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Introduction to stochastic homogenization

The goal is to solve efficiently the following problem:

Oscillating problem

{
− div[A( ·ε , ω)∇uε(·, ω)] = f in D

uε(·, ω) ∈ H1
0 (D)

where D is a regular bounded domain in Rd (ε� diam(D)),
f ∈ L2(D) and the matrix A is random, elliptic, bounded and
stationary.
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Main issues to solve numerically with standard FE methods:

Need to discretize D at scale ε to get an accurate solution

The coefficients are random so many realizations are necessary
to estimate the law of the solution uε

Question: How to approximate the solution when ε� diam(D) ?

Figure: Two checkerboard random realizations: ε = 1
10 (left) and

1
50 (right)
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Theorem (Stochastic homogenization)

If A is bounded, elliptic and stationary then:

uε(·, ω)
L2(D)−→
ε→0

u? a.s

∇uε(·, ω)
L2(D)d
⇀
ε→0

∇u? a.s

with u? solution of the following deterministic PDE with constant
coefficients: {

− div[A?∇u?] = f in D,

u? ∈ H1
0 (D).
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The homogenized matrix A? is defined by

A?
i ,j = E[

∫
Q
(∇wi (·, ω) + ei ) · A(·, ω)(∇wj(·, ω) + ej)]

where Q = (0, 1)d and wi is the corrector in the ei direction,
solution to:

Corrector problem


− div[A(·, ω)(∇wi (·, ω) + ei )] = 0 in Rd

∇wi stationary
E[
∫
Q ∇wi ] = 0
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How to compute A?

The corrector equation is defined on Rd : impossible to solve
numerically and no analytic expression

Numerical approximation wN
i on the truncated domain

QN = (−N,N)d solution to:

{
− div[A(·, ω)(∇wN

i (·, ω) + ei )] = 0 in QN

wN
i QN -periodic

A? is approximated by the following formula:

A?N
i,j(ω) =

1
|QN |

∫
QN

(∇wN
i (·, ω) + ei ) · A(·, ω)(∇wN

j (·, ω) + ej)

Question: Knowing uε(·, ω) is random, what is its law? How does
uε(·, ω) fluctuate around its mean behavior?

Pierre-Loïk ROTHÉ Stochastic homogenization



Introduction to stochastic homogenization
Theoretical study
Numerical results

Study of fluctuations : Theoretical framework

First, we consider the problem

− divε[A(
·
ε
, ω)∇εuε(·, ω)] = f in Rd

for some appropriate f , where ∇ε is a finite difference operator. In
contrast to our problem, this problem is a discrete PDE posed in
Rd .
Our quantity of interest is:

I ε(g) = ε−
d
2

∫
Rd

(uε(·, ω)− E[uε])g

For some given g , I ε(g) allows to study the fluctuations of uε
locally around its mean.
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It can be shown that the fluctuations of I ε depend on:

The corrected energy density function ρi ,j :
ρi ,j = (∇wi + ei ) · A(∇wj + ej)−∇wi · A?ej −∇wj · A?ei

u? and v?, the solutions of the homogenized problem with
right-hand side f and g respectively.

Denoting QL = (−L, L)d , a fourth order tensor Q, that governs the
fluctuations and is independent from f and g , can be computed
from ρ:

Qi ,j ,k,l = lim
L→∞

QL
i ,j ,k,l

QL
i ,j ,k,l = Cov

(∫
QL

ρi ,j ,
1
|QL|

∫
QL

ρk,l

)
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Theorem (for discrete PDE’s, Duerinckx et al, 2016)

For d ≥ 2, I ε(g) converges in law, when ε→ 0, towards a Gaussian
r.v.:

I ε(g)
L−→

ε→0
N (0, σ2)

with the variance σ2 defined by:

σ2 =

∫
Rd

(∇u? ⊗∇v?) : Q : (∇u? ⊗∇v?)

and Q defined by:

Qi ,j ,k,l = lim
L→∞

Cov
(∫

QL

ρi ,j ,
1
|QL|

∫
QL

ρk,l

)
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Theorem’s consequences

Knowing Q =⇒ knowing the fluctuations of I ε for all f and g

But some questions arise:

1 How to compute Q efficiently? Q is indeed very challenging to
compute:

wi and A? not computable so need to approximate them by
wN
i and A?

