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We fix b and σ which do not depend on time. We use the notation Px, Pπ to say that X0 = x
or X0 ∼ π.

1 Stationary distribution

1.1 Definition

A probability measure such that if X0 ∼ π then Xt ∼ π for any t ≥ 0.

π is stationary iff it is a distributional solution to the stationary Fokker–Planck equation L∗π =
0. As a consequence, if a smooth probability density is a classical solution to the PDE

0 = −
n∑

i=1

∂xi
(bi(x)p(x)) +

1

2

n∑

i,j=1

∂xi,xj
(aij(x)p(x)).

Application: check that N (0, 1/2λ) is stationary for the Ornstein–Uhlenbeck process.

1.2 Reversibility

We say that the SDE is reversible with respect to π if X0 ∼ π implies that for any T > 0, the

processes (Xt)t∈[0,T ] and (XT−t)t∈[0,T ] have the same law. Then π is stationary.

Proposition 1.1 (Characterisation of reversibility). The SDE is reversible with respect to π if and

only if for any f and g in C2
c ,

∫

x∈Rn

Lf(x)g(x)π(dx) =

∫

x∈Rn

f(x)Lg(x)π(dx).

An important application is the following. Let V : Rn → R and β > 0 such that

Zβ :=

∫

x∈Rn

e−βV (x)dx < +∞,

and define

πβ(dx) =
1

Zβ
e−βV (x)dx.

The (overdamped) Langevin process is the solution to the SDE

dXt = −∇V (Xt)dt+
√

2β−1dBt.

Lemme 1.2 (Reversibility of the Langevin process). The differential operator associated with the

Langevin process writes

Lf = β−1eβV ∇ ·
(
e−βV ∇f

)
.

As a consequence, it is reversible with respect to πβ .
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1.3 Existence by the Krylov–Bogoliubov Theorem

We give an existence result which is very similar to the one for Markov chains with finite state

space. We first need to introduce some topological notions.

Definition 1.3 (Feller property). The semigroup (Pt)t≥0 has the Feller property if for any t ≥ 0
and for any bounded and continuous function f : R

n → R, the function Ptf : R
n → R is

continuous (and necessarily bounded).

Definition 1.4 (Tightness). A family of probability measures {µt, t > 0} on R
n is tight if for any

ǫ > 0, there exist a compact set Kǫ ⊂ R
n such that for any t > 0, µt(K

c
ǫ ) ≤ ǫ.

Theorem 1.5 (Prohorov). If {µt, t > 0} is tight then it is relatively compact, namely any sequence

(µtn)n≥1 admits a subsequence weakly converging toward some probability measure µ on R
n.

(The main reference is Billingsley – Convergence of Probability Measures).

We may now state the Krylov–Bogoliubov Theorem.

Theorem 1.6 (Krylov–Bogoliubov). Assume that the semigroup (Pt)t≥0 has the Feller property

and that there exists x ∈ R
n such that the family of probability measures {µ̂t, t > 0} defined by

∀A ∈ B(Rn), µ̂t(A) :=
1

t

∫ t

u=0
Px(Xu ∈ A)du

is tight. Then the semigroup (Pt)t≥0 admits a stationary distribution.

Proof. By the tightness assumption and the Prohorov Theorem, there exist a sequence tn → ∞
and a probability measure π such that for any bounded and continuous function f : Rn → R,

µ̂tnf → πf . Now fix s ≥ 0. By the Feller property, µ̂tnPsf → πPsf . But on the other hand, by

the semigroup property,

µ̂tnPsf =
1

tn

∫ tn

u=0
Pu(Psf)(x)du

=
1

tn

∫ tn

u=0
Pu+sf(x)du

=
1

tn

∫ s+tn

u=s
Pvf(x)dv

= µ̂tnf +
1

tn

(
−
∫ s

u=0
Pvf(x)dv +

∫ s+tn

u=tn

Pvf(x)dv

)
,

and the term in parentheses is bounded by 2s‖f‖∞. So µ̂tnPsf → πf and therefore π is stationary.

To check the tightness condition one often uses a Lyapunov function.

Proposition 1.7 (Lyapunov condition). Assume that there is a C2 function Φ : Rn → [0,+∞)
such that Φ(x) → +∞ when |x| → +∞, and that for c > 0, b ≥ 0,

∀x ∈ R
n, LΦ(x) ≤ −cΦ(x) + b.

