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Random number simulation and the

Monte Carlo method





Chapter 1

Probability spaces and random

variables
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In this introductory Chapter we recall the basic notions of measure and probability theory with

which will we work. Many results are stated without a proof; we refer to [6, 9] for details.

1.1 Probability space

1.1.1 Measure theory

We first recall the following basic definitions from measure theory and refer to [9] for comple-

ments. The complement of a set A is denoted by Ac. We call a set countable if it is either finite or

in one-to-one correspondence with the set N = {0, 1, . . .} of nonnegative integers.

Definition 1.1.1 (σ-field). Let Ω be a set. A σ-field on Ω is a collection A of subsets of Ω such

that:

• Ω ∈ A;

• for any A ∈ A, the complement Ac = {ω ∈ Ω : ω 6∈ A} belongs to A;

• for any finite or countably infinite family (An)n≥1 of elements of A, the union ∪n≥1An =
{ω ∈ Ω : ∃n ≥ 1, ω ∈ An} belongs to A.
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If A is a σ-field on Ω, the pair (Ω,A) is called a measurable space. Elements of A are called

measurable sets. Notice that by definition, σ-fields always contain the empty set ∅.

Definition 1.1.2 (Nonnegative measure). Let (Ω,A) be a measurable space. A nonnegative mea-

sure on (Ω,A) is a mapping µ : A → [0,+∞] such that:

• µ(∅) = 0;

• for any finite or countably infinite family (An)n≥1 of pairwise distinct elements of A,

µ(∪n≥1An) =
∑

n≥1 µ(An).

The second property in Definition 1.1.2 is called σ-additivity. A nonnegative measure is called

finite if µ(Ω) < +∞, and σ-finite if there exists a nondecreasing sequence (An)n≥1 of measurable

sets such that µ(An) < +∞ for any n ≥ 1, and ∪n≥1An = Ω.

A measurable set such that µ(A) = 0 is called µ-negligible.

Definition 1.1.3 (σ-field generated by some family of sets). Let C be a family of subsets of Ω. The

smallest σ-field which contains C is called the σ-field generated by C.

We shall often use the following result, which is a consequence of Dynkin’s System Theorem.

Lemma 1.1.4 (Operational form of Dynkin’s System Theorem). Let C be a family of subsets of Ω
and A be the σ-field generated by C. If C is stable by intersection, any two nonnegative and finite

measures on (Ω,A) which coincide on C are necessarily equal.

1.1.2 Probability space

Definition 1.1.5 (Probability space). A probability space is a triple (Ω,A,P) such that:

• Ω is a set;

• A is a σ-field on Ω;

• P is a probability measure on (Ω,A), that is to say a nonnegative and finite measure such

that P(Ω) = 1.

Measurable sets A ∈ A are usually called events. An event A such that P(A) = 1 is called

almost sure. For any events A and B, we recall the elementary identity

P(A ∪B) = P(A) + P(B)− P(A ∩B),

from which one may for instance deduce that, denoting by Ac the complement of A,

P(Ac) = 1− P(A).

We shall sometimes refer to the inequality

P(A ∪B) ≤ P(A) + P(B)

as the union bound.

The following property relies on the σ-additivity property of the measure P, its proof is omit-

ted.

Proposition 1.1.6 (Monotonic continuity). Let (Bn)n≥1 be a sequence of measurable sets.

• If (Bn)n≥1 is nonincreasing, that is to say Bn+1 ⊂ Bn for any n, then

lim
n→+∞

P(Bn) = P (∩n≥1Bn) .
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• If (Bn)n≥1 is nondecreasing, that is to say Bn ⊂ Bn+1 for any n, then

lim
n→+∞

P(Bn) = P (∪n≥1Bn) .

Proposition 1.1.6 has the following practical corollary.

Corollary 1.1.7 (Intersection of countable almost sure events). Let (An)n≥1 be almost sure events.

The event ∩n≥1An is almost sure.

Proof. For any n ≥ 1, set Bn = ∩n
k=1Ak. By construction, the sequence (Bn)n≥1 is nonincreas-

ing, and satisfies ∩n≥1An = ∩n≥1Bn. Besides, we have, for any n,

P(Bc
n+1) = P((Bn ∩An+1)

c)

= P(Bc
n ∪Ac

n+1)

≤ P(Bc
n) + P(Ac

n+1)

= P(Bc
n),

which by an immediate induction shows that P(Bc
n) ≤ P(Bc

1) = P(Ac
1) = 0, and therefore

P(Bn) = 1 for any n. By Proposition 1.1.6, we conclude that

P (∩n≥1An) = P (∩n≥1Bn) = lim
n→+∞

P(Bn) = 1,

which shows that the event ∩n≥1An is almost sure.

1.1.3 Conditional probability

Definition 1.1.8 (Conditional probability). Let B ∈ A be such that P(B) > 0. The conditional

probability given B is the probability measure P(·|B) defined on (Ω,A) by

∀A ∈ A, P(A|B) =
P(A ∩B)

P(B)
.

Notice that (Ω,A,P(·|B)) is a probability space.

Lemma 1.1.9 (Total probability formula). Let us be given a partition of Ω into events (Bn)n≥1.

For any event A,

P(A) =
∑

n≥1

P(A ∩Bn) =
∑

n≥1

P(A|Bn)P(Bn),

with the obvious convention that P(A|Bn)P(Bn) = 0 if P(Bn) = 0.

1.2 Random variables

1.2.1 Definition

In this subsection, we consider measurable functions defined on (Ω,A) and taking their values in

some measurable space (E, E). If E is provided with a topology, we denote by B(E) the Borel

σ-field on E, which is the smallest σ-field containing all open sets.
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Definition 1.2.1 (Random variable). Let (E, E) be a measurable space. A random variable in E
is a measurable function X : Ω → E, that is to say a function such that

∀C ∈ E , X−1(C) := {ω ∈ Ω : X(ω) ∈ C} ∈ A.

The law, or distribution of a random variable X is the probability measure PX defined on (E, E)
by

∀C ∈ E , PX(C) = P
(
X−1(C)

)
.

In other words, it is the pushforward P ◦X−1 of P by X.

The event X−1(C) is usually simply denoted by {X ∈ C}. Given a probability measure P
on E, we shall also write X ∼ P to mean that X is distributed according to P , that is to say that

PX = P . Notice that the triple (E, E , PX ) is a probability space itself.

1.2.2 Density

Definition 1.2.2 (Absolute continuity). Let µ be a nonnegative σ-finite measure on the measurable

space (E, E). A probability measure P on (E, E) is called absolutely continuous with respect to

µ if

∀C ∈ E , µ(C) = 0 ⇒ P (E) = 0.

In this case, we write P ≪ µ.

Theorem 1.2.3 (Radon–Nikodym Theorem). If P ≪ µ, then there exists a measurable function

p : E → [0,+∞) such that

∀C ∈ E , P (C) =

∫

x∈E
1{x∈C}p(x)dµ(x).

The function p is unique up to a µ-negligible set, it is called the density of P with respect to µ
and is also denoted by

p(x) =
dP

dµ
(x),

so that we shall often write dP (x) = p(x)dµ(x) to mean that P has density p with respect to µ.

Obviously, a probability density p with respect to µ necessarily satisfies

∫

x∈E
p(x)dµ(x) = 1,

where the integral is understood in the sense of Lebesgue.

As far as densities are concerned, we shall essentially work in two particular frameworks:

• E = Rd, E is the Borel σ-field B(Rd) and µ is the Lebesgue measure;

• E is countable, E is the power set of E (called the discrete σ-field) and µ =
∑

x∈E δx is the

counting measure on E.

In particular, when a random variable in Rd is said ‘to have density p’ without more precision, it

is implicitly understood that it is with respect to the Lebesgue measure. On the other hand, if a

variable X takes its values in the countable space E endowed with the discrete σ-field, then its law

is characterised by the family of numbers (PX({x}))x∈E , which is called the Probability Mass

Function of X.



1.3 Expectation 7

1.3 Expectation

1.3.1 Definition

For all p ∈ [1,+∞), we denote by L
p(Ω,A,P), or simply L

p(P) when there is no ambiguity on

the underlying measurable space (Ω,A), the set of random variables X : Ω → R such that |X|p
is Lebesgue integrable on Ω. Random variables in L

1(P) are simply called integrable.

Definition 1.3.1 (Expectation). Let X ∈ L
1(P). The expectation of X is the Lebesgue integral

E[X] :=

∫

ω∈Ω
X(ω)dP(ω).

We recall that if X is a random variable in E then (E, E , PX ) is a probability space, so that

the spaces Lp(PX) = L
p(E, E , PX ) are defined similarly to L

p(P) = L
p(Ω,A,P).

Remark 1.3.2. When X is nonnegative but not necessarily in L
1(P), the integral in Defini-

tion 1.3.1 still makes sense in [0,+∞]. Therefore, in this case, we shall sometimes write E[X]
as an element of [0,+∞], keeping in mind that X ∈ L

1(P) if and only if E[X] < +∞. This

convention also includes the case of random variables with may take the value +∞, such as series

of nonnegative random variables. In the latter case, it is easily checked that if E[X] < +∞ then

necessarily X < +∞, almost surely1 — but, of course, the converse statement does not hold in

general.

Theorem 1.3.3 (Transfer Theorem). Let X be a random variable in E and f : E → R be a

measurable function. Then f(X) ∈ L
1(P) if and only if f ∈ L

1(PX), and

E[f(X)] =

∫

ω∈Ω
f(X(ω))dP(ω) =

∫

x∈E
f(x)PX(dx).

In addition, if X has density p with respect to some σ-finite measure µ on E, then

E[f(X)] =

∫

x∈E
f(x)p(x)dµ(x).

1.3.2 Variance and moments

Lemma 1.3.4 (Jensen inequality). Let X ∈ L
1(P) and φ : R → R be a convex function. Then

E[φ(X)] is well-defined in (−∞,+∞] and

φ(E[X]) ≤ E[φ(X)].

q Exercise 1.3.5. Prove Lemma 1.3.4.

For any p ∈ [1,+∞), the quantity E[|X|p] is called the moment of order p of the random

variable X.

q Exercise 1.3.6. Check that if 1 ≤ p ≤ q, then L
q(P) ⊂ L

p(P) and E[|X|p]1/p ≤ E[|X|q]1/q .

Definition 1.3.7 (Variance). The variance of a random variable X ∈ L
2(P) is defined by

Var(X) = E
[
(X − E[X])2

]
= E[X2]− E[X]2.

Notice that, by Exercise 1.3.6, the assumption that X ∈ L
2(P) ensures that E[X] is well-

defined.

q Exercise 1.3.8. Show that, for any X ∈ L
2(P), for any a, b ∈ R, Var(aX + b) = a2 Var(X).

1See Exercise 1.4.1 for an illustrative example.
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1.3.3 Independence

Definition 1.3.9 (Independence). Let X1, . . . ,Xk be random variables taking their values in re-

spective measurable spaces (E1, E1), . . . , (Ek, Ek). These variables are called independent if, for

any C1 ∈ E1, . . . , Ck ∈ Ek,

P(X1 ∈ C1, . . . ,Xk ∈ Ck) = P(X1 ∈ C1) · · · P(Xk ∈ Ck).

It is clear that, equivalently, the random variables X1, . . . ,Xk are independent if the law

of (X1, . . . ,Xk) ∈ E1 × · · · × Ek is the product measure PX1 ⊗ · · · ⊗ PXk
. When dPXi =

pi(xi)dµi(xi) for any i, the latter product measure has density p1(x1) · · · pk(xk) with respect to

the product measure µ1 ⊗ · · · ⊗ µk. Besides, this characterisation shows that if the random vari-

ables X1, . . . ,Xk are independent, then for any functions f1 ∈ L
1(PX1), . . . , fk ∈ L

1(PXk
), the

random variable f1(X1) · · · fk(Xk) is integrable and satisfies

E [f1(X1) · · · fk(Xk)] = E [f1(X1)] · · ·E [fk(Xk)] .

q Exercise 1.3.10. For any independent variables X,Y ∈ L
2(P), show that Var(X + Y ) =

Var(X) + Var(Y ). What is the value of Var(X − Y )?

The notion of independence can be extended to infinitely many random variables as follows:

an arbitrary family (Xi)i∈I of random variables is called independent if, for any finite subset of

indices {i1, . . . , ik}, the variables Xi1 , . . . ,Xik are independent. When, in addition, all spaces Ei

are the same and all variables Xi have the same law, then the family is called independent and

identically distributed, which we shall abbreviate to iid.

↸ Exercise 1.3.11 (Independence of events). A collection of events (Ai)i∈I is called independent

if the random variables (1Ai)i∈I are independent.

1. Show that two events A1 and A2 are independent if and only if P(A1∩A2) = P(A1)P(A2).
2. Show that if k ≥ 3, the identity P(A1 ∩ · · · ∩ Ak) = P(A1) · · · P(Ak) is necessary but not

sufficient for A1, . . . , Ak to be independent.

Notice that the first question in Exercise 1.3.11 shows in particular that two events A and B,

with P(B) > 0, are independent if and only if P(A|B) = P(B): the knowledge that the event B
is realised does not affect the probability of A.

1.3.4 Transformation of random variables

A common problem in practical applications is the following: given a random variable X ∈ E
with law PX and a measurable function φ : E → F , how to compute the law of Y = φ(X)
(which, in technical terms, is the pushforward PX ◦ φ−1 of PX by φ)? For example, if E = Rd

and F = Rk, and X has density pX with respect to the Lebesgue measure on Rd, does Y possess

a density with respect to the Lebesgue measure on Rk, and if so, can we get an explicit expression

for this density?

The dummy function method provides a guideline to answer this question. Assume indeed

that E = Rd and X has density pX with respect to the Lebesgue measure on Rd. Then, by

Theorem 1.3.3, for any measurable and bounded function f : F → R, we have

E [f(Y )] = E [f(φ(X))] =

∫

x∈Rd

f(φ(x))pX(x)dx.
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Assume that by a suitable change of variable x → y = φ(x), one is able to rewrite the right-hand

side under the form ∫

y∈F
f(y)q(y)dµ(y)

for some σ-finite measure µ on F . Then necessarily q is a probability density with respect to µ,

and it is the density of Y since we have written that

E[f(Y )] =

∫

y∈F
f(y)q(y)dµ(y)

for all bounded and measurable functions f .

If pX vanishes outside some open subset U of Rd and φ is a C1-diffeomorphism between U
and another open subset V of Rd, then the change of variable is immediate and yields

∫

x∈Rd

f(φ(x))pX(x)dx =

∫

x∈U
f(φ(x))pX(x)dx =

∫

y∈V
f(y)pX(φ−1(y))|Jφ−1(y)|dy,

where Jφ−1 is the Jacobian determinant of φ−1. In this case, we deduce that Y has density

1{y∈U}pX(φ−1(y))|Jφ−1(y)| with respect to the Lebesgue measure on Rd.

If φ is not bijective, then further manipulations of the integral in x are generally needed to

reduce to a case where a bijective change of variable can be applied.

↸ Exercise 1.3.12. Let X and Y be two independent random variables in Rd with respective

densities p and q. Show that Z = X + Y has density

p ∗ q(z) =
∫

y∈Rd

p(z − y)q(y)dy.

1.4 Complement: the Borel–Cantelli Lemmas

1 Exercise 1.4.1 (Borel–Cantelli Lemma). Let (An)n≥1 be a sequence of events which satisfies

∑

n≥1

P(An) < +∞. (1.1)

1. Show that the [0,+∞]-valued random variable

X =
∑

n≥1

1An

is almost surely finite.

2. Deduce that the event

lim sup
n→+∞

An = {ω ∈ Ω : ∀N ≥ 1,∃n ≥ N : ω ∈ An}

has probability 0.

In other words, we have proved that under the condition (1.1), the set of ω which only belong to

finitely many events An is almost sure. This statement is called the Borel–Cantelli Lemma. To

complete the exercise, we show that the converse statement does not hold true in general.

3. Consider Ω = [0, 1] provided with the Borel σ-field and P the Lebesgue measure. Let An =
[0, ǫn] for some sequence ǫn which converges to 0. Show that P(lim supn→+∞An) = 0,

whether
∑

n≥1 P(An) is finite or not.



10 Probability spaces and random variables

1 Exercise 1.4.2 (Second Borel–Cantelli Lemma). Let (An)n≥1 be a sequence of independent

events, which satisfies the condition that

∑

n≥1

P(An) = +∞. (1.2)

Our aim is to show that in this case, the event lim supn→+∞An introduced in Exercise 1.4.1 is

almost sure. Thus, this provides a partial converse to the Borel–Cantelli Lemma, in the case where

the events are independent. In fact, this shows the stronger statement that in this case, the event

lim supn→+∞An has probability either 0 or 1, depending on whether (1.1) or (1.2) holds. This

result is called the Borel Zero-One Law.

We denote by B the complement of lim supn→+∞An.

1. For any N ≥ 1, let BN = ∩n≥NA
c
n. Show that

P(B) ≤
∑

N≥1

P(BN ).

2. For any N ≥ 1, show that

P(BN ) ≤ lim inf
k→+∞

N+k−1∏

n=N

(1− P(An)).

3. Deduce that, for any N ≥ 1, P(BN ) = 0.
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In this Chapter, we introduce some classical laws (discrete or with density) and put an empha-

sis on the numerical simulation of associated random variables.

2.1 Random number simulation

2.1.1 Pseudo-random number generation

It is an obvious fact that a deterministic algorithm cannot generate a truly random sequence, as

was written by von Neumann: ‘Anyone who attempts to generate random numbers by determin-

istic means is, of course, living in a state of sin.’1. Hence, pseudo-random number generators

are deterministic algorithms which, starting from a seed x0, return a sequence x1, x2, . . . of num-

bers which exhibits the same statistical properties as a sequence of independent and identically

distributed random numbers.

Because of the finiteness of the memory of a computer, a pseudo-random number generator

is necessarily ultimately periodic, that is to say that there exists t ≥ 0, which may depend on x0,

such that for n large enough, xn+t = xn. In the sequel we call maximal period the largest value

1Quoted in D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edition,

Addison-Wesley, 1998.
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of t over all possible values of x0. Since ‘truly random’ sequences should not be periodic, it is an

intuitive statement that a ‘good’ pseudo-random number generator should have a large maximal

period.

We first present a class of pseudo-random generators which are relatively easy to describe.

Linear congruential generators were introduced in 1948 and depend on the following integer

parameters:

• a modulus m > 0;

• a multiplier 0 < a < m;

• an increment 0 ≤ c < m.

The seed is an integer x0 ∈ {0, . . . ,m − 1}. The sequence (xn)n≥1 is then computed according

to the recurrence relation

xn+1 = axn + c mod m,

which produces integer numbers in {0, . . . ,m − 1}. Typically, taking m = 232 allows to get

integers encoded on 32 bits.

In general, the maximal period of linear congruential generators (which is at most m) can be

computed. Yet, their quality remains very sensitive to the choice of a and m. More complex

pseudo-random generators have thus been elaborated. The most widely used generator in current

scientific computing languages is called Mersenne Twister. It was developed in 19972, it is based

on the arithmetic properties of Mersenne numbers and its period is 219937 − 1 ≃ 4.3 · 106001.

Whatever the chosen pseudo-random number generator, let us take as granted that given a seed

x0 ∈ {0, . . . ,m− 1}, it returns a sequence (xn)n≥1 of numbers in {0, . . . ,m− 1}, which has the

following statistical properties:

(i) they look independent in the sense of Definition 1.3.9;

(ii) they look uniformly distributed in {0, . . . ,m − 1} in the sense that each integer x ∈
{0, . . . ,m− 1} appears in the sequence (xn)n≥1 with equal frequency 1/m.

DefiningUn = xn/m ∈ [0, 1), we thus obtain a sequence of pseudo-random independent variables

such that, for any n ≥ 1, for any interval C ⊂ [0, 1],

P(Un ∈ C) =
1

m

m−1∑

x=0

1{x/m∈C} ≃
∫ 1

u=0
1{u∈C}du.

This motivates the following definition.

Definition 2.1.1 (Uniform distribution). A random variable U in [0, 1] is called uniformly dis-

tributed on [0, 1] if it has the density

p(u) = 1{u∈[0,1]}.

We denote U ∼ U [0, 1].

q Exercise 2.1.2. Let U ∼ U [0, 1]. Compute E[U ] and Var(U).

↸ Exercise 2.1.3. LetU ∼ U [0, 1]. Show that the random variable 1−U has the same distribution

as U .

Remark 2.1.4 (Difference between variable and law). Exercise 2.1.3 allows to highlight the dif-

ference between the notions of random variable and their law: the random variables U and 1−U
are different, and in particular U 6= 1− U , almost surely; however they have the same law.

2Matsumoto, M. and Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom

number generator, ACM Transactions on Modeling and Computer Simulations (1998).
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From now on, we shall thus work under the assumption that our computer is able to generate

independent variables (Un)n≥1 which are uniformly distributed on [0, 1]. In the sequel of this

section, we study how to use this sequence in order to sample a random variable X with a given

distribution.

Example 2.1.5 (Uniform distribution). The uniform distribution on the interval [a, b], denoted by

U [a, b], is the probability measure with density

p(x) =
1

b− a
1{x∈[a,b]}.

If U ∼ U [0, 1], then X := a+ (b− a)U ∼ U [a, b].
In Example 2.1.5, the proof of the fact that X ∼ U [a, b] relies on the change-of-variable

technique explained in Subsection 1.3.4.

Remark 2.1.6. Most scientific computing languages allow you to fix the seed of your pseudo-

random number generator. This makes your code no longer random but this may prove very help-

ful for reproducibility, comparison of your code and experimental results with others, or simply

debugging.

2.1.2 Classical discrete distributions

We first introduce several discrete distributions.

Definition 2.1.7 (Bernoulli, binomial and geometric distributions). Let p ∈ [0, 1].
(i) A random variable X in {0, 1} such that P(X = 1) = p and P(X = 0) = 1− p is called a

Bernoulli random variable with parameter p. We denote X ∼ B(p).
(ii) Let n ≥ 1 and X1, . . . ,Xn be independent Bernoulli random variables with parameter

p. The random variable S := X1 + · · · + Xn is called a binomial random variable with

parameters n and p. We denote S ∼ B(n, p).
(iii) Assume that p ∈ (0, 1] and let (Xi)i≥1 be a sequence of independent Bernoulli random

variables with parameter p. The random variable T := min{i ≥ 1 : Xi = 1} is called a

geometric random variable with parameter p. We denote T ∼ Geo(p).
↸ Exercise 2.1.8 (Properties of Bernoulli, binomial and geometric distributions). Let X, S and

T be as in Definition 2.1.7.

1. Compute E[X] and Var(X).
2. Compute E[S] and Var(S).
3. Show that, for any k ∈ {0, . . . , n}, P(S = k) =

(
n
k

)
pk(1− p)n−k.

4. Show that, for any k ≥ 1, P(T = k) = p(1− p)k−1.

5. Compute E[T ] and Var(T ).

The numerical sampling of the Bernoulli, binomial and geometric distributions is addressed in

the next exercise.

q Exercise 2.1.9. Let (Un)n≥1 be a sequence of independent uniform variables on [0, 1].
1. Using an if test, how to draw a random variable X ∼ B(p)?
2. Using a for loop, how to draw a random variable S ∼ B(n, p)?
3. Using a while loop, how to draw a random variable T ∼ Geo(p)?
The following exercise is attributed to Von Neumann.

1 Exercise 2.1.10 (Unbiasing a coin toss). Assume that you have a random number generator

which returns independent Bernoulli variables with an unknown parameter p ∈ (0, 1). How to

use it to draw a Bernoulli random variable with parameter 1/2?
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2.1.3 The inverse CDF method

LetX be a random variable taking its values in some finite setE, and let (px)x∈E be its probability

mass function (that is to say, px = P(X = x)). A somehow intuitive algorithm allowing to sample

X from a U [0, 1] random variable U is the following:

1. label the elements of E in some arbitrary order x1, . . . , xm;

2. select the unique index i ∈ {1, . . . ,m} such that px1 + · · ·+ pxi−1 < U ≤ px1 + · · ·+ pxi ;

3. return X = xi.
It is clear that we have

P(X = xi) = P(px1 + · · ·+ pxi−1 < U ≤ px1 + · · ·+ pxi) = pxi ,

so that X has the correct law.

The generalisation of this approach to arbitrary, real-valued random variables, is based on the

introduction of the Cumulative Distribution Function of such variables.

Definition 2.1.11 (Cumulative Distribution Function). Let X be a real-valued random variable.

The Cumulative Distribution Function (CDF) of X is the function FX : R → [0, 1] defined by

∀x ∈ R, FX(x) := P(X ≤ x).

Remark 2.1.12. Since the Borel σ-field on R is generated by the intervals of the form (−∞, x],
by Lemma 1.1.4, two random variables have the same CDF if and only if they have the same law.

↸ Exercise 2.1.13 (Properties of CDFs). Let FX be the CDF of a random variable X. Show that:

1. FX is nondecreasing;

2. limx→−∞ FX(x) = 0, limx→+∞ FX(x) = 1;

3. FX is right continuous and has left limits.

When X has a density p, Definition 2.1.11 yields the identity

∀x ∈ R, FX(x) =

∫ x

y=−∞
p(y)dy,

which shows that FX is continuous and dx-almost everywhere differentiable, with F ′
X = p.

Definition 2.1.14. Let FX be the CDF of a random variable X. The pseudo-inverse of FX is the

function F−1
X : [0, 1] → [−∞,+∞] defined by

∀u ∈ [0, 1], F−1
X (u) := inf{x ∈ R : FX(x) ≥ u},

with the conventions that inf R = −∞ and inf ∅ = +∞.

The pseudo-inverse of a CDF is nondecreasing, left continuous with right limits. When FX

is continuous and increasing, then F−1
X is the usual inverse bijection of FX . In general, it need

not hold that FX(F−1
X (u)) = u or F−1

X (FX(x)) = x, but the following weaker statement remains

true.

Lemma 2.1.15 (CDF and pseudo-inverse). Let FX be the CDF of a random variable X. For all

x ∈ R, u ∈ (0, 1), we have F−1
X (u) ≤ x if and only if u ≤ FX(x).

Proof. Since FX is right continuous, for any u ∈ (0, 1) the set {x ∈ R : FX(x) ≥ u} is closed,

therefore FX(F−1
X (u)) ≥ u. Since FX is nondecreasing, we deduce that if F−1

X (u) ≤ x then

u ≤ FX(x). Conversely, if u ≤ FX(x), then by the definition of F−1
X , F−1

X (u) ≤ x.
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Corollary 2.1.16 (The inverse CDF method). Let FX be the CDF of a random variable X, and

let U ∼ U [0, 1]. The random variables X and F−1
X (U) have the same distribution.

Proof. By Lemma 2.1.15 and Definition 2.1.1, for all x ∈ R,

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) =

∫ FX(x)

u=0
du = FX(x),

so that the random variablesX and F−1
X (U) have the same CDF. From Remark 2.1.12 we conclude

that they have the same distribution.

We illustrate this method on the exponential distribution.

Definition 2.1.17 (Exponential distribution). Let λ > 0. A random variable X in [0,+∞) is

called exponential with parameter λ if it has the density

p(x) = 1{x>0}λe
−λx.

We denote X ∼ E(λ).

↸ Exercise 2.1.18 (Properties of exponential distributions). Let X ∼ E(λ).
1. Compute E[X] and Var(X).
2. If a > 0, what is the law of aX?

An immediate computation shows that the CDF of X writes

FX(x) =

{
0 if x ≤ 0,

1− e−λx otherwise.

As a consequence, for all u ∈ [0, 1],

F−1
X (u) = − 1

λ
ln(1− u),

with the obvious convention that ln 0 = −∞. Therefore, to draw a random variable X ∼ E(λ),
one may take a uniform variable U on [0, 1] and return − 1

λ ln(1 − U). Notice that, by Exer-

cise 2.1.3, it is also equivalent to return − 1
λ ln(U).

↸ Exercise 2.1.19 (Other standard densities). Apply the inverse CDF method to the following

standard probability densities.

1. The Pareto distribution with parameter α > 0, with density 1{x>1}αx
−(α+1).

2. The Cauchy distribution with parameter a > 0, with density a
π

1
a2+x2 .

3. The Weibull distribution with parameter m > 0, with density 1{x>0}mx
m−1 exp(−xm).

4. The Rayleigh distribution with parameter σ2 > 0, with density 1{x>0}
x
σ2 exp(− x2

2σ2 ).

↸ Exercise 2.1.20 (Back to geometric distribution). Let X ∼ E(λ).
1. What is the law of ⌈X⌉?3

2. Deduce an algorithm which returns a Geo(p) random variable with a single uniform random

variable U .

3For any x ∈ R, ⌈x⌉ denotes the unique integer such that ⌈x⌉ − 1 < x ≤ ⌈x⌉.
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↸ Exercise 2.1.21 (Poisson distribution). A random variable N ∈ N is distributed according to

the Poisson distribution with parameter λ > 0 if, for any k ∈ N,

P(N = k) = e−λλ
k

k!
.

We denote N ∼ P(λ).

1. Compute E[N ] and Var(N).
2. Show that if (Sn)n≥1 is a sequence of binomial random variables such that Sn ∼ B(n, pn)

with npn → λ, then for all k ≥ 0, P(Sn = k) → P(N = k). Which interpretation of the

Poisson distribution can you deduce?

3. Let (Xi)i≥1 be a sequence of independent exponential random variables with parameter λ.

Show that inf{n ≥ 0 : X1 + · · · +Xn+1 ≥ 1} ∼ P(λ).
4. Deduce an algorithm to draw a random variable N ∼ P(λ) using a sequence (Ui)i≥1 of

independent uniform variables on [0, 1].

q Exercise 2.1.22. Show that if the CDF FX of X is continuous, then FX(X) ∼ U [0, 1].

2.1.4 Gaussian random variables

We recall that the Gauss integral is equal to4

∫

x∈R
exp

(
−x

2

2

)
dx =

√
2π.

Definition 2.1.23 (Standard Gaussian variables). A random variable G in R is a standard Gaussian

variable if it has the density

1√
2π

exp

(
−x

2

2

)
.

q Exercise 2.1.24. If G is a standard Gaussian variable, show that G ∈ L
p(P) for any p ∈

[1,+∞) and compute E[G] and Var(G).

It follows from this exercise that for any µ, σ ∈ R, the random variable X = µ+ σG satisfies

E[X] = µ and Var(X) = σ2. This remark is used in the next definition.

Definition 2.1.25 (Gaussian variable). IfG is a standard Gaussian variable, then for any µ, σ ∈ R,

the random variable

X = µ+ σG

is called a Gaussian random variable with mean µ and variance σ2. Its law is denoted by N (µ, σ2).

Gaussian variables are also called normal. The fact that the law of X only depends on σ
through σ2 is justified by the following result.

q Exercise 2.1.26. Show that if X ∼ N (µ, σ2) with σ2 > 0, then X has density

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

4Do not hesitate to redo the computation just to be sure that you still know how to!



2.1 Random number simulation 17

We insist on the fact that the definition of Gaussian random variables also includes the case

where σ = 0, in which case X is the almost surely constant random variable equal to µ. In this

case, the law of X is the Dirac measure δµ and therefore it does not have a density.

By definition, the problem of sampling from Gaussian distributions reduces to the case of the

standard Gaussian distribution. Let Φ : R → [0, 1] denote its CDF, given by

Φ(x) =
1√
2π

∫ x

y=−∞
exp

(
−y

2

2

)
dy.

It is known that Φ cannot be expressed in terms of usual functions, such as polynomials, exponen-

tials or logarithms. Hence the inverse CDF method cannot be applied in the present case. We shall

present an ad hoc approach, called the Box–Muller method.

Proposition 2.1.27 (Box–Muller method). Let R ∼ E(1/2) and Θ ∼ U [0, 2π] be independent

random variables. The random variables

X :=
√
R cosΘ, Y :=

√
R sinΘ,

are independent and follow the standard Gaussian distribution.

Proof. We use the dummy function method introduced in Subsection 1.3.4 and let f : R2 → R

be measurable and bounded. Since R and Θ are independent, the law of the pair (R,Θ) is the

product of the marginal densities, and therefore

E[f(X,Y )] = E

[
f
(√

R cosΘ,
√
R sinΘ

)]

=

∫

ω∈Ω
f(
√
R(ω) cos(Θ(ω)),

√
R(ω) sin(Θ(ω)))dP(ω)

=

∫ +∞

r=0

∫ 2π

θ=0
f(
√
r cos θ,

√
r sin θ)

dθ

2π

1

2
e−r/2dr.

Using the polar change of coordinates x =
√
r cos θ, y =

√
r sin θ in the right-hand side, we get

E[f(X,Y )] =

∫

x,y∈R
f(x, y)

1

2π
exp

(
−x

2 + y2

2

)
dxdy,

which shows that the pair (X,Y ) has density

1

2π
exp

(
−x

2 + y2

2

)
=

1√
2π

exp

(
−x

2

2

)
1√
2π

exp

(
−y

2

2

)
,

which implies that X and Y are independent standard Gaussian variables.

Since both R and Θ can be sampled using the inverse CDF method, Proposition 2.1.27 pro-

vides a method to sample X and Y from two independent uniform random variables on [0, 1].

Remark 2.1.28 (What does my computer really do?5). The Box–Muller method is used by NumPy’s

random.standard_normal function to generate Gaussian variables. Its newer random number gen-

erator class, called Generator, uses another method called the Ziggurat algorithm, which is based

on the rejection method described in the next Subsection. In contrast, the statistical software R

uses the inverse CDF method to generate Gaussian samples, with a numerical approximation of

the function Φ−1.

/ You may implement both the Box–Muller method and the Ziggurat algorithm in the Note-

book Ziggurat.ipynb available on the course’s webpage.

5According to the blog post https://medium.com/mti-technology/how-to-generate-gaussian-samples-3951f2203ab0.

https://medium.com/mti-technology/how-to-generate-gaussian-samples-3951f2203ab0
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2.1.5 Rejection sampling

We start with the following simple question: given a bounded subset D of Rd with positive

Lebesgue measure, how to draw a point X uniformly in D, that is to say according to the den-

sity

p(x) =
1

|D|1{x∈D},

where |D| denotes the Lebesgue measure of D?

IfD is a rectangle, that is to say a Cartesian product
∏d

i=1[ai, bi] of intervals, in which case it is

actually more convenient to denote it by R, then it is easily checked that the vector (X1, . . . ,Xd)
of independent coordinates, such that each Xi is uniformly distributed on [ai, bi], is uniformly

distributed on R.

In the general case, an intuitive procedure can be formulated as follows (see also Figure 2.1):

(i) start to ‘frame’ D into a rectangle R ⊃ D;

(ii) draw X uniformly in R;

(iii) if X ∈ D then return it, otherwise restart at Step (ii).

D

R +
+

+

+

+

+

+

Figure 2.1: The domain D framed into a rectangle R. Random points are drawn in R, only those

falling into D are kept.

Let us prove that this procedure produces a correct result. Let X1,X2, . . . be independent

random variables uniformly distributed in R, and N := inf{n ≥ 1 : Xn ∈ D}, so that the

algorithm returns the random variable XN . We may already remark that the law of N is easy to

compute.

q Exercise 2.1.29. Show that N ∼ Geo(|D|/|R|).

In particular, E[N ] = |R|/|D| so the smaller R, the faster the algorithm, which is a reasonable

statement. As far as the law of XN is concerned, let us take C ∈ B(Rd) and compute

P(XN ∈ C) =
+∞∑

n=1

P(Xn ∈ C,N = n)

=
+∞∑

n=1

P(X1 6∈ D, . . . ,Xn−1 6∈ D,Xn ∈ C ∩D).
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Since the random variables X1, . . . ,Xn are independent, each term of the sum rewrites

P(X1 6∈ D, . . . ,Xn−1 6∈ D,Xn ∈ C ∩D) = P(X1 6∈ D) · · · P(Xn−1 6∈ D)P(Xn ∈ C ∩D)

=

(
1− |D|

|R|

)n−1 ∫

x∈R
1{x∈C∩D}

dx

|R|

=

(
1− |D|

|R|

)n−1 |D|
|R|

∫

x∈Rd

1{x∈C}p(x)dx,

where p denotes the uniform density on D. Summing over n, we deduce that

P(XN ∈ C) =

∫

x∈Rd

1{x∈C}p(x)dx,

which shows that XN has density p.

↸ Exercise 2.1.30. Show that the random variables XN and N are independent.

This rejection method can be generalised to non-uniform densities as follows.

Theorem 2.1.31 (Rejection sampling). Let p : Rd → [0,+∞) be a probability density. Assume

that there exist a probability density q : Rd → [0,+∞) and k ≥ 1 such that, dx-almost every-

where, p(x) ≤ kq(x). Let (Xn)n≥1 be a sequence of independent random variables in Rd with

density q, and (Un)n ≥1 be a sequence of independent random variables uniformly distributed in

[0, 1], independent from (Xn)n≥1. Let

N := inf{n ≥ 1 : kq(Xn)Un ≤ p(Xn)}.

We have the following results:

(i) N ∼ Geo(1/k);
(ii) XN has density p;

(iii) N and XN are independent.

The proof of Theorem 2.1.31 follows from the same computation as in the example of uniform

distributions, for which q is the uniform distribution on the rectangle, and k = |R|/|D|. In fact, at

a slightly more conceptual level, it can be seen as a consequence of this example. Indeed, set

D = {(x, y) ∈ Rd × R : 0 ≤ y ≤ p(x)},

and

R = {(x, y) ∈ Rd × R : 0 ≤ y ≤ kq(x)}.
Since these sets have respective d+1-dimensional Lebesgue measure 1 and k, the uniform density

thereon is well-defined. Moreover, the following two points are easy to check:

• if X has density q and U ∼ U [0, 1] is independent from X, then (X, kq(X)U) is uniformly

distributed in R;

• if (X,Y ) is uniformly distributed in D then X has marginal density p.

As a consequence, the rejection algorithm described in Theorem 2.1.31 is exactly the rejection

algorithm for uniform densities, where one generates uniform samples (Xn, kq(Xn)Un) in R and

keeps the first which is in D, that is to say such that kq(Xn)Un ≤ p(Xn).

Remark 2.1.32. Theorem 2.1.31 can easily be generalised to the case where one wants to draw

X from a probability measure P on some abstract space E, and has access to samples under

Q ≫ P , with dP
dQ ≤ k, Q-almost everywhere. Then the statement of Theorem 2.1.31 remains in

force, with N defined as the first index for which kUn ≤ dP
dQ(Xn).
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Rejection sampling is useful when one is not able to sample directly from p, but can find q
such that p ≤ kq and sampling from q is easier. Just like in the example of uniform distributions,

the smaller k, the faster the algorithm, therefore from a computational point of view it is of interest

to take q as a ‘good approximation’ of p.

