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1 The Monte Carlo method

The goal of the Monte Carlo method is to numerically approximate an integral which writes under

the form

I :=

∫

x∈E
f(x)P (dx), (1)

where (E, E) is a measurable space, P is a probability measure on E and f ∈ L
1(P ).

1.1 Deterministic approach

Assume for simplicity that E = [0, 1]d and that P has a density p with respect to the Lebesgue

measure. Then setting g(x) = f(x)p(x), fixing N ≥ 1 and setting x~k = (k1/N, . . . , kd/N) for

~k = (k1, . . . , kd) ∈ {0, . . . , N − 1}d, the basic deterministic approximation of I is given by

IN :=
1

Nd

∑

~k

g(x~k),

obtained by replacing g with the piecewise constant function which takes the value g(x~k) on the

cell C~k
:= [k1/N, (k1 + 1)/N) × · · · × [kd/N, (kd + 1)/N).

The precision of this approximation is given by the fact that, if you assume that g is Lipschitz

continuous, then

|I− IN | =

∣∣∣∣∣∣

∑

~k

∫

C~k

(g(x) − g(x~k))dx

∣∣∣∣∣∣
≤

∑

~k

∫

C~k

∣∣g(x) − g(x~k)
∣∣ dx .

1

N
.

As a consequence, to reach a precision ǫ ≃ 1/N , one needs to evaluate f at Nd ≃ (1/ǫ)d points.

This quantity grows exponentially in d: this is the curse of dimensionality.

1.2 Stochastic approach

The formulation (1) of I allows us to rewrite it under the form

I = E[f(X)],

where X is a random variable in E with law P . Then, if (Xn)n≥1 is a sequence of iid random

variables with common distribution P , the (strong) Law of Large Numbers ensures that

În :=
1

n

n∑

i=1

f(Xi)

converges almost surely to I. The precision of the approximation of I by În is measured by the

Central Limit Theorem, which ensures that if σ2 := Var(f(X)) < +∞, then

lim
n→+∞

√
n

σ

(
În − I

)
= N (0, 1), in distribution,
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where N (0, 1) denotes the standard Gaussian distribution. This result ensures in particular that,

given α ∈ (0, 1/2) and denoting by φ1−α/2 the quantile of order 1− α/2 of N (0, 1), the interval

[În ± φ1−α/2σ/
√
n] contains I with probability converging to 1− α when n → +∞. Therefore,

to reach a precision ǫ ≃ σ/
√
n, one needs to evaluate f at n ≃ σ2/ǫ2 points, which only depends

on the underlying dimension of E through the prefactor σ2. So this method avoids the curse of

dimensionality.

The remainder of this lecture serves two objectives:

1. describe how, in practice, one may generate iid samples from a given distribution P ;

2. present methods allowing to improve the precision of the Monte Carlo method when the

factor σ2 is too large.

2 Random variable generation

2.1 Uniform distribution

When you ask a random number to a computer without being more specific, it generally returns

a number uniformly distributed in [0, 1]. Historically, computers used Linear Congruential Gen-

erators for this task. But one of the limits of these generators is that they have a relatively small

period: after (at most) 232 or 264 iterations, the sequence becomes periodic. Nowadays computers

mostly use the Mersenne Twister which has a much larger period. So now the game is: given a

‘black box’ generator which returns independent numbers uniformly distributed on [0, 1], and a

target probability measure P , how to use the former in order to generate samples from the latter?

Basic application: Bernoulli, Binomial, Geometric; link with if, for and while commands.

2.2 Inverse CDF method

Explanation on a random variable X ∈ {1, . . . ,K} such that P(X = k) = pk: generalisation of

the if condition for Bernoulli. Can also be seen as a particular case of the following approach:

given an arbitrary random variable X ∈ R with CDF F (x) := P(X ≤ x), define its pseudo-

inverse by F−1(u) := inf{x ∈ R : F (x) ≥ u}, u ∈ (0, 1). Then F−1(u) ≤ x if and only if

u ≤ F (x). This ensures that if U ∼ U [0, 1], then F−1(U) has the same law as X.

Application: Exponential random variables.

2.3 Box–Muller method for Gaussian random variables

Since X ∼ N (µ, σ2) if and only if X = µ + σG with G ∼ N (0, 1), it suffices to focus on

N (0, 1).
Box–Muller method: if Θ ∼ U [0, 2π] and R ∼ E(1/2) are independent, then X :=

√
R cosΘ

and Y :=
√
R sinΘ are independent and N (0, 1)-distributed.

2.4 Rejection sampling

Principle of the method for sampling from the uniform distribution on some bounded subset of Rd

with positive Lebesgue measure. General method when considering D ⊂ R
d × [0,+∞) as the

graph of the target density p.

Application: the Ziggurat algorithm.
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3 Variance reduction

3.1 The rare event problem

Come back to the estimation of I = E[f(X)]. Assume that f(x) = 1{x∈A} for some subset A

such that I = P(X ∈ A) ≪ 1. Then basically În is always 0 for reasonable values of n. More

quantitatively, to reach a relative precision δ, that is to say that the length of the Monte Carlo

confidence interval ≃ σ/
√
n ≃

√
I/n be of order δI, one needs n ≃ 1/(δI)2. Therefore there is

an interest in reducing the variance σ2.

3.2 Importance sampling

Principle of the method and optimal choice of the density. In practice it cannot be employed, but

the goal is to find tractable densities which ‘look like’ the optimal one.

Application: we want to estimate P(X ≥ 20) for X ∼ N (0, 1). Which density q should we

use? Two propositions:

1. q is the law of 20 +E, where E ∼ E(λ) for some λ > 0.

2. q is the density of N (20, 1).
Homework: which one is the best?

Importance sampling can be implemented in an adaptative way. Other variance reduction

techniques include: control variate, stratified sampling, splitting...
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