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Yield Fluids: Motivation

Growing interest due to a wide range of applications:
Flow of viscoplastic(yield) fluids : civil engineering, materials
processing, petroleum drilling operations, food and cosmetics industry.

Bubbles in viscoplastic flows: Aerated building materials, mousse.

Figure: Examples of applications
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Yield Fluids: Challenges

Viscoplastic materials are non-Newtonian fluids that require a finite
yield stress to flow (solid or fluid-like behavior)

Yield stress fluids are governed by a non-regular and non-linear
constitutive equation

Solid/liquid boundary not known a priori

Viscoplastic materials constitute a challenging problem theoretically
and experimentally

Scarce analysis, experimental and numerical data in the literature

Classical FEM simulations methods are costly for iterative solvers: Not
naturally fitted for parallelization.

Discontinuous skeletal methods are a promising tool to replace FEM.
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Yield Fluids: Model problem I

Let Ω � Rd, d ¥ 1, denote a d-dimensional open bounded and
connected domain

For a source term f P L2pΩqd

Momentum and mass conservation for incompressible flows:

div σt � f � 0 in Ω,

div u � 0 in Ω,

u � 0 on BΩ,

with σt total stress tensor and u the unknown velocity field.

Spheric and deviatoric parts:

σt � σD � 1
3

trpσtqI (1)
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Yield Fluids: Model problem II

Viscoplastic fluid model: Bingham model

$&% σD � 2µ∇su �
?

2τ0
∇su
|∇su| when

b
1
2 |σD| ¡ τ0

∇su � 0 otherwise

with τ0 ¥ 0 and µ ¡ 0
denoting the viscosity
and the yield stress
respectively.
∇su the symmetric
gradient.
We use the Frobenius
norm |τ | � ?

τ : τ

Figure: Clasification of fluids
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Yield Fluids: Model problem II

Glowinski [2] showed the PDEs can be recast as a minimization
problem:

u � arg min
vPKp0q

»
Ω

DpvqdΩ�
»
Ω

f � v

where KpuDq is the kernel of the divergence operator and defined as
KpuDq �

 
v P L2pΩqd|div v � 0 P Ω,u � uD P BΩ

(
,

The dissipation energy

Dpuq � µ|∇su|2 �
?

2τ0|∇su|,
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Yield Fluids:Augmented Lagrangian Algorithm

Solve the saddle problem

pu, γ, σq � min
vPH1

0,δPL2

max
τPL2

Lpv, δ, τ q

New constraint γ � ∇su

Augmented Lagrangian:

Lpu, γ,σq � µ

2

»
Ω

|γ|2dΩ� τ0

»
Ω

|γ|dΩ�
»
Ω

f � udΩ

�
»
Ω

σ : p∇su � γqdΩ� α

2

»
Ω

|∇su � γ|2dΩ

with α ¡ 0 is the augmentation parameter.
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ALG: Uzawa-like algorithm, nth-iteration

Weak formulation: Assume σn and γn, then find un P V,@v P H1
0pΩqd

such that

2αp∇sun�1,∇svq � pf, vq � pσn � 2αγn,∇svq,

Solve point-wise

γn�1pxq � max
�

0,
1

p2α� µq
Xn�1pxq
|Xn�1pxq|

�|Xn�1pxq| � τ0
�


where Xn�1 � σn � α∇sun�1.

Update the stress

σn�1 � σn � αp∇sun�1 � γn�1q.



Yield Fluids Discontinuous Skeletal Methods Results Conclusions

Discontinuous Skeletal methods

There are differente kinds of DiSk methods: MFD, HFV, HDG, HHO.
Discontinuous Skeletal methods approximate solutions of BVPs by

using discontinuous polynomials in the mesh skeleton

attaching unknowns to mesh faces

Salient features:
Dimension-independent construction

Supportgeneral meshes(conforming and non-conforming)

Arbitrary polynomial order
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DISK methods

In this work we use the Hybrid High Order method, introduced recently by
Di Pietro et Ern [1, 3] for linear elasticity.
Attractive features:

Designed from primal formulation

Arbitrary order of polynomials.

Suitable for hp-adaptivity.

They can be applied to a fair range of PDE’s.

Gradient reconstruction based on local Neumann problems.
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Degrees of freedom I

We consider as model problem the laplace equation: �∆u � f P Ω

Cell-Face based method: Hybrid method.

