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Foreword

The central focus of this course is the Monte Carlo method. We first present its basic principle in
the context of independent and identically distributed samples, which requires reviewing methods
for simulating random variables, as well as limit theorems that allow us to quantify the accuracy
of this approach. In particular, several variance reduction techniques are introduced.

The goal of the second part of the course is to introduce the Markov Chain Monte Carlo
method. We present the notion of discrete-time Markov chains, followed by the main results con-
cerning long-time behaviour. We then describe several stochastic sampling algorithms (Metropolis–
Hastings and Gibbs).

The third part of the course is devoted to the connections between diffusion processes and
partial differential equations. After a brief review of stochastic calculus, we present in detail
the Feynman–Kac formula and discretisation methods for stochastic differential equations, which
make it possible to implement the Monte Carlo method to solve parabolic or elliptic partial dif-
ferential equations. The link with the Markov Chain Monte Carlo method is finally established
through the study of the long-time behavior of diffusion processes.

The reader is assumed to be familiar with basic measure theory, including Lebesgue integra-
tion, and basic probability theory: random variables and limit theorems. We refer to [2] or [3] for
comprehensive textbooks in this direction.

⋆ ⋆ ⋆

These lecture notes contain two parts: Part I contains the contents covered during the lectures,
complemented with exercises and further developments, while Part II contains problems which
are adapted from past exams.

In Part I, each Lecture should roughly correspond to one session of the course. Some of the
exercises will be discussed during the lectures, but definitely not all, so you should have enough
material to practice between the sessions. Some exercises contain a numerical part to implement
by yourself. There is no written correction for these exercises.

This document will be regularly updated during the trimester, on the course’s webpage1. Some
parts will not be seen in class, they will be marked with a star *, and they will not be examinable.

For any questions or comment, please send me an email at julien.reygner@enpc.fr.

1https://cermics.enpc.fr/~reygnerj/anedp.html

mailto:julien.reygner@enpc.fr
https://cermics.enpc.fr/~reygnerj/anedp.html
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Part I

Lectures and exercises





Lecture 1

Random variable simulation

The goal of this Lecture is to present algorithms for random variable generation: given a probabil-
ity distribution P on some measurable space (E, E), how to generate independent and identically
distributed variables X1, . . . ,Xn with law P ? This will be used already in Lecture 2 to compute
integrals with the Monte Carlo method.

Throughout this Lecture, we work on some probability space (Ω,A,P) and, for any p ∈
[1,+∞), we denote by L

p(P) the space of real-valued random variables X such that E[|X|p] <
+∞.

1.1 Random variable simulation

1.1.1 Uniform distribution and basic applications

Uniform random variables on [0, 1]

It is an obvious fact that a deterministic algorithm cannot generate a truly random sequence, as
was written by von Neumann: ‘Anyone who attempts to generate random numbers by determin-
istic means is, of course, living in a state of sin.’1. Hence, pseudo-random number generators

are deterministic algorithms which, starting from a seed x0, return a sequence x1, x2, . . . of num-
bers which exhibits the same statistical properties as a sequence of independent and identically

distributed random numbers.
Because of the finiteness of the memory of a computer, a pseudo-random number generator

is necessarily ultimately periodic, that is to say that there exists t ≥ 0, which may depend on x0,
such that for n large enough, xn+t = xn. In the sequel we call maximal period the largest value
of t over all possible values of x0. Since ‘truly random’ sequences should not be periodic, it is an
intuitive statement that a ‘good’ pseudo-random number generator should have a large maximal
period.

We first present a class of pseudo-random generators which are relatively easy to describe.
Linear congruential generators were introduced in 1948 and depend on the following integer
parameters:

• a modulus m > 0;

• a multiplier 0 < a < m;

• an increment 0 ≤ c < m.
1Quoted in D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edition,

Addison-Wesley, 1998.
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The seed is an integer x0 ∈ {0, . . . ,m − 1}. The sequence (xn)n≥1 is then computed according
to the recurrence relation

xn+1 = axn + c mod m,

which produces integer numbers in {0, . . . ,m − 1}. Typically, taking m = 232 allows to get
integers encoded on 32 bits.

In general, the maximal period of linear congruential generators (which is at most m) can be
computed. Yet, their quality remains very sensitive to the choice of a and m. More complex
pseudo-random generators have thus been elaborated. The most widely used generator in current
scientific computing languages is called Mersenne Twister. It was developed in 19972, it is based
on the arithmetic properties of Mersenne numbers and its period is 219937 − 1 ≃ 4.3 · 106001.

Whatever the chosen pseudo-random number generator, let us take as granted that given a seed
x0 ∈ {0, . . . ,m− 1}, it returns a sequence (xn)n≥1 of numbers in {0, . . . ,m− 1}, which has the
following statistical properties:

(i) they look independent;

(ii) they look uniformly distributed in {0, . . . ,m − 1} in the sense that each integer x ∈
{0, . . . ,m− 1} appears in the sequence (xn)n≥1 with equal frequency 1/m.

Defining Un = xn/m ∈ [0, 1), we thus obtain a sequence of pseudo-random independent variables
such that, for any n ≥ 1, for any interval C ⊂ [0, 1],

P(Un ∈ C) =
1

m

m−1∑

x=0

1{x/m∈C} ≃
∫ 1

u=0
1{u∈C}du.

This motivates the following definition.

Definition 1.1.1 (Uniform distribution). A random variable U in [0, 1] is called uniformly dis-
tributed on [0, 1] if it has the density

p(u) = 1{u∈[0,1]}.

We denote U ∼ U [0, 1].

Exercise 1.1.2. Let U ∼ U [0, 1]. Show that the random variable 1− U has the same distribution

as U .

From now on, we shall thus work under the assumption that our computer is able to generate
independent variables (Un)n≥1 which are uniformly distributed on [0, 1]. In the sequel of this
section, we study how to use this sequence in order to sample a random variable X with a given
distribution.

Remark 1.1.3. Most scientific computing languages allow you to fix the seed of your pseudo-

random number generator. This makes your code no longer random but this may prove very help-

ful for reproducibility, comparison of your code and experimental results with others, or simply

debugging.

2Matsumoto, M. and Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator, ACM Transactions on Modeling and Computer Simulations (1998).
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Elementary discrete distributions

We first introduce several discrete distributions.

Definition 1.1.4 (Bernoulli, binomial and geometric distributions). Let p ∈ [0, 1].

(i) A random variable X in {0, 1} such that P(X = 1) = p and P(X = 0) = 1− p is called a

Bernoulli random variable with parameter p. We denote X ∼ B(p).

(ii) Let n ≥ 1 and X1, . . . ,Xn be independent Bernoulli random variables with parameter

p. The random variable S := X1 + · · · + Xn is called a binomial random variable with

parameters n and p. We denote S ∼ B(n, p).

(iii) Assume that p ∈ (0, 1] and let (Xi)i≥1 be a sequence of independent Bernoulli random

variables with parameter p. The random variable T := min{i ≥ 1 : Xi = 1} is called a

geometric random variable with parameter p. We denote T ∼ Geo(p).
The numerical sampling of the Bernoulli, binomial and geometric distributions is addressed in

the next exercise.

Exercise 1.1.5. Let (Un)n≥1 be a sequence of independent uniform variables on [0, 1].

1. Using an if test, how to draw a random variable X ∼ B(p)?

2. Using a for loop, how to draw a random variable S ∼ B(n, p)?

3. Using a while loop, how to draw a random variable T ∼ Geo(p)?

1.1.2 The inverse CDF method

Discrete distributions

Let X be a random variable taking its values in some finite set E with cardinality m, and let
(px)x∈E be its probability mass function (that is to say, px = P(X = x)). An intuitive algorithm
allowing to sample X from a uniform random variable U ∈ [0, 1] is the following:

1. label the elements of E in some arbitrary order x1, . . . , xm;

2. select the unique index i ∈ {1, . . . ,m} such that px1
+ · · ·+ pxi−1

< U ≤ px1
+ · · ·+ pxi ;

3. return X = xi.

It is clear that we have

P(X = xi) = P(px1
+ · · ·+ pxi−1

< U ≤ px1
+ · · ·+ pxi) = pxi ,

so that X has the correct law.

CDF and inverse CDF

The generalisation of this approach to arbitrary, real-valued random variables, is based on the
introduction of the Cumulative Distribution Function of such variables.

Definition 1.1.6 (Cumulative Distribution Function). Let X be a real-valued random variable.