↸ Exercise 2.1.33 (Gamma distribution). The Gamma distribution with (shape) parameter a > 0
is the probability measure on R with density

p(x) = 1{x>0}
1

Γ(a)
xa−1e−x,

where Γ is Euler’s function

Γ(a) :=

∫ +∞

x=0
xa−1e−xdx.

We assume that a > 1 and want to implement the rejection sampling method with q the density of

the exponential distribution with parameter λ. Which value of λ should we take? What will be the

resulting value of k?

2.2 Random vector simulation

In this section, we consider the issue of simulating random vectors, and in particular Gaussian

vectors. For any p ≥ 1, we denote by L
p(P;Rd) the set of random vectors whose coordinates are

random variables in L
p(P). If X = (X1, . . . ,Xn) ∈ L

1(P;Rd), we denote by E[X] the vector

(E[X1], . . . ,E[Xd]).

2.2.1 Covariance

Definition 2.2.1 (Covariance between two random variables). Let X,Y ∈ L
2(P). The covariance

between X and Y is defined by

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

It is clear that the covariance is symmetric and bilinear on L
2(P), and that

Cov(X,X) = Var(X).

Besides, we have the formula

Var(X + Y ) = Var(X) + 2Cov(X,Y ) + Var(Y ),

and the Cauchy–Schwarz inequality yields

|Cov(X,Y )| ≤
√

Var(X)Var(Y ).

The latter inequality shows that the correlation coefficient between X and Y , defined by

ρ(X,Y ) :=
Cov(X,Y )√
Var(X)Var(Y )

,

is always between −1 and 1.

q Exercise 2.2.2. 1. Show that, if X and Y are independent, then Cov(X,Y ) = 0.



2.2 Random vector simulation 21

2. Let X ∼ N (0, 1) and Y = X2. Compute Cov(X,Y ) on the one hand, and determine

whether X and Y are independent on the other hand.

Definition 2.2.3 (Covariance matrix). Let X = (X1, . . . ,Xd) ∈ L
2(P;Rd). The covariance

matrix of X is the d× d matrix Cov[X] with coefficients Cov(Xi,Xj).

Clearly, a covariance matrix is symmetric. Exercise 2.2.4 below shows that it is also nonnega-

tive. We shall see in Proposition 2.2.18 that, conversely, any symmetric and nonnegative matrix is

the covariance matrix of a (Gaussian) random vector.

q Exercise 2.2.4. Show that if X ∈ L
2(P;Rd) has covariance matrix K , then for any u ∈ Rd,

Var(〈u,X〉) = 〈u,Ku〉.

q Exercise 2.2.5. Let X ∈ L
2(P;Rd) with covariance matrix K , and let b ∈ Rk, A ∈ Rk×d.

Show that

Cov[b+AX] = AKA⊤.

2.2.2 Characteristic function

The characteristic function is a useful tool to study random vectors.

Definition 2.2.6 (Characteristic function). Let X ∈ Rd be a random vector. Its characteristic

function is the function ΨX : Rd → C defined by

∀u ∈ Rd, ΨX(u) = E

[
ei〈u,X〉

]
= E [cos(〈u,X〉)] + iE [sin(〈u,X〉)] .

By Theorem 1.3.3, we get that

∀u ∈ Rd, ΨX(u) =

∫

x∈Rd

ei〈u,x〉dPX(x),

so that up to sign change and dilation, the characteristic function of X coincides with the Fourier

transform of the measure PX . Since the latter is injective, we deduce the following important

property.

Proposition 2.2.7 (Characterisation of the law). Two random vectors X and Y in Rd have the

same law if and only if

∀u ∈ Rd, ΨX(u) = ΨY (u).

q Exercise 2.2.8. Let X,Y be two independent random vectors. Show that, for any u ∈ Rd,

ΦX+Y (u) = ΦX(u)ΦY (u).

↸ Exercise 2.2.9. Compute the characteristic function of X when X ∼ B(p), B(n, p), Geo(p),
P(λ), U [a, b], E(λ).

The characteristic function of Gaussian variables plays a central role in the sequel of this sec-

tion, but its direct computation requires to compute an integral along a complex-valued line, which

is beyond the scope of these notes. A more elementary approach is proposed in Exercise 2.2.11

below. It first requires the following technical statement, which will also be used to prove the

Central Limit Theorem in Chapter 3.
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Lemma 2.2.10 (Derivatives of the characteristic function). If X ∈ L
p(P;Rd) for some integer

p ≥ 1, then ΨX is of class Cp on Rd and, for any multi-index q = (q1, . . . , qd) with |q| =
q1 + · · · + qd ≤ p,

∀u ∈ Rd,
∂|q|ΨX

∂uq11 · · · ∂uqdd
(u) = i|q|E

[
Xq1

1 · · ·Xqd
d ei〈u,X〉

]
.

Proof. The proof consists in the application of a standard derivative-under-the-integral argument.

To proceed, we note that almost surely, the function u 7→ ei〈u,X〉 is C∞ on R, and for any multi-

index q = (q1, . . . , qd),

∂|q|

∂uq11 · · · ∂uqdd
ei〈u,X〉 = i|q|Xq1

1 · · ·Xqd
d ei〈u,X〉.

The right-hand side satisfies

∣∣∣i|q|Xq1
1 · · ·Xqd

d ei〈u,X〉
∣∣∣ = |X1|q1 · · · |Xd|qd .

If p ≥ |q| is such that X1, . . . ,Xd ∈ L
p(P), then one may set αi = p/qi ∈ [1,+∞] for all i, and

then deduce from Hölder’s inequality that

E [|X1|q1 · · · |Xd|qd ] ≤ E [(|X1|q1)α1 ]1/α1 · · ·E [(|Xd|qd)αd ]1/αd

= E [|X1|p]1/α1 · · ·E [|Xd|p]1/αd < +∞.

This shows that the considered partial derivative is dominated by an integrable random variable,

uniformly in u, which allows to conclude by Lebesgue’s Differentiation Theorem.

q Exercise 2.2.11 (Characteristic function of Gaussian random variables). Let G ∼ N (0, 1).
1. Show that ΨG is C1 on R, and that for all u ∈ R, Ψ′

G(u) + uΨG(u) = 0.

2. Deduce that ΨG(u) = exp(−u2/2).
3. If X ∼ N (µ, σ2), what is the expression of ΨX(u)?
4. Let X ∼ N (µ, σ2) and Y ∼ N (ν, τ2) be independent. Compute the law of X + Y .

We conclude this subsection with a characterisation of independence by characteristic func-

tions.

Proposition 2.2.12 (Characterisation of independence). Two random vectorsX ∈ Rd and Y ∈ Rk

are independent if and only if

∀u ∈ Rd, ∀v ∈ Rk, Ψ(X,Y )(u, v) = ΨX(u)ΨY (v).

2.2.3 Gaussian vectors

Definition 2.2.13 (Gaussian vector). A random vector X ∈ Rd is Gaussian if, for any u ∈ Rd, the

random variable 〈u,X〉 is Gaussian in the sense of Definition 2.1.25.

Let X ∈ L
2(P;Rd). Set m = E[X] ∈ Rd and K = Cov[X] ∈ Rd×d. For any u ∈ Rd, it is

immediate that

E[〈u,X〉] = 〈u,m〉,
and by Exercise 2.2.4,

Var(〈u,X〉) = 〈u,Ku〉.
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Therefore, if X is Gaussian, then necessarily, 〈u,X〉 ∼ N (〈u,m〉, 〈u,Ku〉), and thus by Exer-

cise 2.2.11,

ΨX(u) = E

[
ei〈u,X〉

]
= exp

(
i〈u,m〉 − 1

2
〈u,Ku〉

)
.

We deduce the following statement.

Proposition 2.2.14 (Characteristic function of Gaussian vectors). The random vector X is Gaus-

sian if and only if there exist m ∈ Rd and K ∈ Rd×d such that, for any u ∈ Rd,

ΨX(u) = exp

(
i〈u,m〉 − 1

2
〈u,Ku〉

)
.

In this case, we have m = E[X] and K = Cov[X], and we denote by Nd(m,K) the law of X.

q Exercise 2.2.15 (Stability of Gaussian vectors by affine transform). Show that ifX ∼ Nd(m,K)
and b ∈ Rk, A ∈ Rk×d, then b+AX ∼ Nk(b+Am,AKA⊤).

q Exercise 2.2.16 (Gaussian vectors and Gaussian coordinates). The following results should

clarify the links between Gaussian vectors and Gaussian coordinates.

1. Let (X1, . . . ,Xd) be a Gaussian vector. Show that the coordinates X1, . . . ,Xd are Gaus-

sian random variables.

2. Construct an example of a vector (X1, . . . ,Xd) such that each coordinate Xi is a Gaussian

random variable but the vector is not a Gaussian vector.

3. Let X1, . . . ,Xd be independent Gaussian variables. Show that the vector (X1, . . . ,Xd) is

Gaussian.

In the sequel of the course, we will use the following characterisation of independence for

Gaussian vectors.

Proposition 2.2.17 (Independence in Gaussian vectors). Let X ∈ Rd and Y ∈ Rk such that

(X,Y ) ∈ Rd+k is a Gaussian vector. The vectors X and Y are independent if and only if

∀i ∈ {1, . . . , d}, ∀j ∈ {1, . . . , k}, Cov(Xi, Yj) = 0.

Proof. Write the covariance matrix K of (X,Y ) under the block form

K =

(
KX KX,Y

K⊤
X,Y KY

)
,

so that the claim to prove is that X and Y are independent if and only if KX,Y = 0. The direct

implication is straightforward by Exercise 2.2.2. Conversely, assume that KX,Y = 0, and set

mX = E[X], mY = E[Y ]. Then by Exercise 2.2.2 again, (X,Y ) has the same expectation

and covariance matrix as the vector (X ′, Y ′), with X ′ ∼ Nd(mX ,KX) and Y ′ ∼ Nk(mY ,KY )
independent from each other. Since both (X,Y ) and (X ′, Y ′) are Gaussian, this assertion is

enough to imply that they have the same law, and as a consequence X and Y are independent.

To complete this subsection, we address the question of how to simulate a random vector

drawn from the Gaussian measure Nd(m,K) for some given m ∈ Rd and K ∈ Rd×d. To

proceed, we first remark that the Box–Muller method described in Proposition 2.1.27 allows to

simulate independent realisations G1, . . . , Gd of the standard Gaussian distribution. We next recall

that, by the Spectral Theorem, for any symmetric nonnegative matrix K ∈ Rd×d, there exists

λ1, . . . , λd ≥ 0 and an orthonormal basis (e1, . . . , ed) of Rd such that for any i, Kei = λiei.
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Proposition 2.2.18 (Simulation of Gaussian vectors). Let m ∈ Rd and K ∈ Rd×d be a sym-

metric and nonnegative matrix, with associated eigenvalues λ1, . . . , λd ≥ 0 and eigenvectors

(e1, . . . , ed). Let G1, . . . , Gd be independent standard Gaussian variables. Then

X = m+
d∑

i=1

Gi

√
λiei ∼ Nd(m,K).

Proof. For any u ∈ Rd,

〈u,X〉 = 〈u,m〉 +
d∑

i=1

Gi

√
λi〈u, ei〉

is a sum of independent Gaussian variables, therefore by Exercise 2.2.11, it is a Gaussian vari-

able. Hence, X is a Gaussian vector. Besides, it is immediate that E[〈u,X〉] = 〈u,m〉, and by

independence,

Var(〈u,X〉) =
d∑

i=1

λi〈u, ei〉2 = 〈u,Ku〉,

which shows that E[X] = m and Cov[X] = K .

Proposition 2.2.18 has the practical interest to show that, up to diagonalising the covariance

matrix, it is possible to sample from the Gaussian measure Nd(m,K) as soon as independent

standard Gaussian random variables are available. It may also be useful for theoretical purposes,

as in the next exercise.

1 Exercise 2.2.19. Show that, if K is invertible, X ∼ Nd(m,K) has density

1√
(2π)d det(K)

exp

(
−〈x−m,K−1(x−m)〉

2

)

with respect to the Lebesgue measure on Rd. If K is not invertible, can you find a similar density

with respect to another measure?

Remark 2.2.20. The decomposition of X as a sum of uncorrelated variables can be performed

far beyond both the Gaussian and finite-dimensional case. In general, it is called the Karhunen–

Loeve expansion of X, and may be performed as soon as X can be written as a (possibly infinite)

collection of random variables (Xt)t∈I , where the set of indices I is endowed with a σ-field and a

measure making t 7→ K(s, t) := Cov(Xs,Xt) a square-integrable, measurable function for any

s ∈ I .

2.2.4 Copulas

Let X = (X1, . . . ,Xd) ∈ Rd. In general, the collection of the marginal laws of X1, . . . ,Xd does

not characterise the joint law of the vector, and a supplementary information is needed to describe

how these variables depend on each other. For Gaussian vectors, this information is contained in

the correlation matrix R = (ρ(Xi,Xj))1≤i,j≤d of the vector, since it is easily checked that if one

knows the parameters (µi, σ
2
i ) of each Xi on the one hand, and the correlation matrix R on the

other hand, then one can reconstruct the law of the full vector Nd(m,K) by letting mi = µi and

Ki,j = σiσjRi,j . Beyond the case of Gaussian vectors, the notion of copula allows to characterise

the dependency between the coordinates of a random vector.
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Definition 2.2.21 (Copula). A function C : [0, 1]d → [0, 1] is called a copula if there exists a

random vector (U1, . . . , Ud) ∈ [0, 1]d such that:

(i) for any i ∈ {1, . . . , d}, Ui ∼ U [0, 1];
(ii) for any (u1, . . . , ud) ∈ [0, 1]d, C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud).

As a consequence of Definition 2.2.21, a copula has the following properties:

• it is nondecreasing in each coordinate;

• for any u1, . . . , ui−1, ui+1, . . . , ud, C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0;

• for any ui, C(1, . . . , 1, ui, 1, . . . , 1) = ui.
Some elementary examples of copulas are given by the independent copula

C(u1, . . . , ud) = u1 · · · ud,

and the independent copula

C(u1, . . . , ud) = min(u1, . . . , ud).

q Exercise 2.2.22. Describe the law of the random vectors (U1, . . . , Ud) respectively associated

with the independent and comonotonic copulas.

The main result about copulas is the following statement, in which we generalise Defini-

tion 2.1.11 to random vectors by letting FX(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd). It remains

true that the CDF of X characterises its law.

Theorem 2.2.23 (Sklar’s Theorem). Let X = (X1, . . . ,Xd) ∈ Rd be a random vector with CDF

FX .

(i) There exists a copula CX such that for any (x1, . . . , xd) ∈ Rd,

FX(x1, . . . , xd) = CX (FX1(x1), . . . , FXd
(xd)) .

(ii) If the marginal CDFs FX1 , . . . , FXd
are continuous, then the copula is unique and given by,

for any (u1, . . . , ud) ∈ [0, 1]d,

CX(u1, . . . , ud) = FX

(
F−1
X1

(u1), . . . , F
−1
Xd

(xd)
)
.

The copula of a random vector therefore allows to isolate the dependency structure of its

components, apart from their marginal distributions.

↸ Exercise 2.2.24 (The Gaussian copula). Let X ∼ N (m,K) and R the associated correlation

matrix. Show that the copula of X is given by

CX(u1, . . . , ud) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
,

where Φ is the CDF of the standard Gaussian distribution on R, and ΦR is the CDF of the Gaus-

sian measure Nd(0, R).

Given the system of marginal distributions and the copula of a random vector X, we now ask

how to generate samples of X. This is done with the following two-step procedure.

Lemma 2.2.25 (Sampling vectors with given marginal distributions and copulas). Let C be a

copula and F1, . . . , Fd be CDFs on R. Consider the following algorithm:

1. Generate (U1, . . . , Ud) with CDF C .

2. Return X = (F−1
1 (U1), . . . , F

−1
d (Ud)).
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The vector X has copula C and each component Xi has CDF Fi.

The proof of Lemma 2.2.25 is straightforward. We now focus on the first step, namely: given

a copula C , how to sample (U1, . . . , Ud) ∈ [0, 1]d with CDF C?

Lemma 2.2.26 (Sampling from a given copula). Let C be a copula and (U1, . . . , Ud) ∈ [0, 1]d

with CDF C . Assume that all derivatives

∂kC

∂u1 · · · ∂uk
, k = 1, . . . , d− 1,

exist. Then for any k ∈ {1, . . . , d− 1}, the conditional CDF of Uk+1 given U1, . . . , Uk writes

∀uk+1 ∈ [0, 1], P(Uk+1 ≤ uk+1|U1, . . . , Uk) =
∂kC

∂u1 · · · ∂uk
(U1, . . . , Uk, uk+1, 1, . . . , 1).

Lemma 2.2.26 thus provides the following algorithm to sample (U1, . . . , Ud):
1. Draw U1 ∼ U [0, 1].
2. For k = 1, . . . , d − 1, draw Uk+1 conditionally on U1, . . . , Uk by using the inverse CDF

method with the conditional CDF given by Lemma 2.2.26.
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3.1 Convergence of random variables

Throughout this section, we consider random variables defined on a probability space (Ω,A,P)
and taking their values in Rd, on which we fix an arbitrary norm | · |. Most of the material of this

section could easily be generalised to the case of random variable taking their values in a metric

space1.

3.1.1 Convergence of random variables: definitions and basic results

Definition 3.1.1 (Convergences). Let (Xn)n≥1 be a sequence of random variables in Rd and X
be a random variable in Rd.

(i) Xn converges to X almost surely if there exists an event A ∈ A such that P(A) = 1 and

∀ω ∈ A, lim
n→+∞

Xn(ω) = X(ω).

(ii) Xn converges to X in probability if, for any ǫ > 0,

lim
n→+∞

P(|Xn −X| ≥ ǫ) = 0.

1To the notable exception of results involving characteristic functions, which would require a linear structure with

duality properties.
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(iii) For any p ∈ [1,+∞), Xn converges to X in L
p if2

lim
n→+∞

E[|Xn −X|p] = 0.

In measure theoretic terms, the almost sure convergence of random variables corresponds to

the P-almost everywhere convergence of measurable functions. Likewise, the notion of conver-

gence in L
p is the standard strong convergence in the linear space L

p(P;Rd). Convergence in

probability is a bit more unusual from this point of view3, however it plays a pivotal role in the

articulation of the various modes of convergence.

Proposition 3.1.2 (Hierarchy of convergences). Let (Xn)n≥1 be a sequence of random variables

in Rd and X be a random variable in Rd.

(i) If Xn → X almost surely, then Xn → X in probability.

(ii) For any 1 ≤ p ≤ q, if Xn → X in L
q, then Xn → X in L

p.

(iii) If Xn → X in L
1, then Xn → X in probability.

CV in L
q CV in L

p

CV in probability CV in distribution

Almost sure CV

q ≥ p

if X deterministic

along a subsequence

if E[|Xn|p] → E[|X |]

Figure 3.1: Hierarchy of various modes of convergence (including the convergence in distribution

which will be seen in Subsection 3.1.3) and partial converse statements.

The hierarchy between these modes of convergence is summarised on Figure 3.1. In the proof

of Proposition 3.1.2, we shall need the following two results.

Lemma 3.1.3 (Dominated Convergence Theorem for random variables). Assume that Xn → X
almost surely and that there exists Y ∈ L

1(P) such that |Xn| ≤ Y for any n. Then E[Xn]
converges to E[X].

The statement of Lemma 3.1.3 is nothing but a reformulation of Lebesgue’s Dominated Con-

vergence Theorem, therefore we omit its proof. We however point out the important remark that

it applies in particular if the sequence Xn is bounded by a deterministic constant y.

Lemma 3.1.4 (Markov’s inequality). Let Y ∈ L
1(P) be such that Y ≥ 0, almost surely. For any

a > 0, we have

P(Y ≥ a) ≤ E[Y ]

a
.

Proof. Observe that, for any y ≥ 0, 1{y≥a} ≤ y/a and take the expectation of this inequality

evaluated in y = Y .

2We should rather write in L
p(P;Rd) to be completely consistent with the notation of Chapter 2, however in order

not to overweight the exposition we shall adopt this shorthand notation throughout the chapter.
3It is referred to as convergence in measure in analysis.
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We are now in position to prove Proposition 3.1.2.

Proof of Proposition 3.1.2. We first assume that Xn → X almost surely and let A be the associ-

ated almost sure event on which Xn(ω) → X(ω) for any ω. For any ǫ > 0, for any ω ∈ A, we

have |Xn(ω)−X(ω)| < ǫ for n large enough, and therefore

lim
n→+∞

1{|Xn(ω)−X(ω)|≥ǫ} = 0.

As a consequence, the random variable 1{|Xn−X|≥ǫ} converges to 0, almost surely, and therefore

by Lemma 3.1.3,

P(|Xn −X| ≥ ǫ) = E
[
1{|Xn−X|≥ǫ}

]
→ 0.

This proves the first point.

The second point is an immediate consequence of Exercise 1.3.6.

To prove the third point, we assume that Xn → X in L
1 and fix ǫ > 0. By Lemma 3.1.4, we

then have

P(|Xn −X| ≥ ǫ) ≤ E[|Xn −X|]
ǫ

→ 0,

and the proof is completed.

Proposition 3.1.5 (Properties of convergence in probability). (i) If Xn → X in probability,

then for any continuous function f : Rd → Rk, f(Xn) → f(X) in probability.

(ii) If Xn → X in probability and Yn → Y in probability then (Xn, Yn) → (X,Y ) in proba-

bility.

(iii) If Xn → X in probability and Xn → Y in probability then X = Y almost surely.

Before detailing the proof of Proposition 3.1.5, we point out several remarks.

• You should first convince yourself that the three statements of Proposition 3.1.5 become

trivial if convergence in probability is replaced with almost sure convergence.

• If convergence in probability is replaced with convergence in L
p then the points (ii) and (iii)

also remain true, however the first point no longer holds: it may depend on the growth of f .

• A straightforward application of the points (i) and (ii) is that if Xn → X and Yn → Y in

probability, then Xn + Yn → X + Y , XnYn → XY (if d = 1), and so on.

Proof of Proposition 3.1.5. If the function f is assumed to be uniformly continuous, then the proof

of (i) is an easy exercise. To reduce the proof to this case, we use a localisation argument. Let

ǫ > 0. Since f is continuous on Rd, for any M ≥ 0, this function is uniformly continuous on the

closed ball B(0,M + 1), so that there exists δM,ǫ ∈ (0, 1] such that for any x, x′ ∈ B(0,M + 1),
if |x− x′| ≤ δM,ǫ then |f(x)− f(x′)| ≤ ǫ. We fix M ≥ 0 and first write

P (|f(Xn)− f(X)| ≥ ǫ) = P (|f(Xn)− f(X)| ≥ ǫ, |X| > M)

+ P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M)

≤ P (|X| > M) + P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M) .

The second term in the right-hand side rewrites

P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M) = P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M, |Xn −X| ≤ δM,ǫ)

+ P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M, |Xn −X| > δM,ǫ) .

By definition of δM,ǫ, if |X| ≤M and |X −Xn| ≤ δM,ǫ then X,Xn ∈ B(0,M + 1), therefore

P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M, |Xn −X| ≤ δM,ǫ) = 0.



30 Convergence of random variables and limit theorems

On the other hand, it is immediate that

P (|f(Xn)− f(X)| ≥ ǫ, |X| ≤M, |Xn −X| > δM,ǫ) ≤ P (|Xn −X| > δM,ǫ) .

Since Xn → X in probability, the right-hand side above goes to 0 when n → +∞. Overall, we

deduce that

lim sup
n→+∞

P (|f(Xn)− f(X)| ≥ ǫ) ≤ P (|X| > M) .

By the Monotone Convergence Theorem, the right-hand side goes to 0 when M → +∞, which

completes the proof of (i).

To prove the point (ii), we endow the space of pairs (x, y) with the norm |x|+ |y| and use the

union bound to write, for any ǫ > 0,

P(|Xn −X|+ |Yn − Y | ≥ ǫ) ≤ P(|Xn −X| ≥ ǫ/2) + P(|Yn − Y | ≥ ǫ/2),

which easily leads to the claimed statement.

To prove the last point, we use the triangle inequality and the same application of the union

bound to write, for any ǫ > 0,

P (|X − Y | ≥ ǫ) ≤ P (|Xn −X|+ |Xn − Y | ≥ ǫ)

≤ P (|Xn −X| ≥ ǫ/2) + P (|Xn − Y | ≥ ǫ/2) ,

which shows that for any ǫ > 0, the event {|X − Y | < ǫ} is almost sure. Taking a countable

sequence (ǫM )M≥1 decreasing to 0, we deduce from Corollary 1.1.7 that almost surely, |X − Y |
is smaller than any ǫM , and therefore X = Y .

3.1.2 Convergence of random variables: complements

In general, none of the converse statements to those of Proposition 3.1.2 hold true: counter-

examples are provided in Exercise 3.1.6. However, some partial converse statements are gathered

in Proposition 3.1.7 and Exercise 3.1.9.

↸ Exercise 3.1.6 (Counter-examples to converse statements to Proposition 3.1.2). 1. Let (Xn)n≥1

be a sequence of independent random variables such that Xn ∼ B(1/n) for any n ≥ 1.

Show that Xn → 0 in probability but not almost surely. You may use the Borel Zero-One

Law from Exercise 1.4.2.

2. For a > 0, b > 0, let (Xn)n≥1 be a sequence of random variables such that

Xn =

{
nb with probability 1/na,

0 with probability 1− 1/na.

(a) For any p ≥ 1, compute E[|Xn|p].
(b) For given 1 ≤ p < q, choose a and b so that Xn → 0 in L

p but not in L
q.

(c) Choose a and b so that Xn → 0 in probability but not in L
1.

Proposition 3.1.7 (Almost sure convergence up to a subsequence ). If Xn → X in probability,

then there is a (deterministic) increasing sequence of integers (nk)k≥1 such that the subsequence

(Xnk
)k≥1 converges almost surely to X.
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Proof. Fix an increasing sequence of integers (nk)k≥1 and notice that the almost sure convergence

of Xnk
to X is equivalent to the statement that

P (∀M ≥ 1,∃K ≥ 1 : ∀k ≥ K, |Xnk
−X| ≤ ǫM ) = 1,

where (ǫM )M≥1 is a deterministic sequence of positive numbers which converges to 0. Since, by

Corollary 1.1.7, a countable intersection of almost sure events remains almost sure, we deduce

that it suffices to construct (nk)k≥1 such that

∀M ≥ 1, P (∃K ≥ 1 : ∀k ≥ K, |Xnk
−X| ≤ ǫM ) = 1.

By the Borel–Cantelli Lemma (see Exercise 1.4.1), for any M ≥ 1, the event {∃K ≥ 1 : ∀k ≥
K, |Xnk

−X| ≤ ǫM} is almost sure if

+∞∑

k=1

P(|Xnk
−X| > ǫM ) < +∞.

For a fixed value of M , since Xn → X in probability, it is easy to construct a sequence (nk,M)k≥1

such that

∀k ≥ 1, P
(
|Xnk,M

−X| > ǫM
)
≤ 1

k2
,

and therefore the associated series is finite. To complete the proof, we need to remove the depen-

dency upon M of this sequence. To this aim we use a diagonal argument and set nk = nk,k. Then,

using the fact that ǫM is assumed to decrease, we have, for any M ≥ 1,

+∞∑

k=1

P (|Xnk
−X| > ǫM ) ≤M +

+∞∑

k=M+1

P
(
|Xnk,k

−X| > ǫM
)

≤M +
+∞∑

k=M+1

P
(
|Xnk,k

−X| > ǫk
)

≤M +

+∞∑

k=M+1

1

k2
,

which completes the proof.

Proposition 3.1.7 allows to prove the following generalisation of Lemma 3.1.3, in which the

almost sure convergence requirement is relaxed to convergence in probability, and which will be

useful in the sequel.

↸ Exercise 3.1.8 (Dominated Convergence Theorem with convergence in probability). Assume

that Xn → X in probability, and that there exists Y ∈ L
1(P) such that, almost surely, |Xn| ≤ Y

for any n. The purpose of this exercise is to prove that E[Xn] converges to E[X].
1. Using Proposition 3.1.7, show that |X| ≤ Y , almost surely.

2. Complete the proof of the claimed statement. Hint: you may remark that, for any ǫ > 0,

there exists M ≥ 1 such that E[Y 1{Y >M}] ≤ ǫ.
3. Deduce that if Xn → X in probability and there is a random variable Y ∈ L

p(P) such that

|Xn −X| ≤ Y , then Xn → X in L
p.

1 Exercise 3.1.9 (Riesz–Scheffé’s Lemma). Assume that Xn → X almost surely, and that

Xn,X ∈ L
p(P) with E[|Xn|p] → E[|X|p].

1. Show that 2p−1(|Xn|p + |X|p)− |Xn −X|p ≥ 0, almost surely.

2. Using Fatou’s Lemma, deduce that Xn → X in L
p.

3. Show that this conclusion still holds if Xn is only assumed to converge to X in probability.
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3.1.3 Convergence in distribution

Convergence in distribution is a bit different from the modes of convergence introduced in Defini-

tion 3.1.1, because it concerns the law of Xn rather than the variable Xn itself.

Definition 3.1.10 (Weak convergence of probability measures). A sequence (Pn)n≥1 of prob-

ability measures on Rd converges weakly to P if, for any continuous and bounded function

f : Rd → R,

lim
n→+∞

∫

x∈Rd

f(x)dPn(x) =

∫

x∈Rd

f(x)dP (x).

The following statement, which goes by the name of Portmanteau’s Theorem, provides equiv-

alent characterisations of the weak convergence.

Theorem 3.1.11 (Portmanteau’s Theorem). The following statements are equivalent.

(i) Pn converges weakly to P .

(ii) For any uniformly continuous and bounded function f : Rd → R, limn→+∞ E[f(Xn)] =
E[f(X)].

(iii) For any closed set F , lim supn→+∞ Pn(F ) ≤ P (F ).
(iv) For any open set G, lim infn→+∞ Pn(G) ≥ P (G).
(v) For any measurable set A such that P (∂A) = 0, limn→+∞ Pn(A) = P (A).

Definition 3.1.12 (Convergence in distribution). A sequence of random variables (Xn)n≥1 con-

verges in distribution to X if the law of Xn converges weakly to the law of X; in other words, if

for any continuous and bounded function f : Rd → R,

lim
n→+∞

E[f(Xn)] = E[f(X)].

In order to compare convergence in distribution with the modes of convergence introduced in

Definition 3.1.1, one should compare the following three statements with the contents of Proposi-

tion 3.1.5.

Proposition 3.1.13 (Properties of convergence in distribution). (i) If Xn → X in distribution,

then for any continuous function f : Rd → Rk, f(Xn) converges in distribution to f(X).
(ii) If Xn → X in distribution and Yn → Y in distribution, then nothing can be said about the

convergence in distribution of the pair (Xn, Yn).
(iii) If Xn → X in distribution and Xn → Y in distribution, then the random variables X and

Y have the same law.

The first and third points of Proposition 3.1.13 are straightforward consequences of Defini-

tion 3.1.12. As far as the second point is concerned, the assertion that Xn → X and Yn → Y
is a statement on the marginal distributions of Xn and Yn, which is not sufficient to characterise

the joint distribution of the pair (Xn, Yn), and therefore does not allow to describe the asymptotic

behaviour of the law of (Xn, Yn) in general. There are however particular cases in which the

convergence in distribution of the pair (Xn, Yn) can be deduced from the marginal convergence in

distribution of Xn and Yn.

Lemma 3.1.14 (Convergence in distribution of (Xn, Yn)). (i) Assume that, for any n, Xn and

Yn are independent, and that Xn → X, Yn → Y in distribution. Then the pair (Xn, Yn)
converges in distribution to (X ′, Y ′), where X ′ and Y ′ are independent, and X ′ (resp. Y ′)
has the same law as X (resp. Y ).

(ii) (Slutsky’s Lemma) Assume that Xn → X in distribution and Yn → y in probability, where

y is a constant. Then (Xn, Yn) → (X, y) in distribution.
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The proof of Lemma 3.1.14 is postponed to Exercise 3.1.18. We first detail important proper-

ties and characterisations of the convergence in distribution.

Proposition 3.1.15 (Convergence in probability and convergence in distribution). If Xn → X in

probability, then Xn → X in distribution.

Conversely, for any x ∈ Rd, if Xn → x in distribution then Xn → x in probability.

Proof. Let us assume that Xn → X in probability and take f : Rd → R continuous and bounded.

By the triangle inequality, for any ǫ > 0,

|E[f(Xn)]− E[f(X)]| ≤ E [|f(Xn)− f(X)|]
= E

[
|f(Xn)− f(X)|1{|f(Xn)−f(X)|<ǫ}

]

+ E
[
|f(Xn)− f(X)|1{|f(Xn)−f(X)|≥ǫ}

]

≤ ǫ+ 2‖f‖∞P(|f(Xn)− f(X)| ≥ ǫ).

By Proposition 3.1.5 (i), P(|f(Xn)− f(X)| ≥ ǫ) goes to 0 when n→ ∞. Therefore

lim sup
n→+∞

|E[f(Xn)]− E[f(X)]| ≤ ǫ

for any ǫ, which shows that Xn → X in distribution.

For the converse statement, let us assume that Xn → x in distribution, fix ǫ > 0, and consider

a continuous function ψǫ : [0,+∞) → [0, 1] such that ψǫ(0) = 0 and ψǫ(r) ≥ 1{r≥ǫ} for any

r ≥ 0. Then the function f : x′ ∈ Rd 7→ ψǫ(|x′ − x|) is continuous and bounded, and it satisfies

∀x′ ∈ Rd, 1{|x′−x|≥ǫ} ≤ f(x′), and f(x) = 0.

Applying Definition 3.1.12 with this function, we get

P(|Xn −X| ≥ ǫ) ≤ E[f(Xn)] → E[f(x)] = 0,

which shows that Xn → x in probability.

Proposition 3.1.16 (Lévy’s Theorem). Xn → X in distribution if and only if, for any u ∈ Rd,

ΨXn(u) → ΨX(u).

Proof. The direct implication is straightforward since for any u ∈ Rd, the functions x 7→ cos(〈u, x〉)
and x 7→ sin(〈u, x〉) are continuous and bounded.

We admit the converse implication. From an analytic perspective, the main idea is to write

the mapping PXn → ΨXn as a (slighlty modified) Fourier transform F , so that the claim to prove

reduces to showing some continuity property of the inverse transform F−1.

↸ Exercise 3.1.17 (Gaussian vectors and convergence in distribution). Let (Xn)n≥1 be a se-

quence of Gaussian vectors in Rd. For all n ≥ 1, let mn = E[Xn] and Kn = Cov[Xn].
1. Show that if mn → m and Kn → K , then Xn converges in distribution to Nd(m,K).
2. Conversely, show that if Xn converges in distribution to some random vector X, then there

exist m and K such that mn → m and Kn → K , and X ∼ Nd(m,K).

q Exercise 3.1.18 (Proof of Lemma 3.1.14). Prove the two statements of Lemma 3.1.14 using

Proposition 3.1.16.

A famous application of Slutsky’s Lemma is the Delta method, introduced in the next exercise.
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↸ Exercise 3.1.19 (The Delta method). Let (Xn)n≥1, x and Y in Rd be such that an(Xn−x) →
Y in distribution, for some deterministic sequence (an)n≥1 which grows to +∞.

1. Show that Xn → x in probability.

2. Let f : Rd → Rk be C1. Show that

lim
n→+∞

an (f(Xn)− f(x)) = ∇f(x)Y, in distribution,

where ∇f(x) ∈ Rk×d is the matrix with coordinates ∂fi(x)/∂xj .

We complete this subsection by mentioning a sufficient condition for convergence in distribu-

tion which is often easy to check.

1 Exercise 3.1.20 (Scheffé’s Lemma). Let (pn)n≥1 be a sequence of probability densities with

respect to some σ-finite measure µ on Rd, such that

µ-almost everywhere, pn → p,

for some probability density p with respect to µ on Rd.

1. Show that for any n ≥ 1,

∫

x∈Rd

|pn(x)− p(x)|dµ(x) = 2

∫

x∈Rd

[pn(x)− p(x)]−dµ(x).

2. Deduce that

lim
n→+∞

∫

x∈Rd

|pn(x)− p(x)|dµ(x) = 0,

and then that if Xn has density pn and X has density p then Xn → X in distribution.

Remark 3.1.21 (Convergence in distribution in discrete spaces). Definition 3.1.12 is given for

random variables in Rd, but the notion of convergence in distribution also makes sense (and is of

interest) for discrete random variables, that is to say variables taking their values in a countable

set E endowed with the σ-field of all its subsets. In this case, the natural topology on E is the one

making all functions f : E → R continuous. Then, with similar arguments as in Exercise 3.1.20

(taking for µ the counting measure
∑

x∈E δx), it may be shown that the following statements are

equivalent:

(i) Xn → X in distribution, that is to say E[f(Xn)] → E[f(X)] for any bounded function f ;

(ii) for any x ∈ E, P(Xn = x) → P(X = x);
(iii)

∑
x∈E |P(Xn = x)− P(X = x)| → 0.

3.1.4 Convergence of moments

In this subsection we let (Xn)n≥0 be random variables in Rd which converge in distribution to X,

and for f : Rd → R, we look for conditions under which E[f(Xn)] → E[f(X)]. Of course, by

Definition 3.1.12, it is the case if f is continuous and bounded. We shall study how to relax both

conditions. We start with the continuity condition.

Proposition 3.1.22 (Mapping theorem). Let Xn → X in distribution and f : Rd → R be

bounded. Denote by Cf the set of x ∈ Rd such that f is continuous at x. If P(X ∈ Cf ) = 1 then

E[f(Xn)] → E[f(X)].

We leave the proof of Proposition 3.1.22 aside but insist on an important corollary.
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Corollary 3.1.23 (Convergence of CDFs). Let Xn be a sequence of random variables in R which

converge in distribution to X. Denote by Fn (resp. F ) the Cumulative Distribution Function of

Xn (resp. X). For any x such that P(X = x) = 0, or equivalently F (x−) = F (x),

lim
n→+∞

Fn(x) = F (x).

In particular,

(i) Fn(x) → F (x), dx-almost everywhere;

(ii) if X has a density with respect to the Lebesgue measure on R, then Fn(x) → F (x) for all

x ∈ R.

Corollary 3.1.23 is a straighforward consequence of Proposition 3.1.22, and for the point (i),

of the observation that the set of discontinuity points of F is at most countable and therefore

negligible for the Lebesgue measure.

We now turn our attention to functions f which are continuous but not necessarily bounded.

In this case, since f(Xn) converges in distribution to f(X), up to renaming f(Xn) in Xn we may

directly study conditions under which E[Xn] converges to E[X] for Xn,X ∈ R.

