# A fair comparison of two stochastic optimization algorithms

Benchmarking MPC vs SDDP

April 10, 2017

## Why using stochastic optimization?

We aim to tackle uncertainties in **Energy Management System**.

**Problem:** we do not know in advance the uncertainties, common in the management of energetical systems:



- Electrical demands
- Hot water demands
- Outdoor temperature
- Wind's speed
- Solar irradiation
- etc.

## Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

- Electrical demands
- Solar irradiation

## Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

- Electrical demands
- Solar irradiation

## Introducing the problem

Here, we focus on the management of a domestic microgrid

Sensitivity analysis w.r.t two uncertainties:

- Electrical demands
- Solar irradiation

We compare two classes of algorithm:

The Mainstream: Model Predictive Control (MPC)

(use forecasts to predict the future uncertainties)

**The Challenger:** Stochastic Dual Dynamic Programming (SDDP) (model uncertainties with discrete probability laws)

#### **Outline**

A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

Handling solar irradiation

Academic modeling

Realistic modeling

## Framing the optimization problem

#### We aim to

- Minimize electrical's bill
- Maintain a comfortable temperature inside the house

#### To achieve these goals, we can

- store electricity in battery;
- store heat in hot water tank.

We control the stocks every 15mn over one day.

We formulate a multistage stochastic programming problem

## Microgrid's description



#### **Outline**

#### A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

#### Handling solar irradiation

Academic modeling

Realistic modeling

#### We introduce states, controls and noises





- Stock variables  $X_t = (B_t, H_t, \theta_t^i, \theta_t^w)$ 
  - **B**<sub>t</sub>, battery level (kWh)
  - **H**<sub>t</sub>, hot water storage (kWh)
  - $\theta_t^i$ , inner temperature (° C)
  - $\theta_t^w$ , wall's temperature (° C)
- Control variables  $U_t = (\mathbf{F}_{\mathbf{B},t}^+, \mathbf{F}_{\mathbf{B},t}^-, \mathbf{F}_{A,t}, \mathbf{F}_{\mathbf{H},t})$ 
  - $\mathbf{F}_{\mathbf{B},t}^+$ , energy stored in the battery
  - $\mathbf{F}_{\mathbf{B},t}^{-}$ , energy taken from the battery
  - **F**<sub>A,t</sub>, energy used to heat the hot water tank
  - F<sub>H,t</sub>, thermal heating
- Uncertainties  $W_t = \left(\mathbf{D}_t^E, \mathbf{D}_t^{DHW}, \mathbf{\Phi}_t^s\right)$ 
  - $\mathbf{D}_t^E$ , electrical demand (kW)
  - $\mathbf{D}_t^{DHW}$ , domestic hot water demand (kW)
  - $\Phi_t^s$ , external radiations (kW)

## Discrete time state equations

So we have the four state equations (all linear):



$$\mathbf{B}_{t+1} = \alpha_{\mathbf{B}} \mathbf{B}_t + \Delta T \left( \rho_{c} \mathbf{F}_{\mathbf{B},t}^{+} - \frac{1}{\rho_{d}} \mathbf{F}_{\mathbf{B},t}^{-} \right)$$

$$\mathbf{H}_{t+1} = \alpha_{\mathbf{H}} \mathbf{H}_t + \Delta T \left[ \mathbf{F}_{A,t} - \mathbf{D}_t^{DHW} \right]$$



$$\boldsymbol{\theta}_{t+1}^{w} = \boldsymbol{\theta}_{t}^{w} + \frac{\Delta T}{c_{m}} \left[ \frac{\boldsymbol{\theta}_{t}^{i} - \boldsymbol{\theta}_{t}^{w}}{R_{i} + R_{s}} + \frac{\boldsymbol{\theta}_{t}^{e} - \boldsymbol{\theta}_{t}^{w}}{R_{m} + R_{e}} + \gamma \mathbf{F}_{\mathbf{H},t} + \frac{R_{i}}{R_{i} + R_{s}} P_{t}^{int} + \frac{R_{e}}{R_{e} + R_{m}} \mathbf{\Phi}_{t}^{s} \right]$$

