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1 Conditional expectation and distribution

We work on a probability space (Ω,A,P).

1.1 Conditional expectation in the discrete space

Recall that for any A,B ∈ A such that P(B) > 0, we define P(A|B) := P(A ∩ B)/P(B). Then

P(·|B) is a probability measure on (Ω,A) but also on (B,AB) where the σ-field AB := {A∩B :
A ∈ A} is called the trace of A on B. This allows to see the conditional probability P(·|B) as the

restriction of P(·) to B, with normalisation constant P(B) ensuring that it remains a probability

measure.

Now fix X ∈ L
1(P) and define E[X|B] := E[X1B]/P(B) so that P(A|B) = E[1A|B].

For a random variable Z taking its values in some discrete space1 (F,F), set FZ := {z ∈ F :
P(Z = z) > 0}. For any z ∈ FZ , define ϕX(z) := E[X|Z = z]. Then the random variable

E[X|Z] := ϕX(Z) is well-defined, almost surely.

Proposition 1.1 (Properties of conditional expectation). (i) ‘Total expectation formula’: E[X] =
E[E[X|Z]].

(ii) For any measurable2 and bounded ψ : F → R, E[ψ(Z)X|Z] = ψ(Z)E[X|Z], almost

surely.

The second point extends to all functions ψ such that ψ(Z)X ∈ L
1(P).

Exercise 1.2. Show that if X ∈ E and Z ∈ F are independent, then for any measurable g :
E × F → R such that g(X,Z) ∈ L

1(P), E[g(X,Z)|Z] = G(Z), almost surely, where G(z) :=
E[g(X, z)].

Combining the points (i) and (ii) of Proposition 1.1 yields the following statement: for any

measurable and bounded function ψ : F → R,

E[Xψ(Z)] = E[E[X|Z]ψ(Z)]. (1)

If you think of (X,Y ) 7→ E[XY ] as a scalar product in L
2(P), the identity above shows that

X − E[X|Z] is orthogonal to the space of random variables of the form ψ(Z), so that E[X|Z] is

actually the orthogonal projection ofX on this space. This identity is the basis of the generalisation

of the construction.

1.2 Conditional expectation in the general case

We now let Z be a random variable in a measurable space (F,F) which no longer needs to be

discrete.

1This means that F is finite or countably infinite and F is the power set of F .
2Note that since F is discrete, all functions are measurable.
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Theorem 1.3 (Definition of conditional expectation). For any X ∈ L
1(P), there exists a mea-

surable function ϕX : F → R such that ϕX(Z) ∈ L
1(P) and for any measurable and bounded

function ψ : F → R,

E[Xψ(Z)] = E[ϕX(Z)ψ(Z)]. (2)

If there is another function ϕ̃X with the same properties then ϕX(Z) = ϕ̃X(Z), almost surely.

This ensures that the random variable

E[X|Z] := ϕX(Z)

is well-defined, almost surely.

Notice that (2) is the same identity as (1). Moreover, the statements of Proposition 1.1 and

Exercise 1.2 remain true with this general definition.

1.3 Conditional distribution

Let (E, E) and (F,F) be two measurable spaces.

Definition 1.4 (Markov kernel). A Markov kernel from F to E is a map P : F × E → [0, 1] such

that:

(i) for any z ∈ F , C ∈ E 7→ P (z, C) is a probability measure;

(ii) for any C ∈ E , z ∈ F 7→ P (z, C) is measurable.

Definition 1.5 (Conditional distribution). Given random variables X ∈ E, Z ∈ F and a Markov

kernel P from F to E, P (Z, ·) is a conditional distribution of X given Z if, for any measurable

and bounded function f : E → R,

E[f(X)|Z] =
∫

x∈E
f(x)P (Z,dx), almost surely.

Equivalently, for any measurable and bounded function g : E × F → R,

E[g(X,Z)] =

∫

z∈F

(∫

x∈E
g(x, z)P (z,dx)

)
µZ(dz),

where µZ is the marginal distribution of Z . Denoting by µ(X,Z) the joint law of the pair (X,Z),
we rewrite this identity in the short-hand notation

µ(X,Z)(dxdz) = µZ(dz)P (z,dx),

which we wall a ‘disintegration’ formula.

As one may expect, the conditional expectation of X ∈ L
1(P) can be recovered from its

conditional distribution from the formula

E[X|Z] =
∫

x∈E
xP (Z,dx),

where the identity holds almost surely.

Theorem 1.6 (Existence of a conditional distribution3). If E is a Polish space4 and E is its Borel

σ-field, then X always admits a conditional distribution P (Z, ·), which is unique almost surely.

3See Theorem 6.3 in Kallenberg, Foundations of Modern Probability, second edition.
4A Polish space is a topological space which is separable (it admits a dense and countable subset) and whose

topology is induced by a metric making it complete.

2



From now on we will simply call any Markov kernel P which satisfies the conclusion of

Theorem 1.6 ‘the’ conditional distribution of X given Z .

