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Foreword

The central focus of this course is the Monte Carlo method. We first present its basic principle in
the context of independent and identically distributed samples, which requires reviewing methods
for simulating random variables, as well as limit theorems that allow us to quantify the accuracy
of this approach. In particular, several variance reduction techniques are introduced.

The goal of the second part of the course is to introduce the Markov Chain Monte Carlo
method. We present the notion of discrete-time Markov chains, followed by the main results con-
cerning long-time behaviour. We then describe several stochastic sampling algorithms (Metropolis—
Hastings and Gibbs).

The third part of the course is devoted to the connections between diffusion processes and
partial differential equations. After a brief review of stochastic calculus, we present in detail
the Feynman—Kac formula and discretisation methods for stochastic differential equations, which
make it possible to implement the Monte Carlo method to solve parabolic or elliptic partial dif-
ferential equations. The link with the Markov Chain Monte Carlo method is finally established
through the study of the long-time behavior of diffusion processes.

The reader is assumed to be familiar with basic measure theory, including Lebesgue integra-
tion, and basic probability theory: random variables and limit theorems. We refer to [2] or [3] for
comprehensive textbooks in this direction.

* K K

These lecture notes contain two parts: Part I contains the contents covered during the lectures,
complemented with exercises and further developments, while Part II contains problems which
are adapted from past exams.

In Part I, each Lecture should roughly correspond to one session of the course. Some of the
exercises will be discussed during the lectures, but definitely not all, so you should have enough
material to practice between the sessions. Some exercises contain a numerical part to implement
by yourself. There is no written correction for these exercises.

This document will be regularly updated during the trimester, on the course’s webpage'. Some
parts will not be seen in class, they will be marked with a star *, and they will not be examinable.

For any questions or comment, please send me an email at julien.reygner @enpc.fr.

"https://cermics.enpc.fr/~reygnerj/anedp.html
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Part 1

Lectures and exercises






Lecture 1

Random variable simulation

The goal of this Lecture is to present algorithms for random variable generation: given a probabil-
ity distribution P on some measurable space (F, ), how to generate independent and identically
distributed variables X1, ..., X,, with law P? This will be used already in Lecture 2 to compute
integrals with the Monte Carlo method.

Throughout this Lecture, we work on some probability space (£2,.4,P) and, for any p €
[1,400), we denote by LP(IP) the space of real-valued random variables X such that E[| X |P] <
+00.

1.1 Random variable simulation

1.1.1 Uniform distribution and basic applications
Uniform random variables on [0, 1]

It is an obvious fact that a deterministic algorithm cannot generate a truly random sequence, as
was written by von Neumann: ‘Anyone who attempts to generate random numbers by determin-
istic means is, of course, living in a state of sin.’!. Hence, pseudo-random number generators
are deterministic algorithms which, starting from a seed xg, return a sequence 1, -2, ... of num-
bers which exhibits the same statistical properties as a sequence of independent and identically
distributed random numbers.

Because of the finiteness of the memory of a computer, a pseudo-random number generator
is necessarily ultimately periodic, that is to say that there exists ¢ > 0, which may depend on x,
such that for n large enough, =, 1+ = x,. In the sequel we call maximal period the largest value
of t over all possible values of x(. Since ‘truly random’ sequences should not be periodic, it is an
intuitive statement that a ‘good’ pseudo-random number generator should have a large maximal
period.

We first present a class of pseudo-random generators which are relatively easy to describe.
Linear congruential generators were introduced in 1948 and depend on the following integer
parameters:

e amodulus m > 0;
e amultiplier 0 < a < m;

e an increment 0 < ¢ < m.

'Quoted in D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edition,
Addison-Wesley, 1998.
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The seed is an integer zg € {0,...,m — 1}. The sequence (x,),>1 is then computed according
to the recurrence relation

Tpt1 = aZTp + ¢ mod m,

which produces integer numbers in {0,...,m — 1}. Typically, taking m = 232 allows to get
integers encoded on 32 bits.

In general, the maximal period of linear congruential generators (which is at most m) can be
computed. Yet, their quality remains very sensitive to the choice of a and m. More complex
pseudo-random generators have thus been elaborated. The most widely used generator in current
scientific computing languages is called Mersenne Twister. It was developed in 19977, it is based
on the arithmetic properties of Mersenne numbers and its period is 219937 — 1 ~ 4.3 . 106001,

Whatever the chosen pseudo-random number generator, let us take as granted that given a seed
zg € {0,...,m — 1}, it returns a sequence (xy,),>1 of numbers in {0, ..., m — 1}, which has the
following statistical properties:

(i) they look independent;

(ii) they look uniformly distributed in {0,...,m — 1} in the sense that each integer x €
{0,...,m — 1} appears in the sequence (z,,),>1 With equal frequency 1/m.

Defining U,, = x,,/m € [0, 1), we thus obtain a sequence of pseudo-random independent variables
such that, for any n > 1, for any interval C' C [0, 1],

m—1 1
1
P(Un S C) = E g ]l{:c/mEC} = / Oﬂ{uec}du-
=0 u=

This motivates the following definition.

Definition 1.1.1 (Uniform distribution). A random variable U in [0, 1] is called uniformly dis-
tributed on [0, 1] if it has the density

p(u) = Lguepo)y-
We denote U ~ U0, 1].

Exercise 1.1.2. Let U ~ U|0, 1]. Show that the random variable 1 — U has the same distribution
as U.

From now on, we shall thus work under the assumption that our computer is able to generate
independent variables (U,,),>1 which are uniformly distributed on [0,1]. In the sequel of this
section, we study how to use this sequence in order to sample a random variable X with a given
distribution.

Remark 1.1.3. Most scientific computing languages allow you to fix the seed of your pseudo-
random number generator. This makes your code no longer random but this may prove very help-
ful for reproducibility, comparison of your code and experimental results with others, or simply
debugging.

*Matsumoto, M. and Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator, ACM Transactions on Modeling and Computer Simulations (1998).
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Elementary discrete distributions
We first introduce several discrete distributions.
Definition 1.1.4 (Bernoulli, binomial and geometric distributions). Let p € [0, 1].

(i) A random variable X in {0,1} such that P(X =1) =pand P(X =0) =1 — piscalled a
Bernoulli random variable with parameter p. We denote X ~ B(p).

(ii) Let n > 1 and X1, ..., X, be independent Bernoulli random variables with parameter
p. The random variable S := X1 + --- + X, is called a binomial random variable with
parameters n and p. We denote S ~ B(n,p).

(iii) Assume that p € (0,1] and let (X;);>1 be a sequence of independent Bernoulli random
variables with parameter p. The random variable T := min{i > 1 : X; = 1} is called a
geometric random variable with parameter p. We denote T' ~ Geo(p).

The numerical sampling of the Bernoulli, binomial and geometric distributions is addressed in
the next exercise.

Exercise 1.1.5. Let (U,,),>1 be a sequence of independent uniform variables on [0, 1].
1. Using an if test, how to draw a random variable X ~ B(p)?
2. Using a for loop, how to draw a random variable S ~ B(n,p)?

3. Using a while loop, how to draw a random variable T' ~ Geo(p)?

1.1.2 The inverse CDF method
Discrete distributions

Let X be a random variable taking its values in some finite set £ with cardinality m, and let
(px)zer be its probability mass function (that is to say, p, = P(X = z)). An intuitive algorithm
allowing to sample X from a uniform random variable U € [0, 1] is the following:

1. label the elements of F in some arbitrary order x1, ..., Zm;
2. select the unique index ¢ € {1,...,m}suchthatp,, + - +py, , <U < pg +- - +Days
3. return X = x;.
It is clear that we have
P(X =) =P(pay + -+ D2y <U <pay +-+pPa;) = Days

so that X has the correct law.

