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Introduction to stochastic homogenization

Introduction to stochastic homogenization

The goal is to solve efficiently the following problem:

Oscillating problem

{—div[A(;,w)Vue(-,w)]:f in D

ue(-,w) € H&(D)

where D is a regular bounded domain in RY (¢ < diam(D)),
f € L?(D) and the matrix A is random, elliptic, bounded and
stationary.
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Introduction to stochastic homogenization

Main issues to solve numerically with standard FE methods:
@ Need to discretize D at scale € to get an accurate solution

@ The coefficients are random so many realizations are necessary
to estimate the law of the solution wu,

Question: How to approximate the solution when ¢ < diam(D) 7

Figure: Two checkerboard random realizations: ¢ = 75 (left) and o5 (right)
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Introduction to stochastic homogenization

Theorem (Stochastic homogenization)

If A is bounded, elliptic and stationary then:

with u* solution of the following deterministic PDE with constant
coefficients:

—div[A*Vu*] = f in D,
u* € H}(D).
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Introduction to stochastic homogenization

The homogenized matrix A* is defined by

ALy = E[/Q(Vw,-(-,w) &) - AC W) (Vi w) + ¢)]

where @ = (0,1)? and w; is the corrector in the e; direction,
solution to:

Corrector problem

—div[A(-,w)(Vw;(-,w) + &) =0 in RY
Vw; stationary
]E[fQ VW,'] =0
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Introduction to stochastic homogenization

How to compute A*

@ The corrector equation is defined on R?: impossible to solve
numerically and no analytic expression

@ Numerical approximation w/¥ on the truncated domain
Qn = (=N, N)9 solution to:

{— div[A(, w)(VwWN(-,w) + )] =0 in Qu
wN  Qu-periodic

A* is approximated by the following formula:

1

AT @) = o | (VW w) + e) - AC ) (V] (w) + ¢)
|Qn| Jay

Question: Knowing u.(-,w) is random, what is its law? How does
u(+,w) fluctuate around its mean behavior?
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Theoretical study

Study of fluctuations : Theoretical framework

First, we consider the problem

—dive[A(=,w)Veu(,w)] = f in R?

o
€
for some appropriate f, where V. is a finite difference operator. In
contrast to our problem, this problem is a discrete PDE posed in
RY,

Our quantity of interest is:

Fe) =< [ () ~Blude

For some given g, /(g) allows to study the fluctuations of v
locally around its mean.
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Theoretical study

It can be shown that the fluctuations of /¢ depend on:

@ The corrected energy density function p; j:
Pij = (VW; + e,-) - A(VWJ' + ej) —Vw; - A*ej — VWJ' - A¥e;

e u* and v*, the solutions of the homogenized problem with
right-hand side f and g respectively.

Denoting Q; = (—L, L)d, a fourth order tensor 9, that governs the
fluctuations and is independent from f and g, can be computed
from p:

. L

Qijkl= L|I_>moo QK

ot Co < / L )
ik, = YOV Pij> AT Pk,
" o = 1Qul Jq
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Theoretical study

Theorem (for discrete PDE's, Duerinckx et al, 2016)

For d > 2, I*(g) converges in law, when € — 0, towards a Gaussian
rv.:

€ L 2
F(e) £ N (0,0%)
with the variance o defined by:
o2 = / (Vur @ Vv*): Q: (Vu* @ Vv*)
Rd

and Q defined by:
Q lim Co </ P ! P >
ik, = \ ffio ToT ,
J,k,l Do o, J |QL‘ o k,l
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Theoretical study

Theorem's consequences

Knowing @ = knowing the fluctuations of /¢ for all f and g
But some questions arise:

© How to compute Q efficiently? Q is indeed very challenging to
compute:

e w; and A* not computable so need to approximate them by
w]N and A} (w)

o Need a lot of realizations to compute the covariance accurately

@ Theoretical result for discrete PDE's posed on RY. Extension
of this result to continuous PDE’s posed on bounded domains?
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Theoretical study

The multi-dimension case: a perturbative setting

We consider the problem —div[A(é,w)Vua(-,w)] =finD
with A such as:

0 A(x,w) = Aper(X) + 1 > Toti(x)Xi(w)lg,
kezd
with n < 1 and Xj centered i.i.d
We then expand our values of interest in power of 7:
d
I°(g) = e 2 [p(u: — E[uc])g = nlf(g) + h.o.t

per

pij=pi; +npij+ho.t.

