
Méthodes Numériques Probabilistes

Exercices sur la méthode de Monte Carlo et les chaînes de Markov

1 Monte Carlo methods

1.1 Antithetic variables

Let f : [0, 1] → R be such that ∫ 1

u=0
f(u)2du < +∞.

We study a Monte Carlo method to approximate

I :=

∫ 1

u=0
f(u)du.

1. Let U ∼ U [0, 1]. Show that I =
1

2
(E[f(U)] + E[f(1− U)]).

2. Let (Un)n≥1 be a sequence of independent copies of U . Show that

Î
a
2n :=

1

2n

n∑

i=1

(f(Ui) + f(1− Ui))

converges almost surely to I and compute Var(Îa2n).

3. Let

Î2n :=
1

2n

2n∑

i=1

f(Ui)

be the standard Monte Carlo estimator of I which requires the same number of evaluations of the

function f as Îa2n (but twice more random samples). Show that Var(Îa2n) ≤ Var(Î2n) if and only

if Cov(f(U), f(1− U)) ≤ 0.

4. Assume that f is monotonic. Show that

E [(f(U1)− f(U2))(f(1 − U1)− f(1− U2))] ≤ 0.

Deduce that in this case, Cov(f(U), f(1− U)) ≤ 0.

5. Conclude on the practical interest of the method.

1.2 Stratification

Let X be a random variable in R
d with law P and f ∈ L

2(P ). Let

I =

∫

x∈Rd

f(x)dP (x) = E[f(X)].

We assume that there is a finite partition of Rd into m measurable subsets (Ak)1≤k≤m, called strates,

such that for any k ∈ {1, . . . ,m}:

1



• pk := P (Ak) = P(X ∈ Ak) is known (and positive);

• we know how to draw random samples (Xk
n)n≥1 under the law P (·|Ak) = P(X ∈ ·|X ∈ Ak).

For integers n1, . . . , nm ≥ 1 such that n1 + · · ·+ nm = n, we set

Î
s
n :=

m∑

k=1

pkÎ
k
nk
, Î

k
nk

:=
1

nk

nk∑

i=1

f(Xk
i ),

where the samples (X1
i )1≤i≤n1

, . . . , (Xm
i )1≤i≤nm

are independent from each other. Last, we define

∀k ∈ {1, . . . ,m}, µk := E[f(Xk
1 )], σ2

k := Var(f(Xk
1 )).

1.2.1 Generalities

1. Show that

Var(f(X)) =

m∑

k=1

pkσ
2
k +

m∑

k=1

pk

(
µk −

m∑

ℓ=1

pℓµℓ

)2

.

Give an interpretation of this formula.

2. Compute E[Îsn].

3. How does Îsn behave when min(n1, . . . , nm) → +∞?

4. Show that Var(Îsn) =

m∑

k=1

p2kσ
2
k

nk
.

1.2.2 Optimal allocation

We now fix n and look for the optimal allocation of (n1, . . . , nm).

1. Show that, for any n1, . . . , nm,

(
m∑

k=1

pkσk

)2

≤ n

m∑

k=1

p2kσ
2
k

nk
.

2. Deduce the optimal allocation (n∗
1, . . . , n

∗
m) in terms of variance (without taking into account the

constraint that nk must be an integer).

3. What do you think of the practical use of this optimal allocation?

1.2.3 Proportional allocation

We finally study the proportional allocation nk = npk, assuming for simplicity that npk is an integer.

1. Show that in this case nVar(Îsn) ≤ Var(f(X)). Interpret this result.

2. State and prove a Central Limit Theorem for Îsn.

3. How to choose the strates to reduce the statistical error?
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1.3 Splitting for rare events

Let X be a random variable in R
d with law P . Let V : Rd → (0,+∞) and a > 0. We are interested in

the estimation of the probability

p := P(V (X) > a),

which we assume to be very small. In practice, the function V typically measures a risk, a a threshold

and p a probability of failure.

Preliminary question. For n ≥ 1, let

p̂n :=
1

n

n∑

i=1

1{V (Xi)>a}

be the standard Monte Carlo estimator of p, where X1, . . . ,Xn are iid under P . For a fixed value of n,

recall the asymptotic behaviour of the relative error
√

Var(p̂n)/p when p → 0.

1.3.1 Splitting with given levels

1. The splitting method is defined as follows. Let 0 = a0 < a1 < · · · < am = a be subdivision of

the interval [0, a]. Show that

p =
m∏

k=1

pk, pk := P (V (X) > ak|V (X) > ak−1) .

2. For k ∈ {1, . . . ,m}, we assume that we known how to sample random variables (Xk
n)n≥1 under

the law P (·|V > ak−1) (that is to say, the conditional measure P on the set {x ∈ R
d : V (x) >

ak−1}). We assume that the sequences (Xk
n)n≥1, k ∈ {1, . . . ,m} are independent from each other.

