ︷︷ ︸
Battery

+ FH,t︸︷︷︸
Heating

+ FA,t︸︷︷︸
Tank

− Fpv,t︸︷︷︸
Solar panel

• Virtual Cost of thermal discomfort: κth( θi
t − θ̄i

t︸ ︷︷ ︸
deviation from setpoint

)
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Piecewise linear cost

Penalize temperature if

below given setpoint
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Instantaneous and final costs for a single house

• The instantaneous convex costs are

Lt(Xt ,Ut ,Wt+1) = −bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

buying

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

selling

+ κth(θi
t − θ̄i

t)︸ ︷︷ ︸
discomfort

• We add a final linear cost

K (XT ) = −πHHT − πBBT

to avoid empty stocks at the final horizon T
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That gives the following stochastic optimization problem

min
X ,U

J(X ,U) = E

T−1∑
t=0

Lt(Xt ,Ut ,Wt+1)︸ ︷︷ ︸
instantaneous cost

+K(XT )︸ ︷︷ ︸
final cost


s.t Xt+1 = ft(Xt ,Ut ,Wt+1) Dynamic

X [ ≤ Xt ≤ X ]

U[ ≤ Ut ≤ U]

X0 = Xini

σ(Ut) ⊂ σ(W1, . . . ,Wt) Non-anticipativity

Because of the non-anticipativity constraint, we can not solve the optimization

problem with standard methods (such as stochastic gradient)
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC SDDP
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MPC vs SDDP: online resolution

At the beginning of time period [τ, τ + 1], do

MPC

• Consider a rolling horizon [τ, τ + H[

• Consider a deterministic scenario of

demands (forecast)(
W τ+1, . . . ,W τ+H

)
• Solve the deterministic optimization

problem

min
X,U

τ+H∑
t=τ

Lt (Xt , Ut ,W t+1) + K(Xτ+H )


s.t. X· = (Xτ , . . . , Xτ+H )

U· = (Uτ , . . . , Uτ+H−1)

Xt+1 = f (Xt , Ut ,W t+1)

X[ ≤ Xt ≤ X]

U[ ≤ Ut ≤ U]

• Get optimal solution (U#
τ , . . . ,U

#
τ+H )

over horizon H = 24h

• Send only first control U#
τ to

assessor, and iterate at time τ + 1

SDDP

• We consider the approximated value

functions
(
Ṽt
)T

0

Ṽt︸︷︷︸
Piecewise affine functions

≤ Vt

• Solve the stochastic optimization
problem:

min
uτ

EWτ+1

[
Lτ (Xτ , uτ ,Wτ+1)

+ Ṽτ+1

(
fτ (Xτ , uτ ,Wτ+1)

)]
⇒ this problem resumes to solve a LP at each timestep

• Get optimal solution U
#
τ

• Send U
#
τ to assessor
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A brief recall on Dynamic Programming

Dynamic Programming

µt is the probability law of Wt and is being used to estimate expectation
and compute offline value functions with the backward equation:

VT (x) = K(x)

Vt (xt ) = min
Ut

Eµt

[
Lt (xt ,Ut ,Wt+1)︸ ︷︷ ︸

current cost

+ Vt+1

(
f (xt ,Ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming
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• Convex value functions Vt are approximated as

a supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

• SDDP makes an extensive use of LP solver

Ṽt(x) = max
1≤k≤K

{
λk

t x + βk
t

}
≤ Vt(x)
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Ṽt(x) = max
1≤k≤K

{
λk

t x + βk
t

}
≤ Vt(x)

18/33



Outline

A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

Handling solar irradiation

Academic modeling

Realistic modeling

19/33



How to forecast solar irradiation?

We suppose that we have available at midnight a forecast Φ̂, with error

bounds (ε0, . . . , εT ). The realization of Φt is equal to

Φt = Φ̂t × (1 + εt) .

