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Yield Fluids

Yield Fluids: Motivation

Growing interest due to a wide range of applications:

@ Flow of viscoplastic(yield) fluids : civil engineering, materials
processing, petroleum drilling operations, food and cosmetics industry.

@ Bubbles in viscoplastic flows: Aerated building materials, mousse.

-

Figure: Examples of applications



Yield Fluids

Yield Fluids: Challenges

@ Viscoplastic materials are non-Newtonian fluids that require a finite
yield stress to flow (solid or fluid-like behavior)

@ Yield stress fluids are governed by a non-regular and non-linear
constitutive equation

@ Solid/liquid boundary not known a priori

@ Viscoplastic materials constitute a challenging problem theoretically
and experimentally

@ Scarce analysis, experimental and numerical data in the literature

@ Classical FEM simulations methods are costly for iterative solvers: Not
naturally fitted for parallelization.

o Discontinuous skeletal methods are a promising tool to replace FEM.
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Yield Fluids: Model problem I

Let Q < R? d > 1, denote a d-dimensional open bounded and
connected domain

For a source term f € L?(Q2)4
Momentum and mass conservation for incompressible flows:

divoi+f =0 in €,
divae =0 in €,
u =0 on oS,

with oy total stress tensor and u the unknown velocity field.

Spheric and deviatoric parts:

1
o, =0p— gtr(J,)I (1)



Yield Fluids

Yield Fluids: Model problem IT

Viscoplastic fluid model: Bingham model

Vs
op =2uVu + \/ETOﬁ when \/g|a'D| > Ty
su

Vsu=0 otherwise

Shear stress Yield -
Pseudoplastic

Bingham

o with7p > 0Oand p >0 plastic fluid

denoting the viscosity
and the yield stress
respectively.

Newtonian
fluid

Pseudoplastic
fluid

@ V,u the symmetric

gradient. Dilatant fiuid

@ We use the Frobenius

norm |7| = /T : T Sheat ate

Figure: Clasification of fluids
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Yield Fluids: Model problem II

@ Glowinski [2] showed the PDEs can be recast as a minimization
problem:

u = arg min ’DVdQ—ff-V
gveK(O)L ) Q

where K (up) is the kernel of the divergence operator and defined as
K(up) = {ve L,(Q)¥divv=0€ Qu=up e N},

@ The dissipation energy

D(u) = ,u|VXu|2 + \/570|Vsu|,



Yield Fluids

Yield Fluids:

@ Solve the saddle problem

(u,7,0) = min max L(v,d,T)
veH|,0e &, TEL,

@ New constraint v = Vu

@ Augmented Lagrangian:
L(u,v,0) = ﬁf [y[2dQ + T()J [v]dQ2 — f f-udQ
2 Ja Q Q
+ + 2 J IV u — ~2d)
2 Jo

with a > 0 is the augmentation parameter.



Yield Fluids

ALG: Uzawa-like algorithm, n™-iteration

@ Weak formulation: Assume o and 4", then find u" € V, Vv € H} ()¢
such that

2a(Va"t Vv) = (£v) — (6" — 207", Vyv),
@ Solve point-wise

1 XM (x)
(2a -+ p) X1 (x)]

~"*1(x) = max (o, (X" (x)| = To))

where X"t! = " 4+ oV, u't!,
o Update the stress

a_n+l =" +a(vxun+1 _,7n+1)'



Discontinuous Skeletal Methods

Discontinuous Skeletal methods

@ There are differente kinds of DiSk methods: MFD, HFV, HDG, HHO.
Discontinuous Skeletal methods approximate solutions of BVPs by

o using discontinuous polynomials in the mesh skeleton
e attaching unknowns to mesh faces

o Salient features:
e Dimension-independent construction

o Supportgeneral meshes(conforming and non-conforming)

o Arbitrary polynomial order



Discontinuous Skeletal Methods

DISK methods

In this work we use the Hybrid High Order method, introduced recently by
Di Pietro et Ern [1, 3] for linear elasticity.
Attractive features:

@ Designed from primal formulation

Arbitrary order of polynomials.

o Suitable for hp-adaptivity.

They can be applied to a fair range of PDE’s.

@ Gradient reconstruction based on local Neumann problems.



Discontinuous Skeletal Methods

Degrees of freedom I

@ We consider as model problem the laplace equation: —Au = f € Q
o Cell-Face based method: Hybrid method.