1. For any x ∈ R
n and t ≥ 0, Ex[Φ(Xt)] ≤ e−ctΦ(x) + b(1− e−ct)/c.

2. For any choice of x ∈ R
n, the family {µ̂t, t > 0} defined in the Krylov–Bogoliubov Theorem

is tight.
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3. Any stationary distribution π given by the Krylov–Bogoliubov Theorem satisfies πΦ ≤ b/c.

Proof. Applying Ito’s formula and using the same localisation procedure as in the course on SDEs

with locally Lipschitz coefficients, we get the first point. For the second point, let M ≥ 0 and set

K = {x ∈ R
n : Φ(x) ≤ M}. Then for any t ≥ 0,

µ̂t(K
c) =

1

t

∫ t

u=0
Px(Φ(Xu) > M)du

≤ 1

t

∫ t

u=0

Ex[Φ(Xu)]

M
du

≤ 1

M
(Φ(x) + b/c),

where we have used the Markov inequality at the second line and the first part of the proposition

at the third line. For fixed ǫ, M can be chosen large enough for the right-hand side to be smaller

than ǫ, which shows the second point. The third point is left as an exercise.

1.4 Uniqueness, irreducibility and ergodicity

We give a rather strong irreducibility condition.

Proposition 1.8 (Irreducibility condition). Assume that there is t0 > 0 such that the transition

kernel pt0(x,dy) has a continuous (in y) density pt0(x, y), and that there is a nonempty open set

B ⊂ R
n such that

∀x ∈ R
n, ∀y ∈ B, pt0(x, y) > 0.

Then (Pt)t≥0 has at most one stationary distribution.

The irreducibility condition is typically true if b and σ are smooth and a = σσ⊤ is uniformly

elliptic, that is to say that there exist λ > 0 such that for any x, ξ ∈ R
n, ξ · a(x)ξ ≥ λ|ξ|2. From a

probabilistic point of view this says that the Brownian motion can ‘diffuse in all directions’.

To understand why Proposition 1.8 holds true, assume that (Pt)t≥0 has the Feller property

and denote by I the set of stationary distributions for the SDE. This is a convex, closed subset

of the set of probability measures on R
n (endowed with the topology of weak convergence). The

extremal points of I , that is to say the points which can not be written as convex combinations of

other points of I , are called ergodic. Then we have the two statements:

1. Two distinct ergodic measures are mutually singular.

2. Birkhoff’s Ergodic Theorem: for any ergodic measure π, for π-almost every x ∈ R
n, for

any f ∈ L
1(π),

lim
t→+∞

1

t

∫ t

s=0
f(Xs)ds = πf, Px-almost surely. (1)

Under the irreducibility condition of Proposition 1.8, we therefore deduce that any stationary

distribution π satisfies

π(B) = Pπ(Xt0 ∈ B) =

∫

x∈Rn

π(dx)

∫

y∈B
pt0(x, y)dy > 0.

This implies that there is at most one ergodic measure, and then at most one stationary distribution.

See Section 3.1 in https://doi.org/10.1051/ps:2001106 for details and further references.
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2 LLN and CLT

If the conditions of Propositions 1.7 and 1.8 hold, then there is a unique stationary distribution

π. Besides, it may be shown (still Section 3.1 in https://doi.org/10.1051/ps:2001106) that the

convergence (1) actually holds for all initial conditions x ∈ R
n. This is the continuous state space

equivalent of the notion of positive recurrence.

The next question is whether this LLN result may be complemented by a CLT: in other words,

does √
t

(
1

t

∫ t

s=0
f(Xs)ds− πf

)

converge in distribution to some Gaussian measure?

2.1 CLT by Poisson equation

To study this question, let us assume that we can find a ‘nice’ solution to the Poisson equation

Lg = f − πf (2)

on R
n. The precise meaning of ‘nice’ will be clarified below. Formally, we should think of g as

L−1(f − πf) = −
∫ +∞

t=0
etL(f − πf)dt = −

∫ +∞

t=0
(Ptf − πf)dt,

provided that the right-hand side makes sense in an appropriate functional space. By Ito’s formula

we thus have

g(Xt) = g(X0) +

∫ t

s=0
Lg(Xs)ds+

∫ t

s=0
σ⊤(Xs)∇g(Xs) · dBs,

which rewrites

√
t

(
1

t

∫ t

s=0
f(Xs)ds− πf

)
=

g(Xt)− g(X0)√
t

− 1√
t

∫ t

s=0
σ⊤(Xs)∇g(Xs) · dBs

by (2). Assume that g(Xt)/
√
t → 0 in probability, so we only have to care about the stochastic

integral. By the Dambis–Dubins–Schwartz Theorem, there is a (scalar) Brownian motion (βr)r≥0

such that
1√
t

∫ t

s=0
σ⊤(Xs)∇g(Xs) · dBs =

1√
t
β∫ t

s=0
|σ⊤(Xs)∇g(Xs)|2ds

.