CDF and inverse CDF

The generalisation of this approach to arbitrary, real-valued random variables, is based on the
introduction of the Cumulative Distribution Function of such variables.

Definition 1.1.6 (Cumulative Distribution Function). Let X be a real-valued random variable.
The Cumulative Distribution Function (CDF) of X is the function Fx : R — [0, 1] defined by

Vz € R, Fx(z):=P(X < z).
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Remark 1.1.7. Since the Borel o-field on R is generated by the intervals of the form (—oo, x|, by
Dynkin’s Lemma, two random variables have the same CDF if and only if they have the same law.

Exercise 1.1.8 (Properties of CDFs). Let F'x be the CDF of a random variable X. Show that:
1. Fx is nondecreasing;
2. limgy oo Fx(z) =0, limy 4 o0 Fx(z) = 1;
3. FXx is right continuous and has left limits.

When X has a density p, Definition 1.1.6 yields the identity
x
ek Fe@)= [ pldy
Yy=—00
which shows that F’x is continuous and dz-almost everywhere differentiable, with F§ = p.

Definition 1.1.9. Let F'x be the CDF of a random variable X. The pseudo-inverse of F'x is the
function F)El : [0,1] — [—o00, +00] defined by

Yu € [0, 1], Fyl'(u) :=inf{z € R: Fx(z) > u},
with the conventions that inf R = —oo and inf @ = +oc.

The pseudo-inverse of a CDF is nondecreasing, left continuous with right limits. When F'x
is continuous and increasing, then F' )}1 is the usual inverse bijection of F'x. In general, it need
not hold that Fiy (F;'(u)) = u or Fy.'(Fx(z)) = z, but the following weaker statement remains
true.

Lemma 1.1.10 (CDF and pseudo-inverse). Let F'x be the CDF of a random variable X. For all
z €R, u € (0,1), we have Fy' (u) < x if and only if u < Fx ().

Proof. Since F is right continuous, for any u € (0,1) the set {x € R : Fx(x) > u} is closed,
therefore Fx(Fx'(u)) > u. Since Fy is nondecreasing, we deduce that if Fiy'(u) < z then
u < Fx(x). Conversely, if u < Fx(x), then by the definition of F)El, F)El(u) < z. O

Corollary 1.1.11 (The inverse CDF method). Let F'x be the CDF of a random variable X, and
let U ~ U]0, 1]. The random variables X and F )}1 (U) have the same distribution.

Proof. By Lemma 1.1.10 and Definition 1.1.1, for all x € R,
Fx(x)
PF(U) 0) =P < Fx(@) = [ du=Fx(a)
u=0

so that the random variables X and F'y (U have the same CDF. From Remark 1.1.7 we conclude
that they have the same distribution. O

We illustrate this method on the exponential distribution.

Definition 1.1.12 (Exponential distribution). Let A\ > 0. A random variable X in [0,+00) is
called exponential with parameter X if it has the density

p() = Lgpsppre .

We denote X ~ E()).
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An immediate computation shows that the CDF of X writes

0 if z <0,
Fx((ﬂ):{ -

1—e* otherwise.

As a consequence, for all u € [0, 1],
1 1
F{ i (u) = 3 In(1 — u),

with the obvious convention that In0 = —oo. Therefore, to draw a random variable X ~ E(\),
one may take a uniform variable U on [0, 1] and return —+In(1 — U). Notice that, by Exer-
cise 1.1.2, it is also equivalent to return —3 In(U).

1.1.3 The Box—Muller method for Gaussian random variables

We recall that the Gauss integral is equal to’

22
/ exp (——) dz = v 2m.
zeR 2

Definition 1.1.13 (Standard Gaussian variables). A random variable G in R is a standard Gaussian
variable if it has the density

1 ( x? >
—exp|—— ).
V2 P 2
Exercise 1.1.14. If G is a standard Gaussian variable, show that G € LP(P) for any p € [1,400)
and compute E|G] and Var(G).

It follows from this exercise that for any p, o € R, the random variable X = u + oG satisfies
E[X] = p and Var(X) = o2. This remark is used in the next definition.

Definition 1.1.15 (Gaussian variable). If G is a standard Gaussian variable, then for any i, 0 € R,
the random variable
X=p+oG

is called a Gaussian random variable with mean . and variance . Its law is denoted by N' (11, o?).

Gaussian variables are also called normal. The fact that the law of X only depends on o
through o2 is justified by the following result.

Exercise 1.1.16. Show that if X ~ N (11, 0%) with 0® > 0, then X has density

1 (z —p)?
exp| ——— ] .
V2mo? 20

We insist on the fact that the definition of Gaussian random variables also includes the case
where 0 = 0, in which case X is the almost surely constant random variable equal to p. In this
case, the law of X is the Dirac measure ., and therefore it does not have a density.

By definition, the problem of sampling from Gaussian distributions reduces to the case of the
standard Gaussian distribution. Let ® : R — [0, 1] denote its CDF, given by

v= [ (L)

3Do not hesitate to redo the computation just to be sure that you still know how to!
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It is known that ® cannot be expressed in terms of usual functions, such as polynomials, exponen-
tials or logarithms. Hence the inverse CDF method cannot be applied in the present case. We shall
present an ad hoc approach, called the Box—Muller method".

Proposition 1.1.17 (Box—Muller method). Let R ~ £(1/2) and © ~ U[0,2x] be independent
random variables. The random variables

X :=vVRcosO, Y := VRsin©,
are independent and follow the standard Gaussian distribution.

Proof. We use the dummy function method and let f : R? — R be measurable and bounded.
Since R and © are independent, the law of the pair (R, ©) is the product of the marginal densities,
and therefore

E[f(X,Y)]=E [f <\/§cos@,\/}_fsin@)]
- +o0 27 \/7 0 \/_ 0 dg 1 _T,/Qd
_/rzo ezof( 7 cos 0, /1 sin )%56 T.

Using the polar change of coordinates x = /7 cos 6, y = /7 sin @ in the right-hand side, we get

BUOLY)) = [ fea e (-S4 ) dsy

z,yeR 2

which shows that the pair (X, Y") has density

e () = e (5) vme (F)
—exp | — = exp| —— ) —exp|—= ),
o P 2 or P\ T ) oL P T

which implies that X and Y are independent standard Gaussian variables. O

Since both R and © can be sampled using the inverse CDF method, Proposition 1.1.17 pro-
vides a method to sample X and Y from two independent uniform random variables on [0, 1].

Remark 1.1.18 (What does my computer really do?>). The Box—Muller method is used by NumPy’s
random. standard_normal function to generate Gaussian variables. Its newer random number
generator class, called Generator, uses another method called the Ziggurat algorithm, which is
presented in the next Section. In contrast, the statistical software R uses the inverse CDF method
to generate Gaussian samples, with a numerical approximation of the function 1.

1.1.4 Rejection sampling
Sampling from a conditional probability

Let () be a probability distribution on some measurable space (E, £) and D € £ such that Q(D) >
0. The conditional probability Q(-|D) is the probability measure on D defined by

acp) - 55

“Box, G. E. P. and Muller, M. E. A Note on the Generation of Random Normal Deviates, The Annals of Mathematical
Statistics (1958).
3 According to the blog post https://medium.com/mti-technology/how-to-generate- gaussian-samples-3951£2203ab0.
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. . . .1y, .
for any measurable subset C' C D; in other words, it is the measure with density é(%D)} with

respect to .