Definition 3.1.24 (Uniform integrability). A sequence of random variables (Xn)n≥1 in R is called

uniformly integrable if

lim
M→+∞

sup
n≥1

E
[
|Xn|1{|Xn|≥M}

]
= 0.

q Exercise 3.1.25. Let (Xn)n≥1 be a sequence of random variables in R. This sequence is said

to be bounded in L
p(P) if supn≥1 E[|Xn|p] < +∞.

1. Show that if (Xn)n≥1 is uniformly integrable then it is bounded in L
1(P).

2. Construct a sequence which is bounded in L
1(P) but not uniformly integrable.

3. If there exists p > 1 such that (Xn)n≥1 is bounded in L
p(P), show that (Xn)n≥1 is uni-

formly integrable.

Uniform integrability is the key property to deduce the convergence of moments from the

convergence in distribution.

Proposition 3.1.26 (Convergence of expectations). If Xn → X in distribution and the sequence

(Xn)n≥1 is uniformly integrable, then E[Xn] → E[X].

↸ Exercise 3.1.27. Prove Proposition 3.1.26.

3.2 Limit theorems

Throughout this section, we consider a sequence (Xn)n≥1 of iid random variables in Rd, and for

any n ≥ 1 we denote by

Xn =
1

n

n∑

i=1

Xi ∈ Rd

the empirical mean of X1, . . . ,Xn.

q Exercise 3.2.1. IfX1 ∈ L
1(P;Rd), compute E[Xn] and ifX1 ∈ L

2(P;Rd), compute Cov[Xn].

The two main results of this section, the Law of Large Numbers and the Central Limit Theo-

rem, describe the asymptotic behaviour of Xn.
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3.2.1 Laws of Large Numbers

There are two distinct statement of the Law of Large Numbers (LLN): a weak and a strong form.

Proposition 3.2.2 (Weak Law of Large Numbers). If X1 ∈ L
2(P;Rd) then Xn → E[X1] in L

2.

Proof. The proof of the weak LLN is elementary. For the sake of simplicity we assume that d = 1.

Then, by Exercise 3.2.1,

E

[∣∣Xn − E[X1]
∣∣2
]
= Var(Xn) =

Var(X1)

n
,

which converges to 0.

Theorem 3.2.3 (Strong Law of Large Numbers). If X1 ∈ L
1(P;Rd) then Xn → E[X1] almost

surely.

Theorem 3.2.3 is certainly a cornerstone of probability theory, but its proof is far from trivial.

It is sketched and discussed in Subsection 3.2.2.

↸ Exercise 3.2.4 (Law of Large Numbers in L
p). Let p ≥ 1 and assume that X1 ∈ L

p(P;Rd).
The aim of this exercise is to prove that Xn → E[X1] in L

p. Clearly, there is no loss of generality

in assuming that E[X1] = 0.

1. Show that, for any n ≥ 1, for any M ≥ 1,

E

[
|Xn|p1{|Xn|p≥M}

]
≤ E

[
|X1|p1{|Xn|p≥M}

]
.

2. Deduce that the sequence (|Xn|p)n≥1 is uniformly integrable, and complete the proof of the

claimed statement.

3.2.2 On the proof of the strong Law of Large Numbers

The first proof of the strong LLN is due to Kolmogorov in 1933. It is decomposed in the following

steps. As a preliminary remark, we assume without loss of generality that E[X1] = 0, which is

possible up to replacing Xi with Xi − E[Xi].
1. Truncation: one sets X ′

i = Xi1{|Xi|≤i} and proves that Theorem 3.2.3 is equivalent to the

statement that

lim
n→+∞

1

n

n∑

i=1

X ′
i = 0, almost surely. (3.1)

The justification of this equivalence relies on the Borel–Cantelli Lemma.

2. Centering: one sets Zi = X ′
i − E[Xi] and proves that (3.1) is equivalent to

lim
n→+∞

1

n

n∑

i=1

Zi = 0, almost surely. (3.2)

Besides, an explicit computation yields

∑

n≥1

Var

(
Zn

n

)
< +∞. (3.3)

3. Auxiliary results: the following three statements, which are of independent interest, are used

to complete the proof.
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Lemma 3.2.5 (Kolmogorov’s maximal inequality). Let (Yi)i≥1 be a sequence of indepen-

dent and centered variables, and Wn = Y1 + · · ·+ Yn. Then for any x > 0,

P

(
sup
n≥1

|Wn| > x

)
≤ 1

x2

∞∑

i=1

Var(Yi).

Lemma 3.2.5, combined with the Borel–Cantelli Lemma, allows to prove the following

statement.

Lemma 3.2.6 (Convergence criterion). Let (Un)n≥1 be a sequence of independent and cen-

tered random variables. If
∞∑

n=1

Var(Un) < +∞,

then there exists a random variable T such that

lim
N→+∞

N∑

n=1

Un = T, almost surely.

The last auxiliary result is Kronecker’s Lemma (which is purely deterministic).

Lemma 3.2.7 (Kronecker Lemma). Let (an)n≥1 be a sequence of positive numbers which

decreases to 0. For any sequence (un)n≥1, if the sequence (
∑N

n=1 anun)N≥1 has a finite

limit then an
∑n

i=1 ui converges to 0.

4. Conclusion of the proof: combining (3.3) with Lemma 3.2.6, we get that
∑N

n=1 Zn/n has a

finite limit, which by the Kronecker Lemma then yields (3.2).

Shorter and more elementary proofs have been proposed since Kolmogorov’s original proof. A

particularly famous one is due to Etemadi in 19814. A recent preprint by Fitzsimmons5 discusses

another elementary sketch and its relation with previous similar arguments in the literature.

3.2.3 The Central Limit Theorem

In this subsection we assume that X1 ∈ L
2(P;Rd) and set K = Cov[X1] ∈ Rd×d. In the next

statement it is convenient to write Xn → P , in distribution, when Xn → X in distribution and

X ∼ P . We recall that Gaussian measures on Rd are introduced in Chapter 2.

Theorem 3.2.8 (Central Limit Theorem). We have

lim
n→+∞

√
n
(
Xn − E[X1]

)
= Nd(0,K).

Proof. For all i ≥ 1, let Yi = Xi − E[X1], so that E[Yi] = 0 and Cov[Yi] = K . We also denote

Zn =
√
n
(
Xn − E[X1]

)
=

1√
n

n∑

i=1

Yi,

so that the characteristic function of Zn writes, for all u ∈ Rd,

ΨZn(u) = E

[
exp

(
i

〈
u,

1√
n

n∑

i=1

Yi

〉)]
= E

[
exp

(
i

〈
u√
n
, Y1

〉)]n
= ΦY1(u/

√
n)n,

4https://link.springer.com/article/10.1007/BF01013465
5https://arxiv.org/abs/2111.05766

https://link.springer.com/article/10.1007/BF01013465
https://arxiv.org/abs/2111.05766


38 Convergence of random variables and limit theorems

where we have used the fact that the variables Yi are iid. By Lemma 2.2.10, writing Y1 =
(Y1,1, . . . , Y1,d), we have

∂ΨY1

∂ui
(0) = iE[Y1,i] = 0,

∂2ΨY1

∂ui∂uj
(0) = i2E[Y1,iY1,j] = −Ki,j,

so that the function ΨY1 satisfies Taylor’s expansion

ΨY1(u/
√
n) = 1− 〈u,Ku〉

2n
+ o

(
1

n

)

when n→ +∞. Using Lemma 3.2.9 below, we deduce that

lim
n→+∞

ΨZn(u) = exp

(
−〈u,Ku〉

2

)
,

which by Proposition 2.2.14 is the characteristic function of Z ∼ Nd(0,K). As a consequence,

Proposition 2.2.7 ensures that Zn converges in distribution to Z .

In the proof of Theorem 3.2.8, we have used the following technical result.

Lemma 3.2.9 (An exponential limit for complex sequences). Let θ ∈ R and (ǫn)n≥1 be a se-

quence of complex numbers which converges to 0. Then

lim
n→+∞

(
1 +

θ

n
+
ǫn
n

)n

= eθ.

Proof. Using Taylor’s expansion for the logarithm, it is standard to show that

lim
n→+∞

(
1 +

θ

n

)n

= eθ.

This argument cannot be applied directly to (1 + (θ + ǫn)/n)
n because ǫn is a complex number.

However we may compare both prelimits by writing

(
1 +

θ

n
+
ǫn
n

)n

−
(
1 +

θ

n

)n

=

∫ 1

u=0

d

du

(
1 +

θ

n
+
uǫn
n

)n

du

= ǫn

∫ 1

u=0

(
1 +

θ

n
+
uǫn
n

)n−1

du,

and it follows from the estimate
∣∣∣∣1 +

θ + uǫn
n

∣∣∣∣
n−1

≤
(
1 +

|θ|+ |ǫn|
n

)n−1

≤ exp

(
n log

(
1 +

|θ|+ |ǫn|
n

))

that the sequence supu∈[0,1] |1 + (θ + uǫn)/n|n−1 is bounded, which proves the lemma.

↸ Exercise 3.2.10 (Stronger convergence in the CLT). With the notation of the proof of Theo-

rem 3.2.8, it is a natural question to wonder whether there exists a random variable Z such that Zn

converges toZ almost surely. Notice that if such a variable exists, then necessarily Z ∼ Nd(0,K).
1. Let Z ′

n = 1√
n

∑2n
i=n+1 Yi. Show that Z ′

n converges in distribution to some random variable

Z ′ and explicit the law of Z ′.
2. If Zn converges almost surely to some random variable Z , show that Z ′

n converges almost

surely and express its limit in terms of Z .

3. What do you conclude?
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The Monte Carlo method is designed to approximate integrals of the form

I =

∫

x∈E
f(x)dP (x),

where P is a probability measure on a measurable space (E, E), and f ∈ L
1(P ). This integral

naturally rewrites

I = E [f(X)] , X ∼ P,

therefore by the strong Law of Large Numbers, it is the n→ +∞ almost sure limit of

În =
1

n

n∑

i=1

f(Xi),

with X1, . . . ,Xn independent copies of X. The numerical approximation of I by În is the essence

of the Monte Carlo method.

4.1 Accuracy of the Monte Carlo method

4.1.1 Asymptotic confidence intervals

Throughout the sequel, we assume that f ∈ L
2(P ) and denote by σ2 the variance of f(X). We

assume that σ2 > 0 (otherwise the numerical computation of I is rather trivial). The Central Limit

Theorem asserts that

lim
n→+∞

√
n

σ

(
În − I

)
= N (0, 1), in distribution,
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and therefore, by Corollary 3.1.23, for any φ > 0, the interval

In =

[
În − φ

σ√
n
, În + φ

σ√
n

]

satisfies

lim
n→+∞

P (I ∈ In) =
1√
2π

∫ φ

u=−φ
e−u2/2du.

In particular, if one fixes α ∈ (0, 1/2) and takes for φ the quantile φ1−α/2 of order 1−α/2 of the

standard Gaussian distribution, then the value of the limit is 1− α. Standard values of φ1−α/2 are

presented on Figure 4.1.

φα/2 = −φ1−α/2 φ1−α/2

1− α φ1−α/2

90% 1.65

95% 1.96

99% 2.58

Figure 4.1: Quantiles of the standard Gaussian distribution. The hatched area on the figure is equal

to 1− α.

In short, if n is large enough, then there is a 95% probability that the quantity I, which we

aim at evaluating, lies between În − 1.96σ/
√
n and În + 1.96σ/

√
n. Two problems remain with

this statement: the assumption that ‘n is large enough’ is rather vague, and the variance σ2 is

not necessarily known, as its computation also involves evaluating an integral over Rd. We first

address this second point in the next statement.

Proposition 4.1.1 (Asymptotic confidence interval). Let

σ̂2n =
1

n

n∑

i=1

(
f(Xi)− În

)2
=

1

n

n∑

i=1

f(Xi)
2 − Î

2
n

be the empirical variance of the sample f(X1), . . . , f(Xn). For any α ∈ (0, 1/2), the interval

I ′n =

[
În − φ1−α/2

σ̂n√
n
, În + φ1−α/2

σ̂n√
n

]

satisfies

lim
n→+∞

P
(
I ∈ I ′n

)
= 1− α.

Proposition 4.1.1 shows that the confidence intervals In and I ′n share the same asymptotic

properties, so that we do not lose anything estimating the variance σ2 by its empirical version

σ̂2n. Since the latter estimator is easily computed from the sample f(X1), . . . , f(Xn), error bars

given by the interval I ′n should always be provided together with the result În of a Monte Carlo

estimation.
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Proof of Proposition 4.1.1. We first write

√
n

σ̂n

(
În − I

)
=

σ

σ̂n

√
n

σ

(
În − I

)
.

By the strong LLN, the ratio σ/σ̂n converges to 1, almost surely. Therefore, Slutsky’s Lemma 3.1.14 (ii)

implies that the right-hand side above converges in distribution to a standard Gaussian variable,

and thus the conclusion follows from the same application of Corollary 3.1.23 as for In.

4.1.2 Nonasymptotic confidence intervals

The statement of Proposition 4.1.1 is asymptotic, and therefore it is natural to ask how large should

n be chosen for the probability that I ∈ I ′n to be close to 1−α. The Berry–Essen Theorem provides

a first answer.

Theorem 4.1.2 (Berry–Essen Theorem). There exists a universal constant C > 0 such that, for

any n ≥ 1,

sup
x∈R

∣∣∣∣P
(√

n

σ

(
În − I

)
≤ x

)
− P(G ≤ x)

∣∣∣∣ ≤
C

σ3
√
n
E[|f(X)− I|3],

where G ∼ N (0, 1).

In view of constructing confidence intervals, one may also derive nonasymptotic bounds from

concentration inequalities, and get intervals Jn which are such that

P (I ∈ Jn) ≥ 1− α. (4.1)

An elementary such example is provided by Tchebychev’s inequality:

∀a > 0, P

(
|În − I| ≥ a

)
≤ Var(În)

a2
=

σ2

na2
,

which easily follows from Markov’s inequality, and from which we deduce that

Jn =

[
În − σ√

αn
, În +

σ√
αn

]

satisfies the estimate (4.1). Since the latter is an inequality, and not an equality, the interval Jn is

more conservative than In: the probability that I ∈ Jn could be much larger than 1 − α, but it is

at least 1 − α. On the other hand, the bound (4.1) holds for any value of n, and does not rely on

the Central Limit Theorem. We plot on Figure 4.2 the ratio (1/
√
α)/φ1−α/2 between the widths

of Jn and In, as a function of α: when α is not too small, Jn is only a few times larger than In.

As for In, the bounds of Jn depend on σ, which is not known in general. Similarly to Propo-

sition 4.1.1, it may be estimated by the empirical variance of the sample. On the other hand, if

f(X) is bounded, then universal bounds are available.

↸ Exercise 4.1.3. Let Y ∈ L
2(P).

1. Show that

Var(Y ) = min
y∈R

E
[
(Y − y)2

]
.

2. Deduce that if Y takes its values in a bounded interval [a, b], then

Var(Y ) ≤ (b− a)2

4
.
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Figure 4.2: Ratio between the width of the confidence intervals Jn and In.

3. Show that this inequality is sharp by exhibiting a random variable Y for which it is an

equality.

In fact, when f(X) is bounded, concentration inequalities are available which are more pow-

erful than Tchebychev’s inequality, in the sense that they provide smaller confidence intervals.

1 Exercise 4.1.4 (The Hoeffding inequality). Throughout the exercise, we let Y1, . . . , Yn be iid

random variables which take their values in [0, 1]. We set Zi = Yi − E[Yi] and, for any λ ≥ 0,

define

F (λ) = logE [exp(λZ1)] .

1. Show that F ′(λ) = Eλ[Z1] and F ′′(λ) = Varλ(Z1) for some probability measure Pλ to be

defined.

2. Using Exercise 4.1.3, deduce that, for any λ ≥ 0, E[exp(λZ1)] ≤ exp(λ2/8).
3. Deduce that, for any r ≥ 0 and n ≥ 1,

P

(
n∑

i=1

Zi ≥ r
√
n

)
≤ exp

(
λ2n

8
− λr

√
n

)
.

4. Optimising in λ ≥ 0, conclude that

P

(
n∑

i=1

(Yi − E[Yi]) ≥ r
√
n

)
≤ exp(−2r2).

This inequality is called Hoeffding’s inequality.

5. If f(X) takes its values in some bounded interval [a, b], deduce from Hoeffding’s inequality

a confidence interval for I.

6. Compare the width of this confidence interval with those given by Tchebychev’s inequality,

or the Central Limit Theorem.
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4.2 Variance reduction

Neglecting the error induced by the approximation of σ2 by σ̂2n, the length of the confidence

interval In obtained in Section 4.1 for I is

ℓn := 2φ1−α/2
σ√
n
.

Let X ∼ N (0, 1). Assume that the quantity which we are trying to approximate is

I = P(X ≥ 20) = E[f(X)], f(x) = 1{x≥20}.

On the one hand, an upper bound on I can be obtained analytically by writing

I =
1√
2π

∫ +∞

y=20
e−y2/2dy ≤ 1√

2π

∫ +∞

y=20

y

20
e−y2/2dy =

e−202/2

20
√
2π

≃ 2.8× 10−89.

On the other hand, the Monte Carlo method consists in drawing iid realisations X1, . . . ,Xn of

N (0, 1) and approximate I with

În =
1

n

n∑

i=1

f(Xi).

q Exercise 4.2.1. What is the law of the random variable N = inf{n ≥ 1 : În 6= 0}? What is its

expectation?

Since f(Xi) ∼ B(I), we have σ2 = Var(f(X1)) = I(1 − I) ≃ I, so that the length of the

Monte Carlo confidence interval writes

ℓn ≃ 2φ1−α/2

√
I

n
.

Assume that we want this length to be smaller than ǫI, in order for the estimation of I to have a

relative precision of ǫ. Then we need to take n such that

2φ1−α/2

√
I

n
≤ ǫI,

that is to say

n ≥
(
2φ1−α/2

ǫ

)2
1

I
.

For ǫ = 0.01 and α = 0.05, using the analytic bound on I we obtain that n should be at least

5.6 × 1093, which is impossible to realise in practice.

In this section, we present variance reduction techniques which allow to construct estimators

of I with a smaller variance σ2, and therefore yield smaller confidence intervals.

4.2.1 Control variate

In this subsection, we assume that in addition to X1, . . . ,Xn, we are able to sample iid random

variables Y1, . . . , Yn whose common expectation E[Y ] is known analytically. Then, for all β ∈ R,

I = E[f(X)] = E[f(X)− βY ] + βE[Y ],
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which suggests to approximate I by the estimator

Î
CV,β
n :=

1

n

n∑

i=1

(f(Xi)− βYi) + βE[Y ].

The variance of this estimator is (σCV,β)2/n, where

(σCV,β)2 = Var(f(X)− βY ) = σ2 − 2β Cov(f(X), Y ) + β2 Var(Y ).

We may already remark that if Cov(f(X), Y ) = 0 then (σCV,β)2 is always larger than the vari-

ance σ2 associated with the original Monte Carlo estimator: for the control variate method to be

efficient, it is thus necessary that f(X) and Y be correlated. The choice of β for which (σCV,β)2

is minimal is then

β∗ =
Cov(f(X), Y )

Var(Y )
,

which yields the variance

(σCV,β
∗

)2 = σ2
(
1− ρ2

)
,

where

ρ =
Cov(f(X), Y )√
Var(f(X))Var(Y )

∈ [−1, 1]

is the correlation coefficient between f(X) and Y . As a consequence, the more f(X) and Y
are correlated, the better the variance reduction. Typically, one may choose Y of the form g(X),
where the function g is close to f in regions where X has a high probability to take its values,

while being ‘simpler’ than f , in the sense that E[g(X)] is easier to compute than E[f(X)] – see

Exercise 4.2.3 for an illustration.

In practice, the optimal choice of β depends on the quantity Cov(f(X), Y ) which may need

to be estimated. Let us introduce

Ĉn =
1

n

n∑

i=1

(f(Xi)− În)(Yi − Y n).

The strong LLN shows that

β̂∗n :=
Ĉn

Var(Y )

converges to β∗ almost surely, and Slutsky’s Lemma 3.1.14 (ii) then yields the following result.

Proposition 4.2.2 (Control variate method). Let (Xi, Yi)1≤i≤n be a sequence of iid pairs such

that f(Xi), Yi ∈ L
2(P). For all n ≥ 1, let

Î
CV
n :=

1

n

n∑

i=1

(f(Xi)− β̂∗nYi) + β̂∗nE[Y ],

with β̂∗n defined above. The interval

ICVn =

[
Î
CV
n − φ1−α/2

√
(σ̂CVn )2

n
, ÎCVn + φ1−α/2

√
(σ̂CVn )2

n

]
,

where

(σ̂CVn )2 = σ̂2n

(
1− Ĉ2

n

σ̂2nVar(Y )

)
→ σ2(1− ρ2),

satisfies

lim
n→+∞

P

(
I ∈ ICVn

)
= 1− α.
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↸ Exercise 4.2.3. Let X ∼ N (0, 1). For all t > 0, we define

ft(x) =
1

1 + tx2
,

and set

I = E [ft(X)] =
1√
2π

∫

x∈R

e−x2/2

1 + tx2
dx.

Let X1, . . . ,Xn be independent N (0, 1) variables, and let Yi = 1− tX2
i .

1. Compute E[Y1].

2. Compare numerically the variances of the Monte Carlo estimator În and of the control

variate estimator ÎCVn .

3. How does this comparison vary with t? What is your interpretation of this fact?

/ This exercise is detailed in the notebook VarianceReduction.ipynb.

4.2.2 Importance sampling

Importance sampling is based on the remark that, for any probability measure Q on E such that

P ≪ Q,

I =

∫

x∈E
f(x)dP (x) =

∫

x∈E
f(x)w(x)dQ(x),

where the function w is simply the density

w(x) =
dP

dQ
(x).

As a consequence, the quantity

ÎISn :=
1

n

n∑

i=1

f(Yi)w(Yi),

where Y1, . . . , Yn are iid with law Q, converges almost surely to I. In fact, this construction may

be applied with a more general class of probability measures Q, namely those for which one has

1{f(x)6=0}dP (x) ≪ 1{f(x)6=0}dQ(x), (4.2)

and for which we still denote by w the associated density.

q Exercise 4.2.4. Show that if P ≪ Q, then Q satisfies (4.2), but that the converse does not hold

true in general.

The whole game of importance sampling then consists in choosing Q in order to make the

asymptotic variance

(σISQ)2 := Var(f(Y )w(Y ))

as small as possible.

Proposition 4.2.5 (Optimal choice ofQ). Let I = E[|f(X)|], assume that this quantity is positive,

and define the probability measure Q∗ by

dQ∗(x) =
|f(x)|

I
dP (x).
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(i) Q∗ satisfies (4.2) and (σISQ∗)2 = I
2 − I2.

(ii) For any probability measure Q which also satisfies (4.2), (σISQ∗)2 ≤ (σISQ)2.

(iii) If f has constant sign P -almost everywhere, then (σISQ∗)2 = 0.

Proof. As a preliminary remark, we note that for any Q satisfying (4.2),

(σISQ )2 = E

[
(f(Y )w(Y ))2

]
− I

2, Y ∼ Q. (4.3)

First, it is easily checked that 1{f(x)6=0}dP (x) has density

w∗(x) = 1{f(x)6=0}
I

|f(x)|

with respect to 1{f(x)6=0}dQ
∗(x), therefore Q∗ satisfies (4.2) and besides, if Y ∗ ∼ Q∗, then

E
[
(f(Y ∗)w∗(Y ∗))2

]
=

∫

x∈E
1{f(x)6=0}|f(x)|2

(
I

|f(x)|

)2

dQ∗(x)

= I
2
∫

x∈E
1{f(x)6=0}dQ

∗(x)

= I
2
,

which, together with (4.3), proves (i). The point (iii) then immediately follows.

Second, let us fixQ which satisfies (4.2) and denote by w the associated density. By definition

of I and w, and the Cauchy–Schwarz inequality,

I
2
=

(∫

x∈E
|f(x)|1{f(x)6=0}dP (x)

)2

=

(∫

x∈E
|f(x)|w(x)1{f(x)6=0}dQ(x)

)2

≤
∫

x∈E
|f(x)|2w(x)21{f(x)6=0}dQ(x)

= E

[
(f(Y )w(Y ))2

]
,

with Y ∼ Q. Combined with (4.3), this estimate completes the proof of (ii).

In practice it is impossible to implement the method with the optimal measure Q∗ since the

latter depends explicitly on the quantity I, which is likely to be unknown — and, in the case where

f is nonnegative P -almost everywhere, is exactly the quantity I which we aim to estimate. Still,

this lemma suggests that a ‘good’ choice of Q would be one which has a large mass under the

measure |f(x)|dP (x).

q Exercise 4.2.6. For the example of the estimation of P(X ≥ 20), for X ∼ N (0, 1), given in

the introduction of this section, the optimal density is proportional to 1{y≥20}e
−y2/2. We take q(y)

the density of the law N (20, 1).

1. Compute the associated variance (σIS)2.

2. What is the minimal number of samples to draw with this method in order to construct a

confidence interval of level 0.95 which has a relative precision ǫ = 0.01?
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We complete this subsection with a few remarks on the role of the condition (4.2) for the

optimality property stated in Proposition 4.2.5. On the one hand, it is necessary to work with

measures Q which satisfy the condition (4.2) rather than P ≪ Q. Indeed, the optimal density Q∗

does not necessarily satisfy the latter condition. On the other hand, when I > |I| (which implies

that f(X) changes sign), it is possible to find importance sampling estimators of the form

1

n

n∑

i=1

f(Yi)w(Yi), Yi iid according to Q,

such that for Y ∼ Q,

E[f(Y )w(Y )] = I and Var (f(Y )w(Y )) < I
2 − I2.

A trivial example would be to assume that there exists x0 ∈ E such that f(x0) = I, and set

Q = δx0 , w(x) = 1 for any x. Of course, in this case, the measure Q does not satisfy (4.2).
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Part II

Markov chains and MCMC methods





Chapter 5

The Markov property and ergodic

theorems in discrete spaces
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LetX be a random variable with values in some measurable space (E, E) and let f ∈ L
1(PX ).

The Monte Carlo method consists in using the Law of Large Numbers in order to approximate the

integral

I =

∫

x∈E
f(x)PX(dx) = E[f(X)]

by the empirical mean of iid samples f(X1), . . . , f(Xn).
The next few chapters are dedicated to the case where it is not possible, or at least too com-

plicated, to sample iid realisations X1,X2, . . . of X. The theory of Markov chains provides an

appropriate extension of the Law of Large Numbers (and the Central Limit Theorem) to sequences

X1,X2, . . . that are neither independent nor identically distributed. This allows to implement the

(Markov Chain) Monte Carlo method to evaluate the integral I in some cases where iid samples

are not available.

Throughout the next three chapters, we consider random sequences defined on a probability

space (Ω,A,P) and taking their values in a countable set E, endowed with the discrete σ-field
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E . For any measure µ on E and x ∈ E, we shall write µ(x) for µ({x}), so that for any C ∈ E ,

µ(C) =
∑

x∈C µ(x). The set of probability measures on (E, E) is denoted by P(E).

5.1 The Markov property

5.1.1 Preliminary: conditional expectation in discrete spaces

We recall that for an event B such that P(B) > 0, the conditional probability given B is defined,

for any event A, by

P(A|B) =
P(A ∩B)

P(B)
.

We first extend this definition to the notion of conditional expectation given an event, by defining,

for any random variable X ∈ L
1(P),

E[X|B] =
E [X1B]

P(B)
.

The consistency of this definition with conditional probabilities lies in the remark that, for any

event A,

P(A|B) = E [1A|B] .

Now, given a random variable Z taking its values in some discrete space (F,F), let us first set

FZ := {z ∈ F : P(Z = z) > 0}.

Then, for any z ∈ FZ one may define the quantity

ϕ(z) := E[X|Z = z],

which is a deterministic function of z (and measurable, since we work with the discrete σ-field

F). The conditional expectation of X given Z is then the random variable

E[X|Z] := ϕ(Z).

It is almost surely well-defined, since P(Z ∈ FZ) = 1.

The main properties of conditional expectations on which we shall rely are gathered in the

next statement.

Lemma 5.1.1 (Properties of conditional expectations). Let X ∈ L
1(P) and Z ∈ F .

(i) E[X] = E[E[X|Z]].
(ii) For any measurable and bounded function ψ : F → R, E[ψ(Z)X|Z] = ψ(Z)E[X|Z],

almost surely.

Proof. By definition,

E[X] =
∑

z∈FZ

E[X1{Z=z}] =
∑

z∈FZ

E[X|Z = z]P(Z = z) = E[ϕ(Z)],

which yields (i). As far as (ii) is concerned, we have, for any z ∈ FZ ,

E[ψ(Z)X|Z = z] =
E
[
ψ(Z)X1{Z=z}

]

P(Z = z)
= ψ(z)

E
[
X1{Z=z}

]

P(Z = z)
= ψ(z)ϕ(z),

which yields the claimed statement.

For any event A, we may next naturally define P(A|Z) := E[1A|Z].
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5.1.2 Stochastic matrices

Loosely speaking, a Markov chain is a sequence of random variables (Xn)n≥0 with values in the

set E, such that at each step n ≥ 0, if Xn = x then the next state for Xn+1 is chosen randomly,

according to some probability measure Pn+1(x, ·) on E. This is translated in more formal terms

in Definition 5.1.4 below. We first introduce the notion of stochastic matrix1.

Definition 5.1.2 (Stochastic matrix). A stochastic matrix on E is a E × E matrix P with coeffi-

cients (P (x, y))x,y∈E which satisfy:

(i) for all x, y ∈ E, P (x, y) ≥ 0;

(ii) for all x ∈ E,
∑

y∈E P (x, y) = 1.

In other words, each row of the matrix P represents a probability measure P (x, ·) on E. For

this reason, we shall take the convention to identify measures on E with row vectors of RE , and

dually, functions from E to R will be identified with column vectors of RE . These conventions

then allow us to employ usual matrix/vector product notation: for example, if µ is a probability

measure on E, X a random variable in E with distribution µ and f : E → R is in L
1(µ), then

E[f(X)] =
∑

x∈E µ(x)f(x) simply rewrites µf . We also denote by 1 ∈ RE the column vector

of which all coordinates are equal to 1.

q Exercise 5.1.3 (Properties of stochastic matrices). Let P be a stochastic matrix.

1. Show that P1 = 1.

2. Show that, for any µ ∈ P(E), µP ∈ P(E).
3. Show that, for any stochastic matrix Q on E, PQ remains a stochastic matrix.

5.1.3 Markov chains

We may now introduce the notion of Markov chain.

Definition 5.1.4 (Markov chain). Let (Pn)n≥1 be a sequence of stochastic matrices. A sequence

of random variables (Xn)n≥0 in E is called a Markov chain with sequence of transition matrices

(Pn)n≥1 if, for all n ≥ 0, for any x0, . . . , xn ∈ E such that P(X0 = x0, . . . ,Xn = xn) > 0, for

all xn+1 ∈ E,

P(Xn+1 = xn+1|X0 = x0, . . . ,Xn = xn) = P(Xn+1 = xn+1|Xn = xn)

= Pn+1(xn, xn+1).
(5.1)

If all stochastic matrices Pn are equal to some stochastic matrix P , the chain is said to be homo-

geneous.

Equation (5.1) is called the Markov property. It expresses the fact that the law of the future

value Xn+1 only depends on the past trajectory X0, . . . ,Xn through the current state Xn.

Remark 5.1.5. With the notation introduced in Subsection 5.1.1, the Markov property rewrites

P(Xn+1 = xn+1|X0, . . . ,Xn) = P(Xn+1 = xn+1|Xn) = Pn+1(Xn, xn+1), almost surely.

To prove that a random sequence is a Markov chain, it is often useful to write it under the form

of a random dynamical system.

1In the case where E is countably infinite, we slightly abuse terminology and still call matrix an infinite array

indexed by E ×E.
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Proposition 5.1.6 (Random dynamical system). Let (Xn)n≥1 be a sequence of random variables

in E which satisfy the condition

∀n ≥ 0, Xn+1 = fn+1(Xn, Un+1)

for some sequence of measurable functions fn : E × U → E, n ≥ 1, and a sequence (Un)n≥1

which is iid in some measurable space U , which is independent from X0. Then (Xn)n≥0 is a

Markov chain with sequence of transition matrices defined by Pn(x, y) = P(fn(x,U1) = y). If

fn does not depend on n, then the chain is homogeneous.

Example 5.1.7 (Random walk on the discrete torus). Let N ≥ 1 and TN := Z/NZ be the

associated discrete torus with size N . Given a parameter p ∈ [0, 1] and a sequence of iid random

variables (Ui)i≥1 such that P(U1 = 1) = p, P(U1 = −1) = 1− p, the random sequence defined

by

Xn+1 = Xn + Un+1 mod N

is called the random walk in TN . If p = 1/2, this walk is symmetric. It is a homogeneous Markov

chain, with transition matrix given by

P (x, y) =





p if y = x+ 1,

1− p if y = x− 1,

0 otherwise.

Any homogeneous Markov chain can be represented by a directed graph, with set of vertices

E and set of edges {(x, y) ∈ E × E : P (x, y) > 0}. Each edge is endowed with the weight

P (x, y). The graph associated with the random walk on TN is represented on Figure 5.1.

0

1

2

3

p p

pp

1− p 1− p

1− p1− p

Figure 5.1: Graph associated with the random walk on the discrete torus Z/4Z.

Example 5.1.8 (The Ehrenfest urn). Consider a box divided into two compartments, called A and

B, and which contains N particles, see Figure 5.2. At each step, one particle is chosen uniformly

at random and moved to the other compartment. There are at least two ways to describe this

dynamics.

The microscopic description consists in recording the compartment in which each particle

is located, so that a configuration is a vector x = (x1, . . . , xN ) ∈ Emicro := {A,B}N . The

transition matrix of the dynamics is given by

P (x, y) =

{
1
N if x and y differ from exactly one coordinate,

0 otherwise.

The macroscopic description consists in recording merely the number of particles contained

in the compartment A, so that the configuration space is Emacro = {0, . . . , N}, and the transition

matrix is given by

P (k, k + 1) =
N − k

N
, P (k, k − 1) =

k

N
,
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•

Figure 5.2: The Ehrenfest urn with N = 10 particles.

and the other coefficients are 0.

q Exercise 5.1.9. Let π be a probability measure on E.

1. Let (Xn)n≥0 be a sequence of iid random variables with law π. Show that (Xn)n≥0 is a

homogeneous Markov chain and describe its transition matrix.

2. Let ξ be a random variable with law π, and let (Yn)n≥0 be the random sequence defined by

Yn = ξ for all n ≥ 0. Show that (Yn)n≥0 is a homogeneous Markov chain and describe its

transition matrix.

3. What can you say about the law of Xn and Yn, for any n ≥ 0? And what about the law of

the vectors (X0, . . . ,Xn) and (Y0, . . . , Yn)?

From Definition 5.1.4 we deduce the following properties related with the law of the sequence

(Xn)n≥0.

Proposition 5.1.10 (Marginal distributions of a Markov chain). Let (Xn)n≥0 be a Markov chain

with sequence of transition matrices (Pn)n≥1. For all n ≥ 0, let µn ∈ P(E) denote the law of the

random variable Xn.

(i) For all n ≥ 0, for all x0, . . . , xn ∈ E,

P(X0 = x0, . . . ,Xn = xn) = µ0(x0)P1(x0, x1) · · ·Pn(xn−1, xn). (5.2)

(ii) For all n ≥ 0, µn+1 = µnPn+1.

Before detailing the proof of Proposition 5.1.10, we emphasise a few of its consequences.

Remark 5.1.11. (i) The first assertion shows that the law of any vector (X0, . . . ,Xn) is en-

tirely characterised by two objects: the initial distribution µ0 and the sequence of transition

matrices (Pn)n≥1.

(ii) The second assertion immediately yields the identity µn = µ0P1 · · ·Pn.

(iii) In particular, if the chain is homogeneous with transition matrix P , then for any f ∈
L
1(µn), E[f(Xn)] = µ0P

nf .

Proof of Proposition 5.1.10. We prove the first assertion by induction on n ≥ 0. For n = 0 this

is immediate. Let n ≥ 0 be such that (5.2) holds, and let x0, . . . , xn, xn+1 ∈ E. If P(X0 =
x0, . . . ,Xn = xn) = 0, then on the one hand the fact that {X0 = x0, . . . ,Xn+1 = xn+1} ⊂
{X0 = x0, . . . ,Xn = xn} ensures that the former event has also probability 0, while on the

other hand the identity (5.2) implies that µ0(x0)P1(x0, x1) · · ·Pn(xn−1, xn) = 0 and therefore

this quantity remains 0 when multiplied by Pn+1(xn, xn+1). If P(X0 = x0, . . . ,Xn = xn) > 0,
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we have

P(X0 = x0, . . . ,Xn+1 = xn+1)

= P(Xn+1 = xn+1|X0 = x0, . . . ,Xn = xn)P(X0 = x0, . . . ,Xn = xn)

= µ0(x0)P1(x0, x1) · · ·Pn+1(xn, xn+1),

where we have used (5.1) and (5.2) at the last line.

The second assertion follows from the computation

P(Xn+1 = y) =
∑

x∈E
P(Xn+1 = y|Xn = x)P(Xn = x) =

∑

x∈E
Pn+1(x, y)µn(x) = µnPn+1(y),

in which we have used (5.1).

In practice we shall often compare homogeneous Markov chains with the same transition

matrix P but different initial distributions. It will then be helpful to use the notation Pµ,Eµ, . . .
to emphasise the fact that the initial distribution of the chain is µ. When this initial distribution

is a Dirac distribution at some x ∈ E (that is to say that X0 = x almost surely), we shall write

Px,Ex, . . . rather than Pδx ,Eδx , . . .. As an example, we may observe from Proposition 5.1.10 and

Remark 5.1.11 that whenX0 = x, the law ofXn is related with the n-th power of P by the identity

∀x, y ∈ E, Px(Xn = y) = Pn(x, y).

Proposition 5.1.12 (Homogeneous Markov property). Let (Xn)n≥0 be a homogeneous Markov

chain with transition matrix P . With the notation of Subsection 5.1.1, for any µ ∈ P(E), for any

n,m ≥ 0 and for any bounded G : Em+1 → R,

Eµ [G(Xn,Xn+1, . . . ,Xn+m)|X0, . . . ,Xn] = EXn [G(X0, . . . ,Xm)] , Pµ-almost surely.

The statement of Proposition 5.1.12 must be understood as the fact that, conditionally on the

trajectory (X0, . . . ,Xn), the sequence (Xn,Xn+1, . . .) is a Markov chain with starting point Xn

and transition matrix P .

Proof of Proposition 5.1.12. Let x0, . . . , xn ∈ E such that P(X0 = x0, . . . ,Xn = xn) > 0. We

have

Eµ [G(Xn,Xn+1, . . . ,Xn+m)|X0 = x0, . . . ,Xn = xn]

=
Eµ

[
G(Xn,Xn+1, . . . ,Xn+m)1{X0=x0,...,Xn=xn}

]

Pµ(X0 = x0, . . . ,Xn = xn)
.

