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The motivation of this lecture and the next one is to construct a differential calculus aimed

at describing the (infinitesimal) evolution of quantities of the form Φ(Bt) where (Bt)t≥0 is a

Brownian motion and Φ : R → R is smooth. Since the trajectories of the Brownian motion

are not differentiable, the usual chain rule does not apply. Today we construct the first part of

this differential calculus: the stochastic integral. It is partially inspired by the construction of the

Stieltjes integral for functions of bounded variation.

Introductory exercise: let T > 0 and σ = {t0, . . . , tn} such that 0 = t0 < t1 < · · · < tn = T .

We write ‖σ‖ = max0≤i≤n−1 ti+1 − ti. Show that lim‖σ‖→0

∑n−1
i=0 (Bti+1

−Bti)
2 = T in L

2.

1 Functions of bounded variation and the Stieltjes integral

For g : [0, T ] → R such that g(0) = 0, we define TV(g) = supσ
∑n−1

i=0 |g(ti+1) − g(ti)|, and

say that g is of bounded variation (BV) if TV(g) < ∞. It turns out that g is BV if and only if

g = g+ − g− with nondecreasing functions g± : [0, T ] → R. In this case, g has left- and right

limits everywhere, and the right-continuous, left-limited version of g is the cumulative distribution

function of some bounded signed measure µ on [0, T ].
A typical example is when g is differentiable, then µ is the measure with density g′(t) with

respect to the Lebesgue measure on [0, T ]. In particular, TV(g) =
∫ T
0 |g′(t)|dt and one can take

g±(t) =
∫ t
0 [g

′(s)]±ds.

Now let g be BV and h : [0, T ] → R be a continuous function. For any piecewise con-

stant function hn, of the form
∑n−1

i=0 ξi1[ti,ti+1)(t) on some subdivision σ, which is such that

supt∈[0,T ] |h
n(t)− h(t)| → 0, the quantity

∑n−1
i=0 ξi(g(ti+1)− g(ti)) converges, when ‖σ‖ → 0,

to a limit which does not depend on the choice of hn. This is the Stieltjes integral of f with respect

to g, it is denoted by
∫ T
0 h(t)dg(t).

It is related with:

• the Riemann integral because in the case where g isC1 then
∫ T
0 h(t)dg(t) =

∫ T
0 h(t)g′(t)dt;

• the Lebesgue integral because
∫ T
0 h(t)dg(t) =

∫ T
0 h(t)µ(dt).

2 Construction of the stochastic integral

We mostly follow Section 10.1 of the 2023/2024 notes.

We now fix a probability space (Ω,A,P), equipped with a filtration (Ft)t≥0 such that F0

contains all negligible sets, and let (Bt)t≥0 an (Ft)t≥0-Brownian motion. The goal is to construct

the stochastic integral ∫ T

0
HtdBt

for a large enough class of processes (Ht)t≥0.

2.1 Construction for piecewise constant integrands

Construction for processes of the form Hn
t =

∑n−1
i=0 ξi1[ti,ti+1)(t).

Problem of limit n → +∞ for two approximations of Ht = Bt.
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2.2 The Itô convention

Progressively measurable processes. Notation Λ
2([0, T ]) and Λ

2
0([0, T ]). Characterisation of

elements of Λ2
0([0, T ]).

Construction of the stochastic integral by extension of the isometry from Λ
2
0([0, T ]) to Λ

2([0, T ]).

Application: computation of
∫ T
0 BtdBt.

Properties: Chasles relation, linearity, identities for mean and variance.

Proposition 2.1 (Stochastic integral as a process). For any (Ht)t∈[0,T ] ∈ Λ
2([0, T ]), the process

(Xt)t∈[0,T ] defined by

Xt =

∫ t

0
HsdBs

is adapted and has an almost surely continuous modification, which is therefore progressively

measurable.

See the proof in Appendix A.

Exercise: compute E[
∫ T
0 HtdBt

∫ T
0 H ′

tdBt].

2.3 Extension and localisation

The goal is now to remove the L
2(P) condition on (Ht)t≥0. Definition of Λloc. Introduction of

the stopping time τM and extension of the stochastic integral by localisation.

2.4 Exercises

Probability of exit from a strip.

The Wiener integral.