Assume that you are able to draw iid samples X7, ..., X, from @), and that you want to draw
a random variable X with distribution Q(-|D). A somewhat obvious algorithm is then to draw
samples from () and to only keep those which fall into D. In other words, set N := inf{n > 1:
X, € D} and return X := X . The next statement shows that this algorithm is correct.

Proposition 1.1.19 (Rejection sampling from a conditional probability). With the notation intro-
duced above:

(i) N~ Geo(Q(D));
(ii) Xn has distribution Q(-|D);
(iii) N and Xy are independent.
Proof. We fix n > 1, a measurable subset C' of D, and compute
P(N=nXyeC)=P(X1¢D,Xo¢D,....X,1¢D,X,€C)
= (1-Q(D)"'Q(0).

Taking C' = D shows the first point of the Proposition. Summing over n yields the second point,
and allows to deduce that the right-hand side above rewrites P(N = n)P(Xy € C), which leads
to the third point. O

Generalisation

The rejection algorithm exposed above can be cleverly employed to sample from probability dis-
tributions which are not directly conditional probabilities as given by Proposition 1.1.19.

Lemma 1.1.20 (Uniform density on the graph of p). Let p : R* — [0, 400) be a probability
density. Let
D= {(z,y) € R! x [0,400) : 0 < y < p(2)}

be the graph of p.
(i) D has (d + 1)-dimensional Lebesgue measure 1.
(ii) If (X,Y) is distributed according to the uniform density on D, then X has density p.

Proof. The (d + 1)-dimensional Lebesgue measure of D is

+o0
|D| = / / 1iy<p(e)dydr = / p(z)dz = 1.
z€R? Jy=0 r€ER?

If (X,Y") is uniformly distributed in D, the marginal density of X is

—+o0
/ Liy<p)ydy = p(z). O
Y

As a consequence of Lemma 1.1.20, to draw X € R¢ with density p, it suffices to draw (X, Y")
uniformly in D. This is where the method described in the previous Subsection becomes relevant:
if one is able to find R € R%! such that D C R and one may draw uniform samples (X,,, Y, )n>1
in R, then letting N := inf{n > 1: (X,,Y,) € R} one deduces that Xy has density p. In this
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perspective, let us assume that there exists f : RY — [0, 400) such that p(x) < f(z) for all
z € R, so that
D C R:={(z,y) € R x [0,+00) : 0 < y < f()},

and that:
(i) |R| = [,cpa f(z)dz < +o00;
(ii) one is able to draw random variables with density ¢(x) = f(x)/|R].
The next Lemma shows how to draw samples (X,,, Y},),>1 which are uniformly distributed in R.

Lemma 1.1.21 (Uniform density on the graph of f). Let ¢ : R — [0, +00) be the probability
density defined by q(x) = f(x)/|R|. Let X with density q and U ~ U]0, 1] be independent from
X. Then the pair (X,U f(X)) is uniformly distributed in R.

Proof. For any measurable and bounded function ¢ : R*! — R, we have

1
Elg(X,Uf(X))] = / » / gl uf(@)aa)dadu

Replacing ¢(z) with f(z)/|R| and then setting y = uf(z) we get

f(=z) 1
By USCO) = [ [ glany) o,
zcR4 Jy=0 |R|
which shows that (X, U f(X)) has density \_}ﬂ]l{ogygf(x)}- O

The overall rejection procedure is summarised in the next statement, where we write k = |R|.

Theorem 1.1.22 (Rejection sampling). Let p : R? — [0, +00) be a probability density. Assume
that there exist a probability density q : R¢ — [0,+00) and k > 1 such that, dx-almost every-
where, p(r) < kq(z). Let (X,)n>1 be a sequence of independent random variables in R? with
density g, and (Up)p, >1 be a sequence of independent random variables uniformly distributed in
[0,1], independent from (X, )p>1. Let N := inf{n > 1: kq(X,,)U,, < p(X,,)}.

(i) N ~ Geo(1/k).
(ii) Xn has density p.

(iii) N and Xy are independent.

Proof. Let f(x) = kq(z),and R = {(z,y) € R¢x [0, +00) : 0 < y < f(x)}. By Lemma 1.1.21,
the pairs (X,,, Uy f(X,,)) are independent and uniformly distributed on R: moreover, N rewrites
as inf{n > 1: (X,,U,f(X,)) € D}, where D = {(x,y) € R? x [0,400) : 0 < y < p(x)}.
Therefore, by Proposition 1.1.19, we have: N is a geometric random variable with parameter
|D|/|R| = 1/k; (Xn,Unf(Xn)) is uniformly distributed on D — which by Lemma 1.1.20
implies that X has density p; N and (X, Un f(Xn)) are independent. O

Remark 1.1.23. Theorem 1.1.22 can easily be generalised to the case where one wants to draw
X from a probability measure P on some abstract space E, and has access to samples under
Q > P, with % < k, Q-almost everywhere. Then the statement of Theorem 1.1.22 remains in

force, with N defined as the first index for which kU,, < % (Xn).

Rejection sampling is useful when one is not able to sample directly from p, but can find ¢
such that p < kq and sampling from ¢ is easier. Clearly, the smaller k, the faster the algorithm,
therefore from a computational point of view it is of interest to take g as a ‘good approximation’
of p.
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The Ziggurat algorithm

Let p : [0,+00) — [0,+00) be a continuous probability density, which is assumed to be nonin-
creasing on [0, +00). The typical example that we have in mind is

p(z) = \/gexp <—%2> . (1.1)

Exercise 1.1.24. Let X have density p given by (1.1), and € be independent from X and such that
P(e = —1) =P(e = 1) = 1/2. Show that eX is a standard Gaussian variable.

The basis of the Ziggurat algorithm® consists in covering the graph of f with a number L of
horizontal layers defined as follows.

1. Fix 1 > 0, set y; = p(x1), and define the layer 0 as
([0, 1] x [0,y1]) U{(z,y) € [0,400) x [0,4+00) : & > z1,y < p(z)}.

Denote by
+o0o
A= 111 —I—/ p(x)dz
r=x1

the area of the layer 0.

2. On top of the layer 0, add a rectangular layer of width z and height A /x4, so it also has
area A. The top of this layer is at height yo = y1 + A/x1, and intersects the density function
at a point (x2, y2), where yo = p(x2).

3. Further rectangular layers of area A are then stacked on top, until y7, < p(0) in which case
we set 7, = 0.

We obtain a covering of the graph of p with L layers of equal area A, see Figure 1.1. This
covering is the graph R of a function f : [0, 400) — [0, 4+00) which is such that

Fa) = {yk it € [op, 7). £ € {2,000 L),
p(x) ifz >,

and
+o0
IR :/ F(z)dz = LA,
=0
Following Proposition 1.1.19 and Lemma 1.1.20, the goal is now to draw pairs (X,Y") uni-
formly distributed on R, and to return X if Y < p(X). However, the Ziggurat algorithm uses
a different approach from Lemma 1.1.21 to draw such pairs: first, it picks one of the layers uni-
formly at random; then, it draws (X, Y") uniformly in this layer. Since all layers have the same
area, this indeed returns a pair (X, Y") which is uniformly distributed on R. Moreover, if the cho-
sen layer has index k € {1,...,L — 1}, then it is a rectangle, so drawing (X, Y") uniformly in the
layer is easy:

e first, draw X uniformly in [0, z];

®Presented for instance in Marsaglia, G. and Tsang, W. W. The Ziggurat Method for Generating Random Variables,
Journal of Statistical Software (2000).
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Figure 1.1: Construction of the layers, starting from 1 = 2 on the left-hand picture (then L = 5),
and from x; = 3 on the right-hand picture (then L = 36).

e if X < xpyq then whatever the draw of Y it will always satisfy the condition that ¥ <
p(X), so return X;

e if X > x4 then draw Y uniformly in [yg, yx+1] and return X if Y < p(X), otherwise
restart with a new layer.

