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The motivation of this lecture and the next one is to construct a differential calculus aimed
at describing the (infinitesimal) evolution of quantities of the form ®(B;) where (By);>o is a
Brownian motion and ® : R — R is smooth. Since the trajectories of the Brownian motion
are not differentiable, the usual chain rule does not apply. Today we construct the first part of
this differential calculus: the stochastic integral. It is partially inspired by the construction of the
Stieltjes integral for functions of bounded variation.

Introductory exercise: let T > 0 and o = {¢tg,...,t,} suchthat 0 = tg < t; < --- < t, =T.

We write |0 = maxo<i<n—1ti+1 — ti. Show that lim 50 Z?:_()l(BtiH — By,)?=TinL%

1 Functions of bounded variation and the Stieltjes integral

For g : [0,7] — R such that g(0) = 0, we define TV(g) = sup, Z?:_()l lg(tiv1) — g(t;)|, and
say that ¢ is of bounded variation (BV) if TV(g) < oo. It turns out that ¢ is BV if and only if
g = g+ — g— with nondecreasing functions g+ : [0,7] — R. In this case, g has left- and right
limits everywhere, and the right-continuous, left-limited version of g is the cumulative distribution
function of some bounded signed measure £ on [0, 7.

A typical example is when g is differentiable, then p is the measure with density ¢'(¢) with
respect to the Lebesgue measure on [0, 7']. In particular, TV (g) = fOT | (t)|dt and one can take
gx(t) = Jold' (5)]ds.

Now let g be BV and h : [0,7] — R be a continuous function. For any piecewise con-
stant function A", of the form E?:_ol &ilyy, 1,,)(t) on some subdivision o, which is such that
SUPye(o,7) |h™(t) — h(t)| — 0, the quantity Z?:_()l &i(g(tiv1) — g(t;)) converges, when ||o| — 0,
to a limit which does not depend on the choice of h™. This is the Stieltjes integral of f with respect
to g, it is denoted by fOT h(t)dg(t).

It is related with:

» the Riemann integral because in the case where g is C'! then fOT h(t)dg(t) = fOT h(t)g (t)dt;

* the Lebesgue integral because fOT h(t)dg(t) = fOT R(t)p(dt).

2  Construction of the stochastic integral

We mostly follow Section 10.1 of the 2023/2024 notes.
We now fix a probability space (£2,.4,P), equipped with a filtration (F;);>¢ such that Fp
contains all negligible sets, and let (B;)¢>( an (F;)¢>o-Brownian motion. The goal is to construct

the stochastic integral
T
/ H.dB;
0

for a large enough class of processes (H¢)¢>0.

2.1 Construction for piecewise constant integrands

Construction for processes of the form H;' = Z?:_()l il ) (@)

Problem of limit n — +oo for two approximations of H; = B;.
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2.2 The Ito6 convention

Progressively measurable processes. Notation A2([0,7]) and A3([0,T]). Characterisation of
elements of AZ([0, 7).
Construction of the stochastic integral by extension of the isometry from A3 ([0, T7) to A([0, T7).

Application: computation of fOT BydB;.
Properties: Chasles relation, linearity, identities for mean and variance.

Proposition 2.1 (Stochastic integral as a process). For any (Hy)ejo,) € A2([0,TY), the process
(Xt)te[o,T} defined by

t
Xt:/ H,dB;
0

is adapted and has an almost surely continuous modification, which is therefore progressively
measurable.

See the proof in Appendix A.
Exercise: compute E| fOT HdB; fOT H[dBy.

2.3 Extension and localisation

The goal is now to remove the L2 (P) condition on (Hy);>o. Definition of Aj,.. Introduction of
the stopping time 7, and extension of the stochastic integral by localisation.

2.4 Exercises

Probability of exit from a strip.
The Wiener integral.

