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We still work with I = [0, T ] or I = [0,+∞) and b : I×R
n → R

n and σ : I×R
n → R

n×d be

measurable functions which are bounded on bounded subsets of I × R
n. We consider the system

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (SDE)

complemented with the initial condition

X0 = ξ. (IC)

The associated differential operator is

Ltφ(x) =

n
∑

i=1

bi(t, x)
∂φ

∂xi
(x) +

1

2

n
∑

i,j=1

aij(t, x)
∂2φ

∂xi∂xj
(x),

with a(t, x) := σ(t, x)σ⊤(t, x). It sometimes rewrites

Ltφ(x) = b(t, x) · ∇φ(x) +
1

2
a(t, x) : ∇2φ(x),

where A : B := tr(A⊤B).

1 The Fokker–Planck equation

Let (Xt)t∈I be a solution to (SDE)–(IC). Let µ(t,dy) denote the law of Xt, and let µ0(dy) be

the law of ξ. Since the trajectories of (Xt)t≥0 are continuous almost surely, t 7→ µ(t,dy) is

continuous for the weak convergence topology on the space of probability measures on R
n.

Proposition 1.1 (Fokker–Planck equation). For any C1,2
c (Rn) function Φ : I × R

n → R, for any

t ∈ I ,
∫

y∈Rn

Φ(t, y)µ(t,dy) =

∫

y∈Rn

Φ(0, y)µ0(dy) +

∫ t

s=0

∫

y∈Rn

(∂tΦ(s, y) + LsΦ(y))µ(s,dy)ds.

Proof. Apply Ito’s formula to Φ(s,Xs).

This statement implies that µ(t,dy) is a distributional solution to
{

∂tµ = L∗
tµ,

µ(0,dy) = µ0(dy),

which is usually called the Fokker–Planck equation. When b and a are smooth enough and µ(t,dy)
has a smooth enough density p(t, y) with respect to the Lebesgue measure on R

n, the latter satisfies

∂tp(t, y) = −

n
∑

i=1

∂xi
(bi(t, y)p(t, y)) +

1

2

n
∑

i,j=1

∂xixj
(aij(t, y)p(t, y))

in the classical sense.

Example: Brownian motion and heat equation. In particular in can be checked directly that

p(t, y) = (2πt)−d/2 exp(−y2/2t) satisfies










∂tp =
1

2
∆p,

lim
t↓0

p = δ0, weakly.
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2 Feynman–Kac formulæ

2.1 Backward Cauchy problems

Here we take I = [0, T ] and assume that, for all x ∈ R
n and t ∈ [0, T ), there exists an Itô process

(Xt,x
s )s∈[t,T ] such that, for all s ∈ [0, T ],

Xt,x
s = x+

∫ s

r=t
b(r,Xt,x

r )dr +

∫ s

r=t
σ(r,Xt,x

r )dBr,

that is to say, a solution to (SDE) on [t, T ] which takes the value x at time t. This is in particular

the case if the coefficients b and σ satisfy the assumptions of Ito’s Theorem.

Theorem 2.1 (Feynman–Kac formula for children). Let T > 0 and f : Rn → R be a continuous

function. Assume that there exists a C1,2 function u : [0, T ] ×R
n → R such that:

(i) for any t ∈ [0, T ) and x ∈ R
n, (|σ⊤(s,Xt,x

s )∇xu(s,X
t,x
s )|)s∈[t,T ] ∈ Λ

2([t, T ]);
(ii) u solves the parabolic problem







−
∂u

∂t
(t, x) = Ltu(t, x), t ∈ [0, T ], x ∈ R

n,

u(T, x) = f(x).
(1)

Then, for all (t, x) ∈ [0, T ]× R
n,

u(t, x) = E

[

f(Xt,x
T )

]

.

Proof. For simplicity we write Xt,x
s = Xs = (X1

s , . . . ,X
n
s ). Let us fix t ∈ [0, T ] and apply Itô’s

formula to u(s,Xs) for s ∈ [t, T ]. We get

du(s,Xs) =

(

∂u

∂t
(s,Xs) + Lsu(s,Xs)

)

ds+ σ⊤(s,Xs)∇xu(s,Xs) · dBs

= σ⊤(s,Xs)∇xu(s,Xs) · dBs,

thanks to (ii). As a consequence,

u(T,XT ) = u(t,Xt) +

∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs,

which rewrites

f(XT ) = u(t, x) +

∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs.