If the chosen layer is 0, then the algorithm needs to have a fallback procedure, which is able to
generate samples from the density 1,~,1p(z)/ f;,r:;“ p(z")dz’. Then it works as follows:

* setxg = A/y1 > x1 and draw X uniformly on [0, z¢];
e if X < x7 then return X;
* if X > x; then draw X’ according to the fallback procedure and return X
Exercise 1.1.25. Check that this algorithm indeed returns a random variable X with density p.

Exercise 1.1.26. Show that, to sample from the density p given by (1.1), a possible fallback pro-
cedure is to draw Ty ~ E(z1) and Ty ~ E(1) independent, and return X' = T} + x1 if 2Ty > T3,
otherwise restart.

The reason why this algorithm is efficient is that, except for the fallback procedure, it does
not require the evaluation of complicated functions, such as sine or cosine, which may be costly.
Moreover, if the number of layers is large enough, samples are almost never drawn in the layer
0, and almost often land in the interval [0, x4 1] of the layer k, so they are rarely rejected and
drawing one sample only costs the draw of the random index of the layer k&, and of the uniform
variable X € [0, zy].

1.2 Random vector simulation

In this Section, we consider the issue of simulating random vectors, that is to say random variables
with values in RY. For any p > 1, we denote by LP(PP; R?) the set of random vectors whose
coordinates are random variables in LP(P). If X = (X1,...,X,) € LY(P;R%), we denote by
E[X] the d-dimensional vector (E[X1],...,E[Xy]). If X = (X1,...,X,) € L%P;R%), we
denote by Cov[X] the d x d matrix with coefficients Cov(X;, X;) = E[(X; — E[X;])(X; —
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E[X;])] = E[X;X;] — E[X;]E[X}]. It is called the covariance matrix of X, it is symmetric, and
by Exercise 1.2.1 below, it is nonnegative.

Exercise 1.2.1. Let X € L2(P;R?) with covariance matrix K.
1. Show that, for any u € R%, Var((u, X)) = (u, Ku).
2. Show that, for any b € R¥, A € R**? Cov[b+ AX] = AKAT.

1.2.1 Gaussian vectors

We recall that the characteristic function U x : R* — C of a random vector X € R? is defined by
Yu € RY, Ux(u)=E [eiw’Xq = [ [cos((u, X))] + iE [sin((u, X))] .

Two random vectors have the same law if and only if their characteristic functions coincide.

Proposition 1.2.2 (Characteristic function of Gaussian variables). Let X ~ N (i, 0'2). Then, for
any u € R,

o2
Ux(u) = exp <i,uu - 7u2> .

The proof of Proposition 1.2.2 is postponed to Exercise 1.3.9.

Definition 1.2.3 (Gaussian vector). A random vector X € R% is Gaussian if, for any u € R?, there
exist 1 € R and 0® > 0 such that (u, X) ~ N (i1, 02).

Let X € L2(P;R%). Set m = E[X] € R? and K = Cov[X] € R™. For any u € RY, it is
immediate that E[(u, X')] = (u,m), and by Exercise 1.2.1, Var((u, X)) = (u, Ku). Therefore, if
X is Gaussian, then necessarily, (u, X) ~ N ({u, m), (u, Ku)), and thus by Proposition 1.2.2,

Ux(u)=E [ei<“’X>] = exp <i(u,m> — %(u, Ku>> .

We deduce the following statement.

Proposition 1.2.4 (Characteristic function of Gaussian vectors). The random vector X is Gaus-
sian if and only if there exist m € R® and K € R**% such that, for any u € R,

W (1) = exp <i<u,m> - %(u,Ku>> .

In this case, we have m = E[X] and K = Cov[X], and we denote by Ny(m, K) the law of X.

We now address the question of how to simulate a random vector drawn from the Gaussian
measure Ny(m, K) for some given m € R? and K € R%*9, To proceed, we first remark that the
Box—Muller method described in Proposition 1.1.17 allows to simulate independent realisations
G1,...,Gy of the standard Gaussian distribution. We next recall that, by the Spectral Theorem,
for any symmetric nonnegative matrix X € R%*?, there exists Ay, ..., Aq > 0 and an orthonormal
basis (e1, ..., eq) of R% such that for any i, Ke; = \e;.

Proposition 1.2.5 (Simulation of Gaussian vectors). Let m € R? and K € R4 be a sym-
metric and nonnegative matrix, with associated eigenvalues \1,...,\q > 0 and eigenvectors
(e1,...,eq). Let Gy, ...,Gq be independent standard Gaussian variables. Then

d
X=m+ ZGZ-\/)\_Z-GZ- ~ Ng(m, K).

i=1
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Proof. For any u € RY,
d
(u, X) = (u,m) + ZG“/ Ai(u, e;)
i=1

is a sum of independent Gaussian variables, therefore by Exercise 1.3.9, it is a Gaussian vari-
able. Hence, X is a Gaussian vector. Besides, it is immediate that E[(u, X)] = (u,m), and by
independence,

d
Var((u, X)) =Y Mifu, e:)* = (u, Ku),
i=1

which shows that E[X] = m and Cov[X] = K. O

Proposition 1.2.5 has the practical interest to show that, up to diagonalising the covariance
matrix, it is possible to sample from the Gaussian measure Ny(m, K) as soon as independent
standard Gaussian random variables are available. It may also be useful for theoretical purposes,
as in the next exercise.

Exercise 1.2.6. Show that, if K is invertible, X ~ Ny(m, K) has density

1 (x —m, K Yz —m))
enidet(k) Y <_ 2 >

with respect to the Lebesgue measure on R%. If K is not invertible, can you find a similar density
with respect to another measure?

1.2.2 Copulas

Let X = (Xy,...,Xy) € R?. In general, the collection of the marginal laws of X1, ..., X, does
not characterise the joint law of the vector, and a supplementary information is needed to describe
how these variables depend on each other. For Gaussian vectors, this information is contained
in the covariance matrix. Beyond the case of Gaussian vectors, the notion of copula allows to
characterise the dependency between the coordinates of a random vector.

Definition 1.2.7 (Copula). A function C' : [0,1]* — [0,1] is called a copula if there exists a
random vector (Uy, ..., Uy) € [0,1]% such that:

(i) foranyi e {1,...,d}, Uy ~U[0,1];

(ii) forany (ui,...,uq) € [0,1]%, C(uy,...,uq) = P(U; < uy,..., Uy < ug).
As a consequence of Definition 1.2.7, a copula has the following properties:
* it is nondecreasing in each coordinate;
o forany uy, ..., ui—1,Uit1,...,uqg C(u1,. .., ui—1,0,Uit1,...,uq) = 0;
o forany u;, C(1,...,1,u;,1,...,1) = u,.
Some elementary examples of copulas are given by the independent copula

C(uy...,ug) =uy -+ ug,
and the comonotonic copula

C(u1,...,ug) = min(uq, ..., uq).
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Exercise 1.2.8. Describe the law of the random vectors (Uy, . .., Uy) respectively associated with
the independent and comonotonic copulas.

The main result about copulas is the following statement, in which we generalise Defini-
tion 1.1.6 to random vectors by letting F'x (x1,...,24) = P(X1 < 21,..., X4 < z4). It remains
true that the CDF of X characterises its law.