We finally introduce a few notations: if P is a Markov kernel from F to E,

• for any measurable and bounded function f : E → R we define the measurable and bounded

function Pf : F → R by Pf(z) =
∫
x∈E P (z,dx)f(x);

• for any bounded measure µ on F , we define the bounded measure µP on E by µP (C) =∫
z∈F µ(dz)P (z, C).

2 Markov property and stationary distribution

We fix a Polish space E endowed with its Borel σ-field E .

2.1 Markov property

Definition 2.1 (Markov property). A sequence (Xn)n≥0 of random variables inE has the Markov

property if for any n ≥ 0, for any A ∈ E ,

P(Xn+1 ∈ A|X0, . . . ,Xn) = P(Xn+1 ∈ A|Xn), almost surely.

A sequence with the Markov property is called a Markov chain.

Denoting by Pn+1 the conditional distribution of Xn+1 given Xn, and by µ0:n the joint distri-

bution of (X0, . . . ,Xn), the Markov property yields the disintegration formula

µ0:n(dx0 · · · dxn) = µ0:n−1(dx0 · · · dxn−1)Pn(xn−1,dxn).

Iterating this formula we get

µ0:n(dx0 · · · dxn) = µ0(dx0)P1(x0,dx1) · · ·Pn(xn−1,dxn),

where µ0 := Law(X0), which shows that the law of (X0, . . . ,Xn) is characterised by the law of

the initial distribution µ0 and the sequence of Markov kernels (Pn)n≥1, which are also called tran-

sition kernels. We also deduce the recursive identity µn+1 = µnPn+1 for the marginal distribution

µn of Xn.

Exercise 2.2 (Autoregressive model). Let (αn)n≥1 and (σn)n≥1 be two sequences of real numbers.

Let X0 be a random variable in R and (Gn)n≥1 be a sequence of iid N (0, 1) random variables,

independent from X0. For any n ≥ 0, define

Xn+1 = αn+1Xn + σn+1Gn+1.

Show that (Xn)n≥0 is a Markov chain and describe its transition kernels.

2.2 Homogeneous chains and stationary distribution

A Markov chain is called homogeneous if its transition kernel does not depend on n.

Definition 2.3 (Stationary distribution). A probability measure π on E is a stationary distribution

for the homogeneous Markov chain (Xn)n≥0 with transition kernel P if it satisfies the identity

π = πP .

The notion of stationary distribution for a Markov chain only depends on its transition kernel

and not on its initial distribution. However if a chain (Xn)n≥0 with transition kernel P has a

stationary initial distribution X0 ∼ π, then Xn ∼ π for all n ≥ 0.

Exercise 2.4 (Autoregressive model, continued). In the setting of Exercise 2.2, assume that for all

n ≥ 0, αn = α ∈ (−1, 1) and σn = σ 6= 0. Find a stationary distribution for the chain (Xn)n≥0.
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3 Ergodic theory of Markov chains in discrete spaces

From now on we assume that E is discrete, and only consider homogeneous Markov chains.

Then a Markov kernel P can (and will) actually be described by a matrix (P (x, y))x,y∈E with

nonnegative coefficients and such that for any x ∈ E,
∑

y∈E P (x, y) = 1, so that if (Xn)n≥0 has

transition matrix P , then P (x, y) = P(X1 = y|X0 = x).
Such a matrix is called stochastic. Its rows are probability measures on E, and therefore we

will take the convention to consider measures on E as row vectors (indexed by E), and functions

on E as column vectors. The notation introduced at the end of Section 1.3 now makes sense as

matrix/vector products. In particular, for any n ≥ 1, we then have Pn(x, y) = P(Xn = y|X0 =
x).

Representation of stochastic matrices as directed graphs. Example of the (asymmetric) random

walk on the discrete torus, computation of the stationary distribution.

3.1 Existence of a stationary distribution

Proposition 3.1 (Finite state space). If E is finite, there always exists a stationary distribution.

Proof by the ‘Krylov–Bogoliubov’ compactness argument.

When E is countably infinite this no longer needs to be true, example of the (asymmetric)

random walk on Z.

Definition 3.2 (Positive recurrence). For any x ∈ E, defined τx = inf{n ≥ 1 : Xn = x}. The

state x is called positive recurrent if Ex[τx] < +∞, where the notation Ex means that we are

assuming that X0 = x.

Proposition 3.3 (Positive recurrence and stationary distribution). If x is positive recurrent, then

the probability measure πx defined on E by

∀y ∈ E, πx(y) :=

Ex

[
τx−1∑

n=0

1{Xn=y}

]

Ex[τx]

is a stationary distribution for (Xn)n≥0.

3.2 Uniqueness of a stationary distribution

Definition 3.4 (Irreducibility). The Markov chain (Xn)n≥0 (or, equivalently, the stochastic matrix

P ) is irreducible if, for any x, y ∈ E, there exists n ≥ 1 such that Pn(x, y) > 0.