The Cumulative Distribution Function (CDF) of X is the function FX : R → [0, 1] defined by

∀x ∈ R, FX(x) := P(X ≤ x).



8 Random variable simulation

Remark 1.1.7. Since the Borel σ-field on R is generated by the intervals of the form (−∞, x], by

Dynkin’s Lemma, two random variables have the same CDF if and only if they have the same law.

Exercise 1.1.8 (Properties of CDFs). Let FX be the CDF of a random variable X. Show that:

1. FX is nondecreasing;

2. limx→−∞ FX(x) = 0, limx→+∞ FX(x) = 1;

3. FX is right continuous and has left limits.

When X has a density p, Definition 1.1.6 yields the identity

∀x ∈ R, FX(x) =

∫ x

y=−∞
p(y)dy,

which shows that FX is continuous and dx-almost everywhere differentiable, with F ′
X = p.

Definition 1.1.9. Let FX be the CDF of a random variable X. The pseudo-inverse of FX is the

function F−1
X : [0, 1] → [−∞,+∞] defined by

∀u ∈ [0, 1], F−1
X (u) := inf{x ∈ R : FX(x) ≥ u},

with the conventions that inf R = −∞ and inf ∅ = +∞.

The pseudo-inverse of a CDF is nondecreasing, left continuous with right limits. When FX

is continuous and increasing, then F−1
X is the usual inverse bijection of FX . In general, it need

not hold that FX(F−1
X (u)) = u or F−1

X (FX(x)) = x, but the following weaker statement remains
true.

Lemma 1.1.10 (CDF and pseudo-inverse). Let FX be the CDF of a random variable X. For all

x ∈ R, u ∈ (0, 1), we have F−1
X (u) ≤ x if and only if u ≤ FX(x).

Proof. Since FX is right continuous, for any u ∈ (0, 1) the set {x ∈ R : FX(x) ≥ u} is closed,
therefore FX(F−1

X (u)) ≥ u. Since FX is nondecreasing, we deduce that if F−1
X (u) ≤ x then

u ≤ FX(x). Conversely, if u ≤ FX(x), then by the definition of F−1
X , F−1

X (u) ≤ x.

Corollary 1.1.11 (The inverse CDF method). Let FX be the CDF of a random variable X, and

let U ∼ U [0, 1]. The random variables X and F−1
X (U) have the same distribution.

Proof. By Lemma 1.1.10 and Definition 1.1.1, for all x ∈ R,

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) =

∫ FX(x)

u=0
du = FX(x),

so that the random variables X and F−1
X (U) have the same CDF. From Remark 1.1.7 we conclude

that they have the same distribution.

We illustrate this method on the exponential distribution.

Definition 1.1.12 (Exponential distribution). Let λ > 0. A random variable X in [0,+∞) is

called exponential with parameter λ if it has the density

p(x) = 1{x>0}λe
−λx.

We denote X ∼ E(λ).
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An immediate computation shows that the CDF of X writes

FX(x) =

{
0 if x ≤ 0,

1− e−λx otherwise.

As a consequence, for all u ∈ [0, 1],

F−1
X (u) = − 1

λ
ln(1− u),

with the obvious convention that ln 0 = −∞. Therefore, to draw a random variable X ∼ E(λ),
one may take a uniform variable U on [0, 1] and return − 1

λ ln(1 − U). Notice that, by Exer-
cise 1.1.2, it is also equivalent to return − 1

λ ln(U).

1.1.3 The Box–Muller method for Gaussian random variables

We recall that the Gauss integral is equal to3

∫

x∈R
exp

(
−x2

2

)
dx =

√
2π.

Definition 1.1.13 (Standard Gaussian variables). A random variable G in R is a standard Gaussian
variable if it has the density

1√
2π

exp

(
−x2

2

)
.

Exercise 1.1.14. If G is a standard Gaussian variable, show that G ∈ L
p(P) for any p ∈ [1,+∞)

and compute E[G] and Var(G).

It follows from this exercise that for any µ, σ ∈ R, the random variable X = µ+ σG satisfies
E[X] = µ and Var(X) = σ2. This remark is used in the next definition.

Definition 1.1.15 (Gaussian variable). If G is a standard Gaussian variable, then for any µ, σ ∈ R,

the random variable

X = µ+ σG

is called a Gaussian random variable with mean µ and variance σ2. Its law is denoted by N (µ, σ2).

Gaussian variables are also called normal. The fact that the law of X only depends on σ
through σ2 is justified by the following result.

Exercise 1.1.16. Show that if X ∼ N (µ, σ2) with σ2 > 0, then X has density

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

We insist on the fact that the definition of Gaussian random variables also includes the case
where σ = 0, in which case X is the almost surely constant random variable equal to µ. In this
case, the law of X is the Dirac measure δµ and therefore it does not have a density.

By definition, the problem of sampling from Gaussian distributions reduces to the case of the
standard Gaussian distribution. Let Φ : R → [0, 1] denote its CDF, given by

Φ(x) =
1√
2π

∫ x

y=−∞
exp

(
−y2

2

)
dy.

3Do not hesitate to redo the computation just to be sure that you still know how to!
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It is known that Φ cannot be expressed in terms of usual functions, such as polynomials, exponen-
tials or logarithms. Hence the inverse CDF method cannot be applied in the present case. We shall
present an ad hoc approach, called the Box–Muller method4.

Proposition 1.1.17 (Box–Muller method). Let R ∼ E(1/2) and Θ ∼ U [0, 2π] be independent

random variables. The random variables

X :=
√
R cosΘ, Y :=

√
R sinΘ,

are independent and follow the standard Gaussian distribution.

Proof. We use the dummy function method and let f : R2 → R be measurable and bounded.
Since R and Θ are independent, the law of the pair (R,Θ) is the product of the marginal densities,
and therefore

E[f(X,Y )] = E

[
f
(√

R cosΘ,
√
R sinΘ

)]

=

∫ +∞

r=0

∫ 2π

θ=0
f(
√
r cos θ,

√
r sin θ)

dθ

2π

1

2
e−r/2dr.

Using the polar change of coordinates x =
√
r cos θ, y =

√
r sin θ in the right-hand side, we get

E[f(X,Y )] =

∫

x,y∈R
f(x, y)

1

2π
exp

(
−x2 + y2

2

)
dxdy,

which shows that the pair (X,Y ) has density

1

2π
exp

(
−x2 + y2

2

)
=

1√
2π

exp

(
−x2

2

)
1√
2π

exp

(
−y2

2

)
,

which implies that X and Y are independent standard Gaussian variables.

Since both R and Θ can be sampled using the inverse CDF method, Proposition 1.1.17 pro-
vides a method to sample X and Y from two independent uniform random variables on [0, 1].

Remark 1.1.18 (What does my computer really do?5). The Box–Muller method is used by NumPy’s

random.standard_normal function to generate Gaussian variables. Its newer random number

generator class, called Generator, uses another method called the Ziggurat algorithm, which is

presented in the next Section. In contrast, the statistical software R uses the inverse CDF method

to generate Gaussian samples, with a numerical approximation of the function Φ−1.

1.1.4 Rejection sampling

Sampling from a conditional probability

Let Q be a probability distribution on some measurable space (E, E) and D ∈ E such that Q(D) >
0. The conditional probability Q(·|D) is the probability measure on D defined by

Q(C|D) =
Q(C)

Q(D)

4Box, G. E. P. and Muller, M. E. A Note on the Generation of Random Normal Deviates, The Annals of Mathematical

Statistics (1958).
5According to the blog post https://medium.com/mti-technology/how-to-generate-gaussian-samples-3951f2203ab0.

https://medium.com/mti-technology/how-to-generate-gaussian-samples-3951f2203ab0
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for any measurable subset C ⊂ D; in other words, it is the measure with density
1{x∈D}

Q(D) with
respect to Q.

Assume that you are able to draw iid samples X1, . . . ,Xn from Q, and that you want to draw
a random variable X with distribution Q(·|D). A somewhat obvious algorithm is then to draw
samples from Q and to only keep those which fall into D. In other words, set N := inf{n ≥ 1 :
Xn ∈ D} and return X := XN . The next statement shows that this algorithm is correct.

Proposition 1.1.19 (Rejection sampling from a conditional probability). With the notation intro-

duced above:

(i) N ∼ Geo(Q(D));

(ii) XN has distribution Q(·|D);

(iii) N and XN are independent.