Theorem 1.2.9 (Sklar’s Theorem’). Let X = (X1,...,Xy) € R? be a random vector with CDF

Fx.
(i) There exists a copula C'x such that for any (x1,...,x4) € R,
Fx(z1,...,2q) = Cx (Fx, (x1),...,Fx,(xq)) .
(ii) If the marginal CDFs Fx,, ..., Fx, are continuous, then the copula is unique and given by,

for any (u1, ..., uq) € [0,1]4,
_ -1 ~1
Cx(ul,...,ud) = FX (FX1 (ul),...,FXd(xd)) .

The copula of a random vector therefore allows to isolate the dependency structure of its
components, apart from their marginal distributions.

Exercise 1.2.10 (The Gaussian copula). Let X ~ Ny(m, K) and R the associated correlation
matrix, with coefficients

Rij = p(X;, X;) := K;iKj;
0 otherwise.

if KiiKj; >0,

Show that the copula of X is given by
CX(ula s ,’LLd) = Qg (q>_1(u1)7 s 7(1)_1(ud)) )

where ® is the CDF of the standard Gaussian distribution on R, and ® g is the CDF of the Gaus-
sian measure Ny(0, R).

Given the system of marginal distributions and the copula of a random vector X, we now ask
how to generate samples of X. This is done with the following two-step procedure.

Lemma 1.2.11 (Sampling vectors with given marginal distributions and copulas). Let C be a
copula and F, ..., Fy be CDFs on R. Consider the following algorithm:

1. Generate (Uy,...,Uy) with CDF C.
2. Return X = (F{H(Uy),..., Fy 1 (Uy)).

The vector X has copula C' and each component X; has CDF F;.

Sklar, A. Fonctions de répartition 2 n dimensions et leurs marges, Publications de I’Institut de Statistiques de
[’Université de Paris (1959).
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The proof of Lemma 1.2.11 is straightforward. We now focus on the first step, namely: given
a copula C, how to sample (Uy,...,Uy) € [0,1]¢ with CDF C? To proceed, we assume that
(Uy,...,Uq) has adensity c(uq, ..., uq), related with C' by the identity

d
For any k € {1,...,d}, the marginal density of (U1, ..., Uy) is given by
1 1
ck(ul,...,uk):/ / c(Upy oy Uy Vgt 1y - - -5 Vg)dUg - - - Vg1
Vp41=0 vg=0
okC

= 1,...,1
8’LL1"'6U]§(U1, , Uk, L, 7)7

and, for k € {1,...,d — 1}, it satisfies the identity

1
cr(ug, ... ug) = / Chr1 (UL, ooy Uk, Vg1 ) AUk 41.-
Uk+1:0
As a consequence, for any (u1, . ..,uy) € [0, 1], the function Fj 1 (-|u1,...,uy) defined by
Uk+1
/ 1 (Ut - oo s Uk, Vg1 )0k 41
41=0
Vuprr €[0,1],  Frga (|, . ug) = =5
/ 1 (Ut - oo s Uk Vg1 )0k 41
’l)k+1:0

is a CDF, which can be interpreted as the conditional CDF of Uy given (Uy, ..., Uk)g.
We now consider the following algorithm:

1. draw Uy ~ U[0, 1];

2. fork =1,...,d—1,draw U;_ ; ~ U[0, 1] independently from (U1, ..., U) and set U 41 =
F LU U Ur).

Proposition 1.2.12 (Sampling from a copula). The vector (Uy,...,Uy) € [0,1]? generated by the
algorithm above has CDF C.

Proof. For k € {1,...,d}, we set Cy(uq,...,ur) = C(uy,...,ug,1,...,1), and show by in-
duction on k that C}, is the CDF of (Uy, ..., Uy) constructed by the algorithm above. For k = 1
this is straightforward since C7(u;) = w; by the basic properties of copulas. Let us now fix
k € {1,...,d — 1} such that (Uy,...,Uy) has CDF C}, and therefore density cg(uq,...,ug),
and compute the CDF of (Uy,...,Uyy1). Since Ugyq1 = F];_ll(U,’CH]Ul, oy Ug), with U ~

U[0, 1] independent from (Uy, ..., Uy), we may write
P(Uy <wuy,... U < ug, Uy < upgyr)
F-l
=P(Ur <ur,..., Up < g, F (U U - Uk) < uggn)
=P(U1 <uy,..., Up < up, Upyy < Frga(upqa|Un, ..., Ug))
/

= / . ]]-{v1 Sul,...,vkguk,vl’c+lSFk+1(uk+1\Ul,...,vk)}ck(vl7 cee 7vk)dvl T dvkdvk+1

vly 7vk7vk+1 0 1} +
= j[ ﬂ{vlgulvkaguk}Fk+1(uk+4jvl,...,vk)ck(vl,...,vk)dvl-"dvk.

Vlyeeey )E[O 1]k

8because its derivative cx (u1, . . ., ur)/cri1(u1, . . ., uxt1) is the conditional density of Uy given (Un, ..., Us).
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By the definition of Fj 1, we have

Uk+41
Fp1(upgrlvr, - op)e (v, - oo vp) 2/ Cht1 (V15 - -+ s Uk, Vg1 )dVR 41,
Vg 4+1=0
which yields
P(Uy < uy,...,Up < up, Upyq < upg)
= / 1{U1SU17~~~7kauk7vk+1Suk+1}ck+l(Ul’ sy Vkg1)dor - dug
(v1,...,vk,vk+1)€[0,1}k+1
= Cry1(ut, .., upy1),
and completes the proof. ]

1.3 Complements

1.3.1 Exercises

Exercise 1.3.1 (Inverse CDF for standard densities). Apply the inverse CDF method to the follow-
ing standard probability densities.

1. The Pareto distribution with parameter o > 0, with density ]l{x>1}oz:n_(°‘+l).
2. The Cauchy distribution with parameter a > 0, with density %ﬁ
3. The Weibull distribution with parameter m > 0, with density 1 {x>0}mxm_1 exp(—z™).
4. The Rayleigh distribution with parameter o > 0, with density Tipsoyoz exp(—%).
Exercise 1.3.2 (Geometric distribution with a single U). Let X ~ E(\).

1. What is the law of [X]?°

2. Deduce an algorithm which returns a Geo(p) random variable with a single uniform random
variable U.

Exercise 1.3.3 (Poisson distribution). A random variable N € N is distributed according to the
Poisson distribution with parameter A > 0 if, for any k € N,

Ak
_ o =A
P(N =k)=e R

We denote N ~ P(\).

1. Let (X;)i>1 be a sequence of independent exponential random variables with parameter \.
Show that inf{n > 0: X; +--- + X,,41 > 1} ~ P(N).

2. Deduce an algorithm to draw a random variable N ~ P(\) using a sequence (U;)i>1 of
independent uniform variables on |0, 1].

Exercise 1.3.4 (Inverse of the inverse CDF). Show that if the CDF Fx of X is continuous, then
Fx(X) ~U[0,1]. What happens if F is discontinuous?

°For any = € R, [z] denotes the unique integer such that [z] — 1 < = < [z].
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Exercise 1.3.5 (Unbiasing a coin toss'?). Assume that you have a random number generator which
returns independent Bernoulli variables with an unknown parameter p € (0,1). How to use it to
draw a Bernoulli random variable with parameter 1/2?
Exercise 1.3.6 (The Marsaglia polar method'"). Let (U, V,,)n>1 be a sequence of iid random
pairs such that for any n > 1, U, and V,, are independent and uniformly distributed on [—1,1].
For any n > 1, we define S,, = U2 + V.2 and set N = inf{n > 1: S, < 1}.

1. What is the joint law of (N, (Un, Vn))?

2. Compute the law of the random pair (X,Y) defined by

31 31
X = UNMSOif[SNa Y:VN,/SOiiSN.

