Probabilistic Numerical Methods 2024–2025

Lecture 5: Ito's Calculus

julien.reygner@enpc.fr

Now that we have constructed an integral with respect to Brownian trajectories, we need an associated differential calculus.

1 Ito's formula for the Brownian motion

If $(B_t)_{t>0}$ is an $(\mathcal{F}_t)_{t>0}$ -BM and $\Phi : \mathbb{R} \to \mathbb{R}$ is C^2 then for any T > 0,

$$\Phi(B_T) = \Phi(B_0) + \int_0^T \Phi'(B_t) \mathrm{d}B_t + \frac{1}{2} \int_0^T \Phi''(B_t) \mathrm{d}t, \text{ almost surely.}$$

We rewrite this under the short-hand notation

$$\mathrm{d}\Phi(B_t) = \Phi'(B_t)\mathrm{d}B_t + \frac{1}{2}\Phi''(B_t)\mathrm{d}t$$

We will call $d\Phi(B_t)$ the stochastic differential of $\Phi(B_t)$.

2 **Ito process**

An Ito process is a process $(X_t)_{t\geq 0}$ which writes under the form

$$\forall T > 0, \qquad X_T = X_0 + \int_0^T K_t dt + \int_0^T H_t dB_t, \qquad \text{almost surely,}$$

with:

- $X_0 \mathcal{F}_0$ -measurable;

• $(K_t)_{t\geq 0}$ progressively measurable and such that $\int_0^T |K_t| dt < \infty$, a.s., for all T > 0; • $(H_t)_{t\geq 0}$ progressively measurable and such that $\int_0^T H_t^2 dt < \infty$, a.s., for all T > 0.

We use the stochastic differential notation $dX_t = K_t dt + H_t dB_t$.

An Ito process is adapted and a.s. continuous.

We want to prove that the decomposition of an Ito process into a stochastic integral and an absolutely continuous part is unique. The first step of the argument is given by the following statement.

Lemme 2.1 (Quadratic variation). Let $(X_t)_{t\geq 0}$ be an Ito process. Then, for any T > 0,

$$\lim_{\|\sigma\|\to 0} \sum_{i=0}^{n-1} (X_{t_i} - X_{t_{i-1}})^2 = \int_0^T H_t^2 \mathrm{d}t, \qquad \text{in probability}$$

with $\sigma = (t_0, \ldots, t_n)$ a subdivision of [0, T].

Corollary 2.2 (Uniqueness of the decomposition of an Ito process). If there are X'_0 , $(K'_t)_{t\geq 0}$ and $(H'_t)_{t>0}$ such that

$$\forall T > 0, \qquad X_0 + \int_0^T K_t \mathrm{d}t + \int_0^T H_t \mathrm{d}B_t = X_0' + \int_0^T K_t' \mathrm{d}t + \int_0^T H_t' \mathrm{d}B_t, \quad \text{almost surely,}$$

then $X_0 = X'_0$, a.s., and $K_t = K'_t$, $H_t = H'_t$, $\mathbb{P} \otimes dt$ -a.e.

Proof. For X_0 , X'_0 just take T = 0. Then the lemma above allows to identify H_t and H'_t , which finally yields the identification of K_t and K'_t .

From this corollary there is now no ambiguity in defining the quadratic variation of $(X_t)_{t\geq 0}$ as the process $(\langle X \rangle_t)_{t\geq 0}$ defined by

$$\forall T \ge 0, \qquad \langle X \rangle_T = \int_0^T H_t^2 \mathrm{d}t.$$

The BM $(B_t)_{t\geq 0}$ is an Ito process with quadratic variation $\langle B \rangle_t = t$. Any absolutely continuous process $X_t = X_0 + \int_0^t K_s ds$ is an Ito process with quadratic variation $\langle X \rangle_t = 0$.

Theorem 2.3 (Ito's formula for Ito processes). For any C^2 function $\Phi : \mathbb{R} \to \mathbb{R}$, $d\Phi(X_t) = \Phi'(X_t) dX_t + \frac{1}{2} \Phi''(X_t) d\langle X \rangle_t$.

Application: the Geometric Brownian motion.

Proposition 2.4 (Lévy's characterisation of the BM). If $(H_t)_{t\geq 0}$ is progressively measurable and $H_t^2 = 1$, $\mathbb{P} \otimes dt$ -a.e., then $X_t := \int_0^t H_s dB_s$ is a Brownian motion.

This is in fact a particular case of the following statement.

Theorem 2.5 (Dambis–Dubins–Schwarz). If $(H_t)_{t\geq 0} \in \Lambda_{loc}$ then there exists a Brownian motion $(\beta_r)_{r\geq 0}$ such that

$$\forall T > 0, \qquad X_t = \int_0^t H_s \mathrm{d}B_s = \beta_{\langle X \rangle_t} = \beta_{\int_0^t H_s^2 \mathrm{d}s}.$$

It is useful when you want to study trajectories of the stochastic integral: they are time-changes of Brownian trajectories.

3 Multidimensional Ito's formula

We now take d independent $(\mathcal{F}_t)_{t\geq 0}$ -BM B^1, \ldots, B^d . An Itô process now writes

$$\mathrm{d}X_t = K_t \mathrm{d}t + \sum_{k=1}^d H_t^k \mathrm{d}B_t^k$$

The extension of Lemma 2.1 then writes

$$\lim_{\|\sigma\|\to 0} \sum_{i=0}^{n-1} (X_{t_i} - X_{t_{i-1}})^2 = \sum_{k=1}^d \int_0^T (H_t^k)^2 \mathrm{d}t, \quad \text{in probability.}$$

This allows to show again that if $dX_t = K'_t dt + \sum_{k=1}^d H'^k_t dB^k_t$ then $K_t = K'_t$ and for all k, $H^k_t = H'^k_t$, $\mathbb{P} \otimes dt$ -a.e., and also to define

$$\langle X \rangle_T = \sum_{k=1}^d \int_0^T (H_t^k)^2 \mathrm{d}t.$$

By polarisation, for arbitrary Ito processes X, X', we then have

$$\langle X, X' \rangle_T := \sum_{k=1}^d \int_0^T H_t^k H_t'^k \mathrm{d}t = \lim_{\|\sigma\| \to 0} \sum_{i=0}^{n-1} (X_{t_i} - X_{t_{i-1}}) (X_{t_i}' - X_{t_{i-1}}'), \quad \text{in probability.}$$

Theorem 3.1 (Multidimensional Ito's formula). Let X^1, \ldots, X^n be Itô processes and $\Phi : \mathbb{R}^n \to \mathbb{R}$ be C^2 . Then, with $X_t = (X_t^1, \ldots, X_t^n)$,

$$\mathrm{d}\Phi(X_t) = \sum_{i=1}^n \frac{\partial \Phi}{\partial x_i}(X_t) \mathrm{d}X_t^i + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(X_t) \mathrm{d}\langle X^i, X^j \rangle_t.$$

Particular case of time-dependent Φ .

Applications: integration by parts; recurrence and transience of the BM is dimension $d \ge 2$.