L1
Q/,_/ Kk, — = Cov (fQ Pijs |QL| fQL Pk, I) = n2Qi,j,k,l + h.o.t.
o} = [p(Vur @ Vv*): Qb - (Vu* @ Vv*) = 207, + h.o.t
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Theoretical study

The multi-dimension case: a perturbative setting

If we are in the perturbative case, then:

I°(g) = nl{(g) + h.o.t, of = 7720%71 + h.o.t

and

5 (g) = N(0,02)

e—0

o1 = lim o1
L—soco

At the leading order in 7 the result of Duerinckx et al. again holds.
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Numerical results

Numerical results
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Numerical results

Numerical results

Goal : Find an estimate of the localized fluctuations of u. without
solving the oscillating problem for any right-hand side f.

Main steps of the approach
© Compute an estimate of A* and Q
@ Choose the relevant localization function g
© Approximate the variance of /. with the variance

o2 :/Vu*®Vv*:Q:Vu*®VV*
D

priori

Challenges to estimate Q:

o p;j depends on A*, w; and w; random functions =—>
approximate with truncated corrector W,-N.

e Compute covariance — many realizations of Pij-
QL
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Numerical results

Approach to estimate Q

Main steps to approximate O:

@ Choose the truncated domain Qp, the integration domain
Q1 C Qun and the number of realizations M

@ Solve in parallel wV(-,wp) for L<m< M

© Compute in parallel / p,[\’lj(x,wm)dx fori<m<M
QL

NL _ 7
Q@ Compute Q,;" = Covy (fQL p,l-yj, ‘Q71L| fQL pQ’,l)

As a result Q is approximated by Q;\V/,’L
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Numerical results

2D full stochastic case: random checkerboard

D = (0,1)?, Ais chosen to be a random checkerboard: for each
square of size ¢, A= 0.2 and A = 1.8/, with probability %

Figure: Two realizations of the checkerboard with e = 5 (left), o5 (right)
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Numerical results

Evolution of the approximation Q;\V/,’L (N =5L, M= 10%

Evolution of Q,,,, in function of N (L=N/5)
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With N significantly larger than L (N = 5L) the approximation is
stable for N > 30
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Numerical results

Evolution of the approximation Q;\V/,’L (L

Evolution of @,,,, in function of N (L=5)
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If L is fixed, the approximation QAMI’L is stable for N > 3L
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Numerical results

Verification of the approach

The approach has been rigorously proved in the weakly stochastic
setting. We here consider a full stochastic case and numerically
check that Var(/¢) S o?

E—r

Procedure:
© Choose g and f
@ Compute many realizations of /¢ by solving the PDE for wu,

© Build the corresponding empirical variance estimator o¢,,

Q@ Estimate Q with Q,I\V/,’L for large N, L and M

N,L
© Compute o,
N,L
O Compare og,,, and o)
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Numerical results

Results for Dirichlet BC
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Empirical and Asymptotic values quite close for ¢ < %

Pierre-Loik ROTHE Stochastic homogenization



Numerical results

Conclusion and future work

Numerical part:

N,L
° oy,

even in a full stochastic case.

is a good approximation of o¢__ when N,L,M > 1ande <1

emp

@ Q is accurately approximated by Q;\Vﬂ’L for affordable L and N;
currently the appropriate value for M is too large.

Theoretical part:
@ Study carried out in the 1D and weakly random (for d > 2) cases

@ Understand how to choose the different numerical parameters (N, L
and M) in relation to one another
/b
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