Exercise 1.3.7 (Gamma distribution). The Gamma distribution with (shape) parameter a > 0 is
the probability measure on R with density

1 a—1_—z
p(x):]l{mo}mw le™?,

where I is Euler’s function
+oo

[(a) := / % e dx.

=0

We assume that a > 1 and want to implement the rejection sampling method with q the density of
the exponential distribution with parameter \.

1. Which value of )\ should we take?

2. What will be the resulting value of k?
Exercise 1.3.8. Implement both the Box—Muller method and the Ziggurat algorithm to generate
large samples of independent standard Gaussian variables, and compare their efficiency in terms
of computational time.
Exercise 1.3.9 (Characteristic function of Gaussian random variables). Let G ~ N (0, 1).

1. Show that ¥ is C' on R, and that for all u € R, Vi, (u) + u¥ g (u) = 0.

2. Deduce that Vg(u) = exp(—u?/2).

3. If X ~ N (p,0?), what is the expression of W x (u)?

4. Let X ~ N(u,02) and Y ~ N (v,7?) be independent. Compute the law of X + Y.

10This exercise is attributed to Von Neumann.
"'This method was introduced in Marsaglia, G. and Bray, T. A. (1964). A Convenient Method for Generating Normal
Variables. STAM Review.
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1.3.2 Further comments

Beyond the fact that they are limited by their small period, linear congruential generators also suf-
fer from other issues: you can check https://en.wikipedia.org/wiki/Linear_congruential _generator
for further explanations.

A natural, slightly metaphysical question, is the following: given a probability measure P on
some measurable space (F, &), can we always construct a random variable X with distribution
P? The answer depends on the choice of the underlying probability space (£2,.4,P). Of course,
by taking (2, 4,P) = (E, &, P), the canonical variable X (w) = w has law P. So, given P on
(E,E), one may always find a probability space on which it is possible to construct a random
variable with distribution P. However, if the probability space (2, .4,P) is given in advance, it
may not be possible to construct such a random variable: for instance, if €2 is a finite set, then it
is not possible to construct a random variable X € R with a density. The overall idea is therefore
that {2 must be “large enough”. In this perspective, the Fundamental Principle of Simulation [4,
Section 1.2] states that, as soon as E is a Polish space!?, then one may take 2 = [0, 1] endowed
with the Borel o-field and the Lebesgue measure. Indeed, on this space, for any probability mea-
sure P, there exists a random variable X defined on this space with law P. It even holds that given
a sequence of probability measures (P,),>1, such that each P, is a probability measure on some
Polish space E,, there exists a sequence of independent random variables (X, ),>1 defined on
such that each X, has law P,.

The notion of Gaussian vector introduced in Subsection 1.2.1 can be generalised to infinite-
dimensional spaces, typically Hilbert or Banach spaces. This may be useful to model random
fields for example. In this context, the simulation method presented in Proposition 1.2.5 can be
extended, under the assumption that the covariance operator has good spectral properties. It is
called the Karhunen—Loéve expansion.

Zthat is to say that E a topological space which is separable and whose topology is induced by a distance which
makes it complete, and £ is the Borel o-field induced by this topology.


https://en.wikipedia.org/wiki/Linear_congruential_generator

22

Random variable simulation




Lecture 2

The Monte Carlo method

2.1 The Monte Carlo method

The goal of the Monte Carlo method is to numerically approximate an integral which writes under

the form
J:= / f(z)P(dx), (2.1)
zelk

where (E, £) is a measurable space, P is a probability measure on F and f € L!(P).

2.1.1 Deterministic approach

Assume for simplicity that £ = [0,1]? and that P(dz) = du is the uniform distribution. Then

(d
fixing N > 1 and setting 2 = (k1 /N, ..., kq/N) for k = (ki,...,kq) € {0,...,N — 1}%, the
basic deterministic approximation of J is given by

1
In = WZf(x,;)
s

obtained by replacing f with the piecewise constant function which takes the value f(x ) on the
cell Ci := [k /N, (ky + 1)/N) x --- x [ka/N, (ka + 1)/N).

The precision of this approxirnation is given by the fact that, if you assume that f is Lipschitz
continuous, then

19— x| = Z/ ))dz <Z/ (x,;)mxg%.

As a consequence, to reach a precision € ~ 1/N, one needs to evaluate f at N¢ ~ (1/¢)¢ points.
This quantity grows exponentially in d: this is the curse of dimensionality.

2.1.2 Stochastic approach

The formulation (2.1) of J allows us to rewrite it under the form

J=E[f(X)],



24 The Monte Carlo method

where X is a random variable in E with law P. Then, if (X,,),>1 is a sequence of iid random
variables with common distribution P, the (strong) Law of Large Numbers ensures that

T= S0 (X
1=1

converges almost surely to J. The precision of the approximation of J by fl\n is measured by the
Central Limit Theorem, which ensures that if 02 := Var(f(X)) < +oc, then
Vn

lim
n—+oo o

(in - J) — N(0,1), in distribution.

This result ensures in particular that, given o € (0,1/2) and denoting by ¢;_, /2 the quantile of
order 1 — /2 of N'(0, 1) (see Figure 2.1), the interval

o
NLD
contains J with probability converging to 1 — o« when n — +o00. Therefore, to reach a precision

€ ~ o/y/n, one needs to evaluate f at n ~ o2 /€2 points, which only depends on the underlying
dimension of E through the prefactor o2. So this method avoids the curse of dimensionality.

g

|:§n — P1_a/2 o+ ¢1—a/2% (2.2)

L—a | ¢1_qp
90% 1.65
95% 1.96
99% 2.58

¢o¢/2 = 7¢17(x/2 ¢17a/2

Figure 2.1: Quantiles of the standard Gaussian distribution. The hatched area on the figure is equal
tol— a.

2.1.3 Confidence intervals

In general, o2 is not known either, so the interval (2.2) cannot be actually computed.

Asymptotic approach

If n is large, 02 may however be estimated by the empirical variance of the sample

n

7= 13 (Fx0 - 7))

1=1

whose computation does not require new samples from X nor new evaluation of the function f.
By Slutsky’s Lemma,

lim Y (in - J) = N(0,1), in distribution,

n—-+oo On
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and therefore the interval

~ ~
On

In — ¢1—a/2%7 In + ¢1—a/2%

also contains J with probability converging to 1 — o« when n — 4-00; it is called an asymptotic
confidence interval.

Nonasymptotic approach

If n is not large enough for the asymptotic result above to hold, the Bienaymé—Chebychev inequal-
ity yields, for any r > 0,
B

Assuming that an upper-bound M,2 is available on o

the interval
~ [M 2 ~ | M
[jn - —027 jn + o ]
no no

contains J with probability at least 1 —a: this interval is called an approximate confidence interval.
This procedure requires to be able to derive upper bounds on the variance of f(X7). This is
for example possible when f is bounded.

o2

. 1 .
T — J‘ >r) < 5 Var(l,) = .

nr2

2 as in Lemma 2.1.1 below, we deduce that

Lemma 2.1.1 (Universal bound on the variance). Assume that f(z) € [a,b] for any x € E, with
—o0o < a<b< +oo. Then
(b—a)

T

Proof. The statement is obvious if a = b, otherwise we let U = f(X)/(b — a) € [0,1]. We have
U? < U and therefore

o? = Var(f(X)) <

1
Var(U) = E[U?] —E[U]? <E[U] -E[U? < sup u—u®= T
u€(0,1]
and we complete the proof by noting that Var(f(X)) = (b — a)? Var(U). O

The whole game of approximate confidence intervals is to find bounds as sharp as possible,
because taking larger and larger confidence intervals increases the probability of J to belong to
the interval, but makes the estimation less precise. In an extreme and caricatural case, R is an
interval which contains J with probability 1, so larger than any 1 — «, but this is not informative
on the value of J at all. In this perspective, when f is bounded, the Hoeffding inequality' provides
sharper confidence intervals (as a function of «) as the Bienaymé—Chebychev inequality.