$$\boldsymbol{\theta}_{t+1}^{i} = \boldsymbol{\theta}_{t}^{i} + \frac{\Delta T}{c_{i}} \left[ \frac{\boldsymbol{\theta}_{t}^{w} - \boldsymbol{\theta}_{t}^{i}}{R_{i} + R_{s}} + \frac{\boldsymbol{\theta}_{t}^{e} - \boldsymbol{\theta}_{t}^{i}}{R_{v}} + \frac{\boldsymbol{\theta}_{t}^{e} - \boldsymbol{\theta}_{t}^{i}}{R_{f}} + (1 - \gamma) \mathbf{F}_{\mathbf{H}, t} + \frac{R_{s}}{R_{i} + R_{s}} P_{t}^{int} \right]$$

which will be denoted:

$$X_{t+1} = f_t(X_t, U_t, W_{t+1})$$

#### Outline

#### A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

#### Handling solar irradiation

Academic modeling

Realistic modeling

## Prices and temperature setpoints vary along time



- $T_f = 24h$ ,  $\Delta T = 15mn$
- Electricity peak and off-peak hours
- $\pi_t^E = 1.5 \text{ euros/kWh}$ (10x higher than usual)
- Temperature set-point  $\bar{\theta}_{\star}^{i} = 16^{\circ} C \text{ or } 20^{\circ} C$

## The costs we have to pay

· Cost to import electricity from the network

$$-\underbrace{b_t^E \max\{0, -\mathsf{F}_{NE,t+1}\}}_{\text{selling}} + \underbrace{\pi_t^E \max\{0, \mathsf{F}_{NE,t+1}\}}_{\text{buying}}$$

where we define the recourse variable (electricity balance):

$$\frac{\textbf{F}_{\textit{NE},t+1}}{\textit{Network}} = \underbrace{D_{t+1}^{\textit{E}}}_{\textit{Demand}} + \underbrace{\textbf{F}_{\textit{B},t}^{+} - \textbf{F}_{\textit{B},t}^{-}}_{\textit{Battery}} + \underbrace{\textbf{F}_{\textit{H},t}}_{\textit{Heating}} + \underbrace{\textbf{F}_{\textit{A},t}}_{\textit{Tank}} - \underbrace{\textbf{F}_{\textit{pv},t}}_{\textit{Solar panel}}$$

• Virtual Cost of thermal discomfort:  $\kappa_{th}$  (  $\frac{\theta_t^i - \overline{\theta_t^i}}{\theta_t^i}$  )



Piecewise linear cost
Penalize temperature if
below given setpoint

## Instantaneous and final costs for a single house

The instantaneous convex costs are

$$\begin{split} \underline{L_t(X_t, U_t, W_{t+1})} &= \underbrace{-b_t^E \max\{0, -\mathbf{F}_{NE, t+1}\}}_{buying} + \underbrace{\pi_t^E \max\{0, \mathbf{F}_{NE, t+1}\}}_{selling} \\ &+ \underbrace{\kappa_{th}(\theta_t^i - \bar{\theta}_t^i)}_{discomfort} \end{split}$$

We add a final linear cost

$$K(X_T) = -\pi^{\mathsf{H}} \mathbf{H}_T - \pi^{\mathsf{B}} \mathbf{B}_T$$

to avoid empty stocks at the final horizon T

## That gives the following stochastic optimization problem

$$\begin{split} \min_{X,U} & J(X,U) = \mathbb{E}\left[\sum_{t=0}^{T-1} \underbrace{L_t(X_t,U_t,W_{t+1})}_{instantaneous\ cost} + \underbrace{K(X_T)}_{final\ cost}\right] \\ s.t & X_{t+1} = f_t(X_t,U_t,W_{t+1}) & \text{Dynamic} \\ & X^\flat \leq X_t \leq X^\sharp \\ & U^\flat \leq U_t \leq U^\sharp \\ & X_0 = X_{ini} \\ & \sigma(U_t) \subset \sigma(W_1,\dots,W_t) & \text{Non-anticipativity} \end{split}$$

## That gives the following stochastic optimization problem

$$\min_{X,U} \quad J(X,U) = \mathbb{E} \left[ \sum_{t=0}^{T-1} \underbrace{L_t(X_t,U_t,W_{t+1})}_{instantaneous\ cost} + \underbrace{K(X_T)}_{final\ cost} \right]$$

$$s.t \quad X_{t+1} = f_t(X_t,U_t,W_{t+1}) \quad \text{Dynamic}$$

$$X^{\flat} \leq X_t \leq X^{\sharp}$$

$$U^{\flat} \leq U_t \leq U^{\sharp}$$

$$X_0 = X_{ini}$$

$$\sigma(U_t) \subset \sigma(W_1,\ldots,W_t) \quad \text{Non-anticipativity}$$

Because of the non-anticipativity constraint, we can not solve the optimization problem with standard methods (such as stochastic gradient)