Let us focus on the numerator, which rewrites

Eµ

[
G(Xn,Xn+1, . . . ,Xn+m)1{X0=x0,...,Xn=xn}

]

=
∑

xn+1,...,xn+m∈E
G(xn, xn+1, . . . , xn+m)Pµ(X0 = x0, . . . ,Xn+m = xn+m)

=
∑

xn+1,...,xn+m∈E
G(xn, xn+1, . . . , xn+m)µ(x0)P (x0, x1) · · ·P (xn+m−1, xn+m).

Now, the product in the right-hand side satisfies

µ(x0)P (x0, x1) · · ·P (xn+m−1, xn+m)

= Pµ(X0 = x0, . . . ,Xn = xn)P (xn, xn+1) · · ·P (xn+m−1, xn+m)

= Pµ(X0 = x0, . . . ,Xn = xn)Pxn(X0 = xn, . . . ,Xm = xn+m),



5.2 Stationary distribution 57

so that

Eµ

[
G(Xn,Xn+1, . . . ,Xn+m)1{X0=x0,...,Xn=xn}

]

Pµ(X0 = x0, . . . ,Xn = xn)

=
∑

xn+1,...,xn+m∈E
G(xn, xn+1, . . . , xn+m)Pxn(X0 = xn, . . . ,Xm = xn+m)

= Exn [G(X0, . . . ,Xm)] .

This completes the proof.

5.2 Stationary distribution

From now on, we only consider homogeneous Markov chains, and omit the precision when refer-

ring to ‘Markov chains’. The first step to establish a connection between Markov chains and the

Monte Carlo method is the notion of stationary distribution.

5.2.1 Definition

Definition 5.2.1 (Stationary distribution). Let (Xn)n≥0 be a Markov chain in E with transition

matrix P . A probability measure π on E is called a stationary distribution for (Xn)n≥0 if it

satisfies

πP = π.

The denomination ‘stationary’ comes from the following result.

Proposition 5.2.2 (Stationary distribution). Let π be a stationary distribution for (Xn)n≥0. For

any n ≥ 0,

∀x ∈ E, Pπ(Xn = x) = π(x);

in other words, if X0 ∼ π then Xn ∼ π for all n ≥ 0.

Proof. It is a straightforward consequence of the second assertion of Remark 5.1.11.

q Exercise 5.2.3. Show that if π is a stationary distribution for (Xn)n≥0, then the whole sequence

is actually stationary in the sense that for any k ≥ 0 and n ≥ 0, the vectors (X0, . . . ,Xn) and

(Xk, . . . ,Xk+n) have the same distribution under Pπ.

q Exercise 5.2.4 (Random walk on the torus). Show that, whatever the value of p, the uniform

measure on TN is stationary for the random walk on TN introduced in Example 5.1.7.

↸ Exercise 5.2.5. Consider the Ehrenfest urn from Example 5.1.8.

1. Show that the uniform distribution on Emicro is stationary for the microscopic description.

2. If X = (X1, . . . ,XN ) is a random vector uniformly distributed in Emicro, what is the law

of the corresponding macroscopic configuration K =
∑N

i=1 1{Xi=A}?

3. Show that the law of K is stationary for the macroscopic description.

In the sequel of this section, we study the existence and uniqueness of stationary distributions.

We restrict ourselves to the case of finite state spaces and defer the case of countably infinite state

spaces to Section 5.4.
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5.2.2 Existence

Proposition 5.2.6 (Existence of stationary distribution). If E is finite, then every Markov chain in

E admits at least one stationary distribution.

We provide two different proofs of Proposition 5.2.6. Both rely on the observation that the set

P(E) can be identified with the finite-dimensional simplex {µ ∈ [0, 1]E :
∑

x∈E µ(x) = 1}, and

is therefore convex and compact.

Proof by Brouwer’s Fixed Point Theorem. By Exercise 5.1.3, the mapping µ 7→ µP is continuous

from P(E) to P(E). As a consequence, Brouwer’s Fixed Point Theorem ensures that it admits a

fixed point in P(E).

Elementary proof. Let µ ∈ P(E). For all n ≥ 1, set

µ̂n =
1

n

n−1∑

i=0

µP i,

so that for all f : E → R,

µ̂nf =
1

n

n−1∑

i=0

Eµ[f(Xi)].

By Exercise 5.1.3 and convexity, µ̂n ∈ P(E) and by compactness, there exists an increasing

sequence (nℓ)ℓ≥1 such that µ̂nℓ
converges to some π ∈ P(E) when ℓ → +∞. Since, for all

ℓ ≥ 1,

µ̂nℓ
P =

1

nℓ

nℓ−1∑

i=0

µP i+1 = µ̂nℓ
+

1

nℓ
(µPnℓ − µ) ,

we deduce using the boundedness of µPnℓ − µ that πP = π, which is the expected result.

5.2.3 Irreducibility and uniqueness

What may prevent a stationary distribution from being unique? Let E1, E2 be two disjoint subsets

of the finite space E, P1 and P2 be stochastic matrices respectively defined on E1 and E2, and

let π1, π2 be some associated stationary distributions. On the space E′ = E1 ∪ E2, define the

stochastic matrix P ′ by the block decomposition

P ′ =

(
P1 0
0 P2

)
;

similarly, define the probability measures

π′1 = (π1 0), π′2 = (0 π2).

Then it is clear that both π′1 and π′2 (and as a consequence, all their convex combinations)

are stationary distributions for P ′. Observe that in this situation, if the chain starts at some point

x ∈ E1, then Xn will remain in E1 for all n ≥ 1, see also Figure 5.3.

This remark motivates the following definition.

Definition 5.2.7 (Irreducibility). A Markov chain with transition matrix P on E is called irre-

ducible if, for all x, y ∈ E, there exist n ≥ 1 and x = x0, x1, . . . , xn = y such that

P (x0, x1) · · ·P (xn−1, xn) > 0.
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1

2

3 4 5

Figure 5.3: On the space E = {1, 2, 3, 4, 5}, arrows represent the possible moves of the Markov

chain. Clearly, a chain started in E1 = {1, 2, 3} can never go to E2 = {4, 5}.

We shall also say that the matrix P is irreducible.

q Exercise 5.2.8. Check that the condition that there exist x = x0, x1, . . . , xn = y such that

P (x0, x1) · · ·P (xn−1, xn) > 0 is equivalent to Px(Xn = y) > 0.

The main result of this section is the following statement.

Proposition 5.2.9 (Uniqueness of a stationary distribution). If the spaceE is finite and the stochas-

tic matrix P is irreducible, then it possesses a unique stationary distribution.

Existence was shown in Propsoition 5.2.6 so we focus on uniqueness. We start the proof with

the following exercise.

q Exercise 5.2.10. Let P be an irreducible stochastic matrix, and let π be an associated station-

ary distribution. Show that for all x ∈ E, π(x) > 0.

We now introduce a useful object.

Definition 5.2.11 (Dirichlet form). Let P be a stochastic matrix, and let π be an associated sta-

tionary distribution. The Dirichlet form of (P, π) is the quadratic form Eπ defined on RE by

Eπ(f) =
1

2
Eπ

[
(f(X1)− f(X0))

2
]
=

1

2

∑

x,y∈E
(f(y)− f(x))2π(x)P (x, y).

If E is countably infinite, then Eπ(f) is well-defined in [0,+∞]. For the sequel of the proof

to make sense, it is however more convenient to restrict ourselves to the case where E is finite, so

as not to discuss the convergence of sums over E.

Lemma 5.2.12 (Another expression for Eπ). If E is finite, then for all f ∈ RE ,

Eπ(f) = −
∑

x∈E
f(x)(P − I)f(x)π(x).

Proof. From Definition 5.2.11, we write

Eπ(f) =
1

2

∑

x,y∈E
(f(y)2 − 2f(y)f(x) + f(x)2)π(x)P (x, y)

=
1

2

∑

y∈E
f(y)2πP (y)−

∑

x∈E
f(x)π(x)Pf(x) +

1

2

∑

x∈E
f(x)2π(x),

where we have used the fact that
∑

y∈E P (x, y) = 1 at the last line. Since π is stationary, we may

furthermore write πP = π in the first term, so that

Eπ(f) =
∑

x∈E
f(x)2π(x)−

∑

x∈E
f(x)π(x)Pf(x) = −

∑

x∈E
f(x)(P − I)f(x)π(x),

which is the claimed expression.
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Lemma 5.2.13 (Kernel of P − I for irreducible matrices). Assume that E is finite and let P be

an irreducible stochastic matrix. For all f ∈ RE , if Pf = f then there exists c ∈ R such that

f = c1.

Proof. Let π be a stationary distribution for P . If Pf = f , then Lemma 5.2.12 immediately

shows that Eπ(f) = 0, therefore by Definition 5.2.11 and Exercise 5.2.10, f(x) = f(y) for all

pairs (x, y) such that P (x, y) > 0. We now take arbitrary x, y ∈ E and let x = x0, x1, . . . , xn = y
be given by Definition 5.2.7. From this definition, P (xi, xi+1) > 0 for all i = 0, . . . , n − 1, so

that by the argument above, f(x0) = · · · = f(xn) and thus f is a constant function on E.

We are now ready to complete the proof of Proposition 5.2.9.

Proof of Proposition 5.2.9. By Lemma 5.2.13 and the Rank-Nullity Theorem, 1 is a simple eigen-

value for both left- and right-multiplication, and any stationary distribution for P is in the kernel

(for the left multiplication) of P − I . So any two stationary distributions are necessarily collinear,

and since both are probability measures, they must coincide.

↸ Exercise 5.2.14 (The coupon collector). A brand of chocolate eggs hides surprise gifts in each

egg. There are N different models of gifts, each of which is equally likely to be hidden in a given

egg. We denote by Xn ∈ {0, . . . , N} the number of different gifts that you have collected after

eating n eggs, and τN = inf{n ≥ 0 : Xn = N} the time at which you have found all eggs.

1. Show that (Xn)n≥0 is a Markov chain and write its transition matrix.

2. Is this chain irreducible?

3. Describe the set of its stationary distributions.

4. Compute E0[τN ] and give an equivalent of this quantity when N → +∞. Hint: define

η0 = 0 and, for i ∈ {1, . . . , N}, ηi = inf{n ≥ 1 : Xηi−1+n = i}. How to express τN in

terms of η1, . . . , ηN? What is the law of each ηi?
5. Show that, for any c > 0, P(τN > ⌈N lnN + cN⌉) ≤ e−c. Hint: for i ∈ {1, . . . , N} and

k ≥ 1, introduce the eventAk
i = {no gift of the i-th type has been found in the first k eggs}.

5.3 Ergodic theorems in finite state spaces

Let (Xn)n≥0 be a homogeneous Markov chain, with transition matrix P . In this section, we

assume that Xn takes its values in some finite state space E.

5.3.1 Return time

For any x ∈ E, let us define the random variable

τx = inf{n ≥ 1 : Xn = x}, (5.3)

which may take the value +∞ and is called the return time to x.

Lemma 5.3.1 (Integrability of return times in finite state spaces). If the chain (Xn)n≥0 is irre-

ducible and the state space E is finite, then for any µ ∈ P(E) and x ∈ E, Eµ[τx] < +∞.

Proof. Let x ∈ E. For all x′ ∈ E, Definition 5.2.7 implies that there exists nx′ ≥ 1 such that

Pnx′ (x′, x) > 0. Let

κ := min
x′∈E

Pnx′ (x′, x) > 0, m := max
x′∈E

nx′ < +∞,
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so that whatever the initial state x′, the probability for the chain to return to x before the time m is

at least κ. Indeed,

κ ≤ Pnx′ (x′, x) = Px′(Xnx′
= x) ≤ Px′(τx ≤ nx′) ≤ Px′(τx ≤ m).

Hence, for any ℓ ≥ 1,

Pµ(τx > ℓm) = Pµ (X1 6= x, . . . ,Xℓm 6= x)

= Eµ

[
1{X1 6=x,··· ,X(ℓ−1)m 6=x}1{X(ℓ−1)m+1 6=x,··· ,X(ℓ−1)m 6=x}

]
.

Using Lemma 5.1.1 and then Proposition 5.1.12, we get

Eµ

[
1{X1 6=x,··· ,X(ℓ−1)m 6=x}1{X(ℓ−1)m+1 6=x,··· ,X(ℓ−1)m 6=x}

]

= Eµ

[
Eµ

[
1{X1 6=x,··· ,X(ℓ−1)m 6=x}1{X(ℓ−1)m+1 6=x,··· ,X(ℓ−1)m 6=x}|X0, . . . ,X(ℓ−1)m

]]

= Eµ

[
1{X1 6=x,··· ,X(ℓ−1)m 6=x}Eµ

[
1{X(ℓ−1)m+1 6=x,··· ,X(ℓ−1)m 6=x}|X0, . . . ,X(ℓ−1)m

]]

= Eµ

[
1{X1 6=x,··· ,X(ℓ−1)m 6=x}PX(ℓ−1)m

(X1 6= x, · · · ,Xm 6= x)
]
.

But since, almost surely,

PX(ℓ−1)m
(X1 6= x, · · · ,Xm 6= x) = PX(ℓ−1)m

(τx > m) ≤ 1− κ,

we deduce that

Pµ(τx > ℓm) ≤ (1− κ)Pµ(τ > (ℓ− 1)m),

and thus

Pµ(τx > ℓm) ≤ (1− κ)ℓ.

We complete the proof by remarking that, by the Fubini–Tonelli Theorem,

Eµ[τx] = Eµ

[
+∞∑

n=0

1{n<τx}

]

=
+∞∑

n=0

Pµ (τx > n)

=

+∞∑

ℓ=0

m−1∑

k=0

Pµ (τx > ℓm+ k)

≤
+∞∑

ℓ=0

mPµ (τx > ℓm)

≤
+∞∑

ℓ=0

m(1− κ)ℓ

=
m

κ
.

↸ Exercise 5.3.2 (Exponential moments). Under the assumptions of Lemma 5.3.1, show that

there exists ǫ > 0 such that Eµ[exp(ǫτx)] < +∞. Deduce that for all p ≥ 1, Eµ[(τx)
p] < +∞.
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5.3.2 Law of Large Numbers

From now on we assume that the chain (Xn)n≥0 is irreducible. By Proposition 5.2.9, it admits a

unique stationary distribution π.

Theorem 5.3.3 (Law of Large Numbers for Markov chains in finite state spaces). If the chain

(Xn)n≥0 is irreducible and the space E is finite, then for any f ∈ RE ,

lim
n→+∞

1

n

n−1∑

i=0

f(Xi) = πf, almost surely.

Furthermore, the stationary distribution π of (Xn)n≥0 satisfies the identity

∀x ∈ E, π(x) =
1

Ex[τx]
,

where we recall the definition of the return time τx in (5.3).

Theorem 5.3.3 obviously generalises the usual strong LLN to Markov chains, and emphasises

the key role played by the stationary distribution in this perspective. We insist on the technical

point that in the statement of this theorem, we do not make explicit the initial distribution of the

chain: it is to be understood that for any initial measure µ0 ∈ P(E), the convergence holds almost

surely.

To prove Theorem 5.3.3, we shall show the next two facts:

∀x ∈ E, lim
n→+∞

1

n

n−1∑

i=0

1{Xi=x} =
1

Ex[τx]
, (5.4)

and

the measure π̃(x) :=
1

Ex[τx]
is stationary. (5.5)

To proceed we first define

τ0x := inf{n ≥ 0 : Xn = x}, τ ℓ+1
x := inf{n ≥ τ ℓx + 1 : Xn = x}.

Lemma 5.3.4 below shows that τ ℓx < +∞, almost surely, for any ℓ ≥ 0, so the sequence (τ ℓx)ℓ≥0

is well-defined, almost surely.

Lemma 5.3.4 (On the sequence (τ ℓx)ℓ≥0). Under the assumptions of Theorem 5.3.3, we have

τ0x < +∞, almost surely, and the sequence (τ ℓ+1
x − τ ℓx)ℓ≥0 is iid, with law the distribution of τx

under Px.

Proof. We first notice that

τ0x =

{
0 if X0 = x,

τx otherwise,
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so τ0x ≤ τx and by Lemma 5.3.1, τ0x < +∞, almost surely. Now, for any n,m ≥ 1, by Proposi-

tion 5.1.12,

P(τ1x − τ0x = n, τ2x − τ1x = m) =
+∞∑

p=0

P(τ0x = p, τ1x − τ0x = n, τ2x − τ1x = m)

=
+∞∑

p=0

P




X0 6= x, . . . ,Xp−1 6= x,Xp = x,
Xp+1 6= x, . . . ,Xp+n−1 6= x,Xp+n = x,
Xp+n+1 6= x, . . . ,Xp+n+m−1 6= x,Xp+n+m = x




=

+∞∑

p=0

P(τ0x = p)Px(τx = n)Px(τx = m)

= Px(τx = n)Px(τx = m),

where we have used the fact that P(τ0x < +∞) = 1 twice. This proves that τ1x−τ0x and τ2x−τ1x are

independent with law Px(τx = ·), and the computation easily generalises to an arbitrary number

of variables τ ℓ+1
x − τ ℓx.

We are now ready to complete the proof of Theorem 5.3.3.

Proof of Theorem 5.3.3. We first prove (5.4). For n ≥ τ0x , let Ln ≥ 0 be such that

τLn
x ≤ n < τLn+1

x .

Since the sequence of integers (τ ℓx)ℓ≥0 is increasing, Ln is well-defined and Ln → +∞ when

n→ +∞. Furthermore,
n−1∑

i=0

1{Xi=x} = Ln + 1.

We deduce that for n large enough,

Ln + 1

τLn+1
x

<
1

n

n−1∑

i=0

1{Xi=x} ≤
Ln + 1

τLn
x

.

By the strong Law of Large Numbers and Lemma 5.3.4, we have

τLx
L

=
τ0x
L

+
1

L

L−1∑

ℓ=0

(τ ℓ+1
x − τ ℓx) → Ex[τx], almost surely,

when L → +∞. As a consequence, almost surely, both bounds in the inequality above converge

to the same limit π̃(x). This proves (5.4).

To prove (5.5), we deduce from (5.4) and the Dominated Convergence Theorem applied to the

bounded random variable that

E

[
1

n

n−1∑

i=0

1{Xi=x}

]
=

1

n

n−1∑

i=0

µ0P
i(x) → π̃(x)

when n → +∞. But by the proof of Proposition 5.2.6, any limit of 1
n

∑n−1
i=0 µ0P

i must be a

stationary distribution. Therefore, by the uniqueness result of Proposition 5.2.9, π̃ = π.
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To complete the proof of Theorem 5.3.3 it remains to observe that thanks to (5.4) and (5.5),

for any f ∈ RE ,

1

n

n−1∑

i=0

f(Xi) =
∑

x∈E
f(x)

(
1

n

n−1∑

i=0

1{Xi=x}

)
→
∑

x∈E
f(x)π(x), almost surely,

which is elementary since E is assumed to be finite.

Remark 5.3.5 (Representation formula for π). For f ∈ RE , Theorem 5.3.3 implies that, with the

notation above,

lim
L→+∞

1

τLx

τLx −1∑

i=0

f(Xi) = πf, almost surely.

But with the same arguments as in the proof of Theorem 5.3.3, one may write

1

L

τLx −1∑

i=0

f(Xi) =
1

L

τ0x−1∑

i=0

f(Xi) +
1

L

L−1∑

ℓ=0

τℓ+1
x −1∑

i=τℓx

f(Xi),

and

τLx
L

=
τ0x
L

+
1

L

L−1∑

ℓ=0

(τ ℓ+1
x − τ ℓx).

The sequence of random variables (
∑τℓ+1

x −1
i=τℓx

f(Xi))ℓ≥0 is iid, with law the distribution of
∑τx−1

i=0 f(Xi)

under Px. Therefore, applying the strong Law of Large Numbers twice, we get the identity

πf =
Ex

[∑τx−1
i=0 f(Xi)

]

Ex[τx]
,

which rewrites

∀x ∈ E, Ex

[
τx−1∑

i=0

f(Xi)

]
=

πf

π(x)
.

In particular, if f(·) = 1{·=y} for some y ∈ E, we get

Ex

[
τx−1∑

i=0

1{Xi=y}

]
=
π(y)

π(x)
,

so that the ratio π(y)/π(x) may be seen as the average number of returns in y by the chain

between two consecutive returns in x.

5.3.3 Central Limit Theorem

The proof of the Markov Chain LLN relies on the application of the usual LLN to the decomposi-

tion of the empirical mean 1
n

∑n−1
i=0 f(Xi) into iid excursions outside x. Therefore it is natural to

expect the application of the Central Limit Theorem to these excursions to lead to a Central Limit

Theorem for the the empirical mean of the Markov chain.
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For simplicity, we assume that X0 = x and we consider the empirical mean at times n = τLx ,

so that

√
n

(
1

n

n−1∑

i=0

f(Xi)− πf

)
=

1√
τLx

τLx −1∑

i=0

(f(Xi)− πf)

=

√
L

τLx

1√
L

L−1∑

ℓ=0

Zℓ
x,

where the random variables Zℓ
x =

∑τℓ+1
x −1
i=τℓx

(f(Xi) − πf) are iid, with law the distribution of

Zx :=
∑τx−1

i=0 (f(Xi)−πf) under Px. In particular, by Remark 5.3.5, the variable Zℓ
x are centered.

We denote by v(x) := Ex[Z
2
x] their variance. Since τLx /L → 1/π(x), almost surely, we deduce

from Slutsky’s Lemma that

lim
L→+∞

1√
τLx

τLx −1∑

i=0

(f(Xi)− πf) = N (0, π(x)v(x)), in distribution.

It turns out that the quantity σ2(f) := π(x)v(x) ≥ 0 does not depend on x, and that the

convergence actually holds without the restriction to the (random) subsequence n = τLx .

Theorem 5.3.6 (Markov chain Central Limit Theorem). Let the assumptions of Theorem 5.3.3

hold. For any f ∈ RE ,

lim
n→+∞

√
n

(
1

n

n−1∑

i=0

f(Xi)− πf

)
= N (0, σ2(f)), in distribution.

We refer to Theorems 17.2.2, 17.4.4 and 17.5.3 in the book Markov Chains and Stochastic

Stability by Meyn and Tweedie for a proof. An alternative expression for σ2(f) will be given in

Chapter 6.

5.4 Ergodic theorems in countably infinite state spaces

In this section, we discuss the extension of the results of Sections 5.2 and 5.3 to the case where E
is countably infinite. The first difficulty lies in the existence of stationary distributions, which may

fail.

5.4.1 Recurrence and transience

When E is infinite, the compactness arguments used in both proofs of Proposition 5.2.6 no longer

holds, and in fact, there are natural examples of Markov chains which do not admit a stationary

distribution.

Example 5.4.1 (Simple random walk on Zd). The simple random walk on Zd is the random

sequence (Xn)n≥0 which at each step picks up its next state uniformly among its neighbours.

More precisely, it is the Markov chain in Zd with transition matrix

P (x, y) =

{
1
2d if |x− y| = 1,

0 otherwise,

where | · | denotes the Euclidean norm on Rd.
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q Exercise 5.4.2. Show that a stationary distribution π for the simple random walk on Z neces-

sarily satisfies π(x+1) = π(x) for all x ∈ Z and therefore cannot exist. Generalise the argument

to Zd for any d ≥ 1.

In this context, the existence of stationary distributions is related with the tail of the return

times τx defined in (5.3).

Definition 5.4.3 (Recurrent and transient states). For a given stochastic matrix P on E, a state

x ∈ E is called:

• transient if Px(τx = +∞) > 0;

• recurrent if Px(τx = +∞) = 0.

Furthermore, recurrent states are called:

• null if Ex[τx] = +∞;

• positive if Ex[τx] < +∞.

In the sequel, we refer to the fact of being transient, null recurrent or positive recurrent as the

nature of a state.

q Exercise 5.4.4 (Characterisation of recurrence and transience). For any x ∈ E, set

Nx =

+∞∑

n=0

1{Xn=x}.

1. If x is transient, show that Nx has a geometric distribution, with parameter Px(τx = +∞).
2. If x is recurrent, show that Nx = +∞, Px-almost surely.

3. Deduce that x is transient (resp. recurrent) if and only if
∑+∞

n=0 P
n(x, x) < +∞ (resp∑+∞

n=0 P
n(x, x) = +∞).

5.4.2 Stationary distribution and LLN

The first result of this subsection is the following generalisation of (5.4), which does not require

irreducibility to hold.

Lemma 5.4.5 (Limit of the empirical measure). For any x ∈ E, we have

lim
n→+∞

1

n

n−1∑

i=0

1{Xi=x} =
1

Ex[τx]
, almost surely.

If x is transient, then by Exercise 5.4.4, Nx < +∞ almost surely, so that for n large enough,

1

n

n−1∑

i=0

1{Xi=x} =
Nx

n
→ 0 =

1

Ex[τx]
.

On the other hand, if x is recurrent, then by Exercise 5.4.4 again, one may define the sequence

of successive return times τ0x , τ
1
x , . . . of Xn as in Section 5.3, and the statement of Lemma 5.4.5

follows from the very same proof2 as for (5.4). If x is positive recurrent, then the representation

formula

∀x, y ∈ E, Ex

[
τx−1∑

i=0

1{Xi=y}

]
=

Ex[τx]

Ey[τy]
(5.6)

2If x is null recurrent, we use the following variant of the LLN: if (Xn)n≥1 is a sequence of nonnegative random

variables such that E[X1] = +∞, then 1
n

∑n
i=0 Xn → +∞, almost surely. This statement can easily be deduced

from the usual strong Law of Large Numbers, applied to the sequence min(Xn,M), and the Monotone Convergence

Theorem to show that limM→+∞ E[min(X1,M)] = +∞.
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remains true.

With Lemma 5.4.5 at hand, we may now state and prove the main two results regarding recur-

rence, transience, stationary distribution and LLN.

Proposition 5.4.6 (Recurrence, transience and stationary distributions). Let (Xn)n≥0 be a Markov

chain with transition matrix P . We assume that P is irreducible.

(i) All states have the same nature, and therefore being transient, null recurrent or positive

recurrent is a property of the chain.

(ii) If the chain is positive recurrent, then setting

∀x ∈ E, π(x) =
1

Ex[τx]

defines a probability measure on E, which is the unique stationary distribution of the chain.

(iii) If the chain is transient or null recurrent, then it does not admit a stationary distribution.

Remark 5.4.7. In the finite state space case, Lemma 5.3.1 shows that all irreducible chains are

positive recurrent.

Theorem 5.4.8 (Ergodic theorem). If the chain (Xn)n≥0 is irreducible and positive recurrent,

then for any f ∈ L
1(π),

lim
n→+∞

1

n

n−1∑

i=0

f(Xi) = πf, almost surely.

Proof of Proposition 5.4.6. Let us assume that P is irreducible and fix x, y ∈ E. Then there exist

p, q ≥ 1 such that P p(x, y) > 0 and P q(y, x) > 0. Since, for any n ≥ 0,

Pn+p+q(x, x) ≥ P p(x, y)Pn(y, y)P q(y, x),

Pn+p+q(y, y) ≥ P q(y, x)Pn(x, x)P p(x, y),

the series
∑
Pn(x, x) and

∑
Pn(y, y) have the same nature, and therefore by Exercise 5.4.4,

either all states are transient, or all states are recurrent. We now assume that there is a positive

recurrent state x. Then π(x) > 0 and, for any y ∈ E, the representation formula (5.6) yields

π(y) = π(x)Ex

[
τx−1∑

n=0

1{Xn=y}

]
.

Assume that Ex[
∑τx−1

n=0 1{Xn=y}] = 0. Then necessarily
∑τx−1

n=0 1{Xn=y} = 0, Px-almost surely,

which implies that starting from x, the state y cannot be reached. This is in contradiction with the

assumption that the chain is irreducible and thereby implies that π(y) > 0, so that all states are

positive recurrent.

To prove both (ii) and (iii), we note that the boundedness of the variable 1
n

∑n−1
i=0 1{Xn=x}

allows to apply the Dominated Convergence Theorem to the statement of Lemma 5.4.5, and thus
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deduce that, for any x ∈ E,

π(x) = E

[
lim

n→+∞
1

n

n−1∑

i=0

1{Xi=x}

]

= lim
n→+∞

1

n

n−1∑

i=0

P(Xi = x)

= lim
n→+∞

1

n

n−1∑

i=0

µ0P
i(x)

= lim
n→+∞

µ̂n(x),

with µ̂n = 1
n

∑n−1
i=0 µ0P

i, and where we recall that µ0 is the law of X0. If the chain is positive

recurrent3 , then by Scheffé’s Lemma (see Remark 3.1.21), for any y ∈ E,

|µ̂nP (y)− πP (y)| =
∣∣∣∣∣
∑

x∈E
(µ̂n(x)− π(x))P (x, y)

∣∣∣∣∣ ≤
∑

x∈E
|µ̂n(x)− π(x)| → 0,

and therefore

lim
n→+∞

µ̂nP (y) = πP (y).

But on the other hand,

µ̂nP (y) =
1

n

n−1∑

i=0

µ0P
i(y) = µ̂n(y) +

1

n
(µ0P

n(y)− µ0(y)) → π(y),

which finally yields π(y) = πP (y) and completes the proof of (ii). In the case where π = 0,

assuming that µ0 is a stationary distribution yields µ̂n = µ0 for any n and therefore immediately

contradicts the fact that µ̂n(x) → π(x), which proves (iii).

Proof of Theorem 5.4.8. If f is bounded then the conclusion follows from Scheffé’s Lemma, still

applied under the form of Remark 3.1.21. In the general case where f ∈ L
1(π), the theorem

is obtained by using the same decomposition of
∑n−1

i=0 f(Xi) into excursions as in the proof of

Lemma 5.4.5, and using the strong Law of Large Numbers again.

1 Exercise 5.4.9 (Recurrence and transience of the simple random walk). The purpose of this

exercise is to show that for d ∈ {1, 2}, the random walk on Zd is null recurrent, while for d ≥ 3
it is transient. In all cases, we shall use the characterisation of recurrence and transience provided

by Exercise 5.4.4.

1. For the simple random walk in dimension d = 1, compute P0(Xn = 0) and conclude.

2. We let d = 2 and denote by (X1
n,X

2
n) the coordinates of the simple random walk.

(a) Let Un = (X1
n+1 −X1

n) + (X2
n+1 −X2

n) and Vn = (X1
n+1 −X1

n) − (X2
n+1 −X2

n).
Write the law of the pair (Un, Vn) and show that the sequence (Un, Vn)n≥0 is iid.

(b) For n odd, what is the value of P0(Xn = 0)?
(c) For n even, express the event {Xn = 0} in terms of

∑n−1
k=0 Uk and

∑n−1
k=0 Vk and

deduce the value of P0(Xn = 0).
(d) Conclude.

3The argument here is the same as in the second proof of Proposition 5.2.6, extended to the infinite state space case

thanks to Scheffé’s Lemma.
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3. We now assume that d ≥ 3 and denote by ϕ the characteristic function of X1 under P0,

defined by

∀u ∈ Rd, ϕ(u) := E0

[
ei〈u,X1〉

]
.

(a) Show that, for all u = (u1, . . . , ud) ∈ Rd,

ϕ(u) =
1

d
(cos u1 + · · ·+ cos ud) .

(b) Show that
+∞∑

k=0

P0(X2k = 0) =
1

(2π)d

∫

u∈(−π,π)d

du

1− ϕ2(u)
.

(c) Conclude.
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Convergence to equilibrium of Markov

chains
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In this Chapter, we study the long-time behaviour of homogeneous Markov chains.

q Exercise 6.0.1. Show that if (Xn)n≥0 is an irreducible Markov chain such that Xn → π in

distribution, then π is necessarily a stationary distribution for (Xn)n≥0.

From a numerical point of view, our motivation is the following: if the law of Xn converges

to π, then for n large enough, Xn can be used as an approximate random number generator under

π. Quantifying the distance between the law of Xn and π would then allow us to control the

approximation error made in this procedure. The main result of the Chapter in this perspective is

Theorem 6.2.4, which provides a geometrically decreasing error estimate between the law of Xn

and its stationary distribution π. Somewhat unexpectedly, this result also allows us to establish

rigorously a formula for the asymptotic variance σ2(f) in the Markov chain CLT, which is also an

important point from the Markov Chain Monte Carlo point of view since it is directly related to the

construction of confidence intervals for the estimation of πf by trajectorial averages of Markov

chains.
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6.1 Periodicity

Consider the sequence (Xn)n≥0 defined in the two-point space E = {−1, 1} by Xn = (−1)nX0.

It is an irreducible Markov chain with transition matrix

P =

(
0 1
1 0

)
,

and unique stationary distribution π such that π(−1) = π(1) = 1/2.

q Exercise 6.1.1. Check that the chain (Xn)n≥0 satisfies the Law of Large Numbers of Theo-

rem 5.3.3. What do you think of the Central Limit Theorem?

Yet, for any initial distribution µ0 on E which is not π, the law µn of Xn under Pµ0 does not

converge to π. This is related to the phenomenon of periodicity.

We recall that the greatest common divisor of a set of nonnegative integers N is defined by

gcdN = max{k ≥ 1 : ∀n ∈ N , k|n},

where the notation k|n means that there exists ℓ ∈ N such that n = kℓ.

Definition 6.1.2 (Period). Let (Xn)n≥0 be a Markov chain with transition matrix P . For all

x ∈ E, set N (x) = {n ≥ 1 : Pn(x, x) > 0}. The period of x is gcdN (x).

q Exercise 6.1.3. Compute the period of the states −1 and 1 in the example of the two-point

space described above. More generally, what is the period of the states in the random walk on TN

introduced in Example 5.1.7?

Lemma 6.1.4 (Period of an irreducible chain). If the chain (Xn)n≥0 is irreducible, then all states

have the same period, which is thus called the period of the chain. The chain is called aperiodic if

its period is 1 and periodic otherwise.

The proof of Lemma 6.1.4 relies on the inequality

∀x, y, z ∈ E, ∀n,m ≥ 1, Pn+m(x, y) ≥ Pn(x, z)Pm(z, y),

which comes from the fact that, by Proposition 5.1.12,

Pn+m(x, y) = Px(Xn+m = y)

≥ Px(Xn = z,Xn+m = y)

= Px(Xn = z)Pz(Xm = y)

= Pn(x, z)Pm(z, y).

Proof of Lemma 6.1.4. Let x, y ∈ E. By Definition 5.2.7, there exist r ≥ 1 and ℓ ≥ 1 such that

P r(x, y) > 0 and P ℓ(y, x) > 0. Let m = r + ℓ. Then

Pm(x, x) ≥ P r(x, y)P ℓ(y, x) > 0, Pm(y, y) ≥ P ℓ(y, x)P r(x, y) > 0,

so m ∈ N (x) ∩N (y). Moreover, if n ∈ N (x) then

Pn+m(y, y) ≥ P ℓ(y, x)Pn(x, x)P r(x, y) > 0,

so n + m ∈ N (y). Now let k = gcdN (y). Since m ∈ N (y) we have k|m. Besides, for any

n ∈ N (x), since n + m ∈ N (y) we have k|n + m. Therefore k|n and thus k = gcdN (y) ≤
gcdN (x). By the same arguments, gcdN (x) ≤ gcdN (y) and the proof is completed.
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6.2 Geometric convergence of finite state space Markov chains

In this section, we assume that E is finite, and denote by m its cardinality. Recall that we denote

by RE the space of functions E → R, which are seen as m-dimensional column vectors. We

also denote by M(E) the space of signed measures on E, which are seen as m-dimensional row

vectors.

There are two possible approaches to quantify the convergence in distribution of Xn to π,

either by bounding µ0P
n − π in M(E), where µn = µ0P

n is the law of Xn, or by bounding

Pnf − πf in RE , where Pnf(x) = Ex[f(Xn)] is called an observable1 . In both cases, the

quantity of interest involves the matrix Pn, whose n → +∞ limit is closely related with the

spectral properties of P .

6.2.1 Spectral decomposition of P

q Exercise 6.2.1. Let P be a stochastic matrix. Show that for any (complex) eigenvalue λ of P ,

|λ| ≤ 1.

From now on we assume that P is irreducible. Then the eigenvalue 1 is simple and has left

and right eigenvectors π and 1, respectively. As a consequence, the spaces

M0(E) := {ρ ∈ M(E) : ρ1 = 0} = 1
⊥,

RE
0 := {g ∈ RE : πg = 0} = π⊥,

are stable by the mappings ρ 7→ ρP and g 7→ Pg, respectively. We denote by P0 the restriction of

both mappings to the subsets M0(E) and RE
0 , respectively.

Then one the one hand, for any µ0 ∈ P(E) and for any f ∈ RE ,

µ0P
n − π = (µ0 − π)Pn = (µ0 − π)Pn

0 ,

Pnf − πf = Pn(f − πf) = Pn
0 (f − πf),

(6.1)

so that the convergence of the law µ0P
n to π, or of the observable Pnf to πf , only depends on

Pn
0 . On the other hand, by construction of the sets M0(E) and RE

0 , the set of eigenvalues of P0 is

exactly the set of eigenvalues of P which are not equal to 1. In particular, any eigenvalue λ of P0

satisfies

|λ| ≤ λ⋆ := max{|λ|, λ 6= 1 is an eigenvalue of P}.
We deduce the following statement.

Lemma 6.2.2 (Geometric decay of Pn
0 ). For any α > λ⋆, α−nPn

0 → 0 when n→ +∞.

Proof. We detail the proof for P0 seen as the restriction to M0(E) of the mapping ρ 7→ ρP . By

the Dunford Theorem, there is a basis of the (m − 1)-dimensional space M0(E) in which P0 is

represented by a matrix of the form D + N , where D is diagonal with entries λ ∈ C such that

|λ| ≤ λ⋆ < 1 and N is a nilpotent matrix, and such that DN = ND. Thus, in this basis, for all

n ≥ 1,

Pn
0 =

n∑

k=0

(
n

k

)
Dn−kNk,

1The constant function x 7→ πf should be denoted by πf1 to emphasise the fact that it is an element of RE . In

order to lighten the notation we will simply write πf .
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and since Nm−1 = 0 we get that as soon as n ≥ m− 1,

Pn
0 =

m−1∑

k=0

(
n

k

)
Dn−kNk.

Since the binomial coefficient
(n
k

)
is equivalent to nk/k! when n → +∞ and the diagonal coeffi-

cients λn−k of Dn−k satisfy |λ|n−k ≤ λn−k
⋆ , we deduce that as soon as α > λ⋆, α−nPn

0 → 0.

6.2.2 Perron–Frobenius Theorem and geometric convergence to equilibrium

To deduce from Lemma 6.2.2 that Pn
0 → 0 at a geometric rate, we now have to check that λ⋆ < 1,

that is to say that apart from 1, there is no other eigenvalue of P with modulus 1. This is where

aperiodicity comes back in the game.