A Proof of Proposition 2.1

It is important to keep in mind that the stochastic integral on [0, T ] is constructed by a limiting

procedure in L
2(P), and therefore it is only defined up to a negligible subset, which depends on

T . So the first step is to realise that for any t ∈ [0, T ], we have

Xt :=

∫ t

0
HsdBs =

∫ T

0
1{s<t}HsdBs, almost surely,

where the first stochastic integral is constructed on [0, t] by approximation of the integrand (Hs)s∈[0,t],
while the second stochastic integral is constructed on [0, T ] by approximation of the integrand

(1{s<t}Hs)s∈[0,T ]. But it is clear that if (Hn
s )s∈[0,t] is a sequence of elements of Λ2

0([0, t]) such

that ‖Hn−H‖
Λ

2([0,t]) → 0, then (1{s<t}H
n
s )s∈[0,T ] is a sequence of elements of Λ2

0([0, T ]) such

that ‖1{·<t}H
n − 1{·<t}H‖

Λ
2([0,T ]) → 0, and moreover

∫ t

0
Hn

s dBs =

∫ T

0
1{s<t}H

n
s dBs.

Since the left- and right-hand sides respectively converge to
∫ t
0 HsdBs and

∫ T
0 1{s<t}HsdBs,

in L
2(P), we deduce that these quantities coincide almost surely (but on an almost sure event

which depends on t). In other words, the processes (Xt)t∈[0,T ] and (
∫ T
0 1{s<t}HsdBs)t∈[0,T ] are

modification of each other.
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To check that (Xt)t∈[0,T ] is adapted, we fix t and notice that by construction, Xt is the limit, in

L
2(P), of a sequence of Ft-measurable random variables Xn

t , therefore Xt is Ft-measurable (in

fact, since F0 ⊂ Ft contains all negligible sets, any random variable X̃t which coincides almost

surely with Xt is Ft-measurable).

We now construct an almost surely continuous modification of (Xt)t∈[0,T ]. To proceed, we let

(Hn
s )s∈[0,T ] be a sequence of elements of Λ2

0([0, T ]) which converges to (Hs)s∈[0,T ] in Λ
2([0, T ]).

Since we are working with an almost surely continuous modification of the Brownian motion

(Bs)s∈[0,T ], the process (Xn
t )t∈[0,T ] defined by

Xn
t =

∫ T

0
1{s<t}H

n
s dBs

is almost surely continuous (recall that since (1{s<t}H
n
s )s∈[0,T ] ∈ Λ

2
0([0, T ]), this construction is

elementary). As a consequence, it may be viewed as a random variable in the space C([0, T ]) of

continuous trajectories, endowed with the Borel σ-field associated with the sup norm.

Moreover, each process (Xn
t )t∈[0,T ] is easily seen to be a martingale. As a consequence, for

n,m ≥ 1, Doob’s maximal inequality (Karatzas and Shreve, Section 1.3) yields

E

[
sup

t∈[0,T ]
|Xn

t −Xm
t |2

]
≤ E

[
|Xn

T −Xm
T |2

]
= ‖Hn −Hm‖2

Λ
2([0,T ])

.

We deduce that if (Hn)n≥1 is a Cauchy sequence in Λ
2([0, T ]), then (Xn)n≥1 is a Cauchy se-

quence in L
2(Ω;C([0, T ])). Since this space is complete, there exists (X̃t)t∈[0,T ] ∈ L

2(Ω;C([0, T ]))

such that E[supt∈[0,T ] |X
n
t − X̃t|

2] → 0. By construction, (X̃t)t∈[0,T ] is almost surely continuous,

but on the other hand, for any t ∈ [0, T ] it is such that Xt = X̃t, almost surely. This completes the

proof.

Remark A.1. A generalisation of the Doob maximal inequality for the (almost surely continuous

modification of the) stochastic integral writes as follows: for any p ≥ 1, there exist absolute

constants 0 < cp ≤ Cp < ∞ such that, for any T > 0, for any (Ht)t∈[0,T ] ∈ Λ
2([0, T ]),

cpE

[(∫ T

0
H2

t dt

)p/2
]
≤ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
HsdBs

∣∣∣∣
p
]
≤ CpE

[(∫ T

0
H2

t dt

)p/2
]

This statement is called the Burkhölder–Davis–Gundy inequality (Karatzas and Shreve, Section 3.3).

Remark A.2. Now that we know that (Xt)t∈[0,T ] has a progressively measurable modification,

given a stopping time τ and T > 0 we may define the random variable (XT∧τ )(ω) := XT∧τ(ω)(ω).
Then by similar arguments as in the proof above, we may check that

XT∧τ =

∫ T

0
1{s<τ}HsdBs, almost surely,

which is useful in localisation procedures.
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