The assumption (i) now ensures that

E

[
∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs

]

= 0,

therefore

E [f(XT )] = u(t, x).

The Feynman–Kac formula shows that if one is interested in solving the PDE (1) in one point

(t, x), a possible approach may be to simulate the trajectory of (Xt,x
s )s∈[t,T ] and then to compute

the expectation E[f(Xt,x
T )] by the Monte Carlo method, using discretisation seen last week.
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Example 2.2 (The Black–Scholes model in mathematical finance). In mathematical finance, the

Black–Scholes modelassumes that the price of some asset (for instance, an action) is the solution

(St)t≥0 of the SDE

dSt = σStdBt,

whose solution writes St = S0 exp(σBt − σ2t/2). An option with payoff function f and maturity

T is a contract between the bank and the client, where at time T the bank has to give the client the

quantity f(ST ). The price that the client has to pay to the bank at time t ≤ T in order to buy the

option is given by u(t, s) = E[f(St,s
T )], where s is the value of St. This quantity can be computed

either by the Monte Carlo method, or by solving the parabolic problem







∂u

∂t
(t, s) +

σ2s2

2

∂2u

∂s2
(t, s) = 0, t ∈ [0, T ), s ≥ 0,

u(T, s) = f(s).

↸ Exercise 2.3 (Feynman–Kac formula for grown-ups). Let f : Rn → R and k, g : [0, T ]×R
n →

R be continuous functions, with k bounded from below. Assume that there exists a C1,2 function

u : [0, T ]× R
n → R such that:

(i) for any t ∈ [0, T ) and x ∈ R
n, (|σ⊤(s,Xt,x

s )∇xu(s,X
t,x
s )|)s∈[t,T ] ∈ Λ

2([t, T ]);
(ii) u solves the parabolic problem







−
∂u

∂t
(t, x) = Ltu(t, x)− k(t, x)u(t, x) + g(t, x), t ∈ [0, T ], x ∈ R

n,

u(T, x) = f(x).
(2)

Show that for all (t, x) ∈ [0, T ]× R
n,

u(t, x) = E

[

f(Xt,x
T )e−

∫ T

r=t
k(r,Xt,x

r )dr +

∫ T

s=t
g(s,Xt,x

s )e−
∫ s

r=t
k(r,Xt,x

r )drds

]

.

Hint: start by applying Itô’s formula to u(s,Xt,x
s )e−

∫ s

r=t
k(r,Xt,x

r )dr .

The Feynman–Kac formula (in the form of Exercise 2.3) provides a probabilistic representa-

tion of a solution to (2) which satisfies the integrability condition that

∀(t, x) ∈ [0, T ]× R
n, E

[
∫ T

s=t
|σ⊤(s,Xt,x

s )∇xu(s,X
t,x
s )|2ds

]

< +∞. (3)

It is therefore a uniqueness result for the PDE (2) in the class of solutions which satisfy (3). Thus,

its application usually requires to find an existence result for a smooth solution to this Cauchy

problem, in a PDE textbook. Se for example Section 6.5 in Friedman 1975.

2.2 Problems with boundaries

In this subsection, we assume that the coefficients b and σ do not depend on t and we denote by

L the associated differential operator. We let D be an open and regular subset of Rn and, for any

solution (Xx
t )t≥0 of (SDE) with initial condition x ∈ D, we define the stopping time

τx := inf{t ≥ 0 : Xx
t 6∈ D}.

Proposition 2.4 (Probabilistic interpretation of Dirichlet problem). Let f : ∂D → R and k, g :
D → R

n be continuous functions, with k ≥ 0. Assume that there exists a C2 function v :
[0, T ] ×D → R such that:
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(i) v is bounded;

(ii) for any t > 0 and x ∈ D, (|σ⊤(Xx
s )∇v(Xx

s )|)s∈[0,t] ∈ Λ
2([0, t]);

(iii) v solves the elliptic problem

{

Lv(x)− k(x)v(x) = −g(x), x ∈ D,

v(x) = f(x), x ∈ ∂D.
(4)

Assume moreover that for any x ∈ D:

(iv) the associated stopping time τx is finite, almost surely;

(v) τx and g satisfy
∫ +∞

t=0
E
[

1{t<τx}|g(Xt)|
]

dt < +∞.

