
Méthodes Numériques Probabilistes

Exercices sur les équations différentielles stochastiques

1 An explosive SDE

Let (Bt)t≥0 be a Brownian motion. We consider the Stochastic Differential Equation (SDE)




dXt =

1

2
exp(2Xt)dt+ exp(Xt)dBt,

X0 = 0.
(1)

1. Do the coefficients of this equation satisfy the conditions of Itô’s theorem?

2. Show that the solution to the Ordinary Differential Equation (ODE)





dxt
dt

=
1

2
exp(2xt),

x0 = 0,

blows up in finite time, that is to say that there exist t ∈ (0,+∞) and a C1 function (xt)t∈[0,t)
which satisfies this equation on [0, t) and which goes to +∞ when t → t.

The goal of this exercise is to construct a solution to the SDE (1), and to show that it blows up in finite

time, almost surely.

1.1 Solving the SDE

For any M > 0 we consider the SDE




dXM

t =
1

2
exp(2(XM

t ∧M))dt+ exp(XM
t ∧M)dBt,

XM
0 = 0,

where we recall the notation XM
t ∧M = min(XM

t ,M).

1. Show that this equation has a unique solution (XM
t )t≥0.

2. We set τM := inf{t > 0 : XM
t ≥ M}, and for any x ∈ R, we define Φ(x) = 1 − exp(−x).

Using Itô’s formula, show that for any t ≤ τM , Φ(XM
t ) = Bt.

3. Deduce an expression of τM in terms of M and of the Brownian motion (Bt)t≥0.

4. Show that, almost surely, the function M 7→ τM is nondecreasing, and justify that when M →
+∞, τM converges almost surely to

τ := inf{t ≥ 0 : Bt ≥ 1} ∈ (0,+∞]. (2)

5. Deduce a process (Xt)t∈[0,τ) such that, almost surely, for any t ∈ [0, τ ),

Xt =

∫ t

s=0

1

2
exp(2Xs)ds+

∫ t

s=0
exp(Xs)dBs.

6. What can you say about Xt when t → τ?
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1.2 Study of the blow-up time

To complete the exercise, it remains to check that the blow-up time τ given by (2) is finite, almost surely.

To proceed, for any x < 1 we introduce the notation

Bx
t := x+Bt, τx := inf{t ≥ 0 : Bx

t ≥ 1}.

1. Let λ > 0. Compute the unique solution uλ : R → R which is C2 on R and bounded on (−∞, 1]
to the ODE 




1

2
u′′λ(x) = λuλ(x), for any x ∈ R,

uλ(1) = 1.

2. Show that, for any t ≥ 0 and x < 1,

exp(−λt)uλ(B
x
t ) = uλ(x) +

∫ t

s=0
exp(−λs)u′λ(B

x
s )dBs.

3. Deduce that for any t ≥ 0, and x < 1, uλ(x) = E [exp(−λ(t ∧ τx))uλ(B
x
t∧τx)], and then that

uλ(x) = E
[
exp(−λτx)1{τx<+∞}

]
.

4. Show that limλ→0 uλ(x) = P(τx < +∞) and conclude.

2 Particle approximation of a nonlinear SDE

Let φ : R → R a bounded function, such that there exists L ∈ [0,+∞) for which

∀x, y ∈ R, max{|φ(x) − φ(y)|, |xφ(x) − yφ(y)|} ≤ L|x− y|.

We consider the Stochastic Differential Equation (SDE)

dXt = φ(E[Xt])Xt dt+ dBt, X0 = ξ, (∗)

where (Bt)t≥0 is a (Ft)t≥0-Brownian motion, and the random variable ξ is F0-measurable and in L
2(P).

The important point of the SDE (∗) is that its drift not only depends on the value of the random

variable Xt, but also on its law, through the expectation. Therefore this equation is not covered by the

theoretic results seen in class. A solution to this SDE is an Itô process (Xt)t≥0 such that, for any t ≥ 0,

(i) Xt ∈ L
1(P);

(ii) Xt = ξ +
∫ t

0 φ(E[Xs])Xsds+Bt.

2.1 Preliminary results

1. Give an example of a (nonconstant) function φ which satisfies the assumptions made above.

2. Let T > 0 and q : [0, T ] → R a C1 function, such that there exist α > 0 and C ∈ R such that

∀t ∈ [0, T ], q(t) ≤ α

∫ t

0
q(s)ds+ C.

Show that, for any t ∈ [0, T ], q(t) ≤ Ceαt.
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2.2 Existence and uniqueness

1. Justify that the Ordinary Differential Equation (ODE)

m′(t) = φ(m(t))m(t), m(0) = E[ξ],

has a unique solution, which we denote by m in the sequel.

