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AbstractFor some nonlinear parabolic evolution equations, it is possible to construct probabilitymeasures on the continuous sample-paths space such that either the time marginals or, inthe one-dimensional space case, the cumulative distribution functions of the time marginalsgive a weak solution of the Cauchy problem. The class of initial conditions concerned isnaturaly restricted to probability measures in the �rst case and distribution functions ofsuch measures in the second case. Here, we present on the examples of the McKean-Vlasovequation and of a viscous scalar conservation law an approach allowing to take into accountbounded signed measures or their distributions functions as initial conditions. In both cases,we construct a probability measure P on the continuous sample-paths space linked with aweak solution of the Cauchy problem. We then prove a propagation of chaos result to P fora system of weakly interacting di�usions.This paper is dedicated to the probabilistic interpretation of two nonlinear evolution equations.These equations, although both of parabolic type, are quite di�erent.The �rst one is the McKean-Vlasov equation. As the nonlinearity is nonlocal, this equationtakes sense for a collection t! mt 2M(Rd), whereM(Rd ) denotes the space of bounded signedmeasures on Rd . It is written :@mt@t = 12 dXi;j=1 @2@xi@xj (aij [x;mt]mt)� dXi=1 @@xi (bi[x;mt]mt); m0 = m (0.1)where 8x 2 Rd ;8� 2M(Rd ); b[x; �] = ZRd b(x; y)�(dy)a[x; �] = ���[x; �]�[x; �] = ZRd �(x; y)�(dy)�ENPC-CERMICS, 6-8 av Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2,France - e-mail : jourdain@cermics.enpc.fr 1



with b(:; :) and �(:; :) bounded and Lipschitz continuous mappings on R2d with values in Rd andthe space of d� k real matrices respectively.When m 2 P(Rd ) is a probability measure, this equation has been studied from a probabilisticpoint of view by several authors (see for instance McKean [7], Sznitman [11] and the referencescited in it). They have proved existence and trajectorial uniqueness for the nonlinear stochasticdi�erential equation(Yt = Y0 + R t0 �[Ys; Ps]dBs + R t0 b[Ys; Ps]dsP with time marginals (Ps)s�0 is the distribution of Y . (0.2)where B is a Rk -valued Brownian motion and Y0 is a random variable with law m independentof B. Applying Itô's formula for a test function and taking expectations, it is easy to check thats! Ps is a weak solution of (0.1).Let (Bi)i2N� be independent Rk -valued Brownian motions, (Y i0 )i2N� be random variables I.I.D.with law m independent of the Brownian motions and Y i; i 2 N� denote the solution of (0.2) forthe Brownian motion Bi and the initial data Y i0 . The convergence when n ! +1 of any �xedsubsystem of the following interacting di�usion processes(Xi;nt = Y i0 + R t0 �[Xi;ns ; �ns ]dBis + R t0 b[Xi;ns ; �ns ]ds; 1 � i � nwhere �n = 1nPnj=1 �Xj;n 2 P(C([0;+1);Rd)) is the empirical measure (0.3)to the corresponding subsystem of (Y i)i2N� is ensured by the classical estimate8T > 0; supi supn�i n E� sups�T jXi;ns � Y is j2� < +1: (0.4)The second equation is a viscous scalar conservation law in the one dimensional space case andpresents a local nonlinearity :@u@t = 12 @2u@x2 � @A(u)@x ; (t; x) 2 [0;+1)� R; u(0; x) = m((�1; x]) = H �m(x) (0.5)where A : R ! R is a C2 function, H(y) = 1fy�0g denotes the Heaviside function and m 2M(R)is a bounded signed measure on R.This equation has also been studied from a probabilistic point of view in the particular casem 2 P(R). When A(u) = u2=2 (viscous Burgers equation), Bossy and Talay [1] constructa probability measure P 2 P(C([0;+1);R)) with time marginals (Pt)t�0 such that u(t; x) =H � Pt(x) solves (0.5). This probability measure is characterized as the unique solution of thenonlinear martingale problem :8<:P0 = m8� 2 C2b (R); �(Xt)� �(X0)� R t0 �12�00(Xs) +A0(H � Ps(Xs))�0(Xs)�ds is a P -martingale.(0.6)They also prove a propagation of chaos result to P for the particle systems :Xi;nt = �i +Bit + Z t0 A0(H � �ns (Xi;ns ))ds; 1 � i � n; �n = 1n nXj=1 �Xj;n (0.7)where (Bi)i2N� are independent R-valued Brownian motions and (�i)i2N� are random variablesI.I.D. according to m. Indeed for any k 2 N� , they show that the laws of (X1;n; : : : ;Xk;n)converge weakly to P
k as n! +1. In [5], we adapt these results for A(u) = jujq=q; q � 2.2