@ DoFs are polynomials of order k > 0 attached to the mesh cells and
their faces.

SEIC

k=1

Figure: DOFs for k =0, 1, 2.

@ We define for all T € 7T}, the local space

Uﬁ:}‘ {XPd I(F)}

FeF,



Discontinuous Skeletal Methods

Gradient reconstruction I

@ The local potential reconstruction operator: rvk,l“ (UN — IE”Z“(T)
o The local gradient reconstruction operator: VA : Uk — VPAT!(T)

o Letv e Uk, then V/AT'v = Vs with s € PATH(T)

@ Vs solves the local problem for all w € P%™!(T)

(VS, VW)T = (VVT, VW)T + Z (VF —Vvr, Vw - nTF)F J
FeFr

@ Reconstruction operator derives from integration by parts formula.

o Set J Pty = ,[ vr then the reconstructed function is in PX(7’) and is
T T

unique.



Discontinuous Skeletal Methods

Gradient reconstruction I1

o Local interpolation operator IX : H'(T) — U, that maps a given
function v € H'(T) into the broken space of local collection of
velocities.

II;’V = (71./7{"}7 (WI;“V)FEJ:T)v

e Conmuting diagram property

HY(T) L(T)

llkT ) lﬂ-VPZ“(T)
u% o VPLH(T)
Forallu € H'(T) and all w € PX!(T)
(VAT Ey, Vw)r = (Vu, Vw)r 2)

o Thus, r’}“lé‘- is the elliptic operator on P’;“ (T)



Discontinuous Skeletal Methods

Reconstruction operator III

+

Reconstruction operator rk 'v is used to build the following bilinear form on

Uy x U:

a(Tl)(V w) = (ViATy, VAT w)r
Note how (VAAv, VAT w)7 mimics locally the 1.h.s. of our original
problem

Find u € H)(Q) s.t. (Vu, Vv)g = (f,v)a, Yve Hy(Q)



Stabilization operator I

o For v € U, the reconstructed gradient V75T !v is not stable:
V/}H v = 0 does not imply that vy and vsr are constant functions
taking the same value.

@ We introduce a least-squares penalization of the difference between
functions in the faces and function in the cell

Sy =7k, (vor — (vr + Aty — W’}V]}HKNFT) ;



Discontinuous Skeletal Methods

Stabilization operator II

Using the stabilization operator just defined, we build a second bilinear form
on Uk x Uk:
sr(v,w) = > ke (Shy, Spw)r,
FeFor
where hr denotes the diameter of the face F.

@ The stabilization as defined allows HHO to converge as k + 2 in L,
norm

@ The simpler stabilization considering the difference vor — v would
limit convergence to k + 1



Discontinuous Skeletal Methods

Global spaces

Local discrete spaces U?, for all T € T, are collected into a global discrete
space
Q’,‘l = U’7‘— X U]},

where
U := Py(T) := {vr = (vp)rer | vr € PY(T), VT € T},

Ub = P5_|(F) = {vr = (vp)rer | vi € P5_|(F), YF € F}.
For a pair v, := (vy,vx) in the global discrete space g’;,, we denote v, for all
T € T, its restriction to the local discrete space U?, where vor = (VF)FeFar
Homogeneous Dirichlet BCs are enforced strongly by considering the
subspace

Uy i= Uy x U,

where
U’})O = {vre U |vr =0, YF e F}.



Discontinuous Skeletal Methods

Discrete problem

For all T € T, we combine reconstruction and stabilization bilinear forms
into ay on U% x U% such that

ar = a(Tl) + S7.

We then do a standard cell-wise assembly

an(uy, wy) == ) ar(u,w),
TeT

b(wy) o= D (Fswr)r.

TeT

Finally we search for u, := (ur,ur) € U};O such that

ah(ﬂh,ﬂh) = gh(ﬂh)v th = (WTaw]:) € Ulfi,O?



Discontinuous Skeletal Methods

Degrees of freedom II

@ Due to the hybridization the global number of DOF’s is bigger than a
FEM approach.

@ Compact stencil: due to face DOF’s involving only neighbors.

@ Cell DOF’s are eliminated by static condensation, reducing the
computational cost on the solver process.