Proposition 6.2.3 (Perron–Frobenius Theorem). Let P be the transition matrix of an irreducible

Markov chain (Xn)n≥0, with period k ≥ 1. The eigenvalues λ of P such that |λ| = 1 are the k-th

roots of unity, and they are all simple.

We refer to [5, Theorem 3.11] for the proof.

As a corollary, if P is irreducible and aperiodic, then λ⋆ < 1 and we obtain the following

statement.

Theorem 6.2.4 (Geometric convergence in finite state spaces). Let P be an irreducible and ape-

riodic stochastic matrix with stationary distribution π.

(i) For any α ∈ (λ⋆, 1] and for any norm ‖ · ‖ on M(E), there exists a constant Cα such that,

for any µ0 ∈ P(E),

∀n ≥ 0, ‖µ0Pn − π‖ ≤ Cαα
n‖µ0 − π‖.

(ii) For any α ∈ (λ⋆, 1] and for any norm ‖ · ‖ on RE , there exists a constant Cα such that, for

any f ∈ RE ,

∀n ≥ 0, ‖Pnf − πf‖ ≤ Cαα
n‖f − πf‖.

Proof. In any of the settings (i) and (ii), let ||| · ||| be the operator norm associated with the norm

‖ · ‖. For any α ∈ (λ⋆, 1], Lemma 6.2.2 implies that

Cα := sup
n≥0

α−n|||Pn
0 ||| < +∞,

which by (6.1) completes the proof.

Remark 6.2.5. Owing to the fact that the binomial terms in the Dunford decomposition of P0

grow polynomially in n, one cannot take α = λ⋆ in the proof above, except if N = 0, that is to

say if P0 is diagonalisable. We shall present an important class of Markov chains for which P0 is

diagonalisable in Section 6.4.

Remark 6.2.6. In the statement (i) of Theorem 6.2.4, the quantity ‖µ0 − π‖ is bounded uniformly

in µ0 (and π) since P(E) is compact. Therefore, up to increasing the value of the constant Cα, we

deduce that the geometric convergence to π of µn holds uniformly in the initial condition µ0.
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6.2.3 Another formula for the asymptotic variance in the Markov chain CLT

In this subsection, we consider an irreducible Markov chain (Xn)n≥0, with transition matrix P .

Then by Theorem 5.3.6, for any f ∈ RE , there exists σ2(f) ≥ 0 such that

1√
n

(
n−1∑

i=0

f(Xi)− πf

)
→ N (0, σ2(f)), in distribution.

Our main result is the following statement.

Proposition 6.2.7 (Asymptotic variance in the Markov chain CLT). Assume that P is aperiodic.

Then we have
+∞∑

n=1

|Covπ(f(X0), f(Xn))| < +∞, (6.2)

and

σ2(f) = Varπ(f(X0)) + 2

+∞∑

n=1

Covπ(f(X0), f(Xn)). (6.3)

Proof. Throughout the proof we assume without loss of generality that πf = 0. Then by Theo-

rem 6.2.4 (ii) applied with ‖f‖ = maxx∈E |f(x)|, and since P is aperiodic, there exists α < 1
and Cα ≥ 0 such that for any f ∈ RE ,

∀x ∈ E, ∀n ≥ 0, |Pnf(x)| ≤ Cαα
n‖f‖. (6.4)

Step 1. We first check (6.2). By (6.4),

|Covπ(f(X0), f(Xn))| = |Eπ [f(X0)f(Xn)]|

=

∣∣∣∣∣
∑

x∈E
f(x)Pnf(x)π(x)

∣∣∣∣∣

≤
∑

x∈E
|f(x)| |Pnf(x)|π(x)

≤ Cαα
n‖f‖2,

which proves (6.2).

Step 2. We now show that

lim
n→+∞

Var

(
1√
n

(
n−1∑

i=0

f(Xi)

))
= Varπ(f(X0)) + 2

+∞∑

n=1

Covπ(f(X0), f(Xn)),

and postpone the conclusion of the proof to Step 3. First, we have

Var

(
1√
n

(
n−1∑

i=0

f(Xi)

))
=

1

n

n−1∑

i=0

Var (f(Xi)) +
2

n

∑

0≤i<j≤n−1

Cov (f(Xi), f(Xj)) .

On the one hand,

Var (f(Xi)) = E
[
f(Xi)

2
]
− E [f(Xi)]

2 ,

and by Theorem 6.2.4, the right-hand side converges to π(f2) − (πf)2 = Varπ(f(X0)) when

i→ +∞, so by the Césaro Lemma,

lim
n→+∞

1

n

n−1∑

i=0

Var (f(Xi)) = Varπ(f(X0)).
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On the other hand,

Cov (f(Xi), f(Xj)) = E [f(Xi)f(Xj)]− E [f(Xi)]E [f(Xj)] .

First, by (6.4),

∣∣∣∣∣∣
2

n

∑

0≤i<j≤n−1

E [f(Xi)]E [f(Xj)]

∣∣∣∣∣∣
≤ 1

n

(
n−1∑

i=0

Cαα
i‖f‖

)2

→ 0.

Second, for i < j,

E [f(Xi)f(Xj)] = E [E [f(Xi)f(Xj)|Xi]] = E
[
f(Xi)P

j−if(Xi)
]
,

so that

n−1∑

j=i+1

E [f(Xi)f(Xj)] =
n−1−i∑

k=1

E

[
f(Xi)P

kf(Xi)
]

=
+∞∑

k=1

E[f(Xi)P
kf(Xi)]−

+∞∑

k=n−i

E[f(Xi)P
kf(Xi)],

Thus, using (6.4) and the Césaro Lemma again,

lim
n→+∞

2

n

∑

0≤i<j≤n−1

E [f(Xi)f(Xj)] = lim
n→+∞

2

n

n−1∑

i=0

+∞∑

k=1

E[f(Xi)P
kf(Xi)]

=

+∞∑

k=1

Eπ

[
f(X0)P

kf(X0)
]

=
+∞∑

k=1

Covπ(f(X0), f(Xk)),

which completes the proof of the claimed identity.

Step 3. A tedious but elementary computation shows that

sup
n≥1

E



(

1√
n

n−1∑

i=0

f(Xi)

)4

 < +∞.

By Proposition 3.1.26 and Theorem 5.3.6, we deduce that the moments of order p < 4 of
1√
n

∑n−1
i=0 f(Xi) converge to the moments of order p of N (0, σ2(f)), which in particular imply

that σ2(f) coincides with the limit of Var( 1√
n

∑n−1
i=0 f(Xi)) computed in Step 2.

6.2.4 Poisson equation

In this Subsection we give yet another formula (in fact, two) for σ2(f), which depends on the

solution to the so-called Poisson equation.

Lemma 6.2.8 (Poisson equation). Assume that P is irreducible and aperiodic, and let f ∈ RE .

Set f̃ = f − πf ∈ RE . Then there exists a unique g ∈ RE
0 such that

−(P − I)g = f̃ (6.5)
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and it writes

∀x ∈ E, g(x) =

+∞∑

n=0

Ex[f̃(Xn)]. (6.6)

Proof. Since we look for a solution to the Poisson equation (6.5) in RE
0 , the latter rewrites

(I0 − P0)g = f̃ ,

with I0 the identity of RE
0 . Under the assumptions of the Lemma, all eigenvalues λ of P0 satisfy

|λ| ≤ λ⋆ < 1, which implies that I0 − P0 is invertible and has inverse

(I0 − P0)
−1 =

+∞∑

n=0

Pn
0 ,

which directly yields (6.6).

In order to present the formula for σ2(f) in terms of g, we introduce the notation 〈·, ·〉π and

‖ · ‖π on RE defined by

〈f, g〉π :=
∑

x∈E
f(x)g(x)π(x), ‖f‖π :=

√
〈f, f〉π.

Proposition 6.2.9 (Asymptotic variance and Poisson equation). Under the assumptions of Propo-

sition 6.2.7 and with the notation of Lemma 6.2.8,

σ2(f) = 2〈f̃ , g〉π − ‖f̃‖2π.

Proof. We start from the result of Proposition 6.2.7 and write

σ2(f) = Varπ(f(X0))+2

+∞∑

n=1

Covπ(f(X0), f(Xn)) = 2

+∞∑

n=0

Covπ(f(X0), f(Xn))−Varπ(f(X0)).

Now on the one hand, Varπ(f(X0)) = ‖f̃‖2π , while on the other hand,

+∞∑

n=0

Covπ(f(X0), f(Xn)) =

+∞∑

n=0

Eπ

[
f̃(X0)P

nf̃(X0)
]
=

+∞∑

n=0

〈f̃ , Pn
0 f̃〉π = 〈f̃ , g〉π,

which completes the proof.

This Proposition will be used in particular in Subsection 7.2.2. It is also used in the next

exercise.

↸ Exercise 6.2.10. Show that σ2(f) = π(g2)− π((Pg)2).

6.3 Convergence to equilibrium in the countably infinite case

If E is now assumed to be infinite, then the spectral analysis of P is less easy to manipulate. How-

ever, the statement of Theorem 6.2.4 remains essentially correct, although no rate of convergence

is, in general, available.
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Theorem 6.3.1 (Convergence to equilibrium). Let (Xn)n≥0 be an irreducible and positive recur-

rent Markov chain, with unique stationary distribution π. If the chain is aperiodic, then

lim
n→+∞

Xn = π, in distribution.

The proof of Theorem 6.3.1 relies on the following lemma.

Lemma 6.3.2 (Product chain). Let (Xn)n≥0 and (Yn)n≥0 be two independent Markov chains in

the respective discrete spaces E and F , with respective transition matrices P and Q.

(i) The sequence (Xn, Yn)n≥0 is a Markov chain in E × F , with transition matrix

P ⊗Q((x, y), (x′, y′)) = P(Xn+1 = x′, Yn+1 = y′|Xn = x, Yn = y) = P (x, x′)Q(y, y′).

(ii) If π is a stationary probability for (Xn)n≥0 and ψ is a stationary probability for (Yn)n≥0,

then

π ⊗ ψ(x, y) = π(x)ψ(y)

is a stationary distribution for (Xn, Yn)n≥0.

(iii) If the chains (Xn)n≥0 and (Yn)n≥0 are irreducible and at least one of them is aperiodic,

then the chain (Xn, Yn)n≥0 is irreducible.

Proof. The points (i) and (ii) are immediate to check. To prove the point (iii), we assume that

(Xn)n≥0 is aperiodic and fix (x, y), (x′, y′) ∈ E×F . By irreducibility, there exist p, q, r ≥ 1 such

that P p(x, x′) > 0, Qq(y, y′) > 0 and Qr(y′, y′) > 0. Note that for any k ≥ 1, Qkr(y′, y′) > 0.

Besides, since (Xn)n≥0 is aperiodic, by Lemma 6.3.3 below, for k large enough, P q+kr−p(x, x) >
0 and therefore, with n = q + kr, we have

P(x,y)(Xn = x′, Yn = y′) = Pn(x, x′)Qn(y, y′)

≥ P q+kr−p(x, x)P p(x, x′)Qq(y, y′)Qkr(y′, y′) > 0,

which proves irreducibility.

Lemma 6.3.3 (Schur’s Theorem). Let N ⊂ N be closed under addition and such that gcdN = 1.

Then the set N \ N is finite.

Lemma 6.3.3 is purely number theoretic. We refer to [10, Proposition 1.7] for details. We are

now ready to complete the proof of Theorem 6.3.1.

Proof of Theorem 6.3.1. Let (Xn)n≥0 be an irreducible, positive recurrent and aperiodic Markov

chain with initial distribution µ0, transition matrix P and unique stationary distribution π. Let

(Yn)n≥0 be a Markov chain with transition matrix P and initial distribution π, independent from

(Xn)n≥0. Since (Xn)n≥0 and (Yn)n≥0 have the same transition matrix, the chain (Yn)n≥0 is

irreducible, aperiodic, and its stationary distribution is π. In fact, for any n, Yn ∼ π, and therefore

for any y ∈ E,

P(Xn = y)− π(y) = P(Xn = y)− P(Yn = y).

By Lemma 6.3.2, the chain (Xn, Yn)n≥0 is irreducible and positive recurrent. Therefore, for

any x, the random time

τx = inf{n ≥ 1 : (Xn, Yn) = (x, x)}
is finite, almost surely. Besides, for any y ∈ E,

P(Xn = y) = P(Xn = y, τx ≤ n) + P(Xn = y, τx > n) ≤ P(Xn = y, τx ≤ n) + P(τx > n).
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By Proposition 5.1.12, we then have

P(Xn = y, τx ≤ n) =
n∑

k=0

P(Xn = y, τx = k)

=

n∑

k=0

P(τx = k)Px(Xn−k = y)

=

n∑

k=0

P(τx = k)Px(Yn−k = y)

= P(Yn = y, τx ≤ n),

where we have used the fact that the chains (Xn)n≥0 and (Yn)n≥0 have the same transition matri-

ces to get Px(Xn−k = y) = Px(Yn−k = y). We deduce that

P(Xn = y) ≤ P(Yn = y, τx ≤ n) + P(τx > n) ≤ P(Yn = y) + P(τx > n),

and then by symmetry

|P(Xn = y)− P(Yn = y)| ≤ P(τx > n).

Since τx is finite, the right-hand side converges to 0 when n→ +∞, which implies that

∀y ∈ E, lim
n→+∞

P(Xn = y) = π(y),

and the conclusion follows from Scheffé’s Lemma (see Remark 3.1.21).

6.4 Reversibility

In this section, we introduce and study the particular class of reversible Markov chains, which

enjoy several useful properties. In particular, their transition matrix is symmetric for a certain

scalar product, which enables to use the Spectral Theorem to study their long time behaviour. In

the finite state space case, this slightly improves the statement of Theorem 6.2.4.

6.4.1 Definition and general remarks

For the moment, E can be either finite or countably infinite.

Definition 6.4.1 (Reversibility). A Markov chain (Xn)n≥0 with transition matrix P is said to be

reversible with respect to π ∈ P(E) if, for any x, y ∈ E,

π(x)P (x, y) = π(y)P (y, x). (6.7)

Equation (6.7) is called the detailed balance equation. The denomination ‘reversibility’ is

explained by the following result.

Proposition 6.4.2 (Reversibility). Let (Xn)n≥0 be a Markov chain with transition matrix P , re-

versible with respect to π. For any n ≥ 0, the vectors (X0, . . . ,Xn) and (Xn, . . . ,X0) have the

same distribution under Pπ.
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Proof. For any x0, . . . , xn ∈ E, we deduce from Proposition 5.1.10 that

Pπ(X0 = x0, . . . ,Xn = xn) = π(x0)P (x0, x1) · · ·P (xn−1, xn).

Applying Definition 6.4.1 once shows that π(x0)P (x0, x1) = P (x1, x0)π(x1), and iterating this

procedure leads to the identity

π(x0)P (x0, x1) · · ·P (xn−1, xn) = π(xn)P (xn, xn−1) · · ·P (x1, x0),

the right-hand side of which is Pπ(X0 = xn, . . . ,Xn = x0) by Proposition 5.1.10 again.

Looking only at the marginal distribution of the first coordinate of the vectors (X0, . . . ,Xn)
and (Xn, . . . ,X0), we deduce the following link between the notions of reversibility and stationary

distribution.

Corollary 6.4.3 (Reversibility and stationary distribution). If (Xn)n≥0 is reversible with respect

to π, then π is a stationary distribution for (Xn)n≥0.

Notice that this result can also be obtained by the direct computation

πP (y) =
∑

x∈E
π(x)P (x, y) =

∑

x∈E
P (y, x)π(y) = π(y),

which uses the fact that
∑

x∈E P (y, x) = 1.

↸ Exercise 6.4.4. Show that for the Ehrenfest urn, both the microscopic and the macroscopic

descriptions are reversible with respect to the stationary distributions from Exercise 5.2.5.

q Exercise 6.4.5. Under which condition is the random walk on TN reversible?

6.4.2 Spectral characterisation of reversibility

Fix π ∈ P(E). Recall that we denote by L
p(π) the set {f ∈ RE :

∑
x∈E |f(x)|pπ(x) < +∞}.

Lemma 6.4.6 (Lp-contractivity of stochastic matrices). Let π be a stationary distribution for a

stochastic matrix P . For any p ≥ 1 and f ∈ L
p(π),

∑

x∈E
|Pf(x)|pπ(x) ≤

∑

x∈E
|f(x)|pπ(x).

Proof. By Jensen’s inequality, for any x ∈ E,

|Pf(x)|p = |Ex[f(X1)]|p ≤ Ex[|f(X1)|p] = P (|f |p)(x),

so by stationarity

∑

x∈E
|Pf(x)|pπ(x) ≤

∑

x∈E
P (|f |p)(x)π(x) =

∑

x,y∈E
π(x)P (x, y)|f(y)|p =

∑

y∈E
π(y)|f(y)|p.

From now on, we endow the space L
2(π) with the symmetric and bilinear form

〈f, g〉π :=
∑

x∈E
f(x)g(x)π(x).

An operator A is called symmetric in L
2(π) if 〈Af, g〉π = 〈f,Ag〉π , for all f, g ∈ L

2(π).
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Remark 6.4.7. If π is the stationary distribution of an irreducible stochastic matrix P , then

π(x) > 0 for all x ∈ E and thus 〈·, ·〉π is a scalar product. In this case, the space L
2(π) is

a Hilbert space, and the associated Euclidean norm is denoted by ‖ · ‖π .

Proposition 6.4.8 (Spectral characterisation of reversibility). Let π ∈ P(E). A Markov chain

with transition matrix P is reversible with respect to π if and only if P is symmetric in L
2(π).

Proof. Assume that a Markov chain with transition matrix P is reversible with respect to π. Then

for all f, g ∈ L
2(π),

〈Pf, g〉π =
∑

x∈E


∑

y∈E
P (x, y)f(y)


 g(x)π(x)

=
∑

x,y∈E
f(y)g(x)π(x)P (x, y)

=
∑

x,y∈E
f(y)g(x)π(y)P (y, x)

=
∑

y∈E
f(y)

(
∑

x∈E
P (y, x)g(x)

)
π(y)

= 〈f, Pg〉π.

Conversely, assume that P is symmetric in L
2(π), fix x, y ∈ E and take f(z) = 1{z=x}, g(z) =

1{z=y}. Then

〈Pf, g〉π = P (x, y)π(y), 〈f, Pg〉π = P (y, x)π(x),

so that Equation (6.7) is satisfied.

6.4.3 Geometric convergence for finite reversible chains

In this subsection we assume thatE is finite, with cardinality m. Then the Spectral Theorem yields

the following statement.

Proposition 6.4.9 (Eigenvalues of reversible chains). Let P be the transition matrix of an irre-

ducible chain which is reversible with respect to its invariant measure π. The eigenvalues of P are

real and can be labelled 1 = λ1 > λ2 ≥ · · · ≥ λm ≥ −1, and there exists an orthonormal basis

(f1, . . . , fm) of L2(π) such that Pfi = λifi for all i.

Remark 6.4.10. If the chain is aperiodic, then by Proposition 6.2.3, λm > −1. As a consequence,

λ⋆ = max{|λ2|, |λm|} < 1.

From Proposition 6.4.9, we deduce another statement for the geometric convergence of Pnf
to πf , to be compared with Theorem 6.2.4 (ii).

Proposition 6.4.11 (Rate of convergence for reversible chains). Under the assumptions of Propo-

sition 6.4.9, for all f ∈ L
2(π), for all n ≥ 0,

‖Pnf − πf‖π ≤ λn⋆‖f − πf‖π.

Notice that this result only provides the geometric convergence of Pnf to πf if λ⋆ < 1, that

is to say if the chain is aperiodic (see Remark 6.4.10), which is of course in accordance with

Theorem 6.2.4.
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Proof. Notice that in Proposition 6.4.9 we may take f1 = 1, in which case 〈f, f1〉π = πf , so that

writing the orthogonal decomposition

Pnf =

m∑

i=1

〈Pnf, fi〉πfi =
m∑

i=1

〈f, Pnfi〉πfi =
m∑

i=1

λni 〈f, fi〉πfi

yields

Pnf − πf =

m∑

i=2

λni 〈f, fi〉πfi.

As a consequence,

‖Pnf − πf‖2π =

m∑

i=2

(λni 〈f, fi〉π)2 ≤ λ2n⋆

m∑

i=2

〈f, fi〉2π = λ2n⋆ ‖f − πf‖2π.

↸ Exercise 6.4.12. The chi-square distance on P(E) is defined by

χ2(µ|π) =





∑

x∈E

(
µ(x)

π(x)
− 1

)2

π(x) if µ≪ π,

+∞ otherwise.

Note that it is not a distance, because it is not symmetric in µ and π. Show that under the assump-

tions of Proposition 6.4.9, for any initial distribution µ ∈ P(E),

χ2(µP
n|π) ≤ λ2n⋆ χ2(µ|π).

Remark 6.4.13 (Asymptotic variance in the Markov chain CLT... again!). With the notation of

Proposition 6.4.9, for any f ∈ RE we have

Varπ(f(X0)) = ‖f − πf‖2π =
m∑

i=2

〈f, fi〉2π.

On the other hand, for any n ≥ 1,

Covπ (f(X0), f(Xn)) = Eπ [f(X0)P
nf(X0)]− (πf)2

= 〈f, Pnf〉π − 〈f, f1〉2π

=
m∑

i=2

λni 〈f, fi〉2π.

Therefore, under the assumptions of Proposition 6.2.7, the asymptotic variance in the Markov

chain CLT rewrites

σ2(f) =

m∑

i=2

〈f, fi〉2π + 2

+∞∑

n=1

m∑

i=2

λni 〈f, fi〉2π =

m∑

i=2

1 + λi
1− λi

〈f, ei〉2π.

In particular, if all eigenvalues of P are nonnegative, then for any f ∈ RE , σ2(f) ≥ Varπ(f(X0)),
so the convergence of the empirical mean of observables of the Markov chain is slower than the

convergence of the empirical mean of iid samples of f(X) withX ∼ π. On the other hand, if there

is a negative eigenvalue λi, then for the observable f = fi, one gets σ2(f) < Varπ(f(X0)), so

the convergence in the Markov chain LLN is faster than the convergence in the independent case.
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The Markov chain Monte Carlo method
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Let π be a probability measure on the finite space E. Assume that we want to either compute

an expectation of the form

I =
∑

x∈E
f(x)π(x),

for some function f : E → R, or generate iid random variables X1,X2, . . . distributed according

to π. Both tasks are virtually elementary because the finiteness of E allows them to be handled by

a simple enumeration procedure. However when E is large, this procedure may have a computa-

tional cost which makes it impractical.

An alternative approach, called the Markov chain Monte Carlo (MCMC) method, consists in

constructing a Markov chain (Xn)n≥0 of which π is a stationary distribution, and using either

the Law of Large Numbers and Central Limit Theorem from Chapter 5 to compute an estimator

and a confidence interval for I, or the convergence theorems from Chapter 6 to sample indepen-

dent random variables X̃1, X̃2, . . . which are approximately distributed according to π by running

independent realisations of the chain (Xn)n≥0 on long enough times.

Throughout the chapter, we assume that the state space E is discrete, but not necessarily finite.
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7.1 Gibbs measures

7.1.1 Definition and notation

A Gibbs measure is a probability measure πβ on E which writes under the form

πβ(x) =
1

Zβ
e−βV (x),

where β > 0 is the inverse temperature parameter, V : E → R ∪ {+∞} is called the potential

and

Zβ =
∑

x∈E
e−βV (x)

is called the partition function. This terminology comes from statistical physics, where β =
(kT )−1 with T the temperature and k the Boltzmann constant.

Obviously, any probability measure π on E writes under this form, since it suffices to set

β = 1 and V (x) = − lnπ(x). In the sequel, we shall work under the following two assumptions

which are related with the computational complexity of the underlying model:

(i) the function V is easy to evaluate;

(ii) the constant Zβ is not easy to compute.

These assumptions make the enumeration procedure discussed in the introduction impossible to

implement.

7.1.2 Example: the Ising model

The Ising model1 is a seemingly very simple model to describe ferromagnetism. In this model,

the material is represented by an undirected graph (V, E) in which each vertex v ∈ V has a

spin xv ∈ {−1, 1}. Locally, the spins tend to align with their neighbours: the potential of a

configuration x = (xv)v∈V ∈ E = {−1, 1}V is defined by

V (x) := −
∑

{v,w}∈E
xvxw,

so that configurations with lowest potential energy are those in which all spins have the same

value. The Ising model is then the probability measure πβ defined on E by

πβ(x) =
e−βV (x)

Zβ
, Zβ =

∑

x∈E
e−βV (x).

Notice that the cardinality of E is 2|V|, where |V| is the cardinality of V . Thus, this quantity grows

very fast as a function of |V|, which explains why it is impossible, in practice, to compute Zβ .

The magnetisation of a configuration x is defined by

m(x) =
1

|V|
∑

v∈V
xv ∈ [−1, 1].

q Exercise 7.1.1 (High- and low-temperature limits). 1. Show that π0 is the uniform measure

on E, under which (xv)v∈V is iid with π0(xv = 1) = π0(xv = −1) = 1/2.

1See the introduction of https://cel.archives-ouvertes.fr/cel-00392289/ for a detailed presentation.

https://cel.archives-ouvertes.fr/cel-00392289/
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2. Show that when β → +∞, πβ converges to

π∞ =
1

2
δx+ +

1

2
δx− ,

where the configurations x+ and x− are defined by x±v = ±1 for any v ∈ V .

3. Describe the limit of m under π0 when |V| → +∞.

4. Describe the law of m under π∞.

The system’s macroscopic behaviour, measured by the magnetisation, therefore seems radi-

cally different depending on temperature: at high temperature β = (kT )−1 = 0, spins behave

independently from each other; at low temperature β = ∞, spins are strongly aligned with each

other and macroscopic droplets appear. These two phases are illustrated in Figure 7.1 below. In

the |V| → +∞ limit, called the thermodynamic limit, this phase transition occurs abruptly (with

respect to β). To describe this phenomenon more formally, let us start by specifying the graph

(V, E) with which we work. Fix a dimension d ≥ 1 and, for any N ≥ 1, set

Vd,N := (Z/NZ)d

the d-dimensional discrete torus, so that |Vd,N | = Nd. Vertices are neighbours if their Euclidean

distance is 1. We next set

mN (β) := E [|m(X)|] , X ∼ πβ,

and

m∗(β) := lim
N→+∞

mN (β).

We do not justify the existence of this limit. Note that, by Exercise 7.1.1, m∗(0) = 0 and

m∗(+∞) = 1. The system is said to exhibit a phase transition if there is βc ∈ (0,+∞), called

the critical inverse temperature, such that m∗(β) = 0 for β < βc and m∗(β) > 0 for β > βc, as

on the example of Figure 7.2.

In dimension d = 1, there is no phase transition since m∗(β) = 0 for β ∈ [0,+∞). This

result was proved by Ising in 1925. In 1936, Peierls showed the existence of a phase transition for

any dimension d ≥ 2, and Onsager proved in 1944 that for d = 2,

m∗(β) = max

{
0, 1 −

(
2(1 − pβ)

pβ(2− pβ)

)4
}1/8

, pβ := 1− e−2β.

The phase transition occurs at the critical inverse temperature

βc =
1

2
ln(1 +

√
2) ≃ 0.440687,

which corresponds to the value
√
2/(1 +

√
2) ≃ 0.585786 for the parameter pβ . For d ≥ 3, the

value theoretical of the critical inverse temperature is not known and it has to be estimated by the

Monte Carlo method.

7.2 The Metropolis algorithm

The Metropolis algorithm provides a method to construct a Markov chain which is reversible with

respect to a given probability measure π on a finite space E. In the sequel, we shall still assume

that π(x) > 0 for all x ∈ E. This is not a restrictive assumption since if π(x) = 0 then one may

simply remove x from E.
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pβ = 0.1 pβ = 0.5

pβ = 0.6 pβ = 0.8

Figure 7.1: Typical configurations of the Ising model in dimension d = 2 with N = 250, for

different values of the parameter pβ ∈ [0, 1]. Droplets of aligned spins appear for pβ > pβc ≃
0.59.
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Figure 7.2: Value of the magnetisation m∗(β) as a function of pβ , for the Ising model in dimension

2.

7.2.1 Definition and properties

The basic ingredients of the construction of the Metropolis chain (Xn)n≥0 are:

• an irreducible stochastic matrix Q on E such that Q(x, y) > 0 if and only if Q(y, x) > 0,

called the proposal matrix;

• an acceptance function F : (0,+∞) → (0, 1] such that

∀ρ > 0, F (ρ) = ρF (1/ρ). (7.1)

Common acceptance functions are F (ρ) = min(ρ, 1) (the Metropolis–Hastings rule) and

F (ρ) = ρ/(1 + ρ) (the Barker rule).

When the chain is in the state x ∈ E, the next state is computed as follows:

(i) draw a state y with probability Q(x, y),
(ii) move the chain to y with probability

a(x, y) := F (r(x, y)), r(x, y) :=
π(y)Q(y, x)

π(x)Q(x, y)
,

otherwise remain at x.

The condition on Q ensures that, almost surely, the ratio r(x, y) takes its values in (0,+∞).

Proposition 7.2.1 (Reversibility of the Metropolis chain). The Metropolis chain (Xn)n≥0 is irre-

ducible and reversible with respect to π.

As a consequence, π is the unique stationary distribution of (Xn)n≥0 and all convergence

results from Chapter 5 can be applied to this chain.

Proof. Let P denote the transition matrix of the Metropolis chain. It follows from the description

of this chain that for all x, y ∈ E,

P (x, y) =

{
Q(x, y)a(x, y) if x 6= y,

1−∑z 6=xQ(x, z)a(x, z) if x = y.

We first check irreducibility. Let x, y ∈ E. Since Q is irreducible, there exist n ≥ 1 and

x = x0, . . . , xn = y ∈ E such that Q(xi, xi+1) > 0 for all i ∈ {0, . . . , n − 1}. Clearly, there is

no loss of generality in assuming that xi 6= xi+1. Then, as a consequence of the assumption on
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Q, we also have Q(xi+1, xi) > 0. Therefore all ratios r(xi, xi+1) are positive, and so are their

images by F , so that

Pn(x, y) ≥ Px(X1 = x1, . . . ,Xn = xn) =

n−1∏

i=0

Q(xi, xi+1)a(xi, xi+1) > 0.

We now check reversibility. For all x, y ∈ E such that x 6= y, the property F (ρ) = ρF (1/ρ)
yields

π(x)P (x, y) = π(x)Q(x, y)F

(
π(y)Q(y, x)

π(x)Q(x, y)

)

= π(x)Q(x, y)
π(y)Q(y, x)

π(x)Q(x, y)
F

(
π(x)Q(x, y)

π(y)Q(y, x)

)

= π(y)Q(y, x)a(y, x)

= π(y)P (y, x),

which ensures that the detailed balance equation holds.

↸ Exercise 7.2.2. Show that if Q is aperiodic, then P is also aperiodic.

Remark 7.2.3. IfQ is already reversible with respect to π, the chain constructed with the Metropolis–

Hastings rule has transition matrix P = Q, while the chain constructed with the Barker rule has

transition matrix P = (Q+ I)/2. In the latter case, P is aperiodic even if Q is not, which shows

that the converse statement to Exercise 7.2.2 does not hold.

If π has the form a Gibbs measure πβ as is described in Section 7.1, then simulating the

Metropolis chain (Xn)n≥0 requires to compute the ratio

r(x, y) = e−β(V (y)−V (x))Q(y, x)

Q(x, y)
,

which does not depend on the partition function Zβ but only on the potential V . Therefore, the

chain (Xn)n≥0 can be simulated in practice.

7.2.2 Optimality of the Metropolis–Hastings rule

Let F : (0,+∞) → (0, 1] be an arbitrary function which satisfies the condition (7.1). Since

F (ρ) ≤ 1 by construction and F (ρ) = ρF (1/ρ) ≤ ρ we have

∀ρ > 0, F (ρ) ≤ min(ρ, 1) =: FMH(ρ),

with FMH the Metropolis–Hastings (MH) acceptance rule. So, for a given proposal matrix Q, the

MH acceptance rule accepts more jumps than any other acceptance function. As a consequence,

the chain tends to explore the space more rapidly under the MH acceptance rule, so it may be

expected to converge faster. This is indeed the case, and we shall illustrate this fact on both the

rate of convergence to equilibrium and the asymptotic variance in the Markov chain CLT.

In the sequel, we fix a target measure π on the finite space E, and assume that the proposal

matrix Q is irreducible and aperiodic. For an arbitrary acceptance function F which satisfies (7.1),

we denote by P the transition matrix of the associated Metropolis chain (Xn)n≥0, and let λ2 be

the second eigenvalue of P , and σ2(f) the asymptotic variance in the Markov chain CLT given by

Proposition 6.2.7. When F = FMH, we use the notation λ2,MH and σ2MH(f).
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Theorem 7.2.4 (Optimality of the Metropolis–Hastings rule). With the notation introduced above,

we have:

(i) λ2,MH ≤ λ2;

(ii) for any f ∈ RE , σ2MH(f) ≤ σ2(f).

When λ⋆ = λ2 and λ⋆,MH = λ2,MH
2, the assertion (i) means that the rate of convergence to

equilibrium is faster for the MH rule. The assertion (ii) means that the fluctuations of 1
n

∑n−1
i=0 f(Xi)

around πf are smaller under the MH rule.

The proof of both assertions relies on the following remark. We recall that the Dirichlet form

is introduced in Definition 5.2.11.

Lemma 7.2.5 (Comparison of Dirichlet forms). In the setting above, let Eπ (resp. Eπ,MH) denote

the Dirichlet form associated with the Metropolis chain with arbitrary acceptance function (resp.

with the MH acceptance rule). For any f ∈ RE ,

Eπ(f) ≤ Eπ,MH(f).

Proof. It directly follows from Definition 5.2.11, the proof of Proposition 7.2.1 and the remark

made above that for any f ∈ RE ,

Eπ(f) =
1

2

∑

x 6=y

(f(y)− f(x))2π(x)Q(x, y)F (r(x, y))

≤ 1

2

∑

x 6=y

(f(y)− f(x))2π(x)Q(x, y)FMH(r(x, y)) = Eπ,MH(f).

We first prove Theorem 7.2.4 (i).

Proof of Theorem 7.2.4 (i). For any f ∈ RE , by Lemma 5.2.12 and with the notation of Proposi-

tion 6.4.9,

Eπ(f) = 〈f, (I − P )f〉π =

m∑

i=2

(1− λi)〈f, fi〉π

where we have used the fact that λ1 = 1. Since λi ≤ λ2 for any i ≥ 2, we deduce the bound

Eπ(f) ≥ (1− λ2)‖f − πf‖2π,

which is reached for f = f2. Therefore, the quantity 1− λ2 admits the variational formulation

1− λ2 = inf
f :Varπ(f(X0))>0

Eπ(f)
Varπ(f(X0))

.

Combining this formulation with Lemma 7.2.5 leads to the claimed inequality.

The proof of Theorem 7.2.4 (ii) is due to Peskun3. It is based on the following variational

formulation of σ2(f).

Proposition 7.2.6 (Variational formulation of σ2(f)). Under the assumptions of Proposition 6.2.7

and if, in addition, P is reversible with respect to π, then

σ2(f) = sup
g∈RE

0

{4〈f, g〉π − 2Eπ(g)} −Varπ(f(X0)),

where we recall that RE
0 is the set of functions g ∈ RE such that πg = 0.

2This happens in particular if P and PMH have nonnegative eigenvalues.
3Peskun, P.H., Optimal Monte-Carlo sampling using Markov chains. Biometrika, 1973
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Proof. By Proposition 6.2.9,

σ2(f) = 2〈f̃ , (I0 − P0)
−1f̃〉π −Varπ(f(X0)). (7.2)

We first establish the variational formula

〈f̃ , (I0 − P0)
−1f̃〉π = sup

g∈RE
0

2〈g, f̃ 〉π − 〈g, (I0 − P0)g〉π. (7.3)

Let J
f̃
: RE

0 → R be defined by J
f̃
(g) = 2〈g, f̃ 〉π − 〈g, (I0 − P0)g〉π . Since P is reversible

with respect to π, Proposition 6.4.9 applies and shows that RE
0 = Span(fi, 2 ≤ i ≤ m), so that in

particular, I0 − P0 is positive definite on (RE
0 , 〈·, ·〉π). Moreover,

∇πJf̃
(g) = 2f̃ − 2(I0 − P0)g,

where ∇π denotes the gradient on the space (RE
0 , 〈·, ·〉π). We deduce that ∇πJf̃

(g) = 0 if and

only if g = (I0 − P0)
−1f̃ , which then yields (7.3).

Combining (7.2) and (7.3), we deduce that

σ2(f) = sup
g∈RE

0

{
4〈g, f̃ 〉π − 2〈g, (I0 − P0)g〉π

}
−Varπ(f(X0)).

For any g ∈ RE
0 ,

〈g, f̃ 〉π = 〈g, f − πf〉π = 〈g, f〉π − πg πf = 〈g, f〉π,

while, for any g ∈ RE
0 ,

〈g, (I0 − P0)g〉π = 〈g, (I − P )g〉π = Eπ(g),

thanks to Lemma 5.2.12. The conclusion follows.

The proof of Theorem 7.2.4 (ii) immediately follows from the combination of Proposition 7.2.6

with Lemma 7.2.5.

7.2.3 Application to the Ising model

We take as a proposal matrix Q the transition matrix of the Markov chain which at each step picks

a vertex u uniformly in V and flips its spin. Defining, for any x ∈ E and u ∈ V , the configuration

xu by

∀v ∈ V, xuv =

{
xv if v 6= u,

−xv if v = u,

the matrix Q writes

Q(x, y) =





1

|V| if there exists u ∈ V such that y = xu,

0 otherwise.

It satisfies the assumptions of Subsection 7.2.1. Besides, it is easily seen that Q(x, y) = Q(y, x)
for any x, y ∈ E. The acceptance ratio therefore rewrites, for y = xu,

a(x, xu) =
πβ(x

u)

πβ(x)
= exp (−β(V (xu)− V (x))) .
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From the explicit definition of the Ising potential V and the definition of xu, we get

V (xu)− V (x) = −
∑

{v,w}∈E
xuvx

u
w +

∑

{v,w}∈E
xvxw

= −
∑

v∈V :{u,v}∈E
xuux

u
v +

∑

v∈V :{u,v}∈E
xuxv

= 2xuΣ(x, u),

with

Σ(x, u) =
∑

v∈V :{u,v}∈E
xv.

Thus, under the Metropolis–Hastings rule, the spin xu is changed to −xu with probability

min {1, exp(2βxuΣ(x, u))} ;

under the Barker rule, the spin xu is changed to −xu with probability

1

1 + exp(−2βxuΣ(x, u))
.

