Probabilistic Numerical Methods 2024–2025 Lecture 6: Stochastic Differential Equations

julien.reygner@enpc.fr

We fix integers $n, d \ge 1$, a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ provided with a filtration $(\mathcal{F}_t)_{t\ge 0}$ such that \mathcal{F}_0 contains all negligible events, and $(B_t)_{t\ge 0}$ a *d*-dimensional $(\mathcal{F}_t)_{t\ge 0}$ -Brownian motion.

Given a time-interval I = [0, T] or $I = [0, +\infty)$, we let $b : I \times \mathbb{R}^n \to \mathbb{R}^n$ and $\sigma : I \times \mathbb{R}^n \to \mathbb{R}^{n \times d}$ be measurable functions which are bounded on bounded subsets of $I \times \mathbb{R}^n$.

We are interested in the Stochastic Differential Equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t,$$
(SDE)

complemented with the initial condition

$$X_0 = \xi, \tag{IC}$$

where ξ is an \mathcal{F}_0 -measurable random variable in \mathbb{R}^n .

The function b is called the *drift* of the SDE, and σ is the *dispersion matrix*. The $n \times n$ matrix

$$a(t,x) := \sigma(t,x)\sigma^{\top}(t,x)$$

is called the *diffusion* matrix.

1 Solution to (SDE)–(IC)

1.1 Notion of solution and associated differential operator

Definition 1.1 (Solution to (SDE)–(IC)). A solution to (SDE)–(IC) is an *n*-dimensional Ito process such that, almost surely¹,

$$\forall t \in I, \quad \forall i \in \{1, \dots, n\}, \qquad X_t^i = \xi^i + \int_{s=0}^t b_i(s, X_s) \mathrm{d}s + \sum_{k=1}^d \int_{s=0}^t \sigma_{ik}(s, X_s) \mathrm{d}B_s^k.$$

An important object related with (SDE) is the differential operator L_t defined by, for all C^2 functions $\phi : \mathbb{R}^n \to \mathbb{R}$,

$$L_t\phi(x) = \sum_{i=1}^n b_i(t,x) \frac{\partial \phi}{\partial x_i}(x) + \frac{1}{2} \sum_{i,j=1}^n a_{ij}(t,x) \frac{\partial^2 \phi}{\partial x_i \partial x_j}(x).$$

The reason for the importance of this operator is that if $(X_t)_{t \in I}$ is a solution to (SDE), then when one wants to apply the Ito formula to $\phi(X_t)$, one gets

$$\mathrm{d}\phi(X_t) = L_t \phi(X_t) \mathrm{d}t + \sigma^\top(t, X_t) \nabla \phi(X_t) \cdot \mathrm{d}B_t.$$

¹Throughout the chapter we systematically work with continuous versions of Ito processes.

1.2 Existence and uniqueness for globally Lipschitz continuous coefficients

Theorem 1.2 (Ito). Assume that there exists $K \ge 0$ such that:

(i) for any $t \in I$, for any $x, y \in \mathbb{R}^n$, $|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \le K|x - y|$; (ii) for any $t \in I$, for any $x \in \mathbb{R}^n$, $|b(t, x)| + |\sigma(t, x)| \le K(1 + |x|)$.

Then (SDE)–(IC) admits a unique solution².

Notice that if b and σ do not depend on t, then the condition (ii) is implied by (i) so it does not need to be checked.

The proof of Theorem 1.2 can be decomposed in 4 steps, see lecture notes for details.

- 1. If $|\xi| \in L^2$ and I = [0, T], then (SDE)–(IC) has a unique solution in $\Lambda^2([0, T])$: this follows from a fixed point argument.
- 2. If $|\xi| \in \mathbf{L}^2$ and I = [0, T], then in fact any solution to (SDE)–(IC) is in $\Lambda^2([0, T])$: this is an a priori estimate, which follows from the Gronwall Lemma, and therefore proves the statement of the Theorem if $|\xi| \in \mathbf{L}^2$ and I = [0, T].
- 3. If $|\xi|$ is no longer assumed to be in \mathbf{L}^2 , one may still construct a solution as follows: the first two steps provide a collection of processes $\{(X_t^x)_{t \in I}, x \in \mathbb{R}^n\}$ which solve (SDE) with deterministic (and a fortiori \mathbf{L}^2) initial condition $X_0^x = x$. Then setting $X_t(\omega) := X_t^{\xi(\omega)}(\omega)$ yields a solution to (SDE)–(IC), and uniqueness follows from the Lipschitz condition.
- 4. If $I = [0, +\infty)$, then the extension of the construction is straightforward.

Example: Ornstein–Uhlenbeck process, explicit solution, law at time t, limit when $t \to +\infty$.

1.3 The case of locally Lipschitz continuous coefficients

Theorem 1.3 (Local existence and uniqueness). Let D be an open subset of \mathbb{R}^n , and assume that there exists $K_D \ge 0$ such that:

(i) for any $t \in I$, for any $x, y \in D$, $|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \le K_D |x - y|$;

(*ii*) for any $t \in I$, for any $x \in D$, $|b(t, x)| + |\sigma(t, x)| \le K_D(1 + |x|)$.

Then there exists an Ito process $(X_t)_{t\in I}$ such that, letting $\tau_D := \inf\{t \in I : X_t \notin D\}^3$, we have, almost surely,

$$\forall t < \tau_D, \qquad X_t = \xi + \int_{s=0}^t b(s, X_s) \mathrm{d}s + \int_{s=0}^t \sigma(s, X_s) \mathrm{d}B_s.$$

Moreover, if there exists another Ito process $(X'_t)_{t \in I}$ satisfying the same properties (with exit time from D denoted by τ'_D), then almost surely,

$$\tau_D = \tau'_D$$
 and $\forall t < \tau_D, \quad X_t = X'_t.$

This theorem follows from the combination of Theorem 1.2 and Theorem 2.1, p. 102 in Friedman (SDEs vol. 1).

Assume for simplicity that $I = [0, +\infty)$ and that b and σ satisfy the assumptions of Theorem 1.3 on every open ball with radius M, namely D = B(0, M). An important such case is when b and σ do not depend on t and are C^1 in x. Denoting by τ_M the corresponding exit time, we therefore have the existence and uniqueness of a solution up to the *explosion* time $\tau_* = \sup_M \tau_M$. There are situations in which τ_* is finite, so that X_t indeed exploses when t reaches τ_* (see the SDE $dX_t = \frac{1}{2}e^{2X_t}dt + e^{X_t}dB_t$ in the exercise sheet). On the other hand, it is useful to have criteria ensuring that $\tau_* = \infty$, almost surely, so that existence and uniqueness of a (global-in-time) solution still holds even if the coefficients of the SDE are not globally Lipschitz continuous. An example of such a criterion is provided by the next statement.

²Uniqueness is understood here as: the continuous versions of any two solutions are indistinguishable.

³If I = [0, T] and $X_t \in D$ for all $t \in [0, T]$, we set $\tau_D = T$.

Proposition 1.4 (Global existence by Lyapunov function). Assume that $I = [0, +\infty)$ and that the assumptions of Theorem 1.3 hold on every open ball D = B(0, M), with corresponding exit time denoted by τ_M . Assume moreover that there exists a C^2 function $\Phi : \mathbb{R}^n \to \mathbb{R}$ such that:

(i) $\Phi \ge 0$ and $\lim_{|x|\to+\infty} \Phi(x) = +\infty$;

- (ii) $\mathbb{E}[\Phi(\xi)] < +\infty;$
- (iii) there exists $c \ge 0$ such that for all $t \ge 0$, $L_t \Phi(x) \le c \Phi(x)$.

Then $\tau_* = \infty$, almost surely (so (SDE)–(IC) has a unique global-in-time solution), and moreover we have the estimate

$$\forall t \ge 0, \qquad \mathbb{E}[\phi(X_t)] \le e^{ct} \mathbb{E}[\Phi(\xi)].$$

Proof. Applying Ito's formula to $\Phi(X_t)e^{-ct}$ for $t < \tau_M$, we get

$$\Phi\left(X_{t\wedge\tau_{M}}\right)\mathrm{e}^{-ct\wedge\tau_{M}} = \Phi(\xi) + \int_{s=0}^{t\wedge\tau_{M}} \mathrm{e}^{-cs}\left(L_{s}\Phi(X_{s}) - c\Phi(X_{s})\right)\mathrm{d}s + \int_{s=0}^{t\wedge\tau_{M}} \mathrm{e}^{-cs}\sigma^{\top}(s,X_{s})\nabla\phi(X_{s})\cdot\mathrm{d}B_{s}$$

Since $(s, x) \mapsto e^{-cs} \sigma^{\top}(s, x) \nabla \phi(x)$ is bounded on the bounded set $[0, t] \times B(0, M)$, we deduce that the stochastic integral is integrable and has expectation 0. On the other hand, by (iii), the time integral is almost surely nonpositive. Therefore

$$\mathbb{E}\left[\Phi\left(X_{t\wedge\tau_M}\right)\mathrm{e}^{-ct\wedge\tau_M}\right] \leq \mathbb{E}[\Phi(\xi)],$$

and since $t \wedge \tau_M \leq t$ we deduce that

$$\mathbb{E}\left[\Phi\left(X_{t\wedge\tau_M}\right)\right] \le e^{ct}\mathbb{E}[\Phi(\xi)].$$

We now show that $\tau_M \to +\infty$, almost surely. Writing

$$\mathbb{E}\left[\Phi\left(X_{t\wedge\tau_{M}}\right)\right] \geq \mathbb{E}\left[\Phi\left(X_{\tau_{M}}\right)\mathbb{1}_{\{\tau_{M}\leq t\}}\right] \geq \inf_{|x|=M}\Phi(x)\mathbb{P}(\tau_{M}\leq t),$$

we deduce that

$$\mathbb{P}(\tau_M \le t) \le \frac{\mathrm{e}^{ct} \mathbb{E}[\Phi(\xi)]}{\inf_{|x|=M} \Phi(x)}$$

Using (i) and (ii) we get that the right-hand side goes to 0 when $M \to +\infty$. This shows that $\tau_M \to +\infty$ and therefore that $\tau_* = \sup_M \tau_M = +\infty$, almost surely. The final estimate now follows from Fatou's Lemma.

2 Discretisation

See lecture notes for details: Euler–Maruyama scheme, strong error, weak error, computation for the Ornstein–Uhlenbeck process.