#### **Outline**

#### A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

#### Handling solar irradiation

Academic modeling

Realistic modeling

## MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:



#### MPC vs SDDP: online resolution

At the beginning of time period [ au, au+1], do

MPC

- Consider a **rolling horizon**  $[\tau, \tau + H[$
- Consider a deterministic scenario of demands (forecast) (\$\overline{W}\_{\tau+1}, \ldots, \overline{W}\_{\tau+H}\$)
- Solve the deterministic optimization problem

$$\min_{X,U} \left[ \sum_{t=\tau}^{\tau+H} L_t(X_t, U_t, \overline{W}_{t+1}) + K(X_{\tau+H}) \right]$$
 s.t. 
$$X_{\cdot} = (X_{\tau}, \dots, X_{\tau+H})$$
 
$$U_{\cdot} = (U_{\tau}, \dots, U_{\tau+H-1})$$
 
$$X_{t+1} = f(X_t, U_t, \overline{W}_{t+1})$$
 
$$X^b \le X_t \le X^{\sharp}$$
 
$$U^b < U_t < U^{\sharp}$$

- Get optimal solution  $(U_{\tau}^{\#}, \dots, U_{\tau+H}^{\#})$ over horizon H = 24h
- Send only first control  $U_{\tau}^{\#}$  to assessor, and iterate at time  $\tau + 1$

SDDP

• We consider the approximated value functions  $(\widetilde{V}_t)_0^T$ 

$$\widetilde{V}_t$$
  $\leq V_t$ 

Piecewise affine functions

 Solve the stochastic optimization problem:

$$\begin{aligned} & \underset{\boldsymbol{u}_{\tau}}{\min} & & \mathbb{E}_{W_{\tau+1}} \left[ \boldsymbol{L}_{\tau}(\boldsymbol{X}_{\tau}, \boldsymbol{u}_{\tau}, W_{\tau+1}) \\ & & + & \tilde{\boldsymbol{V}}_{\tau+1} \Big( \boldsymbol{f}_{\tau}(\boldsymbol{X}_{\tau}, \boldsymbol{u}_{\tau}, W_{\tau+1}) \Big) \right] \end{aligned}$$

 $\Rightarrow$  this problem resumes to solve a LP at each timestep

- Get optimal solution U<sup>#</sup><sub>T</sub>
- Send  $U_{\tau}^{\#}$  to assessor

## A brief recall on Dynamic Programming

#### **Dynamic Programming**

 $\mu_t$  is the probability law of  $W_t$  and is being used to estimate expectation and compute **offline** value functions with the backward equation:

$$\begin{split} V_T(x) &= K(x) \\ V_t(x_t) &= \min_{U_t} \mathbb{E}_{\mu_t} \Big[ \underbrace{L_t(x_t, U_t, W_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \Big( f(x_t, U_t, W_{t+1}) \Big)}_{\text{future costs}} \Big] \end{split}$$

## A brief recall on Dynamic Programming

#### **Dynamic Programming**

 $\mu_t$  is the probability law of  $W_t$  and is being used to estimate expectation and compute **offline** value functions with the backward equation:

$$\begin{split} V_T(x) &= K(x) \\ V_t(x_t) &= \min_{U_t} \mathbb{E}_{\mu_t} \Big[ \underbrace{L_t(x_t, U_t, W_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \Big( f(x_t, U_t, W_{t+1}) \Big)}_{\text{future costs}} \Big] \end{split}$$

#### Stochastic Dual Dynamic Programming



- Convex value functions V<sub>t</sub> are approximated as a supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence
- SDDP makes an extensive use of LP solver

$$\widetilde{V}_t(x) = \max_{1 \le k \le K} \{\lambda_t^k x + \beta_t^k\} \le V_t(x)$$