Proposition 2.1.2 (Hoeftding inequality). Under the assumptions of Lemma 2.1.1, we have, for

anyr > 0andn > 1,
~ 2 2
]P’(ﬂn—ﬂ‘ 27“) §2exp<—L>.

(b—a)?
The proof of Proposition 2.1.2 is detailed in Exercise 2.3.1.

"Hoeffding, W. Probability inequalities for sums of bounded random variables, Journal of the American Statistical
Association (1963).
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2.2 Variance reduction

As is discussed in the previous Section, the precision of the Monte Carlo method essentially de-
pends on the ratio o/1/n. There are two typical situations in which this ratio may be large:

e sampling from X, or evaluating f at the sample X, may be costly, so the computational
budget n may be limited;

* the standard deviation o of f(X) may be large with respect to the expectation J of f(X), so
the size of the sample n required to have a good approximation o //n < |J| may be huge.

An instance of the second situation is the rare event setting: assume that f(z) = 14,4y for some
subset A such that ] = P(X € A) < 1: we are trying to estimate the probability of a rare event,
which we prefer to denote by p rather than J. Then o2 = Var(lyxcay) = p(1 —p) = p, so
to reach a relative precision §, that is to say to have o /y/n of order dp, one needs n ~ 1/(pd?)
samples. If the probability that we aim to estimate is p = 10~ then, for a relative precision & of
1%, this means that the sample must be of size n = 10,

Exercise 2.2.1. In the rare event setting, what is the expected number of samples that you have to
draw before observing a single realisation of the rare event?

This discussion shows that there is an interest in reducing the variance 2. In this Section, we
present two approaches to this issue: the control variate method and importance sampling, which
are respectively adapted to the first and second situations described above. In Subsection 2.3.1,
two other methods are studied: the use of antithetic variables and stratified sampling, which are
more concerned with the sampling of X. Last, the splitting algorithm for the estimation of the
probability of rare events is studied in Problem 1.

2.2.1 Control variate

In this Subsection, we assume that in addition to X1, ..., X,,, we are able to sample iid random
variables Y7, ..., Y, whose common expectation E[Y] is known analytically. Then, for all 5 € R,

J=E[f(X)] = E[f(X) - Y] + BE[Y],

which suggests to approximate J by the estimator

n

TV = S (F(X) — BV + B[V,
=1

The variance of this estimator is (0<V+#)? /n, where
(6P = Var(f(X) — BY) = 02 — 26 Cov(f(X),Y) + 52 Var(Y).

We may already remark that if Cov(f(X),Y) = 0 then (¢“V#)? is always larger than the vari-
ance o2 associated with the original Monte Carlo estimator: for the control variate method to be

efficient, it is thus necessary that f(X) and Y be correlated. The choice of /3 for which (o<V:#)?

is minimal is then
. Cov(f(X),Y)
pr= 2l
Var(Y)

which yields the variance
(UCV,B )2 _ 2 (1 _ pz) 7
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where

COV(f (X),Y)
V/Var(f (X)) Var(Y)

is the correlation coefficient between f(X) and Y. As a consequence, the more f(X) and YV
are correlated, the better the variance reduction. Typically, one may choose Y of the form g(X),
where the function g is close to f in regions where X has a high probability to take its values,
while being ‘simpler’ than f, in the sense that E[g(X)] is easier to compute than E[f(X)] — see
Exercise 2.3.4 for an illustration.

In practice, the optimal choice of 3 depends on the quantity Cov(f(X),Y’) which may need
to be estimated. Let us introduce

p= S [—1,1]

i=1
The strong Law of Large Numbers shows that
- C
Bri=
Var(Y)

converges to 5* almost surely, and Slutsky’s Lemma then yields the following result.

Proposition 2.2.2 (Control variate method). Let (X;,Y;)1<i<n be a sequence of iid pairs such
that f(X;),Y; € L2(P). Foralln > 1, let

with 3; defined above. The interval

=CV)2 5CV)2
ng—fﬁl—ap @) ACV+¢1a (2) )

where

is an asymptotic confidence interval.

The control variate method is typically suited for cases where the evaluation of f is costly:
it may represent a high-precision numerical code. If a low-precision code g, sometimes called
surrogate model, is available, then using g(X) as a control variate generally provides a good
variance reduction, while E[g(X)] can be estimated by direct Monte Carlo approach with a much
larger sample size than the original one.

2.2.2 Importance sampling

Importance sampling is based on the remark that, for any probability measure () on E such that

P<Q,
J—/ f(x)dP(x / f(@)w(z)dQ(z),
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where the function w is simply the density

dP
w(z) = @(95)
As a consequence, the quantity
n
qs._ 1
J) = == fy;
=1
where Y71,...,Y, are iid with law (), converges almost surely to J. In fact, the existence of the
density w(x) is only necessary when f(x) # 0, so the actual condition on @ is that
Ly p(a)20p AP (2) < Lgp(a)20ydQ(), (2.3)

and we still denote by w the associated density.

Exercise 2.2.3. Show that if P < Q, then Q satisfies (2.3), but that the converse does not hold
true in general.

The whole game of importance sampling then consists in choosing () in order to make the
asymptotic variance

(06)% = Var(f(Y)w(Y))
as small as possible.

Proposition 2.2.4 (Optimal choice of Q). LetJ = E[|f(X)
and define the probability measure (Q* by

|, assume that this quantity is positive,

dQ"(x) =

2 _ 92,

(i) Q" satisfies (2.3) and (053.)* =7
(ii) For any probability measure Q which also satisfies (2.3), (05.)* < (03).
(iii) If f has constant sign P-almost everywhere, then (O'Q*) =0.

Proof. As a preliminary remark, we note that for any () satisfying (2.3),
(@572 =E|[(f0wM)P]| -7, ¥~Q. (2.4)
First, it is easily checked that 1 ¢ ()01 d P () has density
J
W) = Lsa20) TFeT

with respect to 1y ¢(;)20ydQ* (), therefore Q* satisfies (2.3) and besides, if Y* ~ Q*, then
2

B[00 0] = [ tgelf@ () 4@@)

-9 "
=J / L f(@)20pdQ" ()
el
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which, together with (2.4), proves (i). The point (iii) then immediately follows.
_Second, let us fix () which satisfies (2.3) and denote by w the associated density. By definition
of J and w, and the Cauchy—Schwarz inequality,

32=<LgJﬂmmﬁ@#mw%m)2
= < /m . If(w)Iw(w)ﬂ{ﬂw)s«éO}dQ(fﬂ))2

< [ @PePt e
S
=E |(f(V)u(V)?],
with Y ~ @). Combined with (2.4), this estimate completes the proof of (ii). ]

In practice it is impossible to implement the method with the optimal measure QQ* since the
latter depends explicitly on the quantity J, which is likely to be unknown — and, in the case where
f is nonnegative P-almost everywhere, is exactly the quantity J which we aim to estimate. Still,
this lemma suggests that a ‘good’ choice of () would be one which has a large mass under the
measure |f(z)|dP(z).

Importance sampling is particularly adapted for the estimation of rare event probabilities, an
example of application is proposed in Exercise 2.3.5. In this context, the theory of Large Devia-
tions is a good tool to study the efficiency of the method: this is presented in Problem 2.