Proof. We fix n ≥ 1, a measurable subset C of D, and compute

P(N = n,XN ∈ C) = P (X1 6∈ D,X2 6∈ D, . . . ,Xn−1 6∈ D,Xn ∈ C)

= (1−Q(D))n−1Q(C).

Taking C = D shows the first point of the Proposition. Summing over n yields the second point,
and allows to deduce that the right-hand side above rewrites P(N = n)P(XN ∈ C), which leads
to the third point.

Generalisation

The rejection algorithm exposed above can be cleverly employed to sample from probability dis-
tributions which are not directly conditional probabilities as given by Proposition 1.1.19.

Lemma 1.1.20 (Uniform density on the graph of p). Let p : Rd → [0,+∞) be a probability

density. Let

D := {(x, y) ∈ R
d × [0,+∞) : 0 ≤ y ≤ p(x)}

be the graph of p.

(i) D has (d+ 1)-dimensional Lebesgue measure 1.

(ii) If (X,Y ) is distributed according to the uniform density on D, then X has density p.

Proof. The (d+ 1)-dimensional Lebesgue measure of D is

|D| =
∫

x∈Rd

∫ +∞

y=0
1{y≤p(x)}dydx =

∫

x∈Rd

p(x)dx = 1.

If (X,Y ) is uniformly distributed in D, the marginal density of X is

∫ +∞

y=0
1{y≤p(x)}dy = p(x).

As a consequence of Lemma 1.1.20, to draw X ∈ R
d with density p, it suffices to draw (X,Y )

uniformly in D. This is where the method described in the previous Subsection becomes relevant:
if one is able to find R ⊂ R

d+1 such that D ⊂ R and one may draw uniform samples (Xn, Yn)n≥1

in R, then letting N := inf{n ≥ 1 : (Xn, Yn) ∈ R} one deduces that XN has density p. In this
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perspective, let us assume that there exists f : Rd → [0,+∞) such that p(x) ≤ f(x) for all
x ∈ R, so that

D ⊂ R := {(x, y) ∈ R
d × [0,+∞) : 0 ≤ y ≤ f(x)},

and that:

(i) |R| =
∫
x∈Rd f(x)dx < +∞;

(ii) one is able to draw random variables with density q(x) = f(x)/|R|.
The next Lemma shows how to draw samples (Xn, Yn)n≥1 which are uniformly distributed in R.

Lemma 1.1.21 (Uniform density on the graph of f ). Let q : Rd → [0,+∞) be the probability

density defined by q(x) = f(x)/|R|. Let X with density q and U ∼ U [0, 1] be independent from

X. Then the pair (X,Uf(X)) is uniformly distributed in R.

Proof. For any measurable and bounded function g : Rd+1 → R, we have

E[g(X,Uf(X))] =

∫

x∈Rd

∫ 1

u=0
g(x, uf(x))q(x)dxdu.

Replacing q(x) with f(x)/|R| and then setting y = uf(x) we get

E[g(X,Uf(X))] =

∫

x∈Rd

∫ f(x)

y=0
g(x, y)

1

|R|dxdy,

which shows that (X,Uf(X)) has density 1
|R|1{0≤y≤f(x)}.

The overall rejection procedure is summarised in the next statement, where we write k = |R|.
Theorem 1.1.22 (Rejection sampling). Let p : Rd → [0,+∞) be a probability density. Assume

that there exist a probability density q : Rd → [0,+∞) and k ≥ 1 such that, dx-almost every-

where, p(x) ≤ kq(x). Let (Xn)n≥1 be a sequence of independent random variables in R
d with

density q, and (Un)n ≥1 be a sequence of independent random variables uniformly distributed in

[0, 1], independent from (Xn)n≥1. Let N := inf{n ≥ 1 : kq(Xn)Un ≤ p(Xn)}.

(i) N ∼ Geo(1/k).
(ii) XN has density p.

(iii) N and XN are independent.

Proof. Let f(x) = kq(x), and R = {(x, y) ∈ R
d× [0,+∞) : 0 ≤ y ≤ f(x)}. By Lemma 1.1.21,

the pairs (Xn, Unf(Xn)) are independent and uniformly distributed on R: moreover, N rewrites
as inf{n ≥ 1 : (Xn, Unf(Xn)) ∈ D}, where D = {(x, y) ∈ R

d × [0,+∞) : 0 ≤ y ≤ p(x)}.
Therefore, by Proposition 1.1.19, we have: N is a geometric random variable with parameter
|D|/|R| = 1/k; (XN , UNf(XN )) is uniformly distributed on D — which by Lemma 1.1.20
implies that XN has density p; N and (XN , UNf(XN )) are independent.

Remark 1.1.23. Theorem 1.1.22 can easily be generalised to the case where one wants to draw

X from a probability measure P on some abstract space E, and has access to samples under

Q ≫ P , with dP
dQ ≤ k, Q-almost everywhere. Then the statement of Theorem 1.1.22 remains in

force, with N defined as the first index for which kUn ≤ dP
dQ(Xn).

Rejection sampling is useful when one is not able to sample directly from p, but can find q
such that p ≤ kq and sampling from q is easier. Clearly, the smaller k, the faster the algorithm,
therefore from a computational point of view it is of interest to take q as a ‘good approximation’
of p.
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The Ziggurat algorithm

Let p : [0,+∞) → [0,+∞) be a continuous probability density, which is assumed to be nonin-
creasing on [0,+∞). The typical example that we have in mind is

p(x) =

√
2

π
exp

(
−x2

2

)
. (1.1)

Exercise 1.1.24. Let X have density p given by (1.1), and ǫ be independent from X and such that

P(ǫ = −1) = P(ǫ = 1) = 1/2. Show that ǫX is a standard Gaussian variable.

The basis of the Ziggurat algorithm6 consists in covering the graph of f with a number L of
horizontal layers defined as follows.

1. Fix x1 > 0, set y1 = p(x1), and define the layer 0 as

([0, x1]× [0, y1]) ∪ {(x, y) ∈ [0,+∞)× [0,+∞) : x > x1, y ≤ p(x)}.

Denote by

A := x1y1 +

∫ +∞

x=x1

p(x)dx

the area of the layer 0.

2. On top of the layer 0, add a rectangular layer of width x1 and height A/x1, so it also has
area A. The top of this layer is at height y2 = y1+A/x1, and intersects the density function
at a point (x2, y2), where y2 = p(x2).

3. Further rectangular layers of area A are then stacked on top, until yL ≤ p(0) in which case
we set xL = 0.

We obtain a covering of the graph of p with L layers of equal area A, see Figure 1.1. This
covering is the graph R of a function f : [0,+∞) → [0,+∞) which is such that

f(x) =

{
yk if x ∈ [xk, xk−1), k ∈ {2, . . . , L},

p(x) if x ≥ x1,

and

|R| =
∫ +∞

x=0
f(x)dx = LA.

Following Proposition 1.1.19 and Lemma 1.1.20, the goal is now to draw pairs (X,Y ) uni-
formly distributed on R, and to return X if Y ≤ p(X). However, the Ziggurat algorithm uses
a different approach from Lemma 1.1.21 to draw such pairs: first, it picks one of the layers uni-
formly at random; then, it draws (X,Y ) uniformly in this layer. Since all layers have the same
area, this indeed returns a pair (X,Y ) which is uniformly distributed on R. Moreover, if the cho-
sen layer has index k ∈ {1, . . . , L− 1}, then it is a rectangle, so drawing (X,Y ) uniformly in the
layer is easy:

• first, draw X uniformly in [0, xk];

6Presented for instance in Marsaglia, G. and Tsang, W. W. The Ziggurat Method for Generating Random Variables,
Journal of Statistical Software (2000).
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Figure 1.1: Construction of the layers, starting from x1 = 2 on the left-hand picture (then L = 5),
and from x1 = 3 on the right-hand picture (then L = 36).

• if X ≤ xk+1 then whatever the draw of Y it will always satisfy the condition that Y ≤
p(X), so return X;

• if X > xk+1 then draw Y uniformly in [yk, yk+1] and return X if Y ≤ p(X), otherwise
restart with a new layer.

If the chosen layer is 0, then the algorithm needs to have a fallback procedure, which is able to
generate samples from the density 1{x>x1}p(x)/

∫ +∞
x′=x1

p(x′)dx′. Then it works as follows:

• set x0 = A/y1 > x1 and draw X uniformly on [0, x0];

• if X ≤ x1 then return X;

• if X > x1 then draw X ′ according to the fallback procedure and return X ′.

Exercise 1.1.25. Check that this algorithm indeed returns a random variable X with density p.