We then consider the estimator

p̂sn :=
m∏

k=1

1

n

n∑

i=1

1{V (Xk

i
)>ak}

.

Show that E[p̂sn] = p and that, almost surely, p̂sn → p.

3. Show that

lim
n→+∞

nVar (p̂sn) = mp2

(
−1 +

1

m

m∑

k=1

1

pk

)
.

4. Show that, for any p1, . . . , pm > 0 such that
∏m

k=1 pk = p,

1

m

m∑

k=1

1

pk
≥ 1

p1/m
,

and compute the vector (p∗1, . . . , p
∗
m) for which this lower bound is reached.

5. From now on we set α = p1/m. How to choose the levels a1, . . . , am−1 to minimise the variance

of p̂sn in the n → +∞ limit?

6. Express the value of limn→+∞ nVar(p̂sn) in terms of α for the optimal choice of a1, . . . , am−1.

For which value of α, and therefore of m, is this quantity minimal?
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1.3.2 Adaptive splitting

We now study an algorithm which allows to generate the levels ak so that, approximately,

p1 = . . . = pm = α = 1− 1

n
,

and therefore the number m of levels will be such that, approximately, (1− 1/n)m = p. More precisely,

we consider the adaptive splitting algorithm, which makes evolve a set of n random variables as follows:

• Initialisation. At iteration k = 0, sample iid variables X0
1 , . . . ,X

0
n with law P , and set

a0 := min
1≤i≤n

V (X0
i ), i0 := argmin

1≤i≤n
V (X0

i ).

We assume that V (X) has a density on (0,+∞), so that i0 is almost surely uniquely defined.

• Iterations. At iteration k ≥ 1, the variables Xk
1 , . . . ,X

k
n are obtained from Xk−1

1 , . . . ,Xk−1
n as

follows:

– For i = ik−1, the variable Xk
i is freshly drawn according to the measure P (·|V > ak−1).

– For i 6= ik−1, we set Xk
i = Xk−1

i .

We next set

ak := min
1≤i≤n

V (Xk
i ), ik := argmin

1≤i≤n
V (Xk

i ).

• Stopping criterion. The algorithm stops when ak > a, and we set

m = min{k ≥ 1 : ak > a}, p̂asn =

(
1− 1

n

)m

.

Notice that the numbers of levels m and their values a0, . . . , am are random.

1. Let F be the CDF of V (X), and Λ(y) := − log(1 − F (y)). Check that Λ is increasing and

compute Λ(0) and Λ(a).

2. Compute the law of Λ(V (X)).

3. Let b ≥ 0 and Y a random variable with law P (·|V > b). Show that, for any z ∈ R,

P (Λ(V (Y )) > z) = exp (Λ(b)−max(z,Λ(b))) .

4. Show that if X and Y are independent random variables, then for any f such that f(X,Y ) ∈
L
1(P),

E[f(X,Y )] = E[g(X)], g(x) := E[f(x, Y )].

5. Show that the random variables (Λ(V (X1
i )) − Λ(a0))1≤i≤n are independent and exponentially

distributed with parameter 1, and that they are independent from the random variable Λ(a0),
which is exponentially distributed with parameter n. Hint: you may for instance compute, for

any z, z1, . . . , zn, P(Λ(V (X1
1 ))− Λ(a0) > z1, . . . ,Λ(V (X1

n))− Λ(a0) > zn,Λ(a0) > z).

6. Show that for any k ≥ 1, the random variables (Λ(V (Xk
i )) − Λ(ak−1))1≤i≤n are independent

and exponentially distributed with parameter 1, and that they are independent from the random

variable (Λ(aℓ−1) − Λ(aℓ−2)1≤ℓ≤k, which are exponentially distributed with parameter n. Hint:

you may argue by induction.

7. Deduce the law of m and show that E[p̂asn ] = p.

8. Compute Var(p̂asn ). How does the relative error
√

Var(p̂asn )/p behave when p → 0?
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2 Markov chains

2.1 Coupling from the past

Given a probability measure π on a discrete space E, we study an algorithm which returns a random

variable Y with exact law π, based on the construction of a Markov chain (Xn)n≥0 which admits π as

stationary distribution. We first describe the algorithm in a general setting, and then its application to the

Metropolis–Hastings algorithm for the simulation of the Ising model.

2.1.1 General description

We let (Xn)n≥0 be a Markov chain in E given under the form of a random dynamical system

Xn+1 = f(Xn, Zn+1),

where (Zn)n≥1 is a sequence of iid random variables in some measurable space Z and f : E ×Z → E
is measurable.