For both equations (0.1) and (0.5), our aim is to generalize the probabilistic interpretation totake into account any bounded signed measure m 6= 0. In [2], Bossy and Talay adapt to theviscous Burgers equation the approach developped by Marchioro and Pulvirenti [6] who studythe 2-dimensional Navier-Stokes equation for an uncompressible �uid. For any m 2 M(R) theyconstruct a function t! mt 2M(R) with m0 = m such that u(t; x) = mt((�1; x]) = H �mt(x)solves (0.5) for A(u) = u2=2.Our approach is similar to theirs in its principle but presents one main innovation : we constructa probability measure P on the sample-paths space such that the knowledge of P entails theknowledge of a function t! mt such that m0 = m and� in the case of the McKean-Vlasov model, t! mt solves (0.1)� in the case of the second model, u(t; x) =mt((�1; x]) = H �mt(x) solves (0.5)This enables us to take advantage of the classical framework of propagation of chaos (see Sznitman[11] and the references cited in it). Let us introduce a few notations in order to precise the linkbetween P and the function t! mt.For m 6= 0 a bounded signed measure on Rd , let jmj, kmk and h denote respectively the absolutevalue of m, the total variation of m and a density of m with respect to the probability measurejmj=kmk with values in f�kmk; kmkg. For Q a probability measure on C([0;+1);Rd), we de�ne~Qt 2M(Rd ) by 8B Borel subset of Rd ; ~Qt(B) = EQ(1B(Xt)h(X0))where X denotes the canonical process on C([0;+1);Rd). Each sample-path is given a signedweight depending on the initial position.The probability measure P that we construct has initial marginal P0 = jmj=kmk and the functiont! mt is de�ned as follows : 8t � 0; mt = ~Pt. For both models we generalize the results obtainedwhen m a is probability measure by replacing the time marginals Ps and �ns respectively by ~Psand ~�ns .In the case of the McKean-Vlasov model, we obtain P as the law of the unique solution ofthe nonlinear stochastic di�erential equation de�ned like (0.2) with �[Ys; ~Ps] (resp. b[Ys; ~Ps])replacing �[Ys; Ps] (resp. b[Ys; Ps]) and Y0 distributed according to jmj=kmk. We also generalizeestimate (0.4) for the particle system (X1;n; : : : ;Xn;n) de�ned like (0.3) with �[Xi;ns ; ~�ns ] (resp.b[Xi;ns ; ~�ns ]) replacing �[Xi;ns ; �ns ] (resp. b[Xi;ns ; �ns ]) and (Y i0 )i2N� random variables I.I.D. withlaw jmj=kmk. Note that, as for s > 0 the measure~�ns = 1n nXj=1 h(Y j0 ) �Xj;ns ;depends on the initial positions, the particle system is no longer markovian. The main di�cultyis to prove existence and uniqueness for the nonlinear stochastic di�erential equation. To adaptthe �xed-point method developped by Sznitman [11], we have to replace the Vaserstein metricby a stronger metric for which the mapping Q ! ~Qs is continuous. In return, the trajectorialestimate (0.4) can be proved in the same way as in the case m 2 P(Rd ).In the second model, P is obtained as the unique solution of the martingale problem de�ned like(0.6) with the condition P0 = m replaced by P0 = jmj=kmk and the drift coe�cient A0(H �Ps(x))replaced by A0(H� ~Ps(x)). We also prove propagation of chaos to P for the non-markovian particlesystems de�ned like (0.7) with A0(H � �ns (Xi;ns )) replaced by A0(H � ~�ns (Xi;ns )). This time, the3



proof of existence and uniqueness for the martingale problem is very similar to the one given in[5] in the particular case m 2 P(R) and A(u) = jujq=q; q � 2. However, the lack of regularity ofthe density h is a new di�culty in the proof of the propagation of chaos result which is a weakconvergence result.Several authors have studied another probabilistic interpretation of the viscous Burgers equation((0.5) with A(u) = u2=2) in terms of nonlinear di�usion processes when the initial data is not adistribution function but a probability measure on R. Calderoni and Pulvirenti [3], Oelschläger[8], Sznitman [10] have constructed probability measures P 2 P(C([0;+1);R)) such that 8t >0; Pt = u(t; x)dx and the function u is the solution of Burgers equation for initial data P0. In [9]Roynette and Vallois deal with the more general nonlinearity A(u) = jujq=q with q > 1. Here,we are not interested in this approach.Acknowledgment : I would like to thank professor Sylvie Méléard for her support and encour-agements.1 The McKean-Vlasov model with a signed measure as initialdataLet m 6= 0 2 M(Rd ), Y0 be a random variable with distribution jmj=kmk and B be a k-dimensional brownian motion independent of Y0. We are going to study the nonlinear stochasticdi�erential equation (Yt = Y0 + R t0 �[Ys; ~Ps]dBs + R t0 b[Ys; ~Ps]dsP is the distribution of Y . (1.1)If Y solves this problem, then for any � 2 C1;2b ([0;+1) � Rd ), by Itô's formula,�(t; Yt) = �(0; Y0) + kXl=1 Z t0 dXi=1 ��il(s; Ys) @�@xi (s; Ys)�dBls+ Z t0 �@�@s (s; Ys) + 12 dXi;j=1aij [Ys; ~Ps] @2�@xi@xj (s; Ys) + dXi=1 bi[Ys; ~Ps] @�@xi (s; Ys)�dsMultiplying this equality by h(Y0) and taking expectations, we deduce that s ! ~Ps is a weaksolution of the McKean-Vlasov equation (0.1).1.1 Existence and uniqueness for the stochastic di�erential equation (1.1)This section is dedicated to the proof of the following resultTheorem 1.1 There is existence and uniqueness (trajectorial and in law) for the stochasticdi�erential equation (1.1). 4



Let Pm(C([0;+1);Rd )) = fQ 2 P(C([0;+1);Rd)); Q0 = jmj=kmkg. Taking up the approachof Sznitman [11], we introduce the map � which associates with Q 2 Pm(C([0;