Exercise 1.1.26. Show that, to sample from the density p given by (1.1), a possible fallback pro-

cedure is to draw T1 ∼ E(x1) and T2 ∼ E(1) independent, and return X ′ = T1+x1 if 2T1 > T 2
2 ,

otherwise restart.

The reason why this algorithm is efficient is that, except for the fallback procedure, it does
not require the evaluation of complicated functions, such as sine or cosine, which may be costly.
Moreover, if the number of layers is large enough, samples are almost never drawn in the layer
0, and almost often land in the interval [0, xk+1] of the layer k, so they are rarely rejected and
drawing one sample only costs the draw of the random index of the layer k, and of the uniform
variable X ∈ [0, xk].

1.2 Random vector simulation

In this Section, we consider the issue of simulating random vectors, that is to say random variables
with values in R

d. For any p ≥ 1, we denote by L
p(P;Rd) the set of random vectors whose

coordinates are random variables in L
p(P). If X = (X1, . . . ,Xn) ∈ L

1(P;Rd), we denote by
E[X] the d-dimensional vector (E[X1], . . . ,E[Xd]). If X = (X1, . . . ,Xn) ∈ L

2(P;Rd), we
denote by Cov[X] the d × d matrix with coefficients Cov(Xi,Xj) = E[(Xi − E[Xi])(Xj −
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E[Xj ])] = E[XiXj ] − E[Xi]E[Xj ]. It is called the covariance matrix of X, it is symmetric, and
by Exercise 1.2.1 below, it is nonnegative.

Exercise 1.2.1. Let X ∈ L
2(P;Rd) with covariance matrix K .

1. Show that, for any u ∈ R
d, Var(〈u,X〉) = 〈u,Ku〉.

2. Show that, for any b ∈ R
k, A ∈ R

k×d, Cov[b+AX] = AKA⊤.

1.2.1 Gaussian vectors

We recall that the characteristic function ΨX : Rd → C of a random vector X ∈ R
d is defined by

∀u ∈ R
d, ΨX(u) = E

[
ei〈u,X〉

]
= E [cos(〈u,X〉)] + iE [sin(〈u,X〉)] .

Two random vectors have the same law if and only if their characteristic functions coincide.

Proposition 1.2.2 (Characteristic function of Gaussian variables). Let X ∼ N (µ, σ2). Then, for

any u ∈ R,

ΨX(u) = exp

(
iµu− σ2

2
u2
)
.

The proof of Proposition 1.2.2 is postponed to Exercise 1.3.9.

Definition 1.2.3 (Gaussian vector). A random vector X ∈ R
d is Gaussian if, for any u ∈ R

d, there

exist µ ∈ R and σ2 ≥ 0 such that 〈u,X〉 ∼ N (µ, σ2).

Let X ∈ L
2(P;Rd). Set m = E[X] ∈ R

d and K = Cov[X] ∈ R
d×d. For any u ∈ R

d, it is
immediate that E[〈u,X〉] = 〈u,m〉, and by Exercise 1.2.1, Var(〈u,X〉) = 〈u,Ku〉. Therefore, if
X is Gaussian, then necessarily, 〈u,X〉 ∼ N (〈u,m〉, 〈u,Ku〉), and thus by Proposition 1.2.2,

ΨX(u) = E

[
ei〈u,X〉

]
= exp

(
i〈u,m〉 − 1

2
〈u,Ku〉

)
.

We deduce the following statement.

Proposition 1.2.4 (Characteristic function of Gaussian vectors). The random vector X is Gaus-

sian if and only if there exist m ∈ R
d and K ∈ R

d×d such that, for any u ∈ R
d,

ΨX(u) = exp

(
i〈u,m〉 − 1

2
〈u,Ku〉

)
.

In this case, we have m = E[X] and K = Cov[X], and we denote by Nd(m,K) the law of X.

We now address the question of how to simulate a random vector drawn from the Gaussian
measure Nd(m,K) for some given m ∈ R

d and K ∈ R
d×d. To proceed, we first remark that the

Box–Muller method described in Proposition 1.1.17 allows to simulate independent realisations
G1, . . . , Gd of the standard Gaussian distribution. We next recall that, by the Spectral Theorem,
for any symmetric nonnegative matrix K ∈ R

d×d, there exists λ1, . . . , λd ≥ 0 and an orthonormal
basis (e1, . . . , ed) of Rd such that for any i, Kei = λiei.

Proposition 1.2.5 (Simulation of Gaussian vectors). Let m ∈ R
d and K ∈ R

d×d be a sym-

metric and nonnegative matrix, with associated eigenvalues λ1, . . . , λd ≥ 0 and eigenvectors

(e1, . . . , ed). Let G1, . . . , Gd be independent standard Gaussian variables. Then

X = m+

d∑

i=1

Gi

√
λiei ∼ Nd(m,K).



16 Random variable simulation

Proof. For any u ∈ R
d,

〈u,X〉 = 〈u,m〉 +
d∑

i=1

Gi

√
λi〈u, ei〉

is a sum of independent Gaussian variables, therefore by Exercise 1.3.9, it is a Gaussian vari-
able. Hence, X is a Gaussian vector. Besides, it is immediate that E[〈u,X〉] = 〈u,m〉, and by
independence,

Var(〈u,X〉) =
d∑

i=1

λi〈u, ei〉2 = 〈u,Ku〉,

which shows that E[X] = m and Cov[X] = K .

Proposition 1.2.5 has the practical interest to show that, up to diagonalising the covariance
matrix, it is possible to sample from the Gaussian measure Nd(m,K) as soon as independent
standard Gaussian random variables are available. It may also be useful for theoretical purposes,
as in the next exercise.

Exercise 1.2.6. Show that, if K is invertible, X ∼ Nd(m,K) has density

1√
(2π)d det(K)

exp

(
−〈x−m,K−1(x−m)〉

2

)

with respect to the Lebesgue measure on R
d. If K is not invertible, can you find a similar density

with respect to another measure?

1.2.2 Copulas

Let X = (X1, . . . ,Xd) ∈ R
d. In general, the collection of the marginal laws of X1, . . . ,Xd does

not characterise the joint law of the vector, and a supplementary information is needed to describe
how these variables depend on each other. For Gaussian vectors, this information is contained
in the covariance matrix. Beyond the case of Gaussian vectors, the notion of copula allows to
characterise the dependency between the coordinates of a random vector.

Definition 1.2.7 (Copula). A function C : [0, 1]d → [0, 1] is called a copula if there exists a

random vector (U1, . . . , Ud) ∈ [0, 1]d such that:

(i) for any i ∈ {1, . . . , d}, Ui ∼ U [0, 1];

(ii) for any (u1, . . . , ud) ∈ [0, 1]d, C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud).

As a consequence of Definition 1.2.7, a copula has the following properties:

• it is nondecreasing in each coordinate;

• for any u1, . . . , ui−1, ui+1, . . . , ud, C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0;

• for any ui, C(1, . . . , 1, ui, 1, . . . , 1) = ui.

Some elementary examples of copulas are given by the independent copula

C(u1, . . . , ud) = u1 · · · ud,

and the comonotonic copula

C(u1, . . . , ud) = min(u1, . . . , ud).
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Exercise 1.2.8. Describe the law of the random vectors (U1, . . . , Ud) respectively associated with

the independent and comonotonic copulas.

The main result about copulas is the following statement, in which we generalise Defini-
tion 1.1.6 to random vectors by letting FX(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd). It remains
true that the CDF of X characterises its law.

Theorem 1.2.9 (Sklar’s Theorem7). Let X = (X1, . . . ,Xd) ∈ R
d be a random vector with CDF

FX .

(i) There exists a copula CX such that for any (x1, . . . , xd) ∈ R
d,

FX(x1, . . . , xd) = CX (FX1
(x1), . . . , FXd

(xd)) .

(ii) If the marginal CDFs FX1
, . . . , FXd

are continuous, then the copula is unique and given by,

for any (u1, . . . , ud) ∈ [0, 1]d,

CX(u1, . . . , ud) = FX

(
F−1
X1

(u1), . . . , F
−1
Xd

(xd)
)
.

The copula of a random vector therefore allows to isolate the dependency structure of its
components, apart from their marginal distributions.

Exercise 1.2.10 (The Gaussian copula). Let X ∼ Nd(m,K) and R the associated correlation
matrix, with coefficients

Rij = ρ(Xi,Xj) :=





Kij√
KiiKjj

if KiiKjj > 0,

0 otherwise.