N(ω)

Need a lot of realizations to compute the covariance accurately

2 Theoretical result for discrete PDE’s posed on Rd . Extension
of this result to continuous PDE’s posed on bounded domains?
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The multi-dimension case: a perturbative setting

We consider the problem − div[A(
·
ε
, ω)∇uε(·, ω)] = f in D

with A such as:

A(x , ω) = Aper (x) + η
∑

k∈Zd

1Q+k(x)Xk(ω)Id ,

with η � 1 and Xk centered i.i.d

We then expand our values of interest in power of η:

I ε(g) = ε−
d
2
∫
D(uε − E[uε])g = ηI ε1 (g) + h.o.t

ρi ,j = ρperi ,j + ηρ1
i ,j + h.o.t.

QL
i ,j ,k,l = Cov

(∫
QL
ρi ,j ,

1
|QL|

∫
QL
ρk,l

)
= η2QL,1

i ,j ,k,l + h.o.t.

σ2
L =

∫
D(∇u

? ⊗∇v?) : QL : (∇u? ⊗∇v?) = η2σ2
L,1 + h.o.t
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The multi-dimension case: a perturbative setting

Theorem
If we are in the perturbative case, then:

I ε(g) = ηI ε1 (g) + h.o.t, σ2
L = η2σ2

L,1 + h.o.t

and

I ε1 (g)
L−→

ε→0
N (0, σ2

1)

σ1 = lim
L→∞

σL,1

At the leading order in η the result of Duerinckx et al. again holds.
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Numerical results
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Numerical results
Goal : Find an estimate of the localized fluctuations of uε without
solving the oscillating problem for any right-hand side f .

Main steps of the approach
1 Compute an estimate of A? and Q
2 Choose the relevant localization function g

3 Approximate the variance of Iε with the variance

σ2
priori =

∫
D

∇u? ⊗∇v? : Q : ∇u? ⊗∇v?

Challenges to estimate Q:
ρi ,j depends on A?, wi and wj random functions =⇒
approximate with truncated corrector wN

i .

Compute covariance =⇒ many realizations of
∫
QL

ρi ,j .
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Approach to estimate Q

Main steps to approximate Q:
1 Choose the truncated domain QN , the integration domain

QL ⊂ QN and the number of realizations M

2 Solve in parallel wN
i (·, ωm) for 1 ≤ m ≤ M

3 Compute in parallel
∫
QL

ρNi ,j(x , ωm)dx for 1 ≤ m ≤ M

4 Compute QN,L
M = ĈovM

(∫
QL
ρNi ,j ,

1
|QL|

∫
QL
ρNk,l

)
As a result Q is approximated by QN,L

M
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2D full stochastic case: random checkerboard

D = (0, 1)2, A is chosen to be a random checkerboard: for each
square of size ε, A = 0.2I2 and A = 1.8I2 with probability 1

2 .

Figure: Two realizations of the checkerboard with ε = 1
10 (left), 1

50 (right)
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Evolution of the approximation QN,L
M (N = 5L, M = 104)
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With N significantly larger than L (N = 5L) the approximation is
stable for N ≥ 30
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Evolution of the approximation QN,L
M (L = 5, M = 104)
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If L is fixed, the approximation QN,L
M is stable for N ≥ 3L
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Verification of the approach

The approach has been rigorously proved in the weakly stochastic
setting. We here consider a full stochastic case and numerically
check that Var(I ε) −→

ε→0
σ2

Procedure:

1 Choose g and f

2 Compute many realizations of I ε by solving the PDE for uε

3 Build the corresponding empirical variance estimator σεemp

4 Estimate Q with QN,L
M for large N, L and M

5 Compute σN,L
M

6 Compare σεemp and σN,L
M
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Results for Dirichlet BC
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Empirical and Asymptotic values quite close for ε ≤ 1
40
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Conclusion and future work
Numerical part:

σN,L
M is a good approximation of σε

emp when N,L,M � 1 and ε� 1
even in a full stochastic case.

Q is accurately approximated by QN,L
M for affordable L and N;

currently the appropriate value for M is too large.

Theoretical part:

Study carried out in the 1D and weakly random (for d ≥ 2) cases

Understand how to choose the different numerical parameters (N, L
and M) in relation to one another

https://team.inria.fr/matherials/
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