A (a bit bold1) application of the scale invariance of the Brownian motion then indicates that

1√
t
β∫ t

s=0
|σ⊤(Xs)∇g(Xs)|2ds

L
= β 1

t

∫ t

s=0
|σ⊤(Xs)∇g(Xs)|2ds

,

and since by the ergodic theorem,

lim
t→+∞

1

t

∫ t

s=0
|σ⊤(Xs)∇g(Xs)|2ds =

∫

x∈Rn

|σ⊤(x)∇g(x)|2π(dx) =: σ2(f), almost surely,

we conclude that

lim
t→+∞

√
t

(
1

t

∫ t

s=0
f(Xs)ds− πf

)
= βσ2(f) ∼ N (0, σ2(f)), in distribution.

So in the end, a ‘nice’ solution g to (2) should:

1This step is more conventionally handled by martingale convergence theorems.
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• be C2 (for the Ito formula to be applied),

• be such that g(Xt)/
√
t → 0 in probability,

• be such that 1
t

∫ t
s=0 |σ⊤(Xs)∇g(Xs)|2ds →

∫
x∈Rn |σ⊤(x)∇g(x)|2π(dx) < +∞.

Under these conditions, we get the expected CLT.

2.2 Alternative formula for σ2(f)

To get a more explicit formula for σ2(f) we first introduce the carré du champ operator Γ.

Definition 2.1 (Carré du champ). For any C1 functions f, g : Rn → R, let us define

Γ(f, g)(x) =
1

2
(σ⊤(x)∇f(x)) · (σ⊤(x)∇g(x)).

When f and g are C2 this operator satisfies

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

It is called the carré du champ.

The asymptotic variance in the CLT then rewrites

σ2(f) = 2

∫
Γ(g, g)π.

Using the expression of Γ(g, g) in terms of L, we get

σ2(f) =

∫
(Lg2 − 2gLg)π.

Since L∗π = 0, the first term vanishes, while using the Poisson equation and the expression of g
in terms of f ,

σ2(f) = −2

∫
gLg)π

= 2

∫ (∫ ∞

t=0
(Ptf − πf)dt

)
(f − πf)π

= 2

∫ ∞

t=0
Covπ(f(X0), f(Xt))dt.

3 Convergence to equilibrium

For the expressions of the asymptotic variance in the CLT derived above to make sense, it is nec-

essary that Ptf converges to πf fast enough. Recalling that Ptf(x) = Ex[f(Xt)], this basically

means that Xt must converge to π in distribution. So our goal here is either to quantify the conver-

gence of Law(Xt) to π for a given distance on the set of probability measures, or of the function

Ptf toward the constant πf in a given functional space.
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3.1 Probabilistic construction and couplings

3.1.1 Total variation estimate

We start with a construction which relies on the Lyapunov condition of Proposition 1.7 combined

with a quantitative version of the irreducibility condition of Proposition 1.8: we assume that for

any compact subset K ⊂ R
n, there exist t0 > 0, ǫ > 0 and a probability measure ν on R

n such

that

∀A ∈ B(Rn), ∀x ∈ K, Px(Xt0 ∈ A) ≥ ǫν(A).

This condition is sometimes called the Doeblin, or minorisation condition. Then, given two prob-

ability measures µ and ν on R
n, it is possible to construct a pair of processes (Xt, Yt)t≥0 such

that X0 ∼ µ, Y0 ∼ ν, both (Xt)t≥0 and (Yt)t≥0 are solution to the SDE (with different driving

Brownian motions), and:

• the time for (Xt, Yt) to enter K ×K is controlled by the Lyapunov condition;

• if (Xt, Yt) ∈ K ×K , then Xt+t0 = Yt+t0 with probability at least ǫ.
Once the coupling has succeeded, we let Xt and Yt evolve together. Denoting by τ the coupling

time, we therefore have that τ is dominated by a random variable of the form κT , with κ a geo-

metric variable with parameter ǫ. Let us then introduce the total variation between two probability

measures µ and ν by any of the three equivalent formulas:

‖µ− ν‖TV = max
A∈B(Rn)

|µ(A)− ν(A)|

= sup
‖f‖∞≤1

|µf − νf |

= inf
X∼µ,Y∼ν

P(X 6= Y ),

where in the last line, the infimum is taken over all pairs of random variables (X,Y ) with marginal

distributions µ and ν. Denoting by µt the law of Xt and by νt the law of Yt, we deduce from the

third expression that

‖µt − νt‖TV ≤ P(τ > t) ≤ Ce−βt

for some C ≥ 0 and β > 0 which depend on T and ǫ. In particular, if ν = π then νt = π for any

t, and therefore we get exponential convergence to π.