2.3 Complements

2.3.1 Exercises

Exercise 2.3.1 (The Hoeffding inequality). Throughout the exercise, we let Y1, . ..,Y, be iid ran-
dom variables which take their values in [0,1]. We set Z; = Y; — E[Y;] and, for any X > 0,
define

F(X\) =logE [exp(\Zy)].

1. Show that F'(\) = E\[Z1] and F"(\) = Var)(Z) for some probability measure Py to be
defined.

2. Deduce that, for any A > 0, Elexp(AZ1)] < exp(A?/8).

3. Deduce that, for any r > 0 and n > 1,

P <§n: Z; > m/ﬁ) < exp (% - /\r\/ﬁ> )

1=1

4. Optimising in A > 0, conclude that

P (Z(YZ —EY}]) > T\/ﬁ> < exp(—2r?),

i=1

5. Complete the proof of Proposition 2.1.2.
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6. Under the assumptions of Proposition 2.1.2, compute an approximate confidence interval
for J based on the Hoeffding inequality, and compare the width of this interval with the with
of the approximate confidence interval given by the Bienaymé—Chebychev inequality.

Exercise 2.3.2 (Antithetic variables). Ler f : [0, 1] — R be such that

1
/ f(u)?du < +oo.
u=0

We study a Monte Carlo method to approximate
1
J:= / f(u)du.
u=0

1
1. Let U ~ U]0,1]. Show that J = 3 (E[f (] +E[f(1-0U)]).
2. Let (Up)n>1 be a sequence of independent copies of U. Show that

B 1= 5o O (FU) + F(1 - )
=1

converges almost surely to J and compute Var(J3,).

3. Let

Ton =52 > F(U)

be the standard Monte Carlo estimator of J which requires the same number of evaluations
of the function f as 75, (but twice more random samples). Show that Var(J3,) < Var(Jz,)
if and only if Cov(f(U), f(1 =U)) <0.

4. Assume that f is monotonic. Show that

E[(f(U1) = f(U2))(f(1 =U1) — f(1 = U))] <O.
Deduce that in this case, Cov(f(U), f(1 =U)) < 0.
5. Conclude on the practical interest of the method.

Exercise 2.3.3 (Stratification). Let X be a random variable in R? with law P and f € L%(P).
Let

1= [ 1@)3P@) =Bl

We assume that there is a finite partition of R% into m measurable subsets (Ak)1<k<m, called
strates, such that for any k € {1,...,m}:

o p = P(A;) = P(X € Ay) is known (and positive);

s we know how to draw random samples (XF),>1 under the law P(-|A;) = P(X € |X €
Ap).
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For integers ny,...,ny > 1 such that ny + - - - + ny, = n, we set

m 1 ng
=Sl T= Y s,
k=1 1=1

where the samples (X})1<i<nys- -+, (X™)1<i<n,, are independent from each other. Last, we
define
he {L...omb, = E[f(XD)], of = Var(f(X})).

1. We first study generalities.

(a) Show that

m m m 2
Var(f(X)) =Y proi+ Y _ ok (Nk - me) .
k=1 k=1 =1
Give an interpretation of this formula.
(b) Compute E@L]
(c) How does fJ\S behave when min(nq, ..., Ny,) — +00?
i k
d) Show that Var(J3)
(d) Show that Var( Z -

k=1

2. We now fix n and look for the optimal allocation of (n1, ..., ny,).

(a) Show that, for any ny,...,Nm,

(Son) <n3 ik

k=1

(b) Deduce the optimal allocation (n3,...,n},) in terms of variance (without taking into
account the constraint that ny must be an integer).
(c) What do you think of the practical use of this optimal allocation?
3. We finally study the proportional allocation n; = npy, assuming for simplicity that npy, is
an integer.
(a) Show that in this case n Var(i%) < Var(f(X)). Interpret this result.
(b) State and prove a Central Limit Theorem for 52
(c) How to choose the strates to reduce the statistical error?

Exercise 2.3.4 (An application of the control variate method). Let X ~ N(0,1). Forall t > 0,

we define
1

fle) =1

and set
=K d
) == [ Gt
Let X1, ..., X, be independent N (0, 1) variables, and let Y; = 1 — t X 2.
1. Compute E[Y1].
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2. Compare numerically the variances of the Monte Carlo estimator J,, and of the control
variate estimator JSV.

3. How does this comparison vary with t? What is your interpretation of this fact?

Exercise 2.3.5 (Application of importance sampling). Let X ~ N(0,1), and I = P(X > 20).
Compute (numerically) the asymptotic variance of the importance sampling estimators of J ob-
tained by taking:

* g the density of 20 + Y, where Y ~ E(1);
* q the density of N'(20, 1).

Exercise 2.3.6 (Importance sampling for Bernoulli distributions). Let P be the Bernoulli distri-
bution with parameter p. Assume that you want to implement importance sampling to estimate p.
What is the optimal distribution Q) on {0,1}?

Exercise 2.3.7 (Importance sampling with and without normalisation). In the setting of Subsec-
tion 2.2.2, the importance sampling estimator

a5 LN rovyny
32 = 2 Fulr)

where Y1,...,Y, are iid under QQ and w(x) = %(m), rewrites as the integral of f under the

nonnegative measure
n

~ 1
PIS .= - > w(Y;)dy,.
=1

In general, this measure is not a probability measure, because its total mass % o w(Y;) may
be different from 1. One may therefore consider the normalised importance sampling estimator

S Fw(vi)
=1

> w(Y))

1=1

gNIS . _

which is the integral of f under the probability measure

ﬁNIS =1
n T

The goal of this exercise is to study the properties of this estimator. For simplicity, we assume that
f(z) # 0forany x € E.

1. Show that /jl\L“S converges to J, almost surely.

2. Using the Delta method, show that
: aNIs _ NIS\2
i (T =9) = N (0,0)
with
(09°)* = Var (w(¥)(f(Y) = 9)) .
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3. What is the optimal choice Q*N'S of Q which minimises (05'5)2, and what is the associated

value of (JgLs,le)2 ?

. . . . =2
4. We now want to compare (Ugfms)z with the optimal asymptotic variance 3~ — % of the
standard importance sampling estimator described in Proposition 2.2.4.

(a) What happens if f has constant sign, P-almost everywhere?

(b) Construct an exemple of distribution P and function f for which the normalised esti-
mator has a strictly smaller optimal asymptotic variance than the standard estimator.

2.3.2 Further comments

The deterministic approach described in Subsection 2.1.1 is very basic. There are many more
developed deterministic integration methods, see for instance [5, Chapter 9]. They however all
suffer from the curse of dimensionality.

Hoeffding’s inequality is a typical example of a concentration inequality, which is an impor-
tant research topic in probability and statistics.

The variance reduction methods described in Section 2.2 only focus on decreasing o. There
are however alternative approaches. One may design sampling schemes which generate sequences
(Xn)n>1 which are not iid, but more space-filling. This is the basis of Quasi-Monte Carlo meth-
ods. On the other hand, when the sample size is limited by the computational cost of the evaluation
of the function f, surrogate modelling techniques seek an approximate model fwhich is cheaper
to evaluate and therefore allows one to increase the sample size.

The development of Monte Carlo methods is closely linked to the rare event setting. A nice his-
torical review with bibliographical references is available here: https://perso.lpsm.paris/~aguyader/files/biblioEVT.pdf.
The book [1] also provides details on variance reduction methods, in particular in the rare event
setting.


https://perso.lpsm.paris/~aguyader/files/biblioEVT.pdf
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Convergence to equilibrium of Markov chains
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Asymptotic efficiency of importance sampling through large deviation theory
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