Proposition 3.5 (Irreducibility implies uniqueness). If the Markov chain (Xn)n≥0 is irreducible,

then it admits at most one stationary distribution. Furthermore, if it has a positive recurrent state

then all states are positive recurrent, and all probability measures πx introduced in Proposition 3.3

coincide with each other.

If the chain is irreducible and has positive recurrent states, it is called positive recurrent itself.

3.3 Ergodic theorems

Proposition 3.5 shows that for an irreducible and positive recurrent chain, the stationary distribu-

tion π(y) measures the average proportion of time spent in y between two consecutive visits to
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some arbitrary fixed state x. Since the Markov property implies that the excursions of the chain

between such consecutive visits form independent and identically distributed excursions, one may

apply the standard LLN to these excursions to obtain the following statement.

Theorem 3.6 (Law of Large Numbers for Markov chains). Let (Xn)n≥0 be an irreducible and

positive recurrent Markov chain, with unique stationary distribution π. For any f ∈ L
1(π),

lim
n→+∞

1

n

n−1∑

k=0

f(Xk) = πf =
∑

x∈E
π(x)f(x), almost surely.

Since the proof of Theorem 3.6 relies on the decomposition of the trajectory of (Xn)n≥0

into iid excursions, the same argument may be expected to also yield a Central Limit Theorem.

To infer the expression of the limiting variance in this statement, one may first try to compute

limn→+∞Var( 1√
n

∑n−1
k=0 f(Xk)). A formal computation leads to the formula

σ2(f) := Varπ(f(X0)) + 2

+∞∑

n=1

Covπ(f(X0), f(Xn)),

where the notation Varπ, Covπ indicates that we take X0 ∼ π.

Theorem 3.7 (Central Limit Theorem for Markov chains). Under the assumptions of Theorem 3.6,

assume that σ2(f) is well-defined. Then

lim
n→+∞

√
n

(
1

n

n−1∑

k=0

f(Xk)− πf

)
= N (0, σ2(f)), in distribution.

From a numerical point of view, Theorem 3.6 indicates that, if one is interested in computing

the expectation πf (which is nothing but E[f(X)] whenX ∼ π) by the Monte Carlo method, but it

is not possible to draw iid samples from π, then one may construct a Markov chain with stationary

distribution π and the empirical mean 1
n

∑n−1
k=0 f(Xk) still converges to the correct limit, although

the Xk are no longer independent nor identically distributed. Theorem 3.7 then provides confi-

dence intervals for this method. Therefore, this raises the following question: given a probability

measure π on E, can we design a Markov chain which admits π as stationary distribution?

4 Markov chain Monte Carlo methods

4.1 Reversibility

Definition 4.1 (Reversibility). A Markov chain (Xn)n≥0 with transition matrix P is reversible

with respect to a probability measure π on E if it satisfies

∀x, y ∈ E, π(x)P (x, y) = π(y)P (y, x),

which is called the detailed balance equation.

The detailed balance equation precisely means that for any x, y ∈ E, Pπ(X0 = x,X1 = y) =
Pπ(X0 = y,X1 = x), that is to say that if X0 ∼ π, then the pairs (X0,X1) and (X1,X0) have

the same law. In particular the first coordinates of each pair X0 and X1 have the same law, which

means that if (Xn)n≥0 is reversible with respect to π, then π is stationary for (Xn)n≥0.
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4.2 The Metropolis algorithm

We write our target measure under the form

πβ(x) =
1

Zβ
e−βV (x), Zβ :=

∑

x∈E
e−βV (x),

with β ≥ 0 and V : E → R. Our computational assumptions are that, given x ∈ E, we are able

to evaluate V (x), but we cannot compute the sum Zβ . This prevents us from drawing iid samples

from πβ to apply the Monte Carlo method.

Given the target measure πβ , the basic ingredients of the Metropolis algorithm are:

• an irreducible stochastic matrix Q, called the proposal and such that Q(x, y) > 0 if and

only if Q(y, x) > 0, under which we assume that we are able to draw transitions;

• a function F : (0,+∞) → (0, 1], called the acceptance function, which satisfies the identity

∀ρ > 0, F (ρ) = ρF

(
1

ρ

)
.

Examples of acceptance functions are the Metropolis–Hastings rule F (ρ) = min(1, ρ) and the

Barker rule F (ρ) = ρ
1+ρ

.

The algorithm then constructs a Markov chain (Xn)n≥0: given Xn = x,

1. draw a state y with probability Q(x, y);

2. set Xn+1 = y with probability F (
πβ(y)Q(y,x)
πβ(x)Q(x,y)), and Xn+1 = x otherwise.

Then it turns out that the Markov chain (Xn)n≥0 is irreducible and reversible with respect to πβ ,

and can be simulated without the knowledge of Zβ since the ratio πβ(y)/πβ(x) does not depend

on this quantity.
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