Details on this approach can be found in the lecture notes http://www.hairer.org/notes/Convergence.pdf.

3.1.2 Wasserstein estimate

The previous approach aims at constructing a coupling of two solutions to the SDE which coincide

after an almost surely finite time. One may be slightly less ambitious and only try to construct two

solutions which ‘get closer’ to each other. In this case, the appropriate notion of distance to

measure how far µt and νt are is the Wasserstein distance defined, for p ≥ 1, by

Wp(µ, ν) = inf
X∼µ,Y∼ν

E[|X − Y |p]1/p.

Consider for instance two solutions (Xt)t≥0 and (Yt)t≥0 driven by the same Brownian motion

(Bt)t≥0 (this coupling is called synchronous):

dXt = b(Xt)dt+ σ(Xt)dBt, X0 ∼ µ,

dYt = b(Yt)dt+ σ(Yt)dBt, Y0 ∼ ν.
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By Ito’s formula,

d|Xt − Yt|2 = 2(Xt − Yt) · ((b(Xt)− b(Yt))dt+ (σ(Xt)− σ(Yt))dBt) + |σ(Xt)− σ(Yt)|2dt,

so that assuming that the stochastic integral vanishes when taking the expectation, we get

d

dt
E
[
|Xt − Yt|2

]
= E

[
2(Xt − Yt) · (b(Xt)− b(Yt)) + |σ(Xt)− σ(Yt)|2

]
.

As a conclusion, if b and σ satisfy the condition that there exists c > 0 such that

∀x, y ∈ R
n, 2(x− y) · (b(x)− b(y)) + |σ(x)− σ(y)|2 ≤ −2c|x− y|2, (3)

we deduce that

E
[
|Xt − Yt|2

]
≤ e−2ct

E
[
|X0 − Y0|2

]
.

The left-hand side is larger than W2(µt, νt)
2, and then taking the infimum over all couplings

(X0, Y0) of µ, ν, we deduce that

W2(µt, νt) ≤ e−ctW2(µ, ν).

Once again, if we take ν = π we get exponential convergence to π.

The condition (3) may look rather ‘ad hoc’. It holds in particular for the Langevin pro-

cess dXt = −∇V (Xt)dt +
√

2β−1dBt when the potential function V is uniformly convex.

Beyond this convex case, other couplings may be employed, such as reflection couplings (see

http://www.numdam.org/articles/10.1016/j.crma.2011.09.003/).

3.2 Spectral approach and functional inequalities

Since Law(Xt) and Ptf are solutions to linear evolutionary PDE, their long time behaviour can

also be studied by PDE/analytic techniques. At least in the reversible case, where L and Pt are

symmetric in L
2(π), functional analysis allows to study the convergence of Ptf = etLf to πf

in a rather abstract setting (see Section 3.2 of https://doi.org/10.1051/proc/201444006). We first

present the idea of this approach in a simplified setting, and then explain how functional inequali-

ties may be used as a substitute to this abstract setting.

3.2.1 Spectral approach in a caricatural setting

In the reversible case, the basic remark is that the operator L (which is symmetric in L
2(π))

has eigenvalue 0, with associated eigenspace the space of constant functions R
n → R, and it is

nonpositive – indeed, for any smooth f ,

∫

x∈Rn

f(x)Lf(x)π(dx) = −
∫

x∈Rn

Γ(f, f)(x)π(dx) ≤ 0.

So let us transpose these properties in a finite-dimensional setting: let E be a finite space with

cardinality m, π be a probability measure on E (with π(x) > 0 for all x ∈ E). We denote by

ℓ2(π) the set of functions E → R equipped with the scalar product

〈f, g〉π =
∑

x∈E

f(x)g(x)π(x).