7.2.4 Simulated annealing for optimisation

Consider the Gibbs measure

πβ(x) =
1

Zβ
e−βV (x),

for some function V : E → R. When β → +∞, πβ converges to the uniform distribution on the

set

argmin V := {x ∈ E : ∀y ∈ E,V (y) ≥ V (x)}.
If one is interested in finding the global minima of V , then a first approach may consist in taking

a ‘large’ value of β, constructing a Metropolis chain (Xn)n≥0 reversible with respect to the Gibbs

measure π and running it on a long enough time forXn to be essentially concentrated on the global

minima of V .

Observe that if the algorithm uses the Metropolis–Hastings rule with a symmetric proposal

matrix Q, then the probability to accept a move from x to y rewrites exp(−β[V (y)−V (x)]+) and

the following two phenomena occur.

• Moves that make the value of V (Xn) decrease are always accepted. This brings the chain

toward ‘local minima’ of V on a short time scale, in accordance with the idea of gradient

descent algorithms. Here, the notion of a ‘local’ minimum has to be understood with respect

to the graph structure induced on E by the pairs (x, y) such that Q(x, y) > 0.

• Moves that make the value of V (Xn) increase are accepted with an exponentially small (but

nonetheless positive) probability. This allows the chain to ‘escape’ local minima on long

time scales and go exploring other local minima. This behaviour is an essential feature of

stochastic algorithms.

The idea of simulated annealing is a refinement of the Metropolis algorithm, in which the

parameter β increases with time. Given a proposal matrix Q on E, an acceptance function F ,

and a deterministic sequence (βn)n≥1 growing to +∞ which we call a cooling scheme, it can be

described as follows: for all n ≥ 0, given the current state Xn = x ∈ E,

(i) select a state y with probability Q(x, y);
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(ii) set Xn+1 = y with probability

an(x, y) = F

(
πβn+1(y)Q(y, x)

πβn+1(x)Q(x, y)

)
,

otherwise set Xn+1 = x.

The resulting sequence (Xn)n≥0 is an inhomogeneous Markov chain. It can be shown that under

some assumptions on V , there exist cooling schemes for which V (Xn) converges to Vmin :=
minx∈E V (x). More precisely, we have the following statement.

Theorem 7.2.7 (). For any function V : E → R and proposal matrix Q, there is a constant C
such that the sequence (Xn)n≥0 constructed with cooling scheme βn = C ln(n) satisfies

lim
n→+∞

P (V (Xn) = Vmin) = 1.

We refer to [3, Chapitre 2], [2, Chapitre 5.3] for details.

7.3 The Gibbs sampler

The Gibbs sampler algorithm is a MCMC method which provides an alternative to the Metropolis

algorithm. It is designed for probability measures π on state spaces E which have the specific

form E = SV , where S and V are finite spaces.

7.3.1 Definition and properties

By analogy with the Ising model, we shall keep calling elements u of V vertices, and denoting

configurations x ∈ E by x = (xu)u∈V , where xu ∈ S is the spin of the vertex u. Given a

configuration x ∈ E, a vertex u ∈ V and a possible value s for the spin, we denote by xu,s the

configuration defined by

∀v ∈ V, xu,sv =

{
s if v = u,

xv otherwise,

and let

Ex,u = {xu,s : s ∈ S}
be the set of configurations which can be obtained by changing the value of the spin xu.

Definition 7.3.1 (Gibbs sampler). Let π be a probability measure on E = SV , such that π(x) > 0
for all x ∈ E. The Gibbs sampler of π is the Markov chain in E defined by, at each step:

(i) picking a vertex u ∈ V uniformly;

(ii) selecting the new value of the spin xu according to the conditional probability π(·|Ex,u),
where x is the current configuration.

Let us provide more detail on the update of the spin xu, in the case where π = πβ as in

Section 7.1. For all s ∈ S, the spin xu is updated to the value s with probability

πβ(x
u,s|Ex,u) =

πβ(x
u,s)∑

s′∈S πβ(x
u,s′)

=
e−βV (xu,s)/Zβ∑

s′∈S e−βV (xu,s′)/Zβ

=
1

1 +
∑

s′∈S\{s} e
−β(V (xu,s′ )−V (xu,s))

.
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This identity shows that it is not necessary to know the value of the partition function Zβ to

compute the conditional probability πβ(·|Ex,u); instead, only |S| evaluations of the potential V
are used.

Remark 7.3.2 (Graph structure for V). This evaluation is particularly fast when the potential V
depends on a geometrical structure of the set V . Assume indeed that, as in the Ising model, the

latter is the set of vertices of an undirected graph with set of edges E , and that the potential writes

under the form

V (x) =
∑

{u,v}∈E
w(xu, xv),

for some symmetric function w : S × S → R. Then for all x ∈ E, u ∈ V , and s, s′ ∈ S,

V (xu,s)− V (xu,s
′

) = 2
∑

v:{u,v}∈E
w(s, xv)− w(s′, xv),

which makes the computation of the conditional probability πβ(·|Ex,u) local in the sense that it

only depends on the spins of the neighbouring vertices v of u in the configuration x.

The interest of the Gibbs sampler is given by the following result.

Proposition 7.3.3 (Reversibility). Under the assumptions of Definition 7.3.1, the Gibbs sampler

of π is irreducible, aperiodic and reversible with respect to π.

q Exercise 7.3.4. Prove the irreducibility and aperiodicity properties.

Proof of reversibility. From Definition 7.3.1, we deduce that the transition matrix P of the Gibbs

sampler writes, for all x, y ∈ E with x 6= y,

P (x, y) =





1

|V|π(y|Ex,u) if there exists u ∈ V such that y ∈ Ex,u,

0 otherwise.

Clearly, for all x, y ∈ E and u ∈ V , we have y ∈ Ex,u if and only if x ∈ Ey,u, and in this case

Ex,u = Ey,u. As a consequence, in such a case,

π(x)P (x, y) = π(x)
1

|V|π(y|Ex,u) =
π(x)π(y)

|V|π(Ex,u)
=

π(x)π(y)

|V|π(Ey,u)
= π(y)P (y, x),

which is the detailed balance condition needed to prove reversibility. If there is no u ∈ V such

that y ∈ Ex,u, or equivalently x ∈ Ey,u, then P (x, y) = 0 = P (y, x) which makes the detailed

balance also hold in this case, and thus completes the proof.

1 Exercise 7.3.5 (Updating all components at each step). For the sake of clarity we assume

that V = {1, . . . , V } for some integer V ≥ 1. Let MV be a probability measure4 on the set of

permutations of V . We consider the following algorithm: given Xn = (x1, . . . , xV ) ∈ E,

• draw a random permutation σ of V under MV ;

• for u = 1, . . . , V , update the spin x′σ(u) according to π(·|x′σ(1), . . . , x′σ(u−1), xσ(u+1), . . . , xσ(V ))
5;

4There are two natural choices for MV : either the uniform measure, so at each step of the algorithm the order in

which the coordinates are updated is chosen uniformly, or the Dirac measure at some permutation, which without loss

of generality may be taken to be the identity, so the coordinates are always updated in the same order.
5That is to say, according to π(·|E′) with E′ := {y ∈ E : yσ(1) = x′

σ(1), . . . , yσ(u−1) = x′
σ(u−1), yσ(u+1) =

xσ(u+1), . . . , yσ(V ) = xσ(V )}.
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• set Xn+1 = x′.
Under the assumption that π(x) > 0 for any x ∈ E, the Markov chain (Xn)n≥0 remains irre-

ducible and aperiodic.

1. For any v ∈ V , let us set

P̃v(x, y) =

{
π(y|Ex,u) if y ∈ Ex,u,

0 otherwise.

Write the transition matrix P of (Xn)n≥0 in terms of the stochastic matrices {P̃v : v ∈ V}.

2. Show that π is stationary for (Xn)n≥0.

3. Give a sufficient condition over MV which ensures that P is reversible with respect to π.

4. Why would one prefer to employ this algorithm rather than the one described in Defini-

tion 7.3.1?

7.3.2 Application to the Ising model

When the chain is in a configuration x, a vertex u is picked uniformly in V and the spin is updated

according to the probabilities

p(+|x, u) := e−βV (xu,+)

e−βV (xu,+) + e−βV (xu,−)
, p(−|x, u) := e−βV (xu,−)

e−βV (xu,+) + e−βV (xu,−)
.

With the notation Σ(x, u) introduced in Subsection 7.2.3, these probabilities rewrite

p(+|x, u) = eβΣ(x,u)

eβΣ(x,u) + e−βΣ(x,u)
, p(−|x, u) = e−βΣ(x,u)

eβΣ(x,u) + e−βΣ(x,u)
.

q Exercise 7.3.6. Check that, on the example of the Ising model, this algorithm coincides with

the Metropolis algorithm applied with the Barker rule.
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In this last part of the course we introduce diffusion processes, a class of continuous-time

processes which also allow to compute integrals of the form

I =

∫

x∈Rd

f(x)p(x)dx

by means of continuous-time ergodic averages. In fact diffusion processes have a very rich theory

and can for instance be used to provide a probabilistic representation of solutions to certain partial

differential equations, thereby establishing a connection between the Monte Carlo method and the

numerical analysis of such partial differential equations.

9.1 Generalities on stochastic processes

Let (Ω,A,P) be a probability space, I be an arbitrary set of indices, and (E, E) be a measurable

space.
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9.1.1 Stochastic processes

Definition 9.1.1 (Stochastic process). A stochastic process indexed by I with values in E is a

family X = (Xt)t∈I such that for all t ∈ I ,

Xt :

{
Ω → E
ω 7→ Xt(ω)

is a real-valued random variable.

A stochastic process can also be seen as a random variable with values in the space EI of

functions I → E, as soon as the latter space is endowed with a suitable σ-field.

Definition 9.1.2 (Product σ-field). For any k ≥ 1, t1, . . . , tk ∈ I , B1, . . . , Bk ∈ E , the set

C(t1, . . . , tk;B1, . . . , Bk) =
{
(xt)t∈I ∈ EI : xt1 ∈ B1, . . . , xtk ∈ Bk

}

is called a cylinder. The product σ-field on RI , denoted by E⊗I , is defined as the smallest σ-field

on EI containing all cylinders.

Lemma 9.1.3 (Equivalence of definitions). Let (Xt)t∈I a family of functions Xt : Ω → E. The

function

X :

{
Ω → EI

ω 7→ (Xt(ω))t∈I

is measurable for the product σ-field if and only if, for any t ∈ I , the function

Xt :

{
Ω → E
ω 7→ Xt(ω)

is measurable.

↸ Exercise 9.1.4. Prove Lemma 9.1.3.

It is therefore equivalent to speak about stochastic processes in the sense of Definition 9.1.1,

or to speak about EI -valued random variables. As such, a stochastic process possesses a law

(we shall equivalently say a distribution), which is a probability measure on the measurable space

(EI , E⊗I). This law is characterised by the following result, which is an immediate consequence

of the Dynkin System Theorem (see Lemma 1.1.4).

Proposition 9.1.5 (Characterisation of the law of a process). Let X = (Xt)t∈I and Y = (Yt)t∈I
be two stochastic processes such that, for any k ≥ 1 and t1, . . . , tk ∈ I , the random vectors

(Xt1 , . . . ,Xtk) and (Yt1 , . . . , Ytk) have the same law in Ek. Then the processes X and Y have

the same law in EI .

The family of laws of vectors of the form (Xt1 , . . . ,Xtk), t1, . . . , tk ∈ I is called the system

of finite-dimensional distributions of the process (Xt)t∈I . The next result follows from similar

arguments.

Proposition 9.1.6 (Characterisation of independence). (i) A stochastic process X = (Xt)t∈I
is independent from a random variable Y if and only if for any k ≥ 1 and t1, . . . , tk ∈ I ,

the random vector (Xt1 , . . . ,Xtk ) is independent from Y .

(ii) Two stochastic processes X = (Xt)t∈I and Y = (Ys)s∈J (with J an interval of R which

may differ from I , and which may take their values in different measurable spaces) are

independent if and only if for any k, l ≥ 1, t1, . . . , tk ∈ I , s1, . . . , sl ∈ J , the random

vectors (Xt1 , . . . ,Xtk ) and (Ys1 , . . . , Ysl) are independent.

The second statement readily generalises to an arbitrary family of processes.
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9.1.2 Gaussian processes

We recall that a random vector X = (X1, . . . ,Xk) ∈ Rk is Gaussian if any linear combination

of the variables X1, . . . ,Xk is Gaussian. The law of a Gaussian vector X is then characterised by

two quantities: its expectation E[X] ∈ Rk and its covariance matrix Cov[X] ∈ Rk×k.

Definition 9.1.7 (Gaussian process). A real-valued stochastic process (Xt)t∈I is called Gaussian

if, for any t1, . . . , tk ∈ I , the vector (Xt1 , . . . ,Xtk) is Gaussian.

Following Proposition 9.1.5, the law of a Gaussian process is then characterised by two func-

tions: its expectation m(t) = E[Xt] and its covariance c(s, t) = Cov(Xs,Xt).

9.2 The Brownian motion

9.2.1 Definition

Random walk

Let ∆t > 0, ∆x > 0, and (ξn)n≥1 be a sequence of iid random variables such that P(ξ1 = 1) =

P(ξ1 = −1) = 1/2. Let us consider the stochastic process B∆t,∆x = (B∆t,∆x
t )t≥0 constructed as

follows:

• B∆t,∆x
0 = 0;

• for any n ≥ 1, B∆t,∆x
n∆t = B∆t,∆x

(n−1)∆t + ξn∆x, and the function t 7→ B∆t,∆x
t is linear on

[(n− 1)∆t, n∆t].
This is a scaled version, with time step ∆t and space step ∆x, of the one-dimensional random

walk introduced in Chapter 5. Several realisations of its trajectory are drawn on Figure 9.1.
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Figure 9.1: Left: five trajectories of the random walk with time step ∆t = 1 and space step

∆x = 1. Right: five trajectories of the Brownian motion on the interval [0, 10].

q Exercise 9.2.1. For any n ≥ 0, compute E[B∆t,∆x
n∆t ] and Var(B∆t,∆x

n∆t ).

Definition of the Brownian motion

Exercise 9.2.1 shows that, for any t ≥ 0, the random variable B∆t,∆x
t is of the order of magnitude√

t∆x2/∆t. For this random variable to possess a limit when ∆t and ∆x go to 0, it is therefore
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necessary that the ratio ∆x2/∆t remain non degenerate. We take the convention to keep it equal

to 1.

q Exercise 9.2.2. Show that, when ∆t→ 0 and ∆x =
√
∆t:

1. for any t ≥ 0, the random variable B∆t,∆x
t converges in distribution toward a random

variable Bt ∼ N (0, t);
2. for all 0 ≤ s ≤ t, the pair (B∆t,∆x

s , B∆t,∆x
t ) converges in distribution to a Gaussian vector

(Bs, Bt) with covariance E[BsBt] = s.

Exercise 9.2.2 motivates the following definition.

Definition 9.2.3 (Brownian motion). A real-valued Brownian motion is a Gaussian process (Bt)t≥0

with expectation

m(t) = E[Bt] = 0

and covariance function

c(s, t) = E[BsBt] = s ∧ t.

In particular, if (Bt)t≥0 is a Brownian motion, then B0 = 0, almost surely, and for any t ≥ 0,

Bt ∼ N (0, t).
By the results of Section 9.1, Definition 9.2.3 exactly characterises the law (in R[0,+∞)) of a

Brownian motion.

We shall sometimes consider Brownian motions on intervals of the form [0, T ] rather than on

[0,+∞), this does not change their definition.

q Exercise 9.2.4. Let G be a random variable with law N (0, 1). For any t ≥ 0, we set Xt =√
tG. We also let (Bt)t≥0 be a Brownian motion.

1. Show that, for any t ≥ 0, the variables Xt and Bt have the same law.

2. Show that the process (Xt)t≥0 is Gaussian and compute its covariance function.

3. Do the processes (Xt)t≥0 and (Bt)t≥0 have the same law?

q Exercise 9.2.5 (Transformations of the Brownian motion). Let (Bt)t≥0 be a Brownian motion.

1. Show that (−Bt)t≥0 is a Brownian motion.

2. For any c > 0, show that (c−1/2Bct)t≥0 is a Brownian motion.

3. For any T > 0, show that (BT −BT−t)t∈[0,T ] is a Brownian motion (on [0, T ]).

4. Show that the process (B̃t)t≥0 defined by

B̃t :=

{
0 if t = 0,

tB1/t if t > 0,

is a Brownian motion.

9.2.2 Increments of the Brownian motion and the Markov property

q Exercise 9.2.6. Let (Bt)t≥0 be a Brownian motion. Show that for any 0 ≤ s ≤ t, the random

variables Bs and Bt −Bs are independent, with Bt −Bs ∼ N (0, t− s).

The increments of the Brownian motion are therefore said to be:

• stationary, because for any 0 ≤ s ≤ t, the random variables Bt − Bs and Bt−s have the

same law;

• independent, because it is easily deduced by induction that for any 0 = t0 ≤ t1 ≤ · · · ≤ tk,

the random variables (Bti −Bti−1)1≤i≤k are independent.
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q Exercise 9.2.7. Show that, conversely, if a random process (Xt)t≥0 is such that X0 = 0 almost

surely, and for any 0 = t0 ≤ t1 ≤ · · · ≤ tk, the random variables (Xti − Xti−1)1≤i≤k are

independent with respective law N (0, ti − ti−1), then (Xt)t≥0 is a Brownian motion.

↸ Exercise 9.2.8. Show that the Poisson process Nt :=
∑∞

i=1 1{Ti≤t}, where 0 = T0 < T1 < · · ·
is a random sequence such that the variables (Ti − Ti−1)i≥1 are iid according to the exponential

distribution with parameter λ > 0, has stationary and independent increments.

Following Proposition 9.1.6, it is not difficult to show that if a random process (Xt)t≥0 has

stationary and independent increments, then for any t0, t ≥ 0, the random variable X ′
t := Xt0+t−

Xt0 is independent from the process (Xr)r∈[0,t0] and has the same law as Xt. For the Brownian

motion, this results holds at the level of the process (X ′
t)t≥0.

Proposition 9.2.9 (Markov property). Let (Bt)t≥0 be a Brownian motion. For any t0 ≥ 0, the pro-

cess (B′
t)t≥0 defined by B′

t := Bt0+t −Bt0 is a Brownian motion, independent from (Br)r∈[0,t0].

Proof. We start by noting that, for all t1, . . . , tk ≥ 0, any linear combination of the coordinates

of the vector (B′
t1 , . . . , B

′
tk
) is a linear combination of Bt0 , Bt0+t1 , . . . , Bt0+tk , therefore B′ is a

Gaussian process. Clearly, E[B′
t] = E[Bt0+t]− E[Bt0 ] = 0 and for all s ≤ t,

Cov(B′
s, B

′
t) = Cov(Bt0+s −Bt0 , Bt0+t −Bt0)

= Cov(Bt0+s, Bt0+t)− Cov(Bt0+s, Bt0)− Cov(Bt0 , Bt0+t) + Var(Bt0)

= (t0 + s) ∧ (t0 + t)− (t0 + s) ∧ t0 − t0 ∧ (t0 + t) + t0

= t0 + s ∧ t− t0 − t0 + t0

= s ∧ t.

Hence, by Definition 9.2.3, B′ is a Brownian motion.

For the same reason, for all r1, . . . , rl ∈ [0, t0], the vector (Br1 , . . . , Brl , B
′
t1 , . . . , B

′
tk
) is

Gaussian, and for all i ∈ {1, . . . , k}, j ∈ {1, . . . , l},

Cov(Brj , B
′
ti) = Cov(Brj , Bt0+tj )− Cov(Brj , Bt0)

= rj ∧ (t0 + tj)− rj ∧ t0
= rj − rj

= 0,

which by Proposition 2.2.17 shows that the vectors (Br1 , . . . , Brl) and (B′
t1 , . . . , B

′
tk
) are inde-

pendent. As a consequence, Proposition 9.1.6 implies that the processes (B′
t)t≥0 and (Br)r∈[0,t0]

are independent.

↸ Exercise 9.2.10 (Quadratic variation of the Brownian motion). For all n ≥ 1, let us denote by

0 = t0 < t1 < · · · < tn = T the subdivision of the interval [0, T ] into regular intervals with

length T/n.

1. Show that if (Bt)t∈[0,T ] is a Brownian motion,

lim
n→+∞

n−1∑

i=0

(Bti+1 −Bti)
2 = T, in L

2.

2. What happens if (Bt)t∈[0,T ] is replaced by a C1 function g : [0, T ] → +∞?

Exercise 9.2.10 indicates that Brownian trajectories do not behave as C1 function. The regu-

larity of these trajectories is the subject of the next subsection.
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9.2.3 Trajectories of the Brownian motion

So far, we have not said anything about the regularity of the trajectory t 7→ Bt(ω) for a given

ω ∈ Ω. As the right-hand side picture of Figure 9.1 seems to indicate, we shall see that these

trajectories are (almost surely) continuous, but not much more regular. These results will be stated

without a proof, and their mere formulation already requires some care.

Modification and the Kolmogorov criterion

In this paragraph, we temporarily leave the case of the Brownian motion aside and come back to

the general setting of Section 9.1. In particular, I is an arbitrary set of indices.

Definition 9.2.11 (Modification). Let (Xt)t∈I be a stochastic process. A modification of (Xt)t∈I
is a stochastic process (Yt)t∈I such that

∀t ∈ I, P(Xt = Yt) = 1.

In general, the almost sure event on which Xt = Yt depends on t. Therefore, the statement

that X and Y are modifications of each other is much weaker than the fact that P(∀t ∈ I,Xt =
Yt) = 1, in which case X and Y are called indistinguishable.

q Exercise 9.2.12. Show that if X and Y are modifications of each other, they have the same law

in RI .

q Exercise 9.2.13. Let Ω = [0, 1] be equipped with its Borel σ-field and denote by P the Lebesgue

measure on [0, 1]. Let X be the process on I = [0, 1] defined by Xt(ω) = 1{ω=t}. Show that X
and 0 are modifications of each other.

Given a stochastic process, a practical criterion to ensure the existence of a smooth modifica-

tion is the following. In the next definition, we consider a stochastic process (Xt)t∈I taking its

values in a topological space E, of which E is the Borel σ-field, and indexed by an interval I ⊂ R.

Definition 9.2.14 (Almost surely continuous process). A stochastic process (Xt)t∈I with values

in E is almost surely continuous if there exists A ∈ A such that P(A) = 1 and, for any ω ∈ A,

the function t 7→ Xt(ω) is continuous.

Theorem 9.2.15 (Kolmogorov criterion). Let (Xt)t∈I be a real-valued stochastic process. Assume

that there exist α, β > 0 such that, for any bounded interval J ⊂ I ,

sup
s,t∈J :s 6=t

E [|Xt −Xs|α]
|t− s|1+β

< +∞.

Then there exists an almost surely continuous modification (X̃t)t∈I of (Xt)t∈I .

In fact, the Kolmogorov criterion shows that, almost surely, the mapping t 7→ X̃t is locally

γ-Hölder continuous for any γ < β/α, which means that almost surely, for any bounded interval

J ⊂ I ,

sup
s,t∈J ;s 6=t

|X̃t − X̃s|
|t− s|γ < +∞.
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Continuity of the Brownian trajectories

Let (Bt)t≥0 be a Brownian motion. For any α > 0, for any s, t ≥ 0,

E [|Bt −Bs|α] = |t− s|α/2E [|G|α] , where G ∼ N (0, 1).

Therefore, as soon as α > 2, the Kolmogorov criterion is satisfied with β = α/2 − 1. As

a consequence, (Bt)t≥0 admits an almost surely continuous modification. By Exercise 9.2.12,

this process remains a Brownian motion. Therefore, up to replacing (Bt)t≥0 by this modification,

from now on we shall always consider that the trajectories of the Brownian motion are almost

surely continuous.

Besides, optimising the ratio β/α, we deduce from Theorem 9.2.15 that almost surely, (Bt)t≥0

has locally γ-Hölder continuous trajectories, for any γ < 1/2. It can be proved that this statement

is sharp, in the sense that almost surely, there is no nontrivial interval on which the trajectories

of (Bt)t≥0 are γ-Hölder continuous for γ ≥ 1/2. The particular role of the order 1/2 can be

heuristically understood by noting that for any t, h ≥ 0,

E[|Bt+h −Bt|2] = h,

so that Bt+h −Bt is of order
√
h.

Last, and for similar reasons, it can also be proved that almost surely, the Brownian trajec-

tories are nowhere differentiable.

The space of continuous sample-paths

Let I = [0, T ] for T > 0. Up to replacing Ω with the almost sure event A given by Defi-

nition 9.2.14, one may see the (continuous modification of the) Brownian motion (Bt)t∈I as a

function from Ω to the space C(I) of real-valued continuous functions I → R. Endowing the lat-

ter space with the Borel σ-field induced by the topology of uniform convergence, one may wonder

whether B : ω 7→ (Bt(ω))t∈I defines a random variable in C(I), and if so, how to characterise

its law. The answer is given by the following result.

Proposition 9.2.16 (Law of continuous processes). Let X = (Xt)t∈I be a real-valued stochastic

process.

(i) The process X has almost surely continuous trajectories if and only if X : Ω → C(I) is

measurable.

(ii) Two almost surely continuous processes X, Y have the same law in C(I) if and only if they

have the same finite-dimensional distributions, that is to say if and only if they have the same

law in RI .

The law of the Brownian motion in C(I) is called the Wiener measure on I . It can be defined

similarly when I = [0,+∞), provided that C([0,+∞)) is endowed with the Borel σ-field induced

by the topology of the locally uniform convergence1 .

Remark 9.2.17 (Continuity and product σ-field). While Proposition 9.2.16 shows that two con-

tinuous processes which have the same law with respect to the product σ-field on RI also have

1It is for instance induced by the distance

d((xt)t≥0, (yt)t≥0) =

∞∑

k=1

2−k1 ∧ sup
t∈[0,k]

(|xt − yt| ∧ 1).
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the same law in C(I), whether or not a process has continuous trajectories is not an information

provided by its law in RI . Indeed, the example of Exercise 9.2.13 shows two processes which are

modifications of each other, and therefore have the same law in RI , but have continuous trajecto-

ries with respective probability 0 and 1:

1 = P(0 ∈ C(I)) 6= P(X ∈ C(I)) = 0.

We therefore deduce from this fact that the subset C(I) of RI does not belong to the product σ-field

B(R)⊗I .

Since C(I) is a topological space, it is the natural space in which the convergence of (al-

most surely continuous) stochastic processes can be studied. In particular, the convergence of the

rescaled random walk to the Brownian motion is stated in this space.

Theorem 9.2.18 (Donsker’s invariance principle). For any T > 0, the random walk (B∆t,∆x
t )t∈[0,T ]

converges in distribution, in the space C([0, T ]), to the Brownian motion (Bt)t∈[0,T ] when ∆t →
0, ∆x→ 0, with ∆x2/∆t = 1.

9.2.4 Multidimensional Brownian motion

Definition 9.2.19 (Multidimensional Brownian motion). For all d ≥ 1, a Brownian motion in Rd

is a process B = (B1, . . . , Bd) where B1, . . . , Bd are independent Brownian motions.

q Exercise 9.2.20 (Isotropy). Let B be a Brownian motion in Rd and let O ∈ Rd×d be an

orthogonal matrix, that is to say such that OO⊤ = Id. Show that the process OB is a Brownian

motion in Rd.

9.3 Filtration, stopping time and (Ft)t≥0-Brownian motion

This last section is aimed at presenting the notion of (Ft)t≥0-Brownian motion, which will be

used in the next lectures. The main new object here is the notion of filtration.

9.3.1 More on σ-fields

Let (Ω,A,P) be a probability space. A sub-σ-field F of A is a σ-field on Ω which is included in

A.

Definition 9.3.1 (Random variables and sub-σ-fields). Let X be a random variable defined on

(Ω,A) which takes its values in a measurable space (E, E).
(i) The random variable X is measurable with respect to a sub-σ-field F of A if {X ∈ C} ∈ F

for all C ∈ E .

(ii) The sub-σ-field generated by X is the sub-σ-field

σ(X) := {{X ∈ C} : C ∈ E}.

In the first case, we shall also say that X is F-measurable.

q Exercise 9.3.2. Check that σ(X) is a sub-σ-field of A.

Clearly, X is F-measurable if and only if σ(X) ⊂ F , so that σ(X) is the smallest sub-σ-field

with respect to which X is measurable.
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Figure 9.2: A realisation of the Brownian motion in dimension d = 2.

q Exercise 9.3.3. Let c ∈ R and X be the random variable defined by X(ω) = c for all ω ∈ Ω.

What is σ(X)?

The following extension of the notion of independence will be useful.

Definition 9.3.4 (Independence between sub-σ-fields). Two sub-σ-fields F and G are independent

if, for any A ∈ F , B ∈ G,

P(A ∩B) = P(A)P(B).

Notice that if F and G are the sub-σ-fields respectively generated by some random variables

X and Y , then F and G are independent if and only if X and Y are independent. This definition

can of course be generalised for an arbitrary family of sub-σ-fields. In the sequel of this course

we shall sometimes say that a random variable X and a sub-σ-field F are independent when the

sub-σ-fields σ(X) and F are independent.

We shall sometimes require a sub-σ-field to be P-complete in the following sense.

Definition 9.3.5 (P-completeness). A sub-σ-field is called P-complete if it contains all negligible

events, that is to say all sets A ∈ A such that P(A) = 0.

9.3.2 Filtrations

Let I be a subset of R.

Definition 9.3.6 (Filtration). A filtration is a family of sub-σ-fields (Ft)t∈I of A such that, for any

s, t ∈ I , if s ≤ t then Fs ⊂ Ft.
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Definition 9.3.7 (Adapted process). A stochastic process X = (Xt)t∈I is called adapted to a

filtration (Ft)t∈I if, for any t ∈ I , the random variable Xt is Ft-measurable.

Definition 9.3.8 (Filtration generated by a stochastic process). Let X = (Xt)t∈I be a stochastic

process. The filtration generated by X is the filtration (FX
t )t∈I defined by

FX
t = σ

(
(Xs)s∈I∩(−∞,t]

)
,

for all t ∈ I .

q Exercise 9.3.9. Check that a process X = (Xt)t∈I is adapted to the filtration (Ft)t∈I if and

only if, for all t ∈ I , FX
t ⊂ Ft.

9.3.3 (Ft)t≥0-Brownian motion

Let (Ft)t≥0 be a filtration.

Definition 9.3.10 ((Ft)t≥0-Brownian motion). A (Ft)t≥0-Brownian motion is a real-valued Brow-

nian motion B = (Bt)t≥0 such that:

(i) the process B is adapted to the filtration (Ft)t≥0;

(ii) for all 0 ≤ s ≤ t, Bt −Bs is independent from Fs.

In particular, every (Ft)t≥0-Brownian motion is a Brownian motion in the sense of Defini-

tion 9.2.3, and conversely every Brownian motion B in the sense of Definition 9.2.3 is a (FB
t )t≥0-

Brownian motion. The notion of (Ft)t≥0-Brownian motion is interesting when the filtration

(Ft)t≥0 is strictly larger (that is to say, contains more information) than the filtration generated by

B. This is for instance the case when (Ft)t≥0 is the filtration generated by a d-dimensional Brown-

ian motion, which will be a typical situation for the study of stochastic differential equations in Rd.

In this case, each coordinate Bi of the multidimensional Brownian motion is a (Ft)t≥0-Brownian

motion.

9.3.4 Stopping times

Let (Ft)t≥0 be a filtration.

Definition 9.3.11 (Stopping time). A function τ : Ω → [0,+∞] is a (Ft)t≥0-stopping time if, for

any t ≥ 0, the event {τ ≤ t} belongs to Ft.

q Exercise 9.3.12. 1. Show that any deterministic time t0 is a (Ft)t≥0-stopping time.

2. If τ is a (Ft)t≥0-stopping time, show that for all t ≥ 0, the events {τ > t}, {τ < t},

{τ = t} and {τ ≥ t} belong to Ft.

3. If τ and τ ′ are two (Ft)t≥0-stopping times, check that τ ∧τ ′ and τ ∨τ ′ are (Ft)t≥0-stopping

times.

↸ Exercise 9.3.13 (An important example). Let X = (Xt)t≥0 be a (Ft)t≥0-adapted and almost

surely continuous process, taking its values in Rn, and F be a closed subset of Rn. Let us moreover

assume that F0 is P-complete in the sense of Definition 9.3.5.

The purpose of this exercise is to show that

τ = inf{t ≥ 0 : Xt ∈ F}

is a (Ft)t≥0-stopping time.
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1. Let t ≥ 0. Write the event {τ ≤ t} in terms of the set of events {Xs ∈ F}, s ∈ [0, t], and

check that each such event is in Ft.

2. For all x ∈ Rn, let us denote

dist(x, F ) = inf
y∈F

|x− y|.

Show that there exists s ∈ [0, t] such that Xs ∈ F if and only if either Xt ∈ F or for any

k ≥ 1, there exists sk ∈ [0, t] ∩Q such that dist(Xsk , F ) ≤ 1/k.

3. Conclude.

Remark 9.3.14. Under the assumptions of Exercise 9.3.13, if G is an open subset of Rn, then the

random time τ = inf{t ≥ 0 : Xt ∈ G} need not be a stopping time. It can however proved to

be so if, in addition, the filtration (Ft)t≥0 is right-continuous, that is to say that for any t ≥ 0,

Ft = ∩ǫ>0Ft+ǫ. A filtration which is right-continuous and such that F0 is P-complete is said to

satisfy the usual conditions.

9.3.5 Strong Markov property and reflection principle

The strong Markov property

Definition 9.3.15 (The σ-field Fτ ). Let (Ft)t≥0 be a filtration and τ be a (Ft)t≥0-stopping time.

The σ-field Fτ is defined by

Fτ = {A ∈ A : ∀t ≥ 0, {τ ≤ t} ∩A ∈ Ft}.

It must be understood as the set of events about which one may decide whether they are realised

or not given the information available at time τ . For instance, if (Xt)t≥0 is an adapted and almost

surely continuous process and τ = inf{t ≥ 0 : Xt ∈ F} for some closed set F , the random

variables τ , Xτ , supt∈[0,τ ] |Xt|, etc. are Fτ -measurable.

Theorem 9.3.16 (Strong Markov property). Let (Ft)t≥0 be a filtration on (Ω,A,P) such that F0

is complete, (Bt)t≥0 be a (Ft)t≥0-Brownian motion, and τ be a (Ft)t≥0-stopping time, such that

τ < +∞ almost surely. The process (B′
t)t≥0 defined by B′

t = Bτ+t − Bτ is a Brownian motion,

independent from Fτ .

Proof. Let t1, . . . , tk ≥ 0, F : Rk → R a bounded and continuous function, and A ∈ Fτ . We are

going to show that

E
[
1AF

(
B′

t1 , . . . , B
′
tk

)]
= P(A)E [F (Bt1 , . . . , Btk)] . (9.1)

Applying this identity with A = Ω, we deduce that the vectors (B′
t1 , . . . , B

′
tk
) and (Bt1 , . . . , Btk)

have the same law, which by Proposition 9.1.5 ensures that B′ is a Brownian motion. We therefore

get

E
[
1AF

(
B′

t1 , . . . , B
′
tk

)]
= P(A)E

[
F
(
B′

t1 , . . . , B
′
tk

)]
,

which shows that the vector (B′
t1 , . . . , B

′
tk
) is independent from the σ-field Fτ . Following Propo-

sition 9.1.6, this ensures that the process B′ is independent from Fτ .

Let us first write, thanks to the almost sure continuity of the trajectories of B and the fact that

τ < +∞, almost surely,

F
(
B′

t1 , . . . , B
′
tk

)
= lim

n→+∞

+∞∑

j=1

1{(j−1)/n≤τ<j/n}F
(
Bj/n+t1 −Bj/n, . . . , Bj/n+tk −Bj/n

)
,
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almost surely. By the Dominated Convergence Theorem, we deduce

E
[
1AF

(
B′

t1 , . . . , B
′
tk

)]

= lim
n→+∞

+∞∑

j=1

E
[
1A1{(j−1)/n≤τ<j/n}F

(
Bj/n+t1 −Bj/n, . . . , Bj/n+tk −Bj/n

)]
.

For all n ≥ 1, j ≥ 1, the event A ∩ {(j − 1)/n ≤ τ < j/n} belongs to Fj/n, while by

Proposition 9.2.9, the vector (Bj/n+t1 − Bj/n, . . . , Bj/n+tk − Bj/n) is independent from Fj/n,

and has the same law as (Bt1 , . . . , Btk). Hence,

E
[
1A1{(j−1)/n≤τ<j/n}F

(
Bj/n+t1 −Bj/n, . . . , Bj/n+tk −Bj/n

)]

= E [F (Bt1 , . . . , Btk)]P (A ∩ {(j − 1)/n ≤ τ < j/n}) ,

and we obtain (9.1) taking the sum over j.

The assumption that τ be a stopping time is crucial for the application of Theorem 9.3.16. Let

us indeed consider the random time

ϑ = sup{t < 1 : Bt = 0}.

It is clear that this variable is not a stopping time, because in order to decide whether ϑ ≤ t it is

necessary to know the trajectory of the Brownian motion on the interval [t, 1]. Besides, the process

(Bt+ϑ−Bϑ)t≥0 is not a Brownian motion, because it does not touches 0 on the interval (0, 1−ϑ),
see Figure 9.3, while we shall see in Exercise 9.3.21 below that the Brownian motion touches 0
infinitely often in the neighbourhood of t = 0.

1ϑ

•

Figure 9.3: The random variable ϑ.

The reflection principle

↸ Exercise 9.3.17 (The reflection principle). Let (Bt)t≥0 be a Brownian motion, and for any

a > 0,

τa = inf{t ≥ 0 : Bt ≥ a}.
Let (B′

t)t≥0 be a Brownian motion, independent from FB
τa , and let (Xt)t≥0 be defined by

Xt =

{
Bt if t ≤ τa,

a+B′
t−τa if t > τa.
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1. Show that X is a Brownian motion.

2. Deduce that the process (Yt)t≥0 defined by

Yt =

{
Bt if t ≤ τa,

2a−Bt if t > τa,

is a Brownian motion. See Figure 9.4.

3. Let us denote St = sups∈[0,t]Bs. Show that for all b ∈ [0, a] and t ≥ 0, {St > a,Bt <
b} = {Yt > 2a− b}.

4. Deduce the identity P(St > a,Bt < b) = P(Bt > 2a− b).

X

Y

a

τa

b

2a− b

Figure 9.4: The reflection principle: both the red and the blue curve are Brownian motions.

The result of Exercise 9.3.17 is called the reflection principle. It has a very useful consequence.