1. Recall the expression of the transition matrix P of (Xn)n≥0 in terms of f .

For any z ∈ Z , we denote by fz : E → E the function defined by fz(x) = f(x, z). We next define

the random mappings Dn, Gn : E → E by

D0 = G0 = Id, Dn = fZ1
◦ fZ2

◦ · · · ◦ fZn
, Gn = fZn

◦ fZn−1
◦ · · · ◦ fZ1

.

From now on, we assume that E is finite, and that P is irreducible and aperiodic, with unique

stationary distribution π.

2. For any x, y ∈ E, express limn→+∞ P(Gn(x) = y) in terms of π.

We now define N := inf{n ≥ 0 : Dn is a constant function}, with the convention that inf ∅ = +∞.

3. Show that if n ≥ N then Dn remains a constant function.

4. Assume that N < +∞, almost surely, and let Y ∈ E be the value of the constant function DN .

Show that Y has law π. Hint: you may compare the laws of Dn(x) and Gn(x) for fixed n ≥ 1 and

x ∈ E.

5. In this question, we describe a sufficient condition for assumption N < +∞ to hold. We assume

that for any subset A ⊂ E such that |A| > 1,

P(|fZ(A)| < |A|) > 0.

Let m = |E|. Show that there exists κ > 0 such that P(N ≤ m − 1) ≥ κ, and deduce that

P(N < +∞) = 1.

6. Which numerical difficulty does the simulation of the random variable Y imply?

In the sequel, we assume that E is endowed with an order relation ≤ and that there exist two elements

xmin, xmax ∈ E such that

∀x ∈ E, xmin ≤ x ≤ xmax.

We moreover assume that f is monotonic in the sense that

∀x, y ∈ E, ∀z ∈ Z, x ≤ y ⇒ f(x, z) ≤ f(y, z).

In this case, the Markov chain (Xn)n≥0 is called monotonic.
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7. How to compute N in practice if the Markov chain (Xn)n≥0 is monotonic?

8. Let M := inf{n ≥ 0 : Gn(xmin) = xmax}. Show that for any n ≥ 0, P(N > n) ≤ P(M > n),
and deduce that N < +∞, almost surely.

2.1.2 Application to the Ising model

We consider the Ising model πβ on a finite graph (V, E) and inverse temperature β. We next let (Xn)n≥n

be the Markov chain defined by the Metropolis algorithm with:

• proposal matrix Q which at each step picks a vertex uniformly in V and a new value for the spin

uniformly in {−1, 1};

• accept the move according to the Metropolis–Hastings rule for the target measure πβ .

1. Show that this chain takes the form Xn+1 = f(Xn, Zn+1) and describe precisely f as well as

(Zn)n≥1.

2. Justify the fact that (Xn)n≥0 is irreducible and aperiodic, and has πβ as stationary distribution.

3. Show that the chain (Xn)n≥0 is monotonic.

4. Deduce a complete algorithm which returns a configuration exactly distributed under πβ .

2.2 Asymptotic variance for nonreversible Markov chains

2.2.1 Asymptotic variance and Poisson equation

Let us consider a stochastic matrix P on E, which is irreducible, aperiodic, and with stationary distribu-

tion π. Let us recall that for any function f ∈ R
E ,

lim
n→∞

√
n

(
1

n

n−1∑

i=0

f(Xi)− πf

)
= N

(
0, σ2(f)

)
, in distribution,

where (Xn)n≥0 is a Markov chain with transition matrix P and

σ2(f) = Varπ(f(X0)) + 2

∞∑

n=1

Covπ(f(X0), f(Xn)).

In the sequel it will be convenient to denote by σ2(f, P ) the asymptotic variance, to keep track of the

transition matrix of the underlying chain (Xn)n≥0.

We define R
E
0 = {g ∈ R

E : πg = 0} and for f ∈ R
E we set f̃ = f − πf ∈ R

E
0 .

1. Show that if g ∈ R
E
0 then Pg ∈ R

E
0 . We denote by P0 the restriction of P to R

E
0 .

2. Show that for any f ∈ R
E , there is a unique g ∈ R

E
0 such that (I − P )g = f̃ .

3. Show that g(x) =
∑+∞

n=0 Ex[f̃(Xn)].

4. Deduce that σ2(f, P ) = 2〈f̃ , g〉π − ‖f̃‖2π.
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2.2.2 Reversible and nonreversible chains

Let S be a stochastic matrix on E which is irreducible, aperiodic and reversible with respect to π. Let A
be a E × E matrix which satisfies:

∀(x, y) ∈ E × E, π(x)A(x, y) = −π(y)A(y, x) , (1)

∀(x, y) ∈ E × E,

{
A(x, y) = 0 if S(x, y) = 0,

|A(x, y)| < S(x, y) if S(x, y) 6= 0,
(2)

∀x ∈ E,
∑

y∈E

A(x, y) = 0. (3)

Let us finally define P = S +A.