2. Let us assume that there exists a solution (Xt)t≥0 to (∗), such that the function t 7→ E[Xt] is

continuous on [0,+∞). Show that the later function is a solution to the ODE of the previous

question.

3. Show that the SDE

dXt = φ(m(t))Xt dt+ dBt, X0 = ξ,

has a unique solution, which moreover satisfies, for any t ≥ 0,

E

[∫ t

0
X2

sds

]
< +∞.

4. Conclude on the existence and uniqueness of a solution to the equation (∗).

5. If (Xt)t≥0 is a solution to (∗), show that for any T ≥ 0,

sup
t∈[0,T ]

E[X2
t ] < +∞.

2.3 Particle system

We now consider n particles, whose respective positions Y 1
t , . . . , Y

n
t evolve in R according to the system

of SDEs

∀i ∈ {1, . . . , n}, dY i
t = φ

(
Y

n

t

)
Y i
t dt+ dBi

t, Y i
0 = ξi, (∗∗)

where we write

Y
n

t =
1

n

n∑

j=1

Y j
t .

The processes (B1
t )t≥0, . . . , (B

n
t )t≥0 are independent (Ft)t≥0-Brownian motions. The random variables

ξ1, . . . , ξn are F0-measurable and iid with the same law as ξ.

1. Show that the process (B
n

t )t≥0 defined by B
n

t = (B1
t + · · ·+Bn

t )/
√
n is a Brownian motion.

2. We write ξ
n
= (ξ1 + · · ·+ ξn)/n. Show that the SDE

dMt = φ(Mt)Mtdt+
1√
n
dB

n

t , M0 = ξ
n
,

has a unique solution, which we denote by (Mt)t≥0 in the sequel.

3. Let (M̃t)t≥0 be a process satisfying, for any t ≥ 0,

M̃t = ξ
n
+

∫ t

0
φ(Ms)M̃sds+

1√
n
B

n

t .

Show that there exists a constant C such that for any t ≥ 0,

|Mt − M̃t| ≤ C

∫ t

0
|Ms − M̃s|ds.

Deduce that Mt = M̃t for any t ≥ 0.
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4. Adapting an argument seen in class, justify that the system of SDEs

∀i ∈ {1, . . . , n}, dY i
t = φ(Mt)Y

i
t dt+ dBi

t, Y i
0 = ξi,

has a unique solution (Y 1
t , . . . , Y

n
t )t≥0.

5. Show that (Y 1
t , . . . , Y

n
t )t≥0 is the unique solution to the system of SDEs (∗∗).

2.4 Coupling

For any i ∈ {1, . . . , n}, we denote by (Xi
t)t≥0 the solution to the SDE (∗) driven by the Brownian motion

(Bi
t)t≥0 and with initial condition ξi. The processes (Xi

t)t≥0 and (Y i
t )t≥0 are therefore driven by the

same Brownian motion and have the same initial condition.

1. Justify that the processes (X1
t )t≥0, . . . , (X

n
t )t≥0 are independent. What can you say about the

processes (Y 1
t )t≥0, . . . , (Y

n
t )t≥0?

2. Show that for any T > 0, and for any t ∈ [0, T ],

(Mt −m(t))2 ≤ 3(ξ
n − E[ξ])2 + 3L2T

∫ t

0
(Ms −m(s))2ds+

3

n
(B

n

t )
2.

Deduce that for any T > 0, there exists a constant CT such that

sup
t∈[0,T ]

E[(Mt −m(t))2] ≤ CT

n
.

3. Show that there is a constant C such that for any t ≥ 0,

1

n

n∑

i=1

|Xi
t − Y i

t | ≤ C

∫ t

0

(
1

n

n∑

i=1

|Xi
s − Y i

s |
)
ds+

∫ t

0
|φ(Ms)− φ(m(s))|

(
1

n

n∑

i=1

|Xi
s|
)
ds.

4. Deduce that for any T > 0, there is a constant DT such that

sup
t∈[0,T ]

E

[
1

n

n∑

i=1

|Xi
t − Y i

t |
]
≤ DT√

n
,

and then that limn→∞ supt∈[0,T ] E|X1
t − Y 1

t | = 0.

One may in fact show that when n → +∞, the particles defined by the system of SDEs (∗∗) asymp-

totically behave as independent copies of the process (Xt)t≥0 solution to the SDE (∗): the interaction

between the particles is encoded by the fact that the evolution of Xt depends on its law. This phenomenon

is called propagation of chaos, it is characteristic of so-called mean-field systems.

5. For any t ≥ 0, we denote by µt the law of the random variable Xt. Using Itô’s formula, show that

the Fokker–Planck equation satisfied by µt is nonlinear.

This justifies the fact that (Xt)t≥0 is sometimes called a nonlinear diffusion process.
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