Corollary 9.3.18 (Law of the supremum of the Brownian motion). For any t ≥ 0, the random

variables St = sups∈[0,t]Bs and |Bt| have the same law, so that

∀a > 0, P(St > a) =
2√
2πt

∫ +∞

x=a
e−x2/2tdx.

Proof. Let t ≥ 0 et a > 0. Let us write

P(St > a) = P(St > a,Bt > a) + P(St > a,Bt = a) + P(St > a,Bt < a),

and study the three terms of the right-hand side separately: since St ≥ Bt by construction, P(St >
a,Bt > a) = P(Bt > a); since {Bt = a} is a negligible event, P(St > a,Bt = a) = 0; finally

taking a = b in the conclusion of Exercise 9.3.17, we get P(St > a,Bt < a) = P(Bt > a). Thus,

P(St > a) = 2P(Bt > a) = P(|Bt| > a).

Remark 9.3.19. If, for all t ≥ 0, the variables St and |Bt| have the same law, it is not true that the

processes (St)t≥0 and (|Bt|)t≥0 have the same law! Figure 9.5 shows a trajectory of the processes

(Bt)t ≥0, (|Bt|)t≥0 and (St)t≥0.

↸ Exercise 9.3.20 (Law of τa). Use Corollary 9.3.18 to compute the density of the random vari-

able τa. What can you say about its expectation?

↸ Exercise 9.3.21 (Brownian motion in the neighbourhood of 0). The purpose of this exercise is

to show that almost surely, inf{t > 0 : Bt = 0} = 0.
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Figure 9.5: A trajectory of the processes (Bt)t ≥0 (black), (|Bt|)t≥0 (blue) and (St)t≥0 (red).

1. For all t ≥ 0, show that the random variable It = infs∈[0,t]Bs has the same law as −St.
2. Assume that there exists n ≥ 1 such that Bt 6= 0 for all t ∈ (0, 1/n). Deduce that either

S1/n = 0 or I1/n = 0.

3. Conclude.
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Let g : [0, T ] → R be a C1 function. For any integrable function h : [0, T ] → R, let us

introduce the notation ∫ T

0
h(t)dg(t) :=

∫ T

0
h(t)g′(t)dt,

which simply corresponds to the standard change-of-variable formula. It satisfies

lim
n→+∞

n−1∑

i=0

ξi(g(ti+1)− g(ti)) =

∫ T

0
h(t)dg(t)

as soon as hn is a stepwise constant function which writes

hn(t) =
n−1∑

i=0

ξi1{[ti,ti+1)}(t), 0 = t0 < t1 < · · · < tn = T,

and is such that

lim
n→+∞

∫ T

0
|hn(t)− h(t)|dt = 0.

Notice that the latter construction of the integral of h as the limit of integrals of stepwise constant

functions hn has the advantage of not involving g′(t), and indeed this integral1 may be constructed

for a larger class of functions g, namely the class of functions with bounded variation, which must

be thought of as cumulative distribution functions of bounded signed measures on [0, T ].
The purpose of Itô’s calculus is to be able to define a similar integral for stochastic processes

(Ht)t∈[0,T ], when the smooth function g is replaced with the nonsmooth process B = (Bt)t∈[0,T ].

1which is sometimes called Stieltjes integral
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In this case, the change of variable formula dBt = B′
tdt no longer makes sense since the trajec-

tory of the Brownian motion is not differentiable. However, we shall see that the approximation

by stepwise constant processes may be employed, under the crucial condition that the process

(Ht)t∈[0,T ] be progressively measurable and (in a first step) in L
2 as a function of (t, ω).

In this lecture, we shall thus:

• construct directly a notion of integral ‘with respect to dBt’: the stochastic integral;

• deduce an appropriate differential calculus: Itô’s formula.

10.1 The stochastic integral

Let (Ω,A,P) be a probability space equipped with a filtration (Ft)t≥0 and a (Ft)t≥0-Brownian

motion B. We assume that F0 is P-complete. We also fix a bounded interval I = [0, T ] ⊂
[0,+∞). The purpose of this section is to construct the stochastic integral

∫ T

t=0
HtdBt

for a certain class of real-valued stochastic processes (Ht)t∈I .

10.1.1 Construction for stepwise constant functions

For all n ≥ 1, let us denote by 0 = t0 < · · · < tn = T a subdivision of the interval I into n
intervals. To each process Hn = (Hn

t )t∈I of the form

Hn
t =

n−1∑

i=0

ξi1[ti,ti+1)(t),

we associate the random variable

Sn
I =

n−1∑

i=0

ξi(Bti+1 −Bti).

When Hn converges to some limiting process H = (Ht)t∈I , it seems reasonable to be willing to

define ∫ T

t=0
HtdBt = lim

n→+∞
Sn
I .

q Exercise 10.1.1. Let ti = iT/n and Hn and H
n

be the processes defined by

Hn
t =

n−1∑

i=0

Bti1[ti,ti+1)(t), H
n
t =

n−1∑

i=0

Bti+11[ti,ti+1)(t).

Show that the associated sequences Sn
I and S

n
I do not have the same limit (in L

2).

In order to recover a nonamibiguous notion of limit, we adopt the convention (which is called

Itô’s convention) to restrict ourselves to processes H = (Ht)t∈I which satisfy the following con-

dition.
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Definition 10.1.2 (Progressively measurable process). A stochastic process (Ht)t∈I is called pro-

gressively measurable if, for all t ∈ [0, T ], the mapping

{
[0, t] × Ω → R

(s, ω) 7→ Hs(ω)

is measurable for the product σ-field B([0, t]) ⊗Ft.

A progressively measurable process is adapted, but the converse statement does not hold in

general. However, since F0 is assumed to be complete, an adapted process with almost surely

continuous trajectories is progressively measurable.

We shall now denote by:

(i) Λ
2(I) the set of progressively measurable processes H such that

∫ T
t=0 E[H

2
t ]dt < +∞;

(ii) Λ
2
0(I) the subset of piecewise constant processes H ∈ Λ

2(I), that is to say such that

there exist 0 = t0 < t1 < · · · < tn = T and random variables ξ0, . . . , ξn−1 such that

Ht =
∑n−1

i=0 ξi1[ti,ti+1)(t).

Lemma 10.1.3 (Characterisation of Λ
2
0(I)). A process H = (Ht)t∈I which writes under the

form Ht =
∑n−1

i=0 ξi1[ti,ti+1)(t) belongs to Λ
2(I) (and thus to Λ

2
0(I)) if and only if, for any

i ∈ {0, . . . , n− 1}, the random variable ξi is in L
2(P) and Fti -measurable.

Proof. Let H be a process of the form Ht =
∑n−1

i=0 ξi1[ti,ti+1)(t), where ξ0, . . . , ξn−1 are random

variables. It is clear that this process is progressively measurable if and only if it is adapted, and

that the latter condition holds if and only if for any t ∈ I , Ht is Ft-measurable, which amounts to

asserting that for any i ∈ {0, . . . , n− 1}, the random variable ξi is measurable with respect to the

σ-field ⋂

t∈[ti,ti+1)

Ft = Fti .

Moreover, since it is assumed that ti < ti+1, it is clear that

∫ T

t=0
E[H2

t ]dt =

n−1∑

i=0

E[ξ2i ](ti+1 − ti) < +∞

if and only if ξi ∈ L
2(P) for all i.

In Exercise 10.1.1, Hn is progressively measurable (and in Λ
2
0(I)), but H

n
is not because it

is not adapted.

Definition 10.1.4 (Stochastic integral on Λ
2
0(I)). For all Hn = (Hn

t )t∈I ∈ Λ
2
0(I), we define

∫ T

t=0
Hn

t dBt =
n−1∑

i=0

ξi(Bti+1 −Bti).

10.1.2 Extension to Λ
2(I)

Let us define on Λ
2(I) the norm2 ‖ · ‖

Λ
2(I) by

‖H‖2
Λ

2(I)
=

∫ T

t=0
E
[
H2

t

]
dt.

2Here, we implicitly identify two processes which coincide dt⊗ P-almost everywhere.
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Lemma 10.1.5 (Approximation properties). With the previous notation:

(i) the space Λ
2(I) equipped with the norm ‖ · ‖

Λ
2(I) is a Banach space;

(ii) the subset Λ2
0(I) is dense in Λ

2(I);
(iii) the linear mapping

JI :





Λ
2
0(I) → L

2(P)

H 7→
∫ T

t=0
HtdBt

is an isometry, that is to say that for all H ∈ Λ
2
0(I),

‖H‖2
Λ

2(I)
= E

[
JI(H)2

]
.

Proof. The properties (i) and (ii) are admitted (but they follow from standard arguments). To show

the property (iii), let us take H = (Ht)t∈I ∈ Λ
2
0(I), which writes

Ht =

n−1∑

i=0

ξi1[ti,ti+1)(t).

Following Lemma 10.1.3, for all i ∈ {0, . . . , n− 1}, the random variable ξi is Fti-measurable.

Let us now compute

E
[
JI(H)2

]
= E



(

n−1∑

i=0

ξi(Bti+1 −Bti)

)2

 =

n−1∑

i,j=0

E
[
ξi(Bti+1 −Bti)ξj(Btj+1 −Btj )

]
.

When i = j, ξiξj = ξ2i is Fti -measurable, while by Definition 9.3.10, the random variable (Bti+1−
Bti)(Btj+1 −Btj ) = (Bti+1 −Bti)

2 is independent from Fti . Thus,

E
[
ξi(Bti+1 −Bti)ξj(Btj+1 −Btj )

]
= E

[
ξ2i
]
E
[
(Bti+1 −Bti)

2
]
= (ti+1 − ti)E

[
ξ2i
]
,

since Bti+1 − Bti ∼ N (0, ti+1 − ti). When i < j, the random variables ξi, Bti+1 − Bti and

ξj are respectively Fti-, Fti+1- and Ftj -measurable, while the random variable Btj+1 − Btj is

independent from Ftj . But since Fti ⊂ Fti+1 ⊂ Ftj , we deduce that the random variables

ξi(Bti+1 −Bti)ξj and Btj+1 −Btj are independent, so that

E
[
ξi(Bti+1 −Bti)ξj(Btj+1 −Btj )

]
= E

[
ξi(Bti+1 −Bti)ξj

]
E
[
Btj+1 −Btj

]
= 0,

since Btj+1 −Btj ∼ N (0, tj+1 − tj). The case i > j is similar, and thus

E
[
JI(H)2

]
=

n−1∑

i=0

(ti+1 − ti)E
[
ξ2i
]
=

∫ T

t=0
E[H2

t ]dt = ‖H‖2
Λ

2(I)
,

which is the expected identity.

The next result is an immediate consequence3 of Lemma 10.1.5.

Corollary 10.1.6 (Definition of the stochastic integral on Λ
2(I)). The mapping JI can be extended

to a unique isometry from Λ
2(I) to L

2(P), which we shall still denote by JI .

3Let (M, ‖ · ‖M ), (L, ‖ · ‖L) be two Banach spaces, and M0 be a dense linear subspace of M . Assume that there

exists a linear function J : M0 → L such that ‖J(h)‖L = ‖h‖M for all h ∈ M0. Then there exists a unique linear

function J̃ : M → L such that J̃(h) = J(h) for all h ∈ M0, and it satisfies ‖J̃(h)‖L = ‖h‖M for all h ∈ M .
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For all H = (Ht)t∈I ∈ Λ
2(I), the random variable JI(H) ∈ L

2(P) is called the stochastic

integral of H on [0, T ], it is also denoted by

JI(H) =

∫ b

t=a
HtdBt.

This definition is not very constructive, in practice we shall keep in mind that, for all H ∈ Λ
2(I),

∫ T

t=0
HtdBt = lim

n→+∞

∫ T

t=0
Hn

t dBt, in L
2,

as soon as Hn is a sequence of processes in Λ
2
0(I) such that ‖Hn −H‖

Λ
2(I) → 0.

This construction can be adapted without any change to define the stochastic integral of

(Ht)t∈[a,b] on any bounded interval [a, b] ⊂ [0,+∞).
In any case, the stochastic integral is defined as an element of L2(P), in which random vari-

ables which coincide almost surely are identified, so it is uniquely defined only up to a negligible

event.

Proposition 10.1.7 (Properties of the stochastic integral on Λ
2(I)). The stochastic integral satis-

fies the following properties.

(i) Addition: for any T ′ ∈ [0, T ],

∫ T ′

t=0
HtdBt +

∫ T

t=T ′

HtdBt =

∫ T

t=0
HtdBt, almost surely.

(ii) Linearity: for all λ, µ ∈ R and H,H ′ ∈ Λ
2(I),

∫ T

t=0
(λHt + µH ′

t)dBt = λ

∫ T

t=0
HtdBt + µ

∫ T

t=0
H ′

tdBt, almost surely.

(iii) Measurability: the process (
∫ t
s=0HsdBs)t∈[0,T ] is progressively measurable.

(iv) Mean and variance:

E

[∫ T

t=0
HtdBt

]
= 0 and E

[(∫ T

t=0
HtdBt

)2
]
= E

[∫ T

t=0
H2

t dt

]
.

The second part of (iv) is called the Itô isometry.

Proof. The properties (i), (ii) and (iii) can be obtained by an approximation argument. To show

the property (iv), let us first note that if H = (Ht)t∈I ∈ Λ
2
0(I) writes

Ht =

n−1∑

i=0

ξi1[ti,ti+1)(t),

then

E [JI(H)] = E

[
n−1∑

i=0

ξi(Bti+1 −Bti)

]
=

n−1∑

i=0

E
[
ξi(Bti+1 −Bti)

]
.

Since Lemma 10.1.3 asserts that each random variable ξi is Fti -measurable while Bti+1 − Bti is

independent from Fti and centered, this sum is

n−1∑

i=0

E [ξi]E
[
Bti+1 −Bti

]
= 0.
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Now let H ∈ Λ
2(I). According to Lemma 10.1.5, there exists a sequence (Hn)n≥1 in Λ

2
0(I)

which converges to H . For all n ≥ 1, the triangle inequality, the linearity of JI and the Cauchy–

Schwarz inequality yield

|E [JI(H)]− E [JI(H
n)]| ≤ E [|JI(H −Hn)|] ≤

√
E

[
|JI(H −Hn)|2

]
= ‖H −Hn‖Λ2(I).

Since the previous computation shows that E[JI(H
n)] = 0 for all n ≥ 1, we conclude that

E[JI(H)] = 0, which is the first identity in the property (iv). The second identity immediately

rewrites E[JI(H)2] = ‖H‖2
Λ

2(I)
and it is thus a consequence of the fact that the extension of JI

to Λ
2(I) remains an isometry.

Higher-order moments of stochastic integrals can be controlled thanks to the Burkholder–

Davis–Gundy inequality, which is admitted.

Lemma 10.1.8 (Burkholder–Davis–Gundy inequality). For any p ≥ 1, there exist constants cp,

Cp such that for any H = (Ht)t∈I ∈ Λ
2(I),

cpE

[(∫ T

s=0
H2

sds

)p/2
]
≤ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

s=0
HsdBs

∣∣∣∣
p
]
≤ CpE

[(∫ T

s=0
H2

sds

)p/2
]
.

Lemma 10.1.8 allows one to apply the Kolmogorov criterion (Theorem 9.2.15) to deduce

that the process (
∫ t
s=0HsdBs)t≥0 admits an almost surely continuous modification. From now

on we shall systematically work with this modification and therefore consider that the process

(
∫ t
s=0HsdBs)t≥0 is almost surely continuous.

q Exercise 10.1.9. Using the sequence of processes Hn defined in Exercise 10.1.1, show that for

all T ≥ 0, ∫ T

t=0
BtdBt =

1

2
(B2

T − T ), almost surely.

q Exercise 10.1.10. Show that for any H,H ′ ∈ Λ
2(I),

∫ T

t=0
HtdBt

∫ T

t=0
H ′

tdBt ∈ L
1(P)

and

E

[∫ T

t=0
HtdBt

∫ T

t=0
H ′

tdBt

]
= E

[∫ T

t=0
HtH

′
tdt

]
.

↸ Exercise 10.1.11 (Exit from a strip for the Brownian motion). Let a < 0 < b and define

τa = inf{t ≥ 0 : Bt ≤ a}, τb = inf{t ≥ 0 : Bt ≥ b}.

The purpose of the exercise is to compute P(τa < τb).
1. Show that τa ∧ τb is a stopping time and that τa ∧ τb < +∞ almost surely.

2. Show that, for all T > 0, the process (Ht)t∈[0,T ] defined by Ht = 1{t<τa∧τb} belongs to

Λ
2([0, T ]).

3. Deduce the identity 0 = aP(τa < τb) + bP(τa > τb) and conclude.

1 Exercise 10.1.12 (Wiener integral). Let h : [0,+∞) → R be a continuous function, which we

rather denote by (ht)t≥0 in the sequel. The purpose of the exercise is to study the process (Xt)t≥0

defined by

Xt =

∫ t

s=0
hsdBs.
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1. For all t > 0, show that the process (hns )s∈[0,t] defined by

hns =
n−1∑

i=0

hsi1[si,si+1)(s), si =
it

n
,

converges to h in Λ
2([0, t]).

2. Deduce that Xt is a Gaussian variable.

3. Show that for all 0 < s < t, the random variable Xt −Xs is independent from Fs.

4. Conclude that the process (Xt)t≥0 is Gaussian, with

E[Xt] = 0, Cov(Xs,Xt) =

∫ s∧t

r=0
h2rdr.

10.1.3 Extension to Λloc

The condition that the random variable
∫ T
t=0H

2
t dt is in L

2(P) may seem uselessly restrictive. As

an example, given a F0-measurable random variable ξ0, it would be natural to be willing to define

the stochastic integral of the constant process Ht = ξ0 by
∫ T

t=0
ξ0dBt = ξ0BT ,

whether E[ξ20 ] < +∞ or not.

In order to relax it in the construction of the stochastic integral, we now introduce the space

Λloc of processes H = (Ht)t≥0 which are progressively measurable and such that

∀T > 0,

∫ T

t=0
H2

t dt < +∞, almost surely.

Of course, if H is such that (Ht)t∈[0,T ] ∈ Λ
2([0, T ]) for all T > 0, then H ∈ Λloc.

Our construction relies on the notion of stopping time introduced in Chapter 9. For H ∈ Λloc

and M ≥ 1, let us denote

τM = inf

{
T > 0 :

∫ T

t=0
H2

t dt ≥M

}
∈ [0,+∞].

Lemma 10.1.13 (Sequence (τM )M≥1). For all M ≥ 1, τM is a (Ft)t≥0-stopping time. Besides,

almost surely, τM → +∞ when M → +∞.

Proof. By the definition of Λ2
loc, the process X = (XT )T≥0 defined by

XT =

∫ T

t=0
H2

t dt

is adapted and has continuous trajectories. Exercise 9.3.13 then shows that τM is a (Ft)t≥0-

stopping time.

Let us now assume that there exists T ∈ (0,+∞) such that τM ≤ T for all M ≥ 1. Then for

all M ≥ 1,

M = XτM =

∫ τM

t=0
H2

t dt ≤
∫ T

t=0
H2

t dt,

which shows that ∫ T

t=0
H2

t dt = +∞

and is a contradiction with the fact that H ∈ Λloc. Hence, τM goes to +∞.
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We now let I = [0, T ] with T > 0. By Lemma 10.1.13, for all M ≥ 1, the process HM =
(HM

t )t∈I defined by

HM
t = Ht1{t≤τM}

is progressively measurable and naturally satisfies ‖HM‖2
Λ

2(I)
≤ M < +∞, so that HM ∈

Λ
2(I): this first remark allows to define the stochastic integral JI(H

M ). Furthermore, as soon as

τM ≥ T , the sequence JI(H
M ) becomes constant, and therefore it has an almost sure limit.

Definition 10.1.14 (Stochastic integral on Λloc). For all H = (Ht)t≥0 ∈ Λloc, for all I = [0, T ]
with T > 0, the stochastic integral of H on I is defined by

∫ T

t=0
HtdBt = lim

M→+∞
JI(H

M ), almost surely.

The stochastic integral of H on arbitrary intervals [a, b] ⊂ [0,+∞) is then defined by the

Chasles relation.

Remark 10.1.15. LetH = (Ht)t≥0 ∈ Λloc and I = [0, T ], T > 0, be such that (Ht)t∈I ∈ Λ
2(I).

Let us check that the Definition 10.1.14 of the stochastic integral of H on I actually agrees with

the definition given by Corollary 10.1.6. To this aim, let us write

E

[(
JI(H)− JI(H

M )
)2]

= E

[(∫ T

t=0
Ht1{t>τM}dBt

)2
]
,

where we have used the fact that both processes H and HM belong to Λ
2(I), and the linearity of

JI on Λ
2(I). The Itô isometry now shows that

E

[(∫ T

t=0
Ht1{t>τM}dBt

)2
]
= E

[∫ T

t=0
H2

t 1{t>τM}dt

]
,

and the Dominated Convergence Theorem ensures that the right-hand side converges to 0 when

M → +∞. Thus, the sequence JI(H
M ) converges: almost surely to the stochastic integral of

H on I in the sense of Definition 10.1.14; and in L
2 to JI(H), that is to say the definition of the

stochastic integral of H on I given by Corollary 10.1.6. We deduce that the two limits coincide

almost surely.

Remark 10.1.16. It is easy to check that the properties (i), (ii) and (iii) of Proposition 10.1.7 are

preserved by the extension of the stochastic integral to Λloc. In contrast, the Itô isometry no longer

holds necessarily; in fact, if H is only assumed to be in Λloc, the random variable
∫ b
t=aHtdBt

need not even be in L
1(P). The following practical rule summarises the situation: if H ∈ Λloc

and T > 0 are such that

E

[∫ T

t=0
H2

t dt

]
< +∞,

then we have

E

[∫ T

t=0
HtdBt

]
= 0 and E

[(∫ T

t=0
HtdBt

)2
]
= E

[∫ T

t=0
H2

t dt

]
;

otherwise, nothing can be said.
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10.2 Itô’s formula

10.2.1 Itô’s formula for Φ(Bt)

The result of Exercise 10.1.9 rewrites in the differential notation

BtdBt =
1

2
(d(B2

t )− dt),

so that with Φ(x) = x2,

dΦ(Bt) = Φ′(Bt)dBt + dt.

Therefore, the chain rule formula recalled at the beginning of this section does not apply to the

Brownian motion.

Theorem 10.2.1 (Itô’s formula for the Brownian motion). Let (Bt)t≥0 be a (F)t≥0-Brownian

motion and Φ : R → R be a C2 function. For all T ≥ 0,

Φ(BT ) = Φ(0) +

∫ T

t=0
Φ′(Bt)dBt +

1

2

∫ T

t=0
Φ′′(Bt)dt, almost surely,

which we shall also write

dΦ(Bt) = Φ′(Bt)dBt +
1

2
Φ′′(Bt)dt.

Remark 10.2.2. Before detailing the proof of Theorem 10.2.1, we formulate a few remarks.

(i) Since Φ is C2, the functions t 7→ Φ′(Bt) and t 7→ Φ′′(Bt) are almost surely continuous on

the interval [0, T ], and thus they are almost surely bounded. Therefore the right-hand side

in Itô’s formula is well defined; in particular, the stochastic integral is a priori understood

in the sense of its definition on Λloc.

(ii) The differential notation reveals a similarity with a second-order expansion of Φ. We shall

indeed exploit this idea in the proof.

(iii) Applying Itô’s formula with Φ(x) = x2, we recover the identity obtained at Exercise 10.1.9,

but much more rapidly!

Proof of Theorem 10.2.1. We only detail the proof in the case where the function |Φ′′| is bounded

on R by some M ≥ 0, and we admit that the result holds in general (see [7, Theorem 3.3] for a

complete exposition).

Let us fix T > 0, n ≥ 1, and set ti = iT/n for any i ∈ {0, . . . , n}. Following the Taylor–

Lagrange formula, for any i there exists θi ∈ [ti, ti+1] such that

Φ(BT )− Φ(B0) =

n−1∑

i=0

Φ(Bti+1)− Φ(Bti)

=
n−1∑

i=0

Φ′(Bti)
(
Bti+1 −Bti

)
+

1

2
Φ′′(Bθi)

(
Bti+1 −Bti

)2
.

We first check that

lim
n→+∞

n−1∑

i=0

Φ′(Bti)
(
Bti+1 −Bti

)
=

∫ T

t=0
Φ′(Bt)dBt, in L

2.
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Let us note that, since Φ′′ is bounded, the process Hn defined by Hn
t =

∑n−1
i=0 Φ′(Bti)1[ti,ti+1)(t)

belongs to the set Λ2
0(I) with I = [0, T ]. Hence, by the definition of the stochastic integral, it

suffices to show that Hn converges to the process H defined by Ht = Φ′(Bt) in Λ
2(I). But

‖H −Hn‖2
Λ

2(I)
=

n−1∑

i=0

∫ ti+1

t=ti

E
[
(Ht −Hti)

2
]
dt

=
n−1∑

i=0

∫ ti+1

t=ti

E
[
(Φ′(Bt)− Φ′(Bti))

2
]
dt

≤M2
n−1∑

i=0

∫ ti+1

t=ti

E
[
(Bt −Bti)

2
]
dt

=M2
n−1∑

i=0

∫ ti+1

t=ti

(t− ti)dt =
M2T 2

2n
,

which leads to the claimed identity.

We now show that

lim
n→+∞

n−1∑

i=0

Φ′′(Bθi)
(
Bti+1 −Bti

)2
=

∫ T

t=0
Φ′′(Bt)dt, in probability.

In this purpose, we introduce the notation

Un =

n−1∑

i=0

Φ′′(Bθi)
(
Bti+1 −Bti

)2
,

Vn =

n−1∑

i=0

Φ′′(Bti)
(
Bti+1 −Bti

)2
,

Wn =

n−1∑

i=0

Φ′′(Bti) (ti+1 − ti) ,

and argue in three steps.

Step 1: Un − Vn → 0 in L
1. Let us write

E [|Un − Vn|] = E

[∣∣∣∣∣

n−1∑

i=0

(
Φ′′(Bθi)− Φ′′(Bti)

) (
Bti+1 −Bti

)2
∣∣∣∣∣

]

≤ E

[
max

0≤i≤n−1

∣∣Φ′′(Bθi)− Φ′′(Bti)
∣∣
n−1∑

i=0

(
Bti+1 −Bti

)2
]

≤

√√√√√E

[
max

0≤i≤n−1
|Φ′′(Bθi)− Φ′′(Bti)|2

]
E



(

n−1∑

i=0

(
Bti+1 −Bti

)2
)2

,

by the Cauchy–Schwarz inequality. On the one hand, the almost sure uniform continuity of the

function t 7→ Φ′′(Bt) shows that

lim
n→+∞

max
0≤i≤n−1

∣∣Φ′′(Bθi)− Φ′′(Bti)
∣∣2 = 0, almost surely,
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and since this function is bounded by 2M , the Dominated Convergence Theorem ensures that

lim
n→+∞

E

[
max

0≤i≤n−1

∣∣Φ′′(Bθi)− Φ′′(Bti)
∣∣2
]
= 0.

On the other hand, by Exercise 9.2.10,

lim
n→+∞

E



(

n−1∑

i=0

(
Bti+1 −Bti

)2
)2

 = T 2.

Thus,

lim
n→+∞

E [|Un − Vn|] = 0.

Step 2: Vn −Wn → 0 in L
2. Let us now write

E
[
(Vn −Wn)

2
]
= E



(

n−1∑

i=0

Φ′′(Bti)
[
(Bti+1 −Bti)

2 − (ti+1 − ti)
]
)2



and set Yi = (Bti+1 −Bti)
2 − (ti+1 − ti). Notice that Yi is independent from Fti and that

E[Yi] = 0, E[Y 2
i ] =

(
T

n

)2

E[(G2 − 1)2], G ∼ N (0, 1).

Therefore,

E



(

n−1∑

i=0

Φ′′(Bti)Yi

)2

 =

n−1∑

i,j=0

E
[
Φ′′(Bti)YiΦ

′′(Btj )Yj
]

and when i < j, E[Φ′′(Bti)YiΦ
′′(Btj )Yj] = E[Φ′′(Bti)YiΦ

′′(Btj )]E[Yj ] = 0. We deduce that

E



(

n−1∑

i=0

Φ′′(Bti)Yi

)2

 =

n−1∑

i=0

E

[(
Φ′′(Bti)Yi

)2]

≤M2
n−1∑

i=0

E
[
Y 2
i

]
=
M2T 2

n
E[(G2 − 1)2],

whence

lim
n→+∞

E
[
(Vn −Wn)

2
]
= 0.

Step 3: almost sure limit of Wn. Wn is a Riemann sum for the almost surely continuous

function t 7→ Φ′′(Bt) on [0, T ]. Therefore, almost surely,

lim
n→+∞

Wn =

∫ T

t=0
Φ′′(Bt)dt.

Conclusion. We deduce from Steps 1, 2 and 3 that Un converges in probability to
∫ T
t=0 Φ

′′(Bt)dt,
which finally shows that

Φ(BT )− Φ(B0) =

∫ T

t=0
Φ′(Bt)dBt +

1

2

∫ T

t=0
Φ′′(Bt)dt, almost surely,

and completes the proof.

q Exercise 10.2.3. Express
∫ T
t=0B

2
t dBt as a function of BT and

∫ T
t=0Btdt.
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10.2.2 Itô process and quadratic variation

Definition 10.2.4. A real-valued Itô process is a process X = (Xt)t≥0 which writes, for any

T ≥ 0,

XT = X0 +

∫ T

t=0
Ktdt+

∫ T

t=0
HtdBt,

where:

• X0 is F0-measurable;

• the process K = (Kt)t≥0 is progressively measurable and, for all T > 0,
∫ T
t=0 |Kt|dt <

+∞ almost surely;

• the process H = (Ht)t≥0 is progressively measurable and, for all T > 0,
∫ T
t=0H

2
t dt < +∞

almost surely.

The last condition equivalently writes H ∈ Λloc, which ensures that the stochastic integral is

well-defined.

We shall often use the differential notation dXt = Ktdt+HtdBt.

The process T 7→
∫ T
t=0Ktdt is called the bounded variation component of X.

The following result is admitted.

Lemma 10.2.5 (Decomposition of an Itô process). An Itô process is adapted and it admits an

almost surely continuous modification. Its decomposition (X0,K,H) is almost surely unique.

Remark 10.2.6. As a consequence of Lemma 10.2.5, Itô processes are always progressively mea-

surable.

Definition 10.2.7 (Quadratic variation). The quadratic variation of an Itô process X = (Xt)t≥0 is

the nonnegative and nondecreasing process 〈X〉 = (〈X〉t)t≥0 defined by

〈X〉T =

∫ T

t=0
H2

t dt.

We shall often use the notation d〈X〉t = H2
t dt.

q Exercise 10.2.8. Show that, for all λ ∈ R, 〈λX〉t = λ2〈X〉t.

q Exercise 10.2.9. 1. Show that B is an Itô process, give its decomposition and check that

〈B〉t = t.
2. Let Φ : R → R be a C2 function. Show that X = (Φ(Bt))t≥0 is an Itô process, give its

decomposition and compute its quadratic variation.

The following generalisation of Itô’s formula to Itô processes is admitted (the proof is similar

to Theorem 10.2.1).

Theorem 10.2.10 (Itô formula for Itô processes). Let (Xt)t≥0 be an Itô process and Φ : R → R

be a C2 function. The process (Φ(Xt))t≥0 is an Itô process, and for any T ≥ 0,

Φ(XT ) = Φ(X0)+

∫ T

t=0

(
Φ′(Xt)Kt +

1

2
Φ′′(Xt)H

2
t

)
dt+

∫ T

t=0
Φ′(Xt)HtdBt, almost surely,

which is also written under the form

dΦ(Xt) = Φ′(Xt)dXt +
1

2
Φ′′(Xt)d〈X〉t.
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↸ Exercise 10.2.11 (Geometric Brownian motion). The goal of this exercise is to find an Itô

process X satisfying the identity

dXt =
1

2
Xtdt+XtdBt, X0 = 1,

which is a first example of a stochastic differential equation.

1. Analysis. Assume that there exists a solution X such that almost surely, Xt > 0 for all

t > 0. Compute lnXt.

2. Synthesis. Deduce a solution to this equation.

1 Exercise 10.2.12 (Lévy’s characterisation of the Brownian motion). Let H = (Ht)t≥0 ∈ Λloc

be such that H2
t = 1 for all t ≥ 0. The purpose of this exercise is to prove that the process (Xt)t≥0

defined by the stochastic integral

Xt =

∫ t

s=0
HsdBs

is a Brownian motion. This result is called Lévy’s characterisation of the Brownian motion.

1. Let 0 = t0 ≤ t1 ≤ · · · ≤ tk and u1, . . . , uk ∈ R. For all t ≥ 0, we define

H̃t = Ht

k∑

j=1

uj1{tj−1≤t<tj},

and

Yt = exp

(
i

∫ t

s=0
H̃sdBs +

1

2

∫ t

s=0
H̃2

sds

)
.

Show that (Yt)t≥0 is an Itô process with no bounded variation component.

2. Deduce the value of

E


exp


i

k∑

j=1

uj(Xtj −Xtj−1)




 .

3. Conclude.

10.2.3 Multidimensional version and applications

Let (Bt)t≥0 = (B1
t , . . . , B

d
t )t≥0 be a Brownian motion4 in Rd such that, for each k ∈ {1, . . . , d},

(Bk
t )t≥0 is a (Ft)t≥0-Brownian motion.

Definition 10.2.13 (Itô process driven by (Bt)t≥0). An Itô process driven by the d-dimensional

Brownian motion (Bt)t≥0 is a process (Xt)t≥0 which writes

XT = X0 +

∫ T

t=0
Ktdt+

d∑

k=1

∫ T

t=0
Hk

t dB
k
t ,

where:

• X0 is F0-measurable;

• the process K is progressively measurable and, for all T > 0,
∫ T
t=0 |Kt|dt < +∞ almost

surely;

4We recall from Subsection 9.2.4 that this means that the processes (B1
t )t≥0, . . . , (B

d
t )t≥0 are independent Brow-

nian motions.
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• the processes H1, . . . ,Hd belong to Λloc.

We shall naturally denote dXt = Ktdt +
∑d

k=1H
k
t dB

k
t , and admit that the decomposition

(X0,K, (H
k)1≤k≤d) remains unique.

Definition 10.2.14 (Quadratic covariation). Let (Xt)t≥0 and (X ′
t)t≥0 be two Itô processes driven

by (Bt)t≥0, with respective decompositions (X0,K, (H
k)1≤k≤d) and (X ′

0,K
′, (H ′k)1≤k≤d). The

quadratic covariation of X and X ′ is the process 〈X,X ′〉 = (〈X,X ′〉t)t≥0 defined by

〈X,X ′〉T =

d∑

k=1

∫ T

t=0
Hk

t H
′k
t dt.

We shall use the notation d〈X,X ′〉t =
∑d

k=1H
k
t H

′k
t dt.

We also denote 〈X,X〉 = 〈X〉, which generalises Definition 10.2.7.

Clearly, the quadratic covariation is symmetric and bilinear.

q Exercise 10.2.15. For k, l ∈ {1, . . . , d}, compute 〈Bk, Bl〉.
We may now state the Itô formula in its more general formulation.

Theorem 10.2.16 (Multidimensional Itô formula). Let (Xt)t≥0 = (X1
t , . . . ,X

n
t )t≥0 be a process

with values in Rn, of which each coordinate (Xi
t)t≥0 is an Itô process driven by the d-dimensional

Brownian motion (Bt)t≥0, and let Φ : Rn → R be a C2 function. The Itô formula writes

dΦ(Xt) =
n∑

i=1

∂Φ

∂xi
(Xt)dX

i
t +

1

2

n∑

i,j=1

∂2Φ

∂xi∂xj
(Xt)d〈Xi,Xj〉t.

q Exercise 10.2.17 (Integration by parts formula). Show that, if (Xt)t≥0 and (Yt)t≥0 are two Itô

processes, then

d(XtYt) = XtdYt + YtdXt + d〈X,Y 〉t.
The Itô formula also applies when Φ depends on time. A function Φ : [0,+∞) × Rn → R is

called C1,2 when its partial derivatives ∂Φ
∂t , ∂Φ

∂xi
and ∂2Φ

∂xi∂xj
exist and are continuous on [0,+∞)×

Rn.

Proposition 10.2.18 (Time dependent Itô formula). Let (Xt)t≥0 = (X1
t , . . . ,X

n
t )t≥0 be a process

with values in Rn, of which each coordinate (Xi
t)t≥0 is an Itô process driven by the d-dimensional

Brownian motion (Bt)t≥0, and let Φ : [0,+∞)× Rn → R be a C1,2 function. We have

dΦ(t,Xt) =
∂Φ

∂t
(t,Xt)dt+

n∑

i=1

∂Φ

∂xi
(t,Xt)dX

i
t +

1

2

n∑

i,j=1

∂2Φ

∂xi∂xj
(t,Xt)d〈Xi,Xj〉t.

Proof. Let us remark that the process (X̃t)t≥0 = (t,X1
t , . . . ,X

n
t )t≥0 with values in Rn+1 satisfy

the assumptions of Theorem 10.2.16, since the process t 7→ t is an Itô process with decomposition

(0, 1, 0). It is therefore clear that for any k ∈ {1, . . . , d}, 〈t,Xk〉 = 0. Thus, if Φ is C2 on

[0,+∞)×Rn, the claimed formula follows from the application of Theorem 10.2.16 to the process

X̃ . We admit that if Φ is only C1,2, it is possible to conclude by a regularisation argument.

↸ Exercise 10.2.19 (Hitting times for Brownian motion). Let B be a Brownian motion. For all

a > 0, let us define the stopping time

τa = inf{t ≥ 0 : Bt ≥ a}.
The purpose of this exercise is to recover some results from Subsection 9.3.5 using stochastic

calculus instead of the strong Markov property.
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1. Let σ > 0. Show that the process (Xt)t≥0 defined by

Xt = exp

(
σBt −

σ2

2
t

)

is an Itô process with no bounded variation component.

2. Let T > 0. Show that the process (H̃t)t∈[0,T ] defined by

H̃t = 1{t<τa}σXt

is in Λ
2([0, T ]).

3. Deduce that

E

[
1{τa<+∞} exp

(
−σ

2

2
τa

)]
= exp(−σa).

4. Conclude that τa < +∞ almost surely.

5. Show that τa has the same law as a2/G2, where G ∼ N (0, 1).
Hint: you may first admit that two nonnegative random variables X and Y have the same

law if and only if E[e−λX ] = E[e−λY ] for all λ > 0. Then, set f(a) = E[e−λa2/G2
] and

find a clever change of variable to link f ′(a) with f(a).

1 Exercise 10.2.20 (Recurrence and transience of the multidimensional Brownian motion). Let

d ≥ 2 and (Bt)t≥0 be a d-dimensional Brownian motion. We fix x ∈ Rd and let Xx
t = x + Bt.