#### **Outline**

A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

Handling solar irradiation

Academic modeling

Realistic modeling

#### How to forecast solar irradiation?

We suppose that we have available at midnight a forecast  $\hat{\Phi}$ , with error bounds  $(\varepsilon_0, \dots, \varepsilon_T)$ . The realization of  $\Phi_t$  is equal to

$$\Phi_t = \hat{\Phi}_t \times (1 + \varepsilon_t) .$$

#### How to forecast solar irradiation?

We suppose that we have available at midnight a forecast  $\hat{\Phi}$ , with error bounds  $(\varepsilon_0, \dots, \varepsilon_T)$ . The realization of  $\Phi_t$  is equal to

$$\Phi_t = \hat{\Phi}_t \times (1 + \varepsilon_t) .$$

#### **Objective**

We aim to identify the sensitivity of the two algorithms w.r.t the modelling of  $\varepsilon_t$ 

#### How to forecast solar irradiation?

We suppose that we have available at midnight a forecast  $\hat{\Phi}$ , with error bounds  $(\varepsilon_0, \dots, \varepsilon_T)$ . The realization of  $\Phi_t$  is equal to

$$\Phi_t = \hat{\Phi}_t \times (1 + \varepsilon_t) \ .$$

#### **Objective**

We aim to identify the sensitivity of the two algorithms w.r.t the modelling of  $\varepsilon_t$ 

We model the error  $\varepsilon_t$  as a random variable. Different models are available:

- First with gaussian white noise, supposing that the process  $(\varepsilon_0, \dots, \varepsilon_T)$  is time independent,
- Then with an autoregressive process, to have a more accurate modelling of the time dependency

#### **Outline**

#### A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

Handling solar irradiation

Academic modeling

Realistic modeling

## White noise process

We recall that the irradiation corresponds to a forecast and an error:

$$\Phi_t = \hat{\Phi}_t \times (1 + \varepsilon_t)$$



We first consider that for all t,  $\varepsilon_t$  is Gaussian:

$$\varepsilon_t \sim \mathcal{N}(0, \sigma_t)$$

and that the standard-deviation increases linearly over time

$$\sigma_t = \sigma_0 + (\sigma_T - \sigma_0) \frac{t}{T}$$

## Discretizing the probability laws

Numerical optimization requires the discretization of continuous variables.

We use optimal quantization to approximate the continuous gaussian distribution of  $\varepsilon_t$  with a discrete probability distribution.



The probability measure of  $\varepsilon_t$  is approximated as

$$\mu[\varepsilon_t] \approx \sum_{i=1}^n \pi_i \delta_{w_i}$$

where  $\pi_i$  is the probability that the event  $\varepsilon_t = w_i$  occurs.

#### **Decision-Hazard or Hazard-Decision?**

- In Decision-Hazard, the decision  $\mathbf{U}_t$  is taken before the realization of the uncertainties  $\mathbf{W}_{t+1}$  in [t, t+1].
- In Hazard-Decision, the decision U<sub>t</sub> is taken after the realization of the uncertainties W<sub>t+1</sub> in [t, t + 1[.

Hence irrealistic, Hazard-Decision gives a lower-bound of the Decision-Hazard problem. (the more information, the better the algorithm is)

#### **Hazard-Decision**

In HD, we know the realization  $w_{\tau+1}$  of the uncertainties  $W_{t+1}$  during the following interval  $[\tau, \tau+1[$ .

MPC forecasts:

$$(w_{\tau+1}, \mathbb{E}(\mathbf{W}_{\tau+2}), \dots, \mathbb{E}(\mathbf{W}_T))$$

and solves the deterministic optimization problem.

#### **Hazard-Decision**

In HD, we know the realization  $w_{\tau+1}$  of the uncertainties  $W_{t+1}$  during the following interval  $[\tau, \tau+1[$ .

MPC forecasts:

$$\left(w_{\tau+1}, \mathbb{E}\left(\mathbf{W}_{\tau+2}\right), \dots, \mathbb{E}\left(\mathbf{W}_{T}\right)\right)$$

and solves the deterministic optimization problem.

SDDP solves the following LP problem:

$$\min_{u_{\tau}} \left[ L_{\tau}(x_{\tau}, u_{\tau}, w_{\tau+1}) + \theta \right]$$

$$s.t \quad x_{\tau+1} = f_{\tau}(x_{\tau}, u_{\tau}, w_{\tau+1})$$

$$\theta \ge \left\langle \lambda_{\tau+1}^{c}, x_{\tau+1} \right\rangle + \beta_{\tau+1}^{c} \quad \forall c \in \mathbb{C}_{\tau+1}$$

where  $\mathbb{C}_{\tau+1}$  is the set of cuts uses to approximate the value function  $V_{\tau+1}$ .