Objective

We aim to identify the sensitivity of the two algorithms w.r.t the

modelling of εt

We model the error εt as a random variable. Different models are

available:

• First with gaussian white noise, supposing that the process

(ε0, . . . , εT ) is time independent,

• Then with an autoregressive process, to have a more accurate

modelling of the time dependency
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White noise process

We recall that the irradiation corresponds to a forecast and an error:

Φt = Φ̂t × (1 + εt)
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We first consider that for all t, εt is

Gaussian:

εt ∼ N (0, σt)

and that the standard-deviation

increases linearly over time

σt = σ0 + (σT − σ0)
t

T
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Discretizing the probability laws

Numerical optimization requires the discretization of continuous

variables.

We use optimal quantization to approximate the continuous gaussian

distribution of εt with a discrete probability distribution.
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Quantization of a gaussian The probability measure of εt is

approximated as

µ
[
εt

]
≈

n∑
i=1

πiδwi

where πi is the probability that the

event εt = wi occurs.
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Decision-Hazard or Hazard-Decision?

• In Decision-Hazard, the decision Ut is taken before the realization of

the uncertainties Wt+1 in [t, t + 1[.

• In Hazard-Decision, the decision Ut is taken after the realization of

the uncertainties Wt+1 in [t, t + 1[.

Hence irrealistic, Hazard-Decision gives a lower-bound of the

Decision-Hazard problem.

(the more information, the better the algorithm is)
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Hazard-Decision

In HD, we know the realization wτ+1 of the uncertainties Wt+1

during the following interval [τ, τ + 1[.

MPC forecasts: (
wτ+1,E

(
Wτ+2

)
, . . . ,E

(
WT

))
and solves the deterministic optimization problem.

SDDP solves the following LP problem:

min
uτ

[
Lτ (xτ , uτ ,wτ+1) + θ

]
s.t xτ+1 = fτ (xτ , uτ ,wτ+1)

θ ≥
〈
λc
τ+1 , xτ+1

〉
+ βc

τ+1 ∀c ∈ Cτ+1

where Cτ+1 is the set of cuts uses to approximate the value function Vτ+1.
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Decision-Hazard

In DH, we know only the probability distribution of the

uncertainties Wt+1

MPC forecasts: (
E
(
Wτ+1

)
,E
(
Wτ+2

)
, . . . ,E

(
WT

))
and solves the deterministic optimization problem.

SDDP solves the following LP problem:

min
uτ

n∑
i=1

πi

(
Lτ (xτ , uτ ,w

i
τ+1) + θi

)
s.t x i

τ+1 = fτ (xτ , uτ ,w
i
τ+1) ∀i

θi ≥
〈
λc
τ+1 , x

i
τ+1

〉
+ βc

τ+1 ∀i , c ∈ Cτ+1

where Cτ+1 is the set of cuts uses to approximate the value function Vτ+1

and n is the size of the discrete probability law.
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Numerical settings

We compare different level of uncertainties, corresponding to different

final standard-deviation σT .
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Assessment scenarios

We generate nassess scenarios
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And then, let’s roll!
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Results
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σT SDDP MPC SDDP MPC

5 % 0.976 0.987 0.984 1.006

10 % 0.979 0.999 0.984 1.038

20 % 0.981 0.994 1.034 1.104

30 % 0.984 1.027 1.077 1.187

40 % 0.983 1.070 1.202 1.296
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Description

Modelling solar irradiation with white noise is a shortfall.

We rather have to model the process (ε0, . . . , εT ) as an ARMA process.

We define the nebulosity as:

ns
t =

Φt

Φclear
t

• Φclear
t is given by some trigonometric laws

(position of the sun in the sky).

• ns
t can be modelled with an AR process.

Still a work in progress! :-)
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Conclusion

• The more uncertainties, the better SDDP is towards MPC

• We obtained similar results while tackling electrical and

hot water demands

• We have to study more realistic uncertainties, corresponding to

real data

• We aim to use decomposition algorithms to tackle bigger problems,

with a lot more houses! :-D
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