For all ρ ≥ 0, we define

τxρ = inf{t ≥ 0 : |Xx
t | = ρ},

where | · | denotes the Euclidean norm in Rd. For 0 < r < R, we finally write

C(r,R) = {x ∈ Rd : r < |x| < R}.

1. Preliminary results. We assume that x ∈ C(r,R).

(a) Show that τxR < +∞, almost surely.

(b) Show that limR→+∞ τxR = +∞, almost surely.

(c) Show that limr→0 τ
x
r = τx0 , almost surely.

2. Harmonic functions in C(r,R). We consider the partial differential equation





∆u(x) = 0, x ∈ C(r,R)

u(x) = 1, |x| = r,

u(x) = 0, |x| = R.

(a) Find an explicit solution of the form u(x) = f(|x|2), where the function f is continu-

ous on [r,R] and C2 on (r,R).
(b) Show that u(x) = P(τxr < τxR).

3. Hitting points. Deduce that almost surely, τx0 = +∞.

4. Recurrence in dimension d = 2. If d = 2, show that for any r > 0, τxr < +∞ almost surely.

5. Transience in dimension d ≥ 3. If d ≥ 3, show that for any r > 0 and x ∈ Rd such that

r ≤ |x|, P(τxr < +∞) = (r/|x|)d−2.

In the case d = 2, the result of Exercise 10.2.20 shows that starting from any point x ∈ Rd,

the Brownian motion enters any small ball centered in 0 in finite time. Once it has reached this

ball, the strong Markov property shows that it ‘starts afresh’ and reaches again any other small

ball in finite time, see the schematic depiction of Figure 10.1. Iterating this argument, we deduce
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•t = 0

•
t = τ

Figure 10.1: Strong Markov property and recurrence for the 2-dimensional Brownian motion: the

Brownian motion hits the dashed blue ball at the random time τ . Then the trajectory (Bt+τ −
Bτ )t≥0 is independent from the trajectory (Bt)t∈[0,τ ].

that the Brownian motion visits all open sets of Rd infinitely often, which is the reason why it is

called recurrent.

In dimension d ≥ 3, on the contrary, one may combine the result of Exercise 10.2.20 with the

strong Markov property to show that almost surely, limt→+∞ |Bt| = +∞, so that for any compact

set K , there is a finite time after which the Brownian motion no longer comes back to K . It is then

called transient. Whatever the dimension d, the long time behaviour of the Brownian motion in Rd

is therefore similar to the long time behaviour of the random walk in Zd studied in Exercise 5.4.9.
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Let n, d ≥ 1, I = [0, T ] with T > 0 or I = [0,+∞), and b : I × Rn → Rn, σ : I × Rn →
Rn×d be measurable functions. Let (Bt)t∈I be a d-dimensional Brownian motion defined on some

probability space (Ω,A,P) endowed with a filtration (Ft)t∈I such that F0 is complete and with

respect to which the coordinates of (Bt)t∈I are (Ft)t∈I -Brownian motions.

A stochastic differential equation (SDE) is an equation of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (11.1)

where the unknown is an n-dimensional Itô process (Xt)t∈I = (X1
t , . . . ,X

n
t )t∈I . It is usually

complemented with an initial condition

X0 = ξ, (11.2)

where ξ is an F0-measurable random variable in Rn.

Equivalently, introducing the notation b = (bi)1≤i≤n and σ = (σi,k)1≤i≤n,1≤k≤d for the

coordinates of b and σ, the system (11.1)–(11.2) rewrites under the form

∀i ∈ {1, . . . , n}, ∀t ∈ I, Xi
t = ξi0 +

∫ t

s=0
bi(s,Xs)ds+

d∑

k=1

∫ t

s=0
σi,k(s,Xs)dB

k
s .

We shall call a stochastic process (Xt)t∈I which solves a SDE of the form (11.1) a diffusion

process. The function b is called the drift and σ the diffusion coefficient of the SDE.

Throughout this section, we shall always assume that the functions b and σ are bounded on

bounded subsets of I × Rn. The notation | · | shall be used to refer indifferently to the Euclidean

norm on Rn or to the Frobenius norm1 on Rn×d.

1The Frobenius norm of a matrix s = (si,k)1≤i≤n,1≤k≤d ∈ Rn×d is defined by |s| = (
∑n

i=1

∑d
k=1 s

2
i,k)

1/2.
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11.1 Existence and uniqueness in the Lipschitz case

When σ ≡ 0, the SDE (11.1) reduces to the classical ODE ẋt = b(t, xt), for which well-posedness

is ensured by the Cauchy–Lipschitz Theorem. The latter possesses the following stochastic ver-

sion.

Theorem 11.1.1 (Itô Theorem). Let T > 0, b : [0, T ] × Rn → Rn and σ : [0, T ] × Rn → Rn×d

be such that there exists K ∈ [0,+∞) for which, for all t ∈ [0, T ] and x, y ∈ Rn,

|b(t, x)− b(t, y)|+ |σ(t, x) − σ(t, y)| ≤ K|x− y|, |b(t, x)| + |σ(t, x)| ≤ K(1 + |x|).
For any F0-measurable random variable ξ ∈ Rn, there is a unique n-dimensional Itô process

(Xt)t∈[0,T ] = (X1
t , . . . ,X

n
t )t∈[0,T ] such that, for all t ∈ [0, T ],

Xt = ξ +

∫ t

s=0
b(s,Xs)ds+

∫ t

s=0
σ(s,Xs)dBs.

The proof of Theorem 11.1.1 relies on a fixed-point argument, which will be performed in the

space Λ
2([0, T ]). We therefore need the following a priori estimate.

Lemma 11.1.2 (Λ2([0, T ]) a priori estimate). Under the assumptions of Theorem 11.1.1, if E[|ξ|2] <
+∞ and (Xt)t∈[0,T ] is a solution to (11.1)–(11.2), then for any i ∈ {1, . . . , n}, (Xi

t)t∈[0,T ] ∈
Λ

2([0, T ]).

Proof. By Remark 10.2.6, each process (Xi
t)t∈[0,T ] is progressively measurable. The proof of

square-integrability now relies on the use of a localisation procedure: for M ≥ 0, let τM :=
inf{t ≥ 0 : |Xt| ≥ M}, with the convention that τM = +∞ if supt∈[0,T ] |Xt| < M . By similar

arguments to the proof of Lemma 10.1.13, τM is a stopping time and τM = +∞ for M large

enough, almost surely. For any t ≥ 0, using the elementary inequality (a+b+c)2 ≤ 3(a2+b2+c2),
we have

E
[
|Xt∧τM |2

]

≤ 3

(
E
[
|ξ|2
]
+ E

[∣∣∣∣
∫ t∧τM

s=0
b(s,Xs)ds

∣∣∣∣
2
]
+ E

[∣∣∣∣
∫ t∧τM

s=0
σ(s,Xs)dBs

∣∣∣∣
2
])

= 3

(
E
[
|ξ|2
]
+ E

[∣∣∣∣
∫ t

s=0
1{s<τM}b(s,Xs)ds

∣∣∣∣
2
]
+ E

[∣∣∣∣
∫ t

s=0
1{s<τM}σ(s,Xs)dBs

∣∣∣∣
2
])

≤ 3

(
E
[
|ξ|2
]
+ T

∫ t

s=0
E
[
1{s<τM}|b(s,Xs)|2

]
ds+

∫ t

s=0
E
[
1{s<τM}|σ(s,Xs)|2

]
ds

)
,

where we have used the Cauchy–Schwarz inequality and Itô’s isometry at the last line. Since

1{t<τM}|Xt|2 ≤ |Xt∧τM |2, we deduce that u(t) := E[1{t<τM}|Xt|2] satisfies

∀t ∈ [0, T ], u(t) ≤ C

(
1 +

∫ t

s=0
u(s)ds

)
,

for some finite constant C ≥ 0 which depends on E[|ξ|2], T and K , but not on M . Moreover,

u(t) ≤M2. Therefore, by Gronwall’s Lemma,

∀t ∈ [0, T ], u(t) ≤ CeCt.

By the Monotone Convergence Theorem, taking the M → +∞ limit yields

∀t ∈ [0, T ], E
[
|Xt|2

]
≤ CeCt,

which finally implies that
∫ T
t=0 E[|Xt|2]dt < +∞ and concludes.



11.1 Existence and uniqueness in the Lipschitz case 131

Proof of Theorem 11.1.1. We detail the proof for the simple case d = n = 1, but the arguments

carry over to any values of d and n immediately. We also assume that E[|ξ|2] < +∞ and refer

to Remark 11.1.3 below for the extension to any F0-measurable initial condition ξ. Then by

Lemma 11.1.2, it suffices to show that (11.1)–(11.2) has a unique solution in Λ
2([0, T ]).

Let X = (Xt)t∈[0,T ] ∈ Λ
2([0, T ]). For any t ∈ [0, T ],

|b(t,Xt)| ≤ K(1 + |Xt|), |σ(t,Xt)|2 ≤ 2K2(1 + |Xt|2),

so that the Itô process GX defined by

∀t ∈ [0, T ], (GX)t = ξ +

∫ t

s=0
b(s,Xs)ds+

∫ t

s=0
σ(s,Xs)dBs,

is well-defined and in Λ
2([0, T ]). Furthermore, a processX ∈ Λ

2([0, T ]) satisfies the SDE (11.1)–

(11.2) if and only if GX = X.

For all X,Y ∈ Λ
2([0, T ]),

E

[
((GX)t − (GY )t)

2
]

≤ 2E

[(∫ t

s=0
(b(s,Xs)− b(s, Ys))ds

)2

+

(∫ t

s=0
(σ(s,Xs)− σ(s, Ys))dBs

)2
]
.

On the one hand, the Cauchy–Schwarz inequality yields

(∫ t

s=0
(b(s,Xs)− b(s, Ys))ds

)2

≤ T

∫ t

s=0
(b(s,Xs)− b(s, Ys))

2ds

≤ TK2

∫ t

s=0
(Xs − Ys)

2ds.

On the other hand, by Itô’s isometry,

E

[(∫ t

s=0
(σ(s,Xs)− σ(s, Ys))dBs

)2
]
= E

[∫ t

s=0
(σ(s,Xs)− σ(s, Ys))

2ds

]

≤ K2E

[∫ t

s=0
(Xs − Ys)

2ds

]
.

We deduce that

E

[
((GX)t − (GY )t)

2
]
≤ C

∫ t

s=0
E
[
(Xs − Ys)

2
]
ds,

with C = 2K2(T + 1). Iterating this identity, we deduce that

E

[(
(G2X)t − (G2Y )t

)2] ≤ C

∫ t

s=0
E
[
(GXs − GYs)

2
]
ds

≤ C2

∫ t

s1=0

∫ s1

s2=0
E
[
(Xs2 − Ys2)

2
]
ds2ds1,

and then by induction, for all k ≥ 1,

E

[(
(GkX)t − (GkY )t

)2]
≤ Ck

∫ t

s1=0

∫ s1

s2=0
· · ·
∫ sk−1

sk=0
E
[
(Xsk − Ysk)

2
]
dsk · · · ds2ds1.
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The Fubini Theorem allows to rewrite the integral in the right-hand side under the form

∫ t

sk=0

∫ t

sk−1=sk

· · ·
∫ t

s1=s2

E
[
(Xsk − Ysk)

2
]
ds1 · · · dsk−1dsk

=

∫ t

sk=0
E
[
(Xsk − Ysk)

2
]
(∫ t

sk−1=sk

· · ·
∫ t

s1=s2

ds1 · · · dsk−1

)

︸ ︷︷ ︸
=(t−sk)k−1/(k−1)!

dsk,

so that

E

[(
(GkX)t − (GkY )t

)2]
≤ Ck

∫ t

sk=0
E
[
(Xsk − Ysk)

2
] (t− sk)

k−1

(k − 1)!
dsk,

and then

‖GkX − GkY ‖2
Λ

2([0,T ])
=

∫ T

t=0
E

[(
(GkX)t − (GkY )t

)2]
dt

≤ Ck

∫ T

s=0
E
[
(Xs − Ys)

2
] ∫ T

t=s

(t− s)k−1

(k − 1)!
dtds

≤ CkT
k

k!
‖X − Y ‖2

Λ
2([0,T ])

.

We deduce that as soon as k ≥ 1 is such that (CT )k/k! < 1, the mapping Gk is a contraction.

Since Lemma 10.1.5 asserts that Λ2([0, T ]) is a Banach space, Picard’s Fixed Point Theorem

ensures that G possesses a unique fixed point in this space.

Remark 11.1.3. The proof of Theorem 11.1.1 shows that for any x ∈ Rn, there is a unique

solution to (11.1) with (deterministic) initial condition X0 = x. Let us denote by (Xx
t )t∈[0,T ] this

process. The idea of the extension of the proof of Theorem 11.1.1 to the case where |ξ| is not

necessarily in L
2(P) then consists in defining Xt(ω) = X

ξ(ω)
t (ω): by construction, this process

solves (11.1)–(11.2); and uniqueness can be checked conditionally on ξ. We leave the technical

details apart.

Remark 11.1.4. If the coefficients b and σ are defined and satisfy the assumptions of Theo-

rem 11.1.1 on [0,+∞) × Rn, then for any T > 0 the SDE (11.1)–(11.2) has a unique solution

(Xt)t∈[0,T ] on [0, T ], and it is easily checked that if T ′ > T and (X ′
t)t∈[0,T ′] is the solution on

[0, T ′], then Xt = X ′
t for any t ∈ [0, T ]. Therefore, in this setting, the SDE (11.1)–(11.2) has a

unique solution (Xt)t≥0 defined on I = [0,+∞).

In Exercise 10.2.11, we proved that the Geometric Brownian Motion Xt = eBt solves the SDE

dXt =
1
2Xtdt+XtdBt, with X0 = 1. Theorem 11.1.1 shows that this solution is unique.

q Exercise 11.1.5 (The Ornstein–Uhlenbeck process). Let λ > 0 and x0 ∈ R. We consider the

SDE

dXt = −λXtdt+ dBt, X0 = x0, (11.3)

the unique solution to which is called the Ornstein–Uhlenbeck process.

1. Determine the set of solutions to the ordinary differential equation ẋt = −λxt.
2. Let (Xt)t≥0 be the solution to the SDE (11.3) and let Ct = Xte

λt. Compute Ct.

3. Deduce an explicit expression for Xt.
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4. Show that (Xt)t≥0 is a Gaussian process and compute its expectation and covariance func-

tion.

5. When t→ +∞, describe the limit (in distribution) of Xt.

Remark 11.1.6 (Strong and weak solutions). In the context of Theorem 11.1.1, the Brownian mo-

tion (Bt)t≥0 is given a priori and the solution (Xt)t∈[0,T ] to (11.1)–(11.2) given in Theorem 11.1.1

is constructed as a function of (Bt)t≥0. In particular, it is adapted to the filtration (FB
t )t∈[0,T ]

generated by the Brownian motion (Bt)t∈[0,T ]: such a solution is called strong.

There is also a notion of a weak solution, for which both the process (Xt)t∈ [0,T ] and the

Brownian motion (Bt)t∈[0,T ] are constructed simultaneously. A strong solution is always a weak

solution, but there are cases where the weak solution Xt cannot be expressed as a deterministic

function of the Brownian motion (Bs)s∈[0,t], as we show in the following example.

We consider the stochastic differential equation

dXt = sgn(Xt)dBt, X0 = 0,

where sgn(x) = 1{x≥0} − 1{x<0}. We first construct a pair of processes (Xt, Bt)t≥0 such that

(Bt)t≥0 is a Brownian motion and (Xt)t≥0 solves the equation. We let (Xt)t≥0 be a Brownian

motion and define

Bt =

∫ t

s=0
sgn(Xs)dXs.

By Lévy’s characterisation (see Exercise 10.2.12), (Bt)t≥0 is a Brownian motion. Besides, since

1/sgn(x) = sgn(x), we deduce from the relation dBt = sgn(Xt)dXt that

dXt =
1

sgn(Xt)
dBt = sgn(Xt)dBt.

We now check that Xt is not FB
t -measurable. To this aim, we claim (and leave the proof as an

exercise2) that, almost surely,
∫ t

s=0
sgn(Xs)dXs = |Xt| − lim

ǫ→0

1

2ǫ

∫ t

s=0
1{|Xs|≤ǫ}dt,

which shows that Bt is F |X|
t -measurable. Therefore if Xt was FB

t -measurable then we would

have FX
t ⊂ F |X|

t which is not true because the event {Xt > 0} is in FX
t but not in F |X|

t .

Remark 11.1.7 (Locally Lipschitz continuous coefficients). Similarly to the Cauchy–Lipschitz

Theorem, there is also a version of the Itô Theorem when the coefficients b and σ are only locally

Lipschitz continuous. Then the fixed point argument from the proof of Theorem 11.1.1 can be

adapted to yield a solution (Xt)t∈[0,τ∗) defined up to some random time τ∗ which is an explosion

time, in the sense that almost surely, if τ∗ < +∞ then limt→τ∗ |Xt| = +∞.

11.2 The Feynman–Kac formula

11.2.1 Differential operator associated with an SDE

Definition 11.2.1 (Differential operator associated with (11.1)). The differential operator associ-

ated with the SDE (11.1) is the differential operator Lt on Rn defined by

LtΦ(x) =
n∑

i=1

bi(t, x)
∂Φ

∂xi
(x) +

1

2

n∑

i,j=1

ai,j(t, x)
∂2Φ

∂xi∂xj
(x),

2The interested reader should start by applying the Itô formula to a C2 approximation φǫ(x) of |x|.
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with a(t, x) := σ(t, x)σ⊤(t, x) ∈ Rn×n.

The main reason for the introduction of this notion is the fact that, if (Xt)t≥0 is a solution to

the SDE (11.1), then for any C2 function Φ : Rn → R, Itô’s formula yields the identity

dΦ(Xt) = LtΦ(Xt)dt+ σ⊤(t,Xt)∇Φ(Xt) · dBt, (11.4)

which we shall use several times in the sequel.

q Exercise 11.2.2. What is the differential operator associated with the Brownian motion?

11.2.2 Probabilistic representation of the solution to backward Cauchy problems

We establish a first connection between SDEs and PDEs through the Feynman–Kac formula. As-

sume that there exists T > 0 such that, for all x ∈ Rn and t ∈ [0, T ), there exists an Itô process

(Xt,x
s )s∈[t,T ] such that, for all s ∈ [0, T ],

Xt,x
s = x+

∫ s

r=t
b(r,Xt,x

r )dr +

∫ s

r=t
σ(r,Xt,x

r )dBr,

that is to say, a solution to (11.1) on [t, T ] which takes the value x at time t. This is in particular

the case if the coefficients b and σ satisfy the assumptions of Theorem 11.1.1.

Theorem 11.2.3 (Feynman–Kac formula for children). Let T > 0 and f : Rn → R be a continu-

ous function. Assume that there exists a C1,2 function u : [0, T ] ×Rn → R such that:

(i) for any t ∈ [0, T ) and x ∈ Rn, (σ⊤(s,Xt,x
s )∇xu(s,X

t,x
s ))s∈[t,T ] ∈ Λ

2([t, T ]);
(ii) u solves the parabolic problem




−∂u
∂t

(t, x) = Ltu(t, x), t ∈ [0, T ], x ∈ Rn,

u(T, x) = f(x).
(11.5)

Then, for all (t, x) ∈ [0, T ]× Rn,

u(t, x) = E

[
f(Xt,x

T )
]
.

Proof. For simplicity we write Xt,x
s = Xs = (X1

s , . . . ,X
n
s ). Let us fix t ∈ [0, T ] and apply Itô’s

formula to u(s,Xs) for s ∈ [t, T ]. By (11.4), we get

du(s,Xs) =

(
∂u

∂t
(s,Xs) + Lsu(s,Xs)

)
ds+ σ⊤(s,Xs)∇xu(s,Xs) · dBs

= σ⊤(s,Xs)∇xu(s,Xs) · dBs,

thanks to (ii). As a consequence,

u(T,XT ) = u(t,Xt) +

∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs,

which rewrites

f(XT ) = u(t, x) +

∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs.
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The assumption (i) now ensures that

E

[∫ T

s=t
σ⊤(s,Xs)∇xu(s,Xs) · dBs

]
= 0,

therefore

E [f(XT )] = u(t, x).

The Feynman–Kac formula shows that if one is interested in solving the PDE (11.5) in one

point (t, x), a possible approach may be to simulate the trajectory of (Xt,x
s )s∈[t,T ] and then to

compute the expectation E[f(Xt,x
T )] by the Monte Carlo method. This naturally raises the question

of the numerical simulation of the solution to SDEs, which is addressed in the next section.

Example 11.2.4 (The Black–Scholes model in mathematical finance). In mathematical finance,

the Black–Scholes model3 assumes that the price of some asset (for instance, an action) is the

solution (St)t≥0 of the SDE

dSt = σStdBt,

whose solution writes St = S0 exp(σBt − σ2t/2). An option with payoff function f and maturity

T is a contract between the bank and the client, where at time T the bank has to give the client the

quantity f(ST ). The price that the client has to pay to the bank at time t ≤ T in order to buy the

option is given by u(t, s) = E[f(St,s
T )], where s is the value of St. This quantity can be computed

either by the Monte Carlo method, or by solving the parabolic problem





∂u

∂t
(t, s) +

σ2s2

2

∂2u

∂s2
(t, s) = 0, t ∈ [0, T ), s ≥ 0,

u(T, s) = f(s).

↸ Exercise 11.2.5 (Feynman–Kac formula for grown-ups). Let f : Rn → R and k, g : [0, T ] ×
Rn → R be continuous functions, with k bounded from below. Assume that there exists a C1,2

function u : [0, T ]× Rn → R such that:

(i) for any t ∈ [0, T ) and x ∈ Rn, (σ⊤(s,Xt,x
s )∇xu(s,X

t,x
s ))s∈[t,T ] ∈ Λ

2([t, T ]);
(ii) u solves the parabolic problem




−∂u
∂t

(t, x) = Ltu(t, x)− k(t, x)u(t, x) + g(t, x), t ∈ [0, T ], x ∈ Rn,

u(T, x) = f(x).
(11.6)

Show that for all (t, x) ∈ [0, T ]× Rn,

u(t, x) = E

[
f(Xt,x

T )e−
∫ T
u=t

k(u,Xt,x
u )du +

∫ T

s=t
g(s,Xt,x

s )e−
∫ s
u=t

k(u,Xt,x
u )duds

]
.

Hint: start by applying Itô’s formula to u(s,Xt,x
s )e−

∫ s
u=t

k(u,Xt,x
u )du.

The Feynman–Kac formula (in the form of Exercise 11.2.5) provides a probabilistic represen-

tation of a solution to (11.6) which satisfies the integrability condition that

∀(t, x) ∈ [0, T ]× Rn, E

[∫ T

s=t
|σ⊤(s,Xt,x

s )∇xu(s,X
t,x
s )|2ds

]
< +∞. (11.7)

3F. Black, M. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 1973. We also

refer to the book [8] for an introduction to mathematical finance.
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It is therefore a uniqueness result for the PDE (11.6) in the class of solutions which satisfy (11.7).

Thus, its application usually requires to find an existence result for a smooth solution to this

Cauchy problem, in a PDE textbook. For example, the following one can be found in [4, Sec-

tion 6.5].

Proposition 11.2.6 (Existence of a solution to (11.6)). Fix T > 0 and assume that:

(i) the matrix a is uniformly elliptic: there exists c > 0 such that for any t ∈ [0, T ] and

x, ξ ∈ Rn, ξ · a(t, x)ξ ≥ c|ξ|2;

(ii) the functions aij and bi are bounded on [0, T ] × Rn and Lipschitz continuous in (t, x) on

compact subsets of [0, T ]× Rn;

(iii) the functions aij are Hölder continuous in x, uniformly in (t, x) ∈ [0, T ]× Rn;

(iv) k is bounded on [0, T ]×Rn and Hölder continuous in (t, x) on compact subsets of [0, T ]×
Rn;

(v) g is continuous on [0, T ]×Rn and Hölder continuous in x, uniformly in (t, x) ∈ [0, T ]×Rn;

(vi) f is continuous on Rn;

(vii) there exists K, ℓ > 0 such that |f(x)|+ |g(t, x)| ≤ K(1+ |x|ℓ) for any (t, x) ∈ [0, T ]×Rn.

Then there exists a C1,2 function u : [0, T ] × Rn → R which satisfies (11.5). Moreover, there

exists K ′ ≥ 0 such that this function satisfies

∀(t, x) ∈ [0, T ]× Rn, |u(t, x)| + |∇xu(t, x)| ≤ K ′(1 + |x|ℓ).
Once a solution u to (11.5) is given, to show that it admits the probabilistic representation

given by Exercise 11.2.5, one needs to check that it satisfies the integrability condition (11.7).

This usually requires to combine estimates on the growth of σ and ∇xu with moment estimates

forXt,x
s . For example, assume that in addition to the conditions of Proposition 11.2.6, the diffusion

coefficient σ of the SDE (11.1) is bounded on [0, T ]×Rn. Then by the boundedness of σ and the

growth condition on ∇xu given by Proposition 11.2.6, the integrability condition (11.7) holds if

one is able to show that

∀(t, x) ∈ [0, T ]× Rn, sup
s∈[t,T ]

E[|Xt,x
s |2ℓ] < +∞.

To proceed, let us write

Xt,x
s = x+

∫ s

r=t
b(r,Xt,x

r )dr +

∫ s

r=t
σ(r,Xt,x

r )dBr,

and notice that since b is bounded it suffices to show that

sup
s∈[t,T ]

E

[∣∣∣∣
∫ s

r=t
σ(r,Xt,x

r )dBr

∣∣∣∣
2ℓ
]
< +∞.

By Jensen’s inequality there is no loss of generality in assuming that ℓ ≥ 1/2 here, so that the

claimed estimate follows from the Burkholder–Davis–Gundy inequality (Lemma 10.1.8). We thus

conclude that u admits the probabilistic representation of Exercise 11.2.5. When the coefficients

b and σ are not bounded, moment estimates on Xt,x
s are usually obtained with arguments similar

to the proof of Lemma 11.1.2, which may involve a localisation procedure.

11.2.3 Problems with boundaries

In this subsection, we assume that the coefficients b and σ do not depend on t and we denote by

L the associated differential operator. We let D be an open and regular subset of Rn and, for any

solution (Xx
t )t≥0 of (11.1) with initial condition x ∈ D, we define the stopping time

τx := inf{t ≥ 0 : Xx
t 6∈ D}.
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Proposition 11.2.7 (Probabilistic interpretation of Dirichlet problem). Let f : ∂D → R and

k, g : D → Rn be continuous functions, with k ≥ 0. Assume that there exists a C2 function

v : [0, T ] ×D → R such that:

(i) v is bounded;

(ii) for any t > 0 and x ∈ D, (σ⊤(Xx
s )∇v(Xx

s ))s∈[0,t] ∈ Λ
2([0, t]);

(iii) v solves the elliptic problem

{
Lv(x)− k(x)v(x) = −g(x), x ∈ D,

v(x) = f(x), x ∈ ∂D.
(11.8)

Assume moreover that for any x ∈ D:

(iv) the associated stopping time τx is finite, almost surely;

(v) τx and g satisfy ∫ +∞

t=0
E
[
1{t<τx}|g(Xt)|

]
dt < +∞.

Then for all x ∈ D,

v(x) = E

[
f(Xx

τx)e
−

∫ τ
u=0 k(u,X

x
u)du +

∫ τx

s=0
g(Xx

s )e
−

∫ s
u=0 k(X

x
u)duds

]
.

Proof. Let us fix x ∈ D and writeXt = Xx
t , τ = τx. Itô’s formula applied to v(Xt)e

−
∫ t
u=0

k(Xu)du

yields

v(Xt∧τ )e
−

∫ t∧τ
u=0 k(Xu)du = v(x) +

∫ t∧τ

s=0
e−

∫ s
u=0 k(Xu)du (Lv(Xs)− k(Xs)v(Xs)) ds

+

∫ t∧τ

s=0
e−

∫ s
u=0 k(Xu)duσ⊤(Xs)∇v(Xs) · dBs,

so that

v(x) = E

[
v(Xt∧τ )e

−
∫ t∧τ
u=0

k(Xu)du +

∫ t∧τ

s=0
g(Xs)e

−
∫ s
u=0

k(Xu)duds

]
.

First, since τ < +∞ almost surely, v is bounded and k ≥ 0, by the Dominated Convergence

Theorem one has

lim
t→+∞

E

[
v(Xt∧τ )e

−
∫ t∧τ
u=0

k(Xu)du
]
= E

[
v(Xτ )e

−
∫ τ
u=0

k(Xu)du
]
= E

[
f(Xτ )e

−
∫ τ
u=0

k(Xu)du
]
.

Second, the integrability condition on g and τ allows to use the Dominated Convergence Theorem

again to get

lim
t→+∞

E

[∫ t∧τ

s=0
g(Xs)e

−
∫ s
u=0 k(Xu)duds

]
= E

[∫ τ

s=0
g(Xs)e

−
∫ s
u=0 k(Xu)duds

]
,

which completes the proof.

Example 11.2.8 (The committor function). Let (Xx
t )t≥0 be the solution to the SDE (11.1) with

coefficients b and σ which do not depend on t, and with deterministic initial condition x ∈ Rn.

Given two disjoint closed subsets A,B ⊂ Rn, set

τxA := inf{t ≥ 0 : Xx
t ∈ A}, τxB := inf{t ≥ 0 : Xx

t ∈ B},
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and define

v(x) = P(τxA < τxB).

In molecular dynamics, this function is called the committor function4: in this context, Xx
t must

be thought of as describing the microscopic state of a molecular system, and A and B describe

particular macroscopic configurations. For example, in a protein-ligand system, Xx
t encodes the

complete geometry of the protein-ligand, while A and B contain the states which correspond to

the system being bound or unbound, respectively. Computing the committor function then allows

to determine whether, given an initial state x, it is more likely that the system evolves toward one

or the other configuration. Proposition 11.2.7 shows that under regularity assumptions and if

τxA ∧ τxB <∞, almost surely, then u solves the PDE





Lv(x) = 0, x ∈ Rn \ (A ∪B),

v(x) = 1, x ∈ A,

v(x) = 0, x ∈ B.

Remark 11.2.9. The assumption that k ≥ 0 is crucial in the statement of Proposition 11.2.7.

Indeed, consider the case where n = 1, D = (0, 1) and dXt = dBt so that L = 1
2

∂2

∂x2 . It can be

directly checked that for any m ≥ 1, vm(x) = sin(πmx) satisfies (11.8) with k = −1
2(πm)2 < 0

and f = g = 0, so that applying the result of Proposition 11.2.7 would yield vm = 0 on D.

The same remark as for the Feynman–Kac formula applies to Proposition 11.2.7: it is a unique-

ness result for v, which requires to find an existence result first, for which it is then necessary to

check that the integrability conditions are satisfied. We refer to [4, Section 6.5] again for examples

of such results. To apply Proposition 11.2.7 it is moreover necessary to get quantitative estimates

on τx in order to check the conditions (iv) and (v). One may for instance use the following state-

ment.

Lemma 11.2.10 (Exponential moment for τx for bounded domains). Assume that b and σ are

continuous on Rn, that D is bounded and that a = σσ⊤ is uniformly elliptic: there exists c > 0
such that, for any x, ξ ∈ Rn, ξ · a(x)ξ ≥ c|ξ|2. Then there exists ǫ > 0 and M < +∞ such that

for any x ∈ D, E[eǫτ
x
] ≤M .

11.3 Discretisation of SDEs

The standard explicit Euler scheme for ordinary differential equations possesses a natural general-

isation to SDEs, which is sometimes referred to as the (explicit) Euler–Maruyama scheme. For an

initial condition X0 = ξ, and given a final time T > 0, a number of steps N ≥ 1 and a step size

h = T/N , the discretisation of (11.1)–(11.2) yields the sequence of random variables (θhk)0≤k≤N

defined by

{
θh0 = ξ,

θhk+1 = θhk + b(kh, θhk )h+ σ(kh, θhk )(B(k+1)h −Bkh), 0 ≤ k ≤ N − 1.

This scheme is easy to simulate since the random variables B(k+1)h − Bkh are independent and

distributed under the law N (0, h). Its accuracy may for example be measured by the strong error

E
h
T := max

0≤k≤N
E

[
|Xkh − θhk |2

]1/2
.

4In potential theory, it is the equilibrium potential.



11.3 Discretisation of SDEs 139

For the sake of simplicity we shall assume in the next statement that the coefficients b and σ
do not depend on time.

Theorem 11.3.1 (Strong error). Assume that there exists Mb,Mσ, Lb, Lσ ∈ [0,+∞) such that

∀x ∈ Rn, |b(x)| ≤Mb, |σ(x)| ≤Mσ , (11.9)

and

∀x, y ∈ Rn, |b(x) − b(y)| ≤ Lb|x− y|, |σ(x) − σ(y)| ≤ Lσ|x− y|. (11.10)

For all T > 0, there exists CT ∈ [0,+∞) such that

∀h > 0, E
h
T ≤ CT

√
h.

The Euler–Maruyama scheme is therefore said to be of strong order 1/2.

Proof. For the proof it is convenient to work with the adapted interpolation (X
h
t )t∈[0,T ] of the

Euler–Maruyama scheme defined by

X
h
t = θhk + b(θhk)(t− kh) + σ(θhk )(Bt −Bkh), t ∈ [kh, (k + 1)h],

which is an Itô process which satisfies

dX
h
t = b(X

h
τh(t)

)dt+ σ(X
h
τh(t)

)dBt,

with τh(t) = kh if t ∈ [kh, (k + 1)h). Therefore we have, for all t ∈ [0, T ],

Xt −X
h
t =

∫ t

s=0

(
b(Xs)− b(X

h
τh(s)

)
)
ds+

∫ t

s=0

(
σ(Xs)− σ(X

h
τh(s)

)
)
dBs,

so that

∣∣∣Xt −X
h
t

∣∣∣
2
≤ 2

(∣∣∣∣
∫ t

s=0

(
b(Xs)− b(X

h
τh(s)

)
)
ds

∣∣∣∣
2

+

∣∣∣∣
∫ t

s=0

(
σ(Xs)− σ(X

h
τh(s)

)
)
dBs

∣∣∣∣
2
)
.

Using the Cauchy–Schwarz inequality and (11.9), we first write

∣∣∣∣
∫ t

s=0

(
b(Xs)− b(X

h
τh(s)

)
)
ds

∣∣∣∣
2

≤ T

∫ t

s=0

∣∣∣b(Xs)− b(X
h
τh(s)

)
∣∣∣
2
ds

≤ TL2
b

∫ t

s=0

∣∣∣Xs −X
h
τh(s)

∣∣∣
2
ds;

likewise, since σ is assumed to be bounded in (11.9), Itô’s isometry yields

E

[∣∣∣∣
∫ t

s=0

(
σ(Xs)− σ(X

h
τh(s)

)
)
dBs

∣∣∣∣
2
]
= E

[∫ t

s=0

∣∣∣σ(Xs)− σ(X
h
τh(s)

)
∣∣∣
2
ds

]

≤ L2
σE

[∫ t

s=0

∣∣∣Xs −X
h
τh(s)

∣∣∣
2
ds

]
,

so that

E

[∣∣∣Xt −X
h
t

∣∣∣
2
]
≤ 2(TL2

b + L2
σ)E

[∫ t

s=0

∣∣∣Xs −X
h
τh(s)

∣∣∣
2
ds

]
.
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We now write ∣∣∣Xs −X
h
τh(s)

∣∣∣
2
≤ 2

(∣∣∣Xs −X
h
s

∣∣∣
2
+
∣∣∣Xh

s −X
h
τh(s)

∣∣∣
2
)
,

and

X
h
s −X

h
τh(s)

= b(X
h
τh(s)

)(s − τh(s)) + σ(X
h
τh(s)

)(Bs −Bτh(s)).

As a consequence, using (11.9), we get

E

[∣∣∣Xh
s −X

h
τh(s)

∣∣∣
2
]
≤ 2

(
E

[
|b(Xh

τh(s)
)(s − τh(s))|2

]
+ E

[
|σ(Xh

τh(s)
)(Bs −Bτh(s))|2

])

≤ 2
(
M2

b h
2 +M2

σh
)
,

and finally

E

[∣∣∣Xt −X
h
t

∣∣∣
2
]
≤ 2(TL2

b + L2
σ)

∫ t

s=0

{
2E

[∣∣∣Xs −X
h
s

∣∣∣
2
]
+ 4

(
M2

b h
2 +M2

σh
)}

ds.

We thus deduce from Gronwall’s Lemma that, for all t ∈ [0, T ],

E

[∣∣∣Xt −X
h
t

∣∣∣
2
]
≤ 8T (TL2

b + L2
σ)(M

2
b h

2 +M2
σh)e

4(TL2
b+L2

σ)T ,

which completes the proof.

If one is only interested in the numerical approximation of quantities of the form E[f(XT )], as

is suggested by the Feynman–Kac formula for the Monte Carlo approximation of the solution to

parabolic PDEs, then computing the discretisation error between the realisations of the trajectories

(Xt)t∈[0,T ] and (θhk )0≤k≤N is too demanding, since what really matters here is the discretisation

error between their laws. Such an error is called weak, and is typically measured by quantities of

the form

e
h
T := max

0≤k≤N

∣∣∣E[f(Xkh)]− E[f(θhk)]
∣∣∣ ,

for a certain choice of function f . If f is Lipschitz continuous, then it is immediately observed

that the weak order is at least larger than the strong order; in general it is strictly larger.

↸ Exercise 11.3.2. Recall the Ornstein–Uhlenbeck process (Xt)t≥0 from Exercise 11.1.5. Let

(θhk )0≤k≤N denote the associated Euler–Maruyama scheme on [0, T ].
1. Recall the law of the random variable Xt. We denote mt = E[Xt] and vt = Var(Xt).
2. Show that for any k ∈ {0, . . . , N}, the random variable θhk is Gaussian, and compute its

expectation mh
k and its variance vhk .

3. Show that for any Lipschitz continuous function f : R → R with Lipschitz norm 1, for all

k ∈ {0, . . . , N},

∣∣∣E[f(θhk)]− E[f(Xkh)]
∣∣∣ ≤

∣∣∣mh
k −mkh

∣∣∣+
∣∣∣∣
√
vhk −√

vkh

∣∣∣∣ .

4. Conclude that the weak error is of order 1.

Remark 11.3.3. Assume that, in the definition of the Euler–Maruyama scheme (θhk )0≤k≤N , the

increments B(k+1)h −Bkh are replaced with arbitrary independent random variables ζk with ex-

pectation 0 and variance h, but not necessarily Gaussian (nor even identically distributed). Then,

in the context of Exercise 11.3.2, the random variables θhk are no longer necessarily Gaussian, but

the formulas obtained for mh
k and vhk remain true. As a consequence, the weak error remains of

order 1 under very mild assumptions on the construction of the Euler–Maruyama scheme.
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