@ Cell DOF’s are recovered by local computations



Discontinuous Skeletal Methods

Applying DISK to ALG

Local bilinear forms a7 and st on Q’} X Q’}

o Diffusion term
ar(v, w) == (Vo5 'y, Vi ' w)r + sp(v, w),

@ Stabilization term: coupling cell and face unknowns

st(v, w) = Z he ! (mp(ve = B71Y), i (wr — B W)
FeFr

Second velocity reconstruction F&t! : Uk — PXF!(T)¢

e k1 Kt 1
it = vy 4 bkt ly — 2hek )

@ Stress-strain term

cr(T,v) = (7, Vevr)r + Z (T-n,vp —vr) on £X(T) x U
FeFr

@ Global versions of the linear forms are obtained by cell-wise assembly.



Discontinuous Skeletal Methods

DiSK-ALG

@ Discrete weak formulation: Let o and 4" known, find u, € Qﬁ,o such
that: Vvt e Uj

20y (u ZH ZH) Z (£, vr)r —cn(0" — 204", v,)

Te T
o Compute v
0 for| X"+ (x)] < \[To
n+1 +1
4 (x) = 1 ( ntl ) X" (x) :
— (X — for oth
TCE) | (x)| — V27 |X”+1(x)| or otherwise

with X"*!(x) = 0" (x) 4+ 2aV,ri ! (x).
e Update stress

O_n+l = g" +2a(V k+1un+l ,yn+1).



Numerical results [

Test Setting

The cases are benchmarks consisting of an unidirectional source along the
pipe-axis and no-slip conditions enforced on the walls.

@ Test case 1: Poiseuille problem in 1D, analytical solution.
o Test case 2: Circular cross section problem, analytical solution.

@ Test case 3: Square cross section problem, no analytical solution.

o The dimensionless Bingham number (Bi) is the ratio between the yield
stress and the viscous stress.




Numerical Results I

o Fig. 8 showcases the agreement for tests 1 and 2 between the numerical
and analytical solution.

@ Computations are done using conforming meshes.

0.25

* Solution : —Bi=0.1
—Bi=0.0 Bi=0.2
Bi=0.1 —Bi=0.3
——Bi=0.2 Bi =0.4
—Bi=0.3 Bi=0.5
Bi=0.4 Bi =0.6
Bi=0.5 Bi=0.7
Bi=0.8
——Bi=0.9
*__Solution

Figure: Velocity profiles for the 1D test case (left) and the circular pipe test
case(right).



Numerical Results 11

Mesh adapatation:

Features
@ Non-conforming meshes.
@ Control of the number of hanging nodes per face.

@ Marker based on stress values at Gauss nodes

The challenge

@ Capture of the transition boundaries: plug region in the center, a
concentric annulus as shear zone and a dead region around the corners.

v




Levels of refinement

o Let 7,0 be the initial mesh and 7;’ the mesh after i- refinement steps.

@ Let T € 7; and denote its ancestor Ty € 7, such that Ty c T.

o Labeling of levels: The level of T is the number of times T has being
partitioned to obtain T through the i-adaptive steps.

o After each marking
between neighbors.

0.5¢ S

05K -

Bl 05 0 05

(a) Initial mesh,

process, check the difference of level be < 2,

1 05 0o o0s Y 05 0o 05 1

(b) 2nd adapted mesh, (c) Sth adapted mesh

i

Figure: Checking levels test



Numerical Results 11

Circular pipe:
For fine meshes we obtained the expected behavior of the adaptation
process, adapting around the inner red line (solid-liquid boundary).

(a) Bi=0.1 (b) zoom for Bi =0.1 (c)Bi=0.7

Figure: 1st step.



Numerical Results IV

Circular pipe: Coarse mesh

Figure: Mesh adaptation evolution for Bi = 0.3 (top) and Bi = 0.3(left).



Numerical Results: Square pipe

Dead Region r/L
VR RO s "dsad/ ﬁ
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Figure: Mesh adaptation evolution for Bi = 0.2 (left),Bi = 0.8(center) and
Bi = 1.0(right).



Conclusions

Future work

@ Develop a Cut-Cell-DISK to simulate bubbles.
@ hp-adaptivity: straightforward with DISK.
@ Other viscoplastic models: Herschel-Bulkley.

@ Use of cone programming optimization with DISK methods.



Thank you!

Thank you!
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