1. Show that for all (x, y) ∈ E × E, S(x, y) > 0 if and only if P (x, y) > 0.

2. Show that P is a stochastic and aperiodic matrix which admits π as a unique stationary distribution.

Let us recall a version of the Spectral Theorem adapted to our framework, and which will be useful in

the following. Let us first extend the scalar product 〈·, ·〉π to complex valued functions: for any functions

u : E → C and v : E → C,

〈u, v〉π =
∑

x∈E

u(x)v(x)π(x),

where z denotes the complex conjugate of z ∈ C. For a complex valued matrix M ∈ CE×E , let us

denote its adjoint by M∗ ∈ C
E×E, defined by: for any functions u : E → C and v : E → C,

〈M∗u, v〉π = 〈u,Mv〉π.

From the Spectral Theorem, if M is Hermitian (i.e. M∗ = M ), then M is diagonalisable in an orthonor-

mal (for the Hermitian inner product 〈·, ·〉π) basis of Cm, with real eigenvalues.

3. Prove that A is a diagonalisable matrix, and that its eigenvalues are purely imaginary with modules

strictly smaller than 1.

4. What can be said of the results of the three previous questions if Assumption (2) is replaced by the

weaker hypothesis: ∀(x, y) ∈ E × E, |A(x, y)| ≤ S(x, y)?

The objective of the following questions is to study why introducing the matrix A may improve the

efficiency of a Markov Chain Monte Carlo sampling algorithm, by comparing the asymptotic variance

associated with the transition matrix P = S + A with the asymptotic variance associated with the

transition matrix S.

Let us recall that the matrices S, A, and P leave R
E
0 invariant. These matrices are thus seen in the

following as endomorphisms of the linear (m− 1)-dimensional space R
E
0 , with m the cardinality of E.

5. The linear map S : RE
0 → R

E
0 is symmetric for the scalar product 〈·, ·〉π , and is thus diagonal-

isable: let us denote by (di)1≤i≤m−1 ∈ R
m−1 its eigenvalues and by (fi : E → R)1≤i≤m−1 the

associated eigenvectors, which form an orthonormal basis of RE
0 . For any α ∈ R, let us define the

operator (I − S)α : RE
0 → R

E
0 by:

∀i ∈ {1, . . . ,m− 1}, (I − S)αfi = (1− di)
αfi.

Check that for all α ∈ R, (I − S)α is a well-defined symmetric operator (for the scalar product

〈·, ·〉π), and that (I − S)α(I − S)β = (I − S)α+β , for all α, β ∈ R.
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6. Let Q = (I − S)−1/2A(I − S)−1/2. Check that I −Q is invertible. Show that for all g ∈ R
E
0 ,

〈(I −Q)−1g, g〉π ≤ 〈g, g〉π .

When does equality hold?

7. Prove that for all f : E → R,

〈(I − P )−1f̃ , f̃〉π = 〈(I −Q)−1(I − S)−1/2f̃ , (I − S)−1/2f̃〉π.

8. Deduce that for any function f : E → R, σ2(f, P ) ≤ σ2(f, S). When does equality hold?

2.2.3 Construction of A

In these last two questions, we would like to build, for a given matrix S, a matrix A which satisfies the

three properties (1)-(2)-(3). In order to do so, let us consider a cycle for S, namely a path in E with

strictly positive probability for S, starting from a state and coming back to the same state, while visiting

at least one other state.

1. For any x ∈ E, check that there exists a cycle for S starting from x and coming back to x.

Up to a renumbering of the states, we thus have:

for some ℓ ≥ 2, S(1, 2)S(2, 3) . . . S(ℓ, 1) > 0.

Let us then consider

α = min (π(1)S(1, 2), π(2)S(2, 3), . . . , π(ℓ− 1)S(ℓ− 1, ℓ), π(ℓ)S(ℓ, 1)) .

For t ∈ (−α,α), let us define At by:

At(x, y) =





t
π(x) if (x, y) = (ℓ, 1) or (x, y) = (i, i + 1) for some i ∈ {1, . . . , ℓ− 1},

− t
π(x) if (x, y) = (1, ℓ) or (x, y) = (i, i − 1) for some i ∈ {2, . . . , ℓ},

0 otherwise.

2. Show that the matrix At satisfies (1)-(2)-(3).

8


	Monte Carlo methods
	Antithetic variables
	Stratification
	Generalities
	Optimal allocation
	Proportional allocation

	Splitting for rare events
	Splitting with given levels
	Adaptive splitting


	Markov chains
	Coupling from the past
	General description
	Application to the Ising model

	Asymptotic variance for nonreversible Markov chains
	Asymptotic variance and Poisson equation
	Reversible and nonreversible chains
	Construction of A