A Proof of Proposition 2.1

It is important to keep in mind that the stochastic integral on [0, 7] is constructed by a limiting
procedure in L2(PP), and therefore it is only defined up to a negligible subset, which depends on
T. So the first step is to realise that for any ¢ € [0, T, we have

t T
X = / H,dB; = / 1y« HsdBs, almost surely,
0 0

where the first stochastic integral is constructed on [0, t] by approximation of the integrand (H) s€[0,4]
while the second stochastic integral is constructed on [0, 7] by approximation of the integrand
(Lgs<eyHs)sejo,r)- Butit is clear that if (Hg').e[0, is @ sequence of elements of A2([0,1]) such
that | H" — H | p2((g,) — 0, then (L gy H')sefo,7) 18 a sequence of elements of A2([0,T7) such
that |1 oy H" — 1<y H | a2(0,77) — 0, and moreover

t T
/ H'dB, = / 1gyepy HPdB.
0 0

Since the left- and right-hand sides respectively converge to fot H,dB; and fOT]l{Kt}H sdBs,
in L?(IP), we deduce that these quantities coincide almost surely (but on an almost sure event
which depends on t). In other words, the processes (X¢);c[o,7] and (fOT 1ysey HsdBs)iepo,1) are
modification of each other.



To check that (Xt)te[O,T} is adapted, we fix ¢ and notice that by construction, X} is the limit, in
L2 (P), of a sequence of F;-measurable random variables X;*, therefore X} is F;-measurable (in
fact, since Fy C JF; contains all negligible sets, any random variable X, which coincides almost
surely with X is F;-measurable).

We now construct an almost surely continuous modification of (X¢).c[o,7]. To proceed, we let
(Hg')se[o,r) be a sequence of elements of A2(]0,T]) which converges to (Hs)sefo,r] In A%([0,TY)).
Since we are working with an almost surely continuous modification of the Brownian motion
(Bs)seo,r)» the process (X}'),c[0,7] defined by

T
Xt":/ 15ty H{dBs
0

is almost surely continuous (recall that since (1 s<¢} H')sefo,r] € A2([0,T7)), this construction is
elementary). As a consequence, it may be viewed as a random variable in the space C([0,7]) of
continuous trajectories, endowed with the Borel o-field associated with the sup norm.

Moreover, each process (th)te[O,T} is easily seen to be a martingale. As a consequence, for
n,m > 1, Doob’s maximal inequality (Karatzas and Shreve, Section 1.3) yields

<E[|X}— X’F‘Z] = [|H" — Hm”i%[o,:r])-

E | sup |X'— X[
te[0,T

We deduce that if (H"),>; is a Cauchy sequence in A%([0,77]), then (X™),>; is a Cauchy se-
quence in L?(Q; C([0,T1)). Since this space is complete, there exists (X;);c0,7] € L*(2; C((0,T7))
such that E[sup,c(o 71 [ X{* — X;[2] = 0. By construction, (Xt)te[O,T] is almost surely continuous,

but on the other hand, for any ¢ € [0, T it is such that X; = X}, almost surely. This completes the
proof.

Remark A.1. A generalisation of the Doob maximal inequality for the (almost surely continuous
modification of the) stochastic integral writes as follows: for any p > 1, there exist absolute
constants 0 < ¢, < Cp, < o0 such that, for any T' > 0, for any (H¢).e(o,1) € A2([0,T)),

T p/2 t T p/2
( / HEdt) / HdBg ngEK / HEdt) ]
0 0 0

This statement is called the Burkholder—Davis—Gundy inequality (Karatzas and Shreve, Section 3.3).

p

¢ <E | sup

te[0,T

Remark A.2. Now that we know that (Xt)te[o,T] has a progressively measurable modification,
given a stopping time T and T > 0 we may define the random variable (X1p7)(w) := Xrar(w) (W)
Then by similar arguments as in the proof above, we may check that

T
XT/\’T:/ 1ys<ryHsdBs, almost surely,
0

which is useful in localisation procedures.
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