DoFs are polynomials of order k ¥ 0 attached to the mesh cells and
their faces.

k � 0 k � 1 k � 2

Figure: DOFs for k =0, 1, 2.

We define for all T P Th the local space

Uk
h � Pk

dpTq �
#¡

FPFh

Pk
d�1pFq

+
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Gradient reconstruction I

The local potential reconstruction operator: rk�1
T : Uk

T Ñ Pk�1
d pTq

The local gradient reconstruction operator: ∇rk�1
T : Uk

T Ñ ∇Pk�1
d pTq

Let v P Uk
T , then ∇rk�1

T v � ∇s with s P Pk�1
d pTq

∇s solves the local problem for all w P Pk�1
d pTq

p∇s,∇wqT � p∇vT ,∇wqT �
¸

FPFT

pvF � vT ,∇w � nTFqF

Reconstruction operator derives from integration by parts formula.

Set
»

T
rk�1

T v �
»

T
vT then the reconstructed function is in Pk

dpTq and is

unique.
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Gradient reconstruction II

Local interpolation operator Ik
T : H1pTq Ñ Uk

T , that maps a given
function v P H1pTq into the broken space of local collection of
velocities.

Ik
Tv � pπk

Tv, pπk
FvqFPFT q,

Conmuting diagram property

For all u P H1pTq and all w P Pk�1
d pTq

p∇rk�1
T Ik

Tv,∇wqT � p∇u,∇wqT (2)

Thus, rk�1
T Ik

T is the elliptic operator on Pk�1
d pTq
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Reconstruction operator III

Reconstruction operator rk�1
T v is used to build the following bilinear form on

Uk
T � Uk

T :
ap1qT pv,wq � p∇rk�1

T v,∇rk�1
T wqT

Note how p∇rk�1
T v,∇rk�1

T wqT mimics locally the l.h.s. of our original
problem

Find u P H1
0pΩq s.t. p∇u,∇vqΩ � pf , vqΩ, @v P H1

0pΩq
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Stabilization operator I

For v P Uk
T , the reconstructed gradient ∇rk�1

T v is not stable:
∇rk�1

T v � 0 does not imply that vT and vBT are constant functions
taking the same value.

We introduce a least-squares penalization of the difference between
functions in the faces and function in the cell

Sk
Tv :� πk

BT

�
vBT � pvT � rk�1

T v � πk
Trk�1

T vq|BT
�
,
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Stabilization operator II

Using the stabilization operator just defined, we build a second bilinear form
on Uk

T � Uk
T :

sTpv,wq �
¸

FPFBT

h�1
F pSk

Tv, Sk
TwqF,

where hF denotes the diameter of the face F.

The stabilization as defined allows HHO to converge as k � 2 in L2
norm

The simpler stabilization considering the difference vBT � vT would
limit convergence to k � 1
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Global spaces

Local discrete spaces Uk
T , for all T P T , are collected into a global discrete

space
Uk

h :� Uk
T � Uk

F ,

where

Uk
T :� Pk

dpT q :� tvT � pvTqTPT | vT P Pk
dpTq, @T P T u,

Uk
F :� Pk

d�1pFq :� tvF � pvFqFPF | vF P Pk
d�1pFq, @F P Fu.

For a pair vh :� pvT , vF q in the global discrete space uk
h, we denote v, for all

T P T , its restriction to the local discrete space Uk
T , where vBT � pvFqFPFBT

Homogeneous Dirichlet BCs are enforced strongly by considering the
subspace

Uk
h,0 :� Uk

T � Uk
F,0,

where
Uk

F,0 :� tvF P Uk
F | vF � 0, @F P Fbu.
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Discrete problem

For all T P T , we combine reconstruction and stabilization bilinear forms
into aT on Uk

T � Uk
T such that

aT :� ap1qT � sT .

We then do a standard cell-wise assembly

ahpuh,whq :�
¸

TPT
aTpu,wq,

`hpwhq :�
¸

TPT
pf ,wTqT .

Finally we search for uh :� puT , uF q P Uk
h,0 such that

ahpuh,whq � `hpwhq, @wh :� pwT ,wF q P Uk
h,0,
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Degrees of freedom II

Due to the hybridization the global number of DOF’s is bigger than a
FEM approach.

Compact stencil: due to face DOF’s involving only neighbors.