Show that the copula of X is given by

CX(u1, . . . , ud) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
,

where Φ is the CDF of the standard Gaussian distribution on R, and ΦR is the CDF of the Gaus-

sian measure Nd(0, R).

Given the system of marginal distributions and the copula of a random vector X, we now ask
how to generate samples of X. This is done with the following two-step procedure.

Lemma 1.2.11 (Sampling vectors with given marginal distributions and copulas). Let C be a

copula and F1, . . . , Fd be CDFs on R. Consider the following algorithm:

1. Generate (U1, . . . , Ud) with CDF C .

2. Return X = (F−1
1 (U1), . . . , F

−1
d (Ud)).

The vector X has copula C and each component Xi has CDF Fi.

7Sklar, A. Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistiques de

l’Université de Paris (1959).
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The proof of Lemma 1.2.11 is straightforward. We now focus on the first step, namely: given
a copula C , how to sample (U1, . . . , Ud) ∈ [0, 1]d with CDF C? To proceed, we assume that
(U1, . . . , Ud) has a density c(u1, . . . , ud), related with C by the identity

∂dC

∂u1 · · · ∂ud
(u1, . . . , ud) = c(u1, . . . , ud).

For any k ∈ {1, . . . , d}, the marginal density of (U1, . . . , Uk) is given by

ck(u1, . . . , uk) =

∫ 1

vk+1=0
· · ·
∫ 1

vd=0
c(u1, . . . , uk, vk+1, . . . , vd)dvd · · · dvk+1

=
∂kC

∂u1 · · · ∂uk
(u1, . . . , uk, 1, . . . , 1),

and, for k ∈ {1, . . . , d− 1}, it satisfies the identity

ck(u1, . . . , uk) =

∫ 1

vk+1=0
ck+1(u1, . . . , uk, vk+1)dvk+1.

As a consequence, for any (u1, . . . , uk) ∈ [0, 1]k , the function Fk+1(·|u1, . . . , uk) defined by

∀uk+1 ∈ [0, 1], Fk+1(uk+1|u1, . . . , uk) :=

∫ uk+1

vk+1=0
ck+1(u1, . . . , uk, vk+1)dvk+1

∫ 1

vk+1=0
ck+1(u1, . . . , uk, vk+1)dvk+1

is a CDF, which can be interpreted as the conditional CDF of Uk+1 given (U1, . . . , Uk)
8.

We now consider the following algorithm:

1. draw U1 ∼ U [0, 1];

2. for k = 1, . . . , d−1, draw U ′
k+1 ∼ U [0, 1] independently from (U1, . . . , Uk) and set Uk+1 =

F−1
k+1(U

′
k+1|U1, . . . , Uk).

Proposition 1.2.12 (Sampling from a copula). The vector (U1, . . . , Ud) ∈ [0, 1]d generated by the

algorithm above has CDF C .

Proof. For k ∈ {1, . . . , d}, we set Ck(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1), and show by in-
duction on k that Ck is the CDF of (U1, . . . , Uk) constructed by the algorithm above. For k = 1
this is straightforward since C1(u1) = u1 by the basic properties of copulas. Let us now fix
k ∈ {1, . . . , d − 1} such that (U1, . . . , Uk) has CDF Ck, and therefore density ck(u1, . . . , uk),
and compute the CDF of (U1, . . . , Uk+1). Since Uk+1 = F−1

k+1(U
′
k+1|U1, . . . , Uk), with U ′

k+1 ∼
U [0, 1] independent from (U1, . . . , Uk), we may write

P(U1 ≤ u1, . . . , Uk ≤ uk, Uk+1 ≤ uk+1)

= P(U1 ≤ u1, . . . , Uk ≤ uk, F
−1
k+1(U

′
k+1|U1, . . . , Uk) ≤ uk+1)

= P(U1 ≤ u1, . . . , Uk ≤ uk, U
′
k+1 ≤ Fk+1(uk+1|U1, . . . , Uk))

=

∫

(v1,...,vk,v
′
k+1

)∈[0,1]k+1

1{v1≤u1,...,vk≤uk,v
′
k+1

≤Fk+1(uk+1|v1,...,vk)}ck(v1, . . . , vk)dv1 · · · dvkdv′k+1

=

∫

(v1,...,vk)∈[0,1]k
1{v1≤u1,...,vk≤uk}Fk+1(uk+1|v1, . . . , vk)ck(v1, . . . , vk)dv1 · · · dvk.

8because its derivative ck(u1, . . . , uk)/ck+1(u1, . . . , uk+1) is the conditional density of Uk+1 given (U1, . . . , Uk).
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By the definition of Fk+1, we have

Fk+1(uk+1|v1, . . . , vk)ck(v1, . . . , vk) =
∫ uk+1

vk+1=0
ck+1(v1, . . . , vk, vk+1)dvk+1,

which yields

P(U1 ≤ u1, . . . , Uk ≤ uk, Uk+1 ≤ uk+1)

=

∫

(v1,...,vk,vk+1)∈[0,1]k+1

1{v1≤u1,...,vk≤uk,vk+1≤uk+1}ck+1(v1, . . . , vk+1)dv1 · · · dvk+1

= Ck+1(u1, . . . , uk+1),

and completes the proof.

1.3 Complements

1.3.1 Exercises

Exercise 1.3.1 (Inverse CDF for standard densities). Apply the inverse CDF method to the follow-

ing standard probability densities.

1. The Pareto distribution with parameter α > 0, with density 1{x>1}αx
−(α+1).

2. The Cauchy distribution with parameter a > 0, with density a
π

1
a2+x2 .

3. The Weibull distribution with parameter m > 0, with density 1{x>0}mxm−1 exp(−xm).

4. The Rayleigh distribution with parameter σ2 > 0, with density 1{x>0}
x
σ2 exp(− x2

2σ2 ).

Exercise 1.3.2 (Geometric distribution with a single U ). Let X ∼ E(λ).

1. What is the law of ⌈X⌉?9

2. Deduce an algorithm which returns a Geo(p) random variable with a single uniform random

variable U .

Exercise 1.3.3 (Poisson distribution). A random variable N ∈ N is distributed according to the

Poisson distribution with parameter λ > 0 if, for any k ∈ N,

P(N = k) = e−λλ
k

k!
.

We denote N ∼ P(λ).

1. Let (Xi)i≥1 be a sequence of independent exponential random variables with parameter λ.

Show that inf{n ≥ 0 : X1 + · · · +Xn+1 ≥ 1} ∼ P(λ).

2. Deduce an algorithm to draw a random variable N ∼ P(λ) using a sequence (Ui)i≥1 of

independent uniform variables on [0, 1].

Exercise 1.3.4 (Inverse of the inverse CDF). Show that if the CDF FX of X is continuous, then

FX(X) ∼ U [0, 1]. What happens if F is discontinuous?

9For any x ∈ R, ⌈x⌉ denotes the unique integer such that ⌈x⌉ − 1 < x ≤ ⌈x⌉.
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Exercise 1.3.5 (Unbiasing a coin toss10). Assume that you have a random number generator which

returns independent Bernoulli variables with an unknown parameter p ∈ (0, 1). How to use it to

draw a Bernoulli random variable with parameter 1/2?

Exercise 1.3.6 (The Marsaglia polar method11). Let (Un, Vn)n≥1 be a sequence of iid random

pairs such that for any n ≥ 1, Un and Vn are independent and uniformly distributed on [−1, 1].
For any n ≥ 1, we define Sn = U2

n + V 2
n and set N = inf{n ≥ 1 : Sn < 1}.

1. What is the joint law of (N, (UN , VN ))?

2. Compute the law of the random pair (X,Y ) defined by

X = UN

√
−2 log SN

SN
, Y = VN

√
−2 log SN

SN
.

Exercise 1.3.7 (Gamma distribution). The Gamma distribution with (shape) parameter a > 0 is

the probability measure on R with density

p(x) = 1{x>0}
1

Γ(a)
xa−1e−x,

where Γ is Euler’s function

Γ(a) :=

∫ +∞

x=0
xa−1e−xdx.

We assume that a > 1 and want to implement the rejection sampling method with q the density of

the exponential distribution with parameter λ.

1. Which value of λ should we take?

2. What will be the resulting value of k?

Exercise 1.3.8. Implement both the Box–Muller method and the Ziggurat algorithm to generate

large samples of independent standard Gaussian variables, and compare their efficiency in terms

of computational time.

Exercise 1.3.9 (Characteristic function of Gaussian random variables). Let G ∼ N (0, 1).