Then for all x ∈ D,

v(x) = E

[

f(Xx
τx)e

−
∫ τ

r=0
k(Xx

r )dr +

∫ τx

s=0
g(Xx

s )e
−

∫ s

r=0
k(Xx

r )drds

]

.

Proof. Let us fix x ∈ D and write Xt = Xx
t , τ = τx. Itô’s formula applied to v(Xt)e

−
∫ t

r=0
k(Xr)dr

yields

v(Xt∧τ )e
−

∫ t∧τ

r=0
k(Xr)dr = v(x) +

∫ t∧τ

s=0
e−

∫ s

r=0
k(Xr)dr (Lv(Xs)− k(Xs)v(Xs)) ds

+

∫ t∧τ

s=0
e−

∫ s

r=0
k(Xr)drσ⊤(Xs)∇v(Xs) · dBs,

so that

v(x) = E

[

v(Xt∧τ )e
−

∫ t∧τ

r=0
k(Xr)dr +

∫ t∧τ

s=0
g(Xs)e

−
∫ s

r=0
k(Xr)drds

]

.

First, since τ < +∞ almost surely, v is bounded and k ≥ 0, by the Dominated Convergence

Theorem one has

lim
t→+∞

E

[

v(Xt∧τ )e
−

∫ t∧τ

r=0
k(Xr)dr

]

= E

[

v(Xτ )e
−

∫ τ

r=0
k(Xr)dr

]

= E

[

f(Xτ )e
−

∫ τ

r=0
k(Xr)dr

]

.

Second, the integrability condition on g and τ allows to use the Dominated Convergence Theorem

again to get

lim
t→+∞

E

[
∫ t∧τ

s=0
g(Xs)e

−
∫ s

r=0
k(Xr)drds

]

= E

[
∫ τ

s=0
g(Xs)e

−
∫ s

r=0
k(Xr)drds

]

,

which completes the proof.

Examples: find the PDE to solve in order to compte E[τx] or E[e−λτx ] for some λ > 0.

Example 2.5 (The committor function). Let (Xx
t )t≥0 be the solution to the SDE (SDE) with

coefficients b and σ which do not depend on t, and with deterministic initial condition x ∈ R
n.

Given two disjoint closed subsets A,B ⊂ R
n, set

τxA := inf{t ≥ 0 : Xx
t ∈ A}, τxB := inf{t ≥ 0 : Xx

t ∈ B},

and define

v(x) = P(τxA < τxB).
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In molecular dynamics, this function is called the committor function1: in this context, Xx
t must

be thought of as describing the microscopic state of a molecular system, and A and B describe

particular macroscopic configurations. For example, in a protein-ligand system, Xx
t encodes the

complete geometry of the protein-ligand, while A and B contain the states which correspond to

the system being bound or unbound, respectively. Computing the committor function then allows

to determine whether, given an initial state x, it is more likely that the system evolves toward

one or the other configuration. Proposition 2.4 shows that under regularity assumptions and if

τxA ∧ τxB < ∞, almost surely, then u solves the PDE











Lv(x) = 0, x ∈ R
n \ (A ∪B),

v(x) = 1, x ∈ A,

v(x) = 0, x ∈ B.

Remark 2.6. The assumption that k ≥ 0 is crucial in the statement of Proposition 2.4. Indeed,

consider the case where n = 1, D = (0, 1) and dXt = dBt so that L = 1
2

∂2

∂x2 . It can be directly

checked that for any m ≥ 1, vm(x) = sin(πmx) satisfies (4) with k = −1
2(πm)2 < 0 and

f = g = 0, so that applying the result of Proposition 2.4 would yield vm = 0 on D.