Cell DOF’s are eliminated by static condensation, reducing the
computational cost on the solver process.

Cell DOF’s are recovered by local computations
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Applying DISK to ALG

Local bilinear forms aT and sT on Uk
T � Uk

T

Diffusion term

aTpv,wq :� p∇srk�1
T v,∇srk�1

T wqT � sTpv,wq,

Stabilization term: coupling cell and face unknowns

sTpv,wq :�
¸

FPFT

h�1
F pπk

FpvF �prk�1
T vq, πk

FpwF �prk�1
T wqqF

Second velocity reconstruction prk�1
T : Uk

T Ñ Pk�1
d pTqd

prk�1
T � vT � prk�1

T v � πk
Trk�1

T vq

Stress-strain term

cTpτ , vq � pτ ,∇svTqT �
¸

FPFT

pτ � n, vF � vTq on L2pTq � Uk
T .

Global versions of the linear forms are obtained by cell-wise assembly.
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DiSK-ALG

Discrete weak formulation: Let σn and γn known, find uh P Uk
h,0 such

that: @vn�1
h P Uk

h,0

2αahpun�1
h , vn�1

h q �
¸

TPTh

pf, vTqT � chpσn � 2αγn, vhq

Compute γ

γn�1pxq �
$&% 0 for|Xn�1pxq| ¤ ?

2τ0
1

2pα� µq
�
|Xn�1pxq| �

?
2τ0

	 Xn�1pxq
|Xn�1pxq| for otherwise

with Xn�1pxq � σnpxq � 2α∇srk�1
T un�1pxq.

Update stress

σn�1 � σn � 2αp∇srk�1
T un�1 � γn�1q.
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Numerical results I

Test Setting

The cases are benchmarks consisting of an unidirectional source along the
pipe-axis and no-slip conditions enforced on the walls.

Test case 1: Poiseuille problem in 1D, analytical solution.
Test case 2: Circular cross section problem, analytical solution.
Test case 3: Square cross section problem, no analytical solution.

The dimensionless Bingham number (Bi) is the ratio between the yield
stress and the viscous stress.
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Numerical Results I

Fig. 8 showcases the agreement for tests 1 and 2 between the numerical
and analytical solution.
Computations are done using conforming meshes.

Figure: Velocity profiles for the 1D test case (left) and the circular pipe test
case(right).



Yield Fluids Discontinuous Skeletal Methods Results Conclusions

Numerical Results II

Mesh adapatation:

Features

Non-conforming meshes.
Control of the number of hanging nodes per face.
Marker based on stress values at Gauss nodes

The challenge

Capture of the transition boundaries: plug region in the center, a
concentric annulus as shear zone and a dead region around the corners.
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Levels of refinement

Let T 0
h be the initial mesh and T i

h the mesh after i- refinement steps.

Let T P Ti and denote its ancestor T0 P T0, such that T0 � T .

Labeling of levels: The level of T is the number of times T0 has being
partitioned to obtain T through the i-adaptive steps.

After each marking process, check the difference of level be   2,
between neighbors.

(a) Initial mesh, (b) 2nd adapted mesh, (c) 5th adapted mesh

Figure: Checking levels test

Fig. 5 shows the resulting non-conforming meshes and depicted the circle in
red, whose ratio is equal to 0.7. The final figure confirms the expected
behavior of the algorithm.
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Numerical Results III

Circular pipe:
For fine meshes we obtained the expected behavior of the adaptation
process, adapting around the inner red line (solid-liquid boundary).

(a) Bi = 0.1 (b) zoom for Bi = 0.1 (c) Bi = 0.7

Figure: 1st step.
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Numerical Results IV

Circular pipe: Coarse mesh

Figure: Mesh adaptation evolution for Bi � 0.3 (top) and Bi � 0.3pleftq.



Yield Fluids Discontinuous Skeletal Methods Results Conclusions

Numerical Results: Square pipe

Figure: Mesh adaptation evolution for Bi � 0.2 (left),Bi � 0.8pcenterq and
Bi � 1.0prightq.
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Future work

Develop a Cut-Cell-DISK to simulate bubbles.

hp-adaptivity: straightforward with DISK.

Other viscoplastic models: Herschel-Bulkley.

Use of cone programming optimization with DISK methods.
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Thank you!

Thank you!
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