1. Show that ΨG is C1 on R, and that for all u ∈ R, Ψ′
G(u) + uΨG(u) = 0.

2. Deduce that ΨG(u) = exp(−u2/2).

3. If X ∼ N (µ, σ2), what is the expression of ΨX(u)?

4. Let X ∼ N (µ, σ2) and Y ∼ N (ν, τ2) be independent. Compute the law of X + Y .

10This exercise is attributed to Von Neumann.
11This method was introduced in Marsaglia, G. and Bray, T. A. (1964). A Convenient Method for Generating Normal

Variables. SIAM Review.
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1.3.2 Further comments

Beyond the fact that they are limited by their small period, linear congruential generators also suf-
fer from other issues: you can check https://en.wikipedia.org/wiki/Linear_congruential_generator
for further explanations.

A natural, slightly metaphysical question, is the following: given a probability measure P on
some measurable space (E, E), can we always construct a random variable X with distribution
P ? The answer depends on the choice of the underlying probability space (Ω,A,P). Of course,
by taking (Ω,A,P) = (E, E , P ), the canonical variable X(ω) = ω has law P . So, given P on
(E, E), one may always find a probability space on which it is possible to construct a random
variable with distribution P . However, if the probability space (Ω,A,P) is given in advance, it
may not be possible to construct such a random variable: for instance, if Ω is a finite set, then it
is not possible to construct a random variable X ∈ R with a density. The overall idea is therefore
that Ω must be “large enough”. In this perspective, the Fundamental Principle of Simulation [4,
Section 1.2] states that, as soon as E is a Polish space12, then one may take Ω = [0, 1] endowed
with the Borel σ-field and the Lebesgue measure. Indeed, on this space, for any probability mea-
sure P , there exists a random variable X defined on this space with law P . It even holds that given
a sequence of probability measures (Pn)n≥1, such that each Pn is a probability measure on some
Polish space En, there exists a sequence of independent random variables (Xn)n≥1 defined on Ω
such that each Xn has law Pn.

The notion of Gaussian vector introduced in Subsection 1.2.1 can be generalised to infinite-
dimensional spaces, typically Hilbert or Banach spaces. This may be useful to model random
fields for example. In this context, the simulation method presented in Proposition 1.2.5 can be
extended, under the assumption that the covariance operator has good spectral properties. It is
called the Karhunen–Loève expansion.

12that is to say that E a topological space which is separable and whose topology is induced by a distance which
makes it complete, and E is the Borel σ-field induced by this topology.

https://en.wikipedia.org/wiki/Linear_congruential_generator


22 Random variable simulation



Lecture 2

The Monte Carlo method

2.1 The Monte Carlo method

The goal of the Monte Carlo method is to numerically approximate an integral which writes under
the form

I :=

∫

x∈E
f(x)P (dx), (2.1)

where (E, E) is a measurable space, P is a probability measure on E and f ∈ L
1(P ).

2.1.1 Deterministic approach

Assume for simplicity that E = [0, 1]d and that P (dx) = dx is the uniform distribution. Then
fixing N ≥ 1 and setting x~k = (k1/N, . . . , kd/N) for ~k = (k1, . . . , kd) ∈ {0, . . . , N − 1}d, the
basic deterministic approximation of I is given by

IN :=
1

Nd

∑

~k

f(x~k),

obtained by replacing f with the piecewise constant function which takes the value f(x~k) on the
cell C~k

:= [k1/N, (k1 + 1)/N) × · · · × [kd/N, (kd + 1)/N).
The precision of this approximation is given by the fact that, if you assume that f is Lipschitz

continuous, then

|I− IN | =

∣∣∣∣∣∣

∑

~k

∫

C~k

(f(x)− f(x~k))dx

∣∣∣∣∣∣
≤
∑

~k

∫

C~k

∣∣f(x)− f(x~k)
∣∣dx .

1

N
.

As a consequence, to reach a precision ǫ ≃ 1/N , one needs to evaluate f at Nd ≃ (1/ǫ)d points.
This quantity grows exponentially in d: this is the curse of dimensionality.

2.1.2 Stochastic approach

The formulation (2.1) of I allows us to rewrite it under the form

I = E[f(X)],
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where X is a random variable in E with law P . Then, if (Xn)n≥1 is a sequence of iid random
variables with common distribution P , the (strong) Law of Large Numbers ensures that

În :=
1

n

n∑

i=1

f(Xi)

converges almost surely to I. The precision of the approximation of I by În is measured by the
Central Limit Theorem, which ensures that if σ2 := Var(f(X)) < +∞, then

lim
n→+∞

√
n

σ

(
În − I

)
= N (0, 1), in distribution.

This result ensures in particular that, given α ∈ (0, 1/2) and denoting by φ1−α/2 the quantile of
order 1− α/2 of N (0, 1) (see Figure 2.1), the interval

[
În − φ1−α/2

σ√
n
, În + φ1−α/2

σ√
n

]
(2.2)

contains I with probability converging to 1 − α when n → +∞. Therefore, to reach a precision
ǫ ≃ σ/

√
n, one needs to evaluate f at n ≃ σ2/ǫ2 points, which only depends on the underlying

dimension of E through the prefactor σ2. So this method avoids the curse of dimensionality.

φα/2 = −φ1−α/2 φ1−α/2

1− α φ1−α/2

90% 1.65

95% 1.96

99% 2.58

Figure 2.1: Quantiles of the standard Gaussian distribution. The hatched area on the figure is equal
to 1− α.

2.1.3 Confidence intervals

In general, σ2 is not known either, so the interval (2.2) cannot be actually computed.

Asymptotic approach

If n is large, σ2 may however be estimated by the empirical variance of the sample

σ̂2
n :=

1

n

n∑

i=1

(
f(Xi)− În

)2
,

whose computation does not require new samples from X nor new evaluation of the function f .
By Slutsky’s Lemma,

lim
n→+∞

√
n

σ̂n

(
În − I

)
= N (0, 1), in distribution,
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and therefore the interval
[
În − φ1−α/2

σ̂n√
n
, În + φ1−α/2

σ̂n√
n

]

also contains I with probability converging to 1 − α when n → +∞; it is called an asymptotic

confidence interval.

Nonasymptotic approach

If n is not large enough for the asymptotic result above to hold, the Bienaymé–Chebychev inequal-
ity yields, for any r > 0,

P

(∣∣∣În − I

∣∣∣ ≥ r
)
≤ 1

r2
Var(În) =

σ2

nr2
.

Assuming that an upper-bound Mσ2 is available on σ2, as in Lemma 2.1.1 below, we deduce that
the interval [

În −
√

Mσ2

nα
, În +

√
Mσ2

nα

]

contains I with probability at least 1−α: this interval is called an approximate confidence interval.
This procedure requires to be able to derive upper bounds on the variance of f(X1). This is

for example possible when f is bounded.

Lemma 2.1.1 (Universal bound on the variance). Assume that f(x) ∈ [a, b] for any x ∈ E, with

−∞ < a ≤ b < +∞. Then

σ2 = Var(f(X)) ≤ (b− a)2

4
.

Proof. The statement is obvious if a = b, otherwise we let U = f(X)/(b − a) ∈ [0, 1]. We have
U2 ≤ U and therefore

Var(U) = E[U2]− E[U ]2 ≤ E[U ]− E[U ]2 ≤ sup
u∈[0,1]

u− u2 =
1

4
,

and we complete the proof by noting that Var(f(X)) = (b− a)2 Var(U).

The whole game of approximate confidence intervals is to find bounds as sharp as possible,
because taking larger and larger confidence intervals increases the probability of I to belong to
the interval, but makes the estimation less precise. In an extreme and caricatural case, R is an
interval which contains I with probability 1, so larger than any 1 − α, but this is not informative
on the value of I at all. In this perspective, when f is bounded, the Hoeffding inequality1 provides
sharper confidence intervals (as a function of α) as the Bienaymé–Chebychev inequality.

Proposition 2.1.2 (Hoeffding inequality). Under the assumptions of Lemma 2.1.1, we have, for

any r ≥ 0 and n ≥ 1,

P

(∣∣∣În − I

∣∣∣ ≥ r
)
≤ 2 exp

(
− 2nr2

(b− a)2

)
.

The proof of Proposition 2.1.2 is detailed in Exercise 2.3.1.