#### **Decision-Hazard**

In DH, we know only the probability distribution of the uncertainties  $\mathbf{W}_{t+1}$ 

MPC forecasts:

$$\left(\mathbb{E}\left(\mathbf{W}_{ au+1}
ight),\mathbb{E}\left(\mathbf{W}_{ au+2}
ight),\ldots,\mathbb{E}\left(\mathbf{W}_{ au}
ight)
ight)$$

and solves the deterministic optimization problem.

#### **Decision-Hazard**

In DH, we know only the probability distribution of the uncertainties  $\mathbf{W}_{t+1}$ 

MPC forecasts:

$$(\mathbb{E}(\mathbf{W}_{ au+1}),\mathbb{E}(\mathbf{W}_{ au+2}),\ldots,\mathbb{E}(\mathbf{W}_{ au}))$$

and solves the deterministic optimization problem.

SDDP solves the following LP problem:

$$\begin{aligned} & \min_{u_{\tau}} \sum_{i=1}^{n} \pi_{i} \Big( L_{\tau}(x_{\tau}, u_{\tau}, w_{\tau+1}^{i}) + \theta^{i} \Big) \\ & s.t \quad x_{\tau+1}^{i} = f_{\tau}(x_{\tau}, u_{\tau}, w_{\tau+1}^{i}) \quad \forall i \\ & \quad \theta^{i} \geq \left\langle \lambda_{\tau+1}^{c}, x_{\tau+1}^{i} \right\rangle + \beta_{\tau+1}^{c} \quad \forall i, \ c \in \mathbb{C}_{\tau+1} \end{aligned}$$

where  $\mathbb{C}_{\tau+1}$  is the set of cuts uses to approximate the value function  $V_{\tau+1}$  and n is the size of the discrete probability law.

## **Numerical settings**

We compare different level of uncertainties, corresponding to different final standard-deviation  $\sigma_T$ .







#### **Assessment scenarios**

#### We generate $n_{assess}$ scenarios







### And then, let's roll!



## Results



|            | HD    |       | DH    |       |
|------------|-------|-------|-------|-------|
| $\sigma_T$ | SDDP  | MPC   | SDDP  | MPC   |
| 5 %        | 0.976 | 0.987 | 0.984 | 1.006 |
| 10 %       | 0.979 | 0.999 | 0.984 | 1.038 |
| 20 %       | 0.981 | 0.994 | 1.034 | 1.104 |
| 30 %       | 0.984 | 1.027 | 1.077 | 1.187 |
| 40 %       | 0.983 | 1.070 | 1.202 | 1.296 |
|            |       |       |       |       |

#### Outline

#### A brief recall of the single house problem

Physical modelling

Optimization problem

Resolution Methods

#### Handling solar irradiation

Academic modeling

Realistic modeling

## Description

Modelling solar irradiation with white noise is a shortfall.

We rather have to model the process  $(\varepsilon_0, \dots, \varepsilon_T)$  as an ARMA process.

We define the nebulosity as:

$$n_t^s = \frac{\Phi_t}{\Phi_t^{clear}}$$

- Φ<sup>clear</sup><sub>t</sub> is given by some trigonometric laws (position of the sun in the sky).
- $n_t^s$  can be modelled with an AR process.

## Description

Modelling solar irradiation with white noise is a shortfall.

We rather have to model the process  $(\varepsilon_0, \dots, \varepsilon_T)$  as an ARMA process.

We define the nebulosity as:

$$n_t^s = \frac{\Phi_t}{\Phi_t^{clear}}$$

- Φ<sup>clear</sup><sub>t</sub> is given by some trigonometric laws (position of the sun in the sky).
- $n_t^s$  can be modelled with an AR process.

Still a work in progress! :-)

#### Conclusion

- The more uncertainties, the better SDDP is towards MPC
- We obtained similar results while tackling electrical and hot water demands
- We have to study more realistic uncertainties, corresponding to real data
- We aim to use decomposition algorithms to tackle bigger problems, with a lot more houses! :-D