Let L be an m×m matrix which is symmetric in ℓ2(π), with eigenvalues 0 = λ1 > −λ2 ≥ · · · ≥
−λm, and eigenvectors e1, . . . , em which form an orthonormal basis of ℓ2(π), with e1 = 1 (the
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vector with all entries equal to 1). The assumption that λ2 > 0, and therefore that 0 is a simple

eigenvalue, corresponds to π being the only stationary distribution. We then define

∀f ∈ ℓ2(π), ∀t ≥ 0, Ptf = etLf =

m∑

i=1

e−λit〈f, ei〉πei.

Remark 3.1. This setting is, in fact, not artificial at all. If we let P̃ be a stochastic matrix on E
(irreducible, with unique stationary distribution π, and reversible with respect to π), let (X̃n)n≥0

be a (discrete time) Markov chain with transition matrix P̃ , consider an independent sequence of

random times (Tn)n≥0 with T0 = 0 and (Tn−Tn−1)n≥1 independent with Exponential distribution

with parameter 1, and finally set Xt = X̃n on [Tn, Tn+1), then it turns out that (Xt)t≥0 is a

continuous time Markov process, with infinitesimal generator L and semigroup (Pt)t≥0. So what

we are describing here is exactly the spectral theory of its long time convergence.

The constant function πf is exactly 〈f, e1〉πe1, so we have

Ptf − πf =

m∑

i=2

e−λit〈f, ei〉πei,

and therefore

‖Ptf − πf‖2π =

m∑

i=2

e−2λit|〈f, ei〉π|2

≤ e−2λ2t
m∑

i=2

|〈f, ei〉π|2

= e−2λ2t‖f − πf‖2π.

This shows that the decay of Ptf − πf is governed by λ2, the smallest nonzero eigenvalue of −L,

which is called the spectral gap of L. Our goal is now to give a characterisation of this quantity

which does not involve the spectrum of L, so as to be generalised to the SDE case without heavy

functional analysis. To proceed, let us introduce the Dirichlet form

∀f ∈ ℓ2(π), E(f) = −〈f, Lf〉π =

m∑

i=1

λi|〈f, ei〉π|2.

Since λ1 = 0, it is clear that we have

λ2 = inf
Varπ(f)>0

E(f)
Varπ(f)

,

where we have introduced the notation Varπ(f) = ‖f − πf‖2π. So let us summarise: with the

spectral gap λ2 defined in terms of the functionals E and Varπ, we have the exponential decay

∀t ≥ 0, Varπ(Ptf) ≤ e−2λ2tVarπ(f). (4)

3.2.2 Poincaré inequality

We now aim at formulating the same statement coming back to the SDE case, and without speaking

of the spectrum of L – in fact, without even assuming the reversibility of the process. Let us first
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define the functionals

Varπ(f) =

∫

x∈Rn

(f(x)− πf)2π(dx),

E(f) = −
∫

x∈Rn

f(x)Lf(x)π(dx) =

∫

x∈Rn

Γ(f, f)(x)π(dx),

and then the spectral gap λ2 ≥ 0 by

λ2 = inf
Varπ(f)>0

E(f)
Varπ(f)

.

Notice that any c ≥ 1/λ2 satisfies

∀f, Varπ(f) ≤ cE(f),

which rewrites explicitly

∀f,
∫

x∈Rn

(f(x)− πf)2π(dx) ≤ c

∫

x∈Rn

|σ⊤(x)∇f(x)|2π(dx).

Seeing the left-hand side as an L
2 norm and the right-hand side as an H

1 norm, we recognise a

Poincaré inequality. Then the convergence statement (4) may be recovered as follows.

Proposition 3.2 (Exponential convergence under Poincaré inequality). Assume that the Poincaré

inequality is satisfied with a constant c. Then, for any f ,

∀t ≥ 0, Varπ(Ptf) ≤ e−2t/c Varπ(f).

Proof. We just compute

d

dt
Varπ(Ptf) =

d

dt

∫

x∈Rn

(Ptf(x)− πf)2π(dx)

= 2

∫

x∈Rn

d

dt
Ptf(x)(Ptf(x)− πf)π(dx)

= 2

∫

x∈Rn

LPtf(x)(Ptf(x)− πf)π(dx)

= −2

∫

x∈Rn

Γ(Ptf, Ptf)(x)π(dx) = −2E(Ptf),

and we conclude using the Poincaré inequality.

An important remark here is that this computation does not require reversibility, nor spectral

analysis of L.

The Poincaré inequality is just an example of the use of functional inequalities to study the

long time behaviour of stochastic processes. To learn more about this topic and its applications to

numerical methods in statistical physics, you are strongly encouraged to take the course Compu-

tational Statistical Physics next semester!
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