1Hoeffding, W. Probability inequalities for sums of bounded random variables, Journal of the American Statistical

Association (1963).
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2.2 Variance reduction

As is discussed in the previous Section, the precision of the Monte Carlo method essentially de-
pends on the ratio σ/

√
n. There are two typical situations in which this ratio may be large:

• sampling from X, or evaluating f at the sample X, may be costly, so the computational
budget n may be limited;

• the standard deviation σ of f(X) may be large with respect to the expectation I of f(X), so
the size of the sample n required to have a good approximation σ/

√
n ≪ |I| may be huge.

An instance of the second situation is the rare event setting: assume that f(x) = 1{x∈A} for some
subset A such that I = P(X ∈ A) ≪ 1: we are trying to estimate the probability of a rare event,
which we prefer to denote by p rather than I. Then σ2 = Var(1{X∈A}) = p(1 − p) ≃ p, so
to reach a relative precision δ, that is to say to have σ/

√
n of order δp, one needs n ≃ 1/(pδ2)

samples. If the probability that we aim to estimate is p = 10−6 then, for a relative precision δ of
1%, this means that the sample must be of size n = 1010.

Exercise 2.2.1. In the rare event setting, what is the expected number of samples that you have to

draw before observing a single realisation of the rare event?

This discussion shows that there is an interest in reducing the variance σ2. In this Section, we
present two approaches to this issue: the control variate method and importance sampling, which
are respectively adapted to the first and second situations described above. In Subsection 2.3.1,
two other methods are studied: the use of antithetic variables and stratified sampling, which are
more concerned with the sampling of X. Last, the splitting algorithm for the estimation of the
probability of rare events is studied in Problem 1.

2.2.1 Control variate

In this Subsection, we assume that in addition to X1, . . . ,Xn, we are able to sample iid random
variables Y1, . . . , Yn whose common expectation E[Y ] is known analytically. Then, for all β ∈ R,

I = E[f(X)] = E[f(X)− βY ] + βE[Y ],

which suggests to approximate I by the estimator

Î
CV,β
n :=

1

n

n∑

i=1

(f(Xi)− βYi) + βE[Y ].

The variance of this estimator is (σCV,β)2/n, where

(σCV,β)2 = Var(f(X)− βY ) = σ2 − 2β Cov(f(X), Y ) + β2 Var(Y ).

We may already remark that if Cov(f(X), Y ) = 0 then (σCV,β)2 is always larger than the vari-
ance σ2 associated with the original Monte Carlo estimator: for the control variate method to be
efficient, it is thus necessary that f(X) and Y be correlated. The choice of β for which (σCV,β)2

is minimal is then

β∗ =
Cov(f(X), Y )

Var(Y )
,

which yields the variance
(σCV,β∗

)2 = σ2
(
1− ρ2

)
,
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where

ρ =
Cov(f(X), Y )√
Var(f(X))Var(Y )

∈ [−1, 1]

is the correlation coefficient between f(X) and Y . As a consequence, the more f(X) and Y
are correlated, the better the variance reduction. Typically, one may choose Y of the form g(X),
where the function g is close to f in regions where X has a high probability to take its values,
while being ‘simpler’ than f , in the sense that E[g(X)] is easier to compute than E[f(X)] – see
Exercise 2.3.4 for an illustration.

In practice, the optimal choice of β depends on the quantity Cov(f(X), Y ) which may need
to be estimated. Let us introduce

Ĉn =
1

n

n∑

i=1

(f(Xi)− În)(Yi − Y n).

The strong Law of Large Numbers shows that

β̂∗
n :=

Ĉn

Var(Y )

converges to β∗ almost surely, and Slutsky’s Lemma then yields the following result.

Proposition 2.2.2 (Control variate method). Let (Xi, Yi)1≤i≤n be a sequence of iid pairs such

that f(Xi), Yi ∈ L
2(P). For all n ≥ 1, let

Î
CV
n :=

1

n

n∑

i=1

(f(Xi)− β̂∗
nYi) + β̂∗

nE[Y ],

with β̂∗
n defined above. The interval

[
Î
CV
n − φ1−α/2

√
(σ̂CV

n )2

n
, ÎCVn + φ1−α/2

√
(σ̂CV

n )2

n

]
,

where

(σ̂CV
n )2 = σ̂2

n

(
1− Ĉ2

n

σ̂2
nVar(Y )

)
→ σ2(1− ρ2),

is an asymptotic confidence interval.

The control variate method is typically suited for cases where the evaluation of f is costly:
it may represent a high-precision numerical code. If a low-precision code g, sometimes called
surrogate model, is available, then using g(X) as a control variate generally provides a good
variance reduction, while E[g(X)] can be estimated by direct Monte Carlo approach with a much
larger sample size than the original one.

2.2.2 Importance sampling

Importance sampling is based on the remark that, for any probability measure Q on E such that
P ≪ Q,

I =

∫

x∈E
f(x)dP (x) =

∫

x∈E
f(x)w(x)dQ(x),
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where the function w is simply the density

w(x) =
dP

dQ
(x).

As a consequence, the quantity

Î
IS
n :=

1

n

n∑

i=1

f(Yi)w(Yi),

where Y1, . . . , Yn are iid with law Q, converges almost surely to I. In fact, the existence of the
density w(x) is only necessary when f(x) 6= 0, so the actual condition on Q is that

1{f(x)6=0}dP (x) ≪ 1{f(x)6=0}dQ(x), (2.3)

and we still denote by w the associated density.

Exercise 2.2.3. Show that if P ≪ Q, then Q satisfies (2.3), but that the converse does not hold

true in general.

The whole game of importance sampling then consists in choosing Q in order to make the
asymptotic variance

(σIS
Q)2 := Var(f(Y )w(Y ))

as small as possible.

Proposition 2.2.4 (Optimal choice of Q). Let I = E[|f(X)|], assume that this quantity is positive,

and define the probability measure Q∗ by

dQ∗(x) =
|f(x)|

I
dP (x).

(i) Q∗ satisfies (2.3) and (σIS
Q∗)2 = I

2 − I
2.

(ii) For any probability measure Q which also satisfies (2.3), (σIS
Q∗)2 ≤ (σIS

Q)2.

(iii) If f has constant sign P -almost everywhere, then (σIS
Q∗)2 = 0.

Proof. As a preliminary remark, we note that for any Q satisfying (2.3),

(σIS
Q )2 = E

[
(f(Y )w(Y ))2

]
− I

2, Y ∼ Q. (2.4)

First, it is easily checked that 1{f(x)6=0}dP (x) has density

w∗(x) = 1{f(x)6=0}
I

|f(x)|

with respect to 1{f(x)6=0}dQ
∗(x), therefore Q∗ satisfies (2.3) and besides, if Y ∗ ∼ Q∗, then

E

[
(f(Y ∗)w∗(Y ∗))2

]
=

∫

x∈E
1{f(x)6=0}|f(x)|2

(
I

|f(x)|

)2

dQ∗(x)

= I
2
∫

x∈E
1{f(x)6=0}dQ

∗(x)

= I
2
,
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which, together with (2.4), proves (i). The point (iii) then immediately follows.
Second, let us fix Q which satisfies (2.3) and denote by w the associated density. By definition

of I and w, and the Cauchy–Schwarz inequality,

I
2
=

(∫

x∈E
|f(x)|1{f(x)6=0}dP (x)

)2

=

(∫

x∈E
|f(x)|w(x)1{f(x)6=0}dQ(x)

)2

≤
∫

x∈E
|f(x)|2w(x)21{f(x)6=0}dQ(x)

= E

[
(f(Y )w(Y ))2

]
,

with Y ∼ Q. Combined with (2.4), this estimate completes the proof of (ii).

In practice it is impossible to implement the method with the optimal measure Q∗ since the
latter depends explicitly on the quantity I, which is likely to be unknown — and, in the case where
f is nonnegative P -almost everywhere, is exactly the quantity I which we aim to estimate. Still,
this lemma suggests that a ‘good’ choice of Q would be one which has a large mass under the
measure |f(x)|dP (x).

Importance sampling is particularly adapted for the estimation of rare event probabilities, an
example of application is proposed in Exercise 2.3.5. In this context, the theory of Large Devia-

tions is a good tool to study the efficiency of the method: this is presented in Problem 2.

2.3 Complements

2.3.1 Exercises

Exercise 2.3.1 (The Hoeffding inequality). Throughout the exercise, we let Y1, . . . , Yn be iid ran-

dom variables which take their values in [0, 1]. We set Zi = Yi − E[Yi] and, for any λ ≥ 0,

define

F (λ) = logE [exp(λZ1)] .

1. Show that F ′(λ) = Eλ[Z1] and F ′′(λ) = Varλ(Z1) for some probability measure Pλ to be

defined.

2. Deduce that, for any λ ≥ 0, E[exp(λZ1)] ≤ exp(λ2/8).

3. Deduce that, for any r ≥ 0 and n ≥ 1,

P

(
n∑

i=1

Zi ≥ r
√
n

)
≤ exp

(
λ2n

8
− λr

√
n

)
.

4. Optimising in λ ≥ 0, conclude that

P

(
n∑

i=1

(Yi − E[Yi]) ≥ r
√
n

)
≤ exp(−2r2),

5. Complete the proof of Proposition 2.1.2.
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6. Under the assumptions of Proposition 2.1.2, compute an approximate confidence interval

for I based on the Hoeffding inequality, and compare the width of this interval with the with

of the approximate confidence interval given by the Bienaymé–Chebychev inequality.

Exercise 2.3.2 (Antithetic variables). Let f : [0, 1] → R be such that

∫ 1

u=0
f(u)2du < +∞.

We study a Monte Carlo method to approximate

I :=

∫ 1

u=0
f(u)du.

1. Let U ∼ U [0, 1]. Show that I =
1

2
(E[f(U)] + E[f(1− U)]).

2. Let (Un)n≥1 be a sequence of independent copies of U . Show that

Î
a
2n :=

1

2n

n∑

i=1

(f(Ui) + f(1− Ui))

converges almost surely to I and compute Var(Îa2n).

3. Let

Î2n :=
1

2n

2n∑

i=1

f(Ui)

be the standard Monte Carlo estimator of I which requires the same number of evaluations

of the function f as Îa2n (but twice more random samples). Show that Var(Îa2n) ≤ Var(Î2n)
if and only if Cov(f(U), f(1− U)) ≤ 0.

4. Assume that f is monotonic. Show that

E [(f(U1)− f(U2))(f(1 − U1)− f(1− U2))] ≤ 0.

Deduce that in this case, Cov(f(U), f(1− U)) ≤ 0.

5. Conclude on the practical interest of the method.

Exercise 2.3.3 (Stratification). Let X be a random variable in R
d with law P and f ∈ L

2(P ).
Let

I =

∫

x∈Rd

f(x)dP (x) = E[f(X)].

We assume that there is a finite partition of Rd into m measurable subsets (Ak)1≤k≤m, called

strates, such that for any k ∈ {1, . . . ,m}:

• pk := P (Ak) = P(X ∈ Ak) is known (and positive);

• we know how to draw random samples (Xk
n)n≥1 under the law P (·|Ak) = P(X ∈ ·|X ∈

Ak).
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For integers n1, . . . , nm ≥ 1 such that n1 + · · ·+ nm = n, we set

Î
s
n :=

m∑

k=1

pkÎ
k
nk
, Î

k
nk

:=
1

nk

nk∑

i=1

f(Xk
i ),

where the samples (X1
i )1≤i≤n1

, . . . , (Xm
i )1≤i≤nm are independent from each other. Last, we

define

∀k ∈ {1, . . . ,m}, µk := E[f(Xk
1 )], σ2

k := Var(f(Xk
1 )).

1. We first study generalities.

(a) Show that

Var(f(X)) =
m∑

k=1

pkσ
2
k +

m∑

k=1

pk

(
µk −

m∑

ℓ=1

pℓµℓ

)2

.

Give an interpretation of this formula.

(b) Compute E[Îsn].

(c) How does Îsn behave when min(n1, . . . , nm) → +∞?

(d) Show that Var(Îsn) =

m∑

k=1

p2kσ
2
k

nk
.

2. We now fix n and look for the optimal allocation of (n1, . . . , nm).

(a) Show that, for any n1, . . . , nm,

(
m∑

k=1

pkσk

)2

≤ n

m∑

k=1

p2kσ
2
k

nk
.

(b) Deduce the optimal allocation (n∗
1, . . . , n

∗
m) in terms of variance (without taking into

account the constraint that nk must be an integer).

(c) What do you think of the practical use of this optimal allocation?

3. We finally study the proportional allocation nk = npk, assuming for simplicity that npk is

an integer.

(a) Show that in this case nVar(Îsn) ≤ Var(f(X)). Interpret this result.

(b) State and prove a Central Limit Theorem for Îsn.

(c) How to choose the strates to reduce the statistical error?

Exercise 2.3.4 (An application of the control variate method). Let X ∼ N (0, 1). For all t > 0,

we define

ft(x) =
1

1 + tx2
,

and set

I = E [ft(X)] =
1√
2π

∫

x∈R

e−x2/2

1 + tx2
dx.

Let X1, . . . ,Xn be independent N (0, 1) variables, and let Yi = 1− tX2
i .

1. Compute E[Y1].
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2. Compare numerically the variances of the Monte Carlo estimator În and of the control

variate estimator ÎCVn .

3. How does this comparison vary with t? What is your interpretation of this fact?

Exercise 2.3.5 (Application of importance sampling). Let X ∼ N (0, 1), and I = P(X ≥ 20).
Compute (numerically) the asymptotic variance of the importance sampling estimators of I ob-

tained by taking:

• q the density of 20 + Y , where Y ∼ E(1);

• q the density of N (20, 1).

Exercise 2.3.6 (Importance sampling for Bernoulli distributions). Let P be the Bernoulli distri-

bution with parameter p. Assume that you want to implement importance sampling to estimate p.

What is the optimal distribution Q on {0, 1}?

Exercise 2.3.7 (Importance sampling with and without normalisation). In the setting of Subsec-

tion 2.2.2, the importance sampling estimator

Î
IS
n :=

1

n

n∑

i=1

f(Yi)w(Yi),

where Y1, . . . , Yn are iid under Q and w(x) = dP
dQ(x), rewrites as the integral of f under the

nonnegative measure

P̂ IS
n :=

1

n

n∑

i=1

w(Yi)δYi .

In general, this measure is not a probability measure, because its total mass 1
n

∑n
i=1w(Yi) may

be different from 1. One may therefore consider the normalised importance sampling estimator

Î
NIS
n :=

n∑

i=1

f(Yi)w(Yi)

n∑

i=1

w(Yi)

,

which is the integral of f under the probability measure

P̂NIS
n :=

n∑

i=1

w(Yi)δYi

n∑

i=1

w(Yi)

.

The goal of this exercise is to study the properties of this estimator. For simplicity, we assume that

f(x) 6= 0 for any x ∈ E.

1. Show that ÎNIS
n converges to I, almost surely.

2. Using the Delta method, show that

lim
n→∞

√
n
(
Î
NIS
n − I

)
= N

(
0, (σNIS

Q )2
)
,

with

(σNIS
Q )2 = Var (w(Y )(f(Y )− I)) .
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3. What is the optimal choice Q∗,NIS of Q which minimises (σNIS
Q )2, and what is the associated

value of (σNIS

Q∗,NIS)
2?

4. We now want to compare (σNIS

Q∗,NIS)
2 with the optimal asymptotic variance I

2 − I
2 of the

standard importance sampling estimator described in Proposition 2.2.4.

(a) What happens if f has constant sign, P -almost everywhere?

(b) Construct an exemple of distribution P and function f for which the normalised esti-

mator has a strictly smaller optimal asymptotic variance than the standard estimator.

2.3.2 Further comments

The deterministic approach described in Subsection 2.1.1 is very basic. There are many more
developed deterministic integration methods, see for instance [5, Chapter 9]. They however all
suffer from the curse of dimensionality.

Hoeffding’s inequality is a typical example of a concentration inequality, which is an impor-
tant research topic in probability and statistics.

The variance reduction methods described in Section 2.2 only focus on decreasing σ. There
are however alternative approaches. One may design sampling schemes which generate sequences
(Xn)n≥1 which are not iid, but more space-filling. This is the basis of Quasi-Monte Carlo meth-
ods. On the other hand, when the sample size is limited by the computational cost of the evaluation
of the function f , surrogate modelling techniques seek an approximate model f̂ which is cheaper
to evaluate and therefore allows one to increase the sample size.

The development of Monte Carlo methods is closely linked to the rare event setting. A nice his-
torical review with bibliographical references is available here: https://perso.lpsm.paris/~aguyader/files/biblioEVT.pdf.
The book [1] also provides details on variance reduction methods, in particular in the rare event
setting.

https://perso.lpsm.paris/~aguyader/files/biblioEVT.pdf
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