3 Solutions to SDEs as Markov processes

For simplicity we assume here that b and σ do not depend on time. We set I = [0,+∞) and

assume that for any choice of (Ω,A,P), (Ft)t≥0, (Bt)t≥0, ξ, the system (SDE)–(IC) has a unique

solution. Then there is a deterministic and measurable function S : Rn × C([0,+∞),Rd) →
C([0,+∞),Rn) such that (Xt)t≥0 = S(ξ, (Bt)t≥0), almost surely, and this function does not

depend on the choice of (Ω,A,P), (Ft)t≥0, (Bt)t≥0, ξ: in particular, the law of (Xt)t≥0 only

depends on b, σ and the law of ξ.

In this section we use the notation Ex when we consider X0 = x.

3.1 Markov property and semigroup

For any measurable and bounded function f : Rn → R, we define Ptf(x) = Ex[Xt].

Proposition 3.1 (Markov property). For any s, t ≥ 0, E[f(Xt+s)|(Xr)r≤t] = E[f(Xt+s)|Xt] =
Psf(Xt), almost surely.

Proof. The process Xs = Xt+s is a solution to the SDE with coefficients b and σ with initial

condition ξ = Xt, driven by the Brownian motion Bs = Bt+s − Bt. So it writes (Xs)s≥0 =
S(ξ,B), that is to say

(Xt+s)s≥0 = S(Xt, B).

This shows that2

E[f(Xt+s)|(Xr)r≤t] = E[f(Xt+s)|Xt] = E[f(Ss(x,B))]|x=Xt
.

But since B and B have the same law, we have

E[f(Ss(x,B))] = E[f(Ss(x,B))] = Ex[f(Xs)] = Psf(x),

which concludes.

1In potential theory, it is the equilibrium potential.
2You can check that if X is F-measurable and Z is independent from F , E[F (X,Z)|F ] = E[F (X,Z)|X] =

E[F (x, Z)]|x=X , almost surely.
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Corollary 3.2 (Semigroup property). P0 = Id and for any s, t ≥ 0, Pt+s = Pt ◦ Ps.

Let us define the transition kernel p(t, x,dy) of the SDE (SDE) by the identity

Ptf(x) =

∫

y∈Rn

f(y)p(t, x,dy);

in other words, it is the law of Xt when X0 = x. The semigroup property translates, at the level

of the transition kernel, as the identity

∀s, t ≥ 0, ∀x ∈ R
n, p(t+ s, x,dy) =

∫

z∈Rn

p(s, x,dz)p(t, z,dy).

which is called the Chapman–Kolmogorov equation.

A last consequence of the Markov property is that if X0 ∼ µ0, then

E[f(Xt)] = E [E[f(Xt)|X0]] = E[Ptf(X0)] =

∫

x∈Rn

Ptf(x)µ0(dx) =: µ0Ptf.

3.2 Infinitesimal generator and Kolmogorov equations

We follow here the Comets–Meyre book, Section 6.1.5.

We assume that b and σ are globally Lipschitz continuous. Then it turns out that, denoting by

C0 the (Banach) space of continuous functions f : Rn → R converging to 0 when |x| → +∞, the

semigroup (Pt)t≥0 satisfies that (t, f) ∈ [0,+∞)× C0 7→ Ptf ∈ C0 is continuous. Let us define

D := {f ∈ C0, lim
t↓0

(Ptf − f)/t exists in C0},

and for any f ∈ D, denote by Lf the associated limit. We get the following statement from the

Hille–Yosida Theorem.

Theorem 3.3 (Hille–Yosida). 1. D is dense in C0.

2. For any t ≥ 0, PtD ⊂ D.

3. For any f ∈ D,
d

dt
Ptf = PtLf = LPtf. (5)

L is called the infinitesimal generator of the semigroup (Pt)t≥0, and D is its domain.

4. The set of C2
c functions Rn → R is contained in D.

5. For any f ∈ C2
c , Lf = Lf .

The first identity in (5) is the Fokker–Planck equation. The second identity shows that if

u(t, x) = Ptf(x) is smooth enough, it satisfies the evolution equation

{

∂tu = Lu,

u(0, x) = f(x),

which can be seen as a ‘time-reversal’ of the Feynman–Kac formula. Both equations also translate

at the level of the transition kernel and write

∂tp(t, x,dy) = L∗
(y)p(t, x,dy) = L(x)p(t, x,dy),

where the notation L(·) indicate that the operator L acts on the · variable. These equations are

respectively called the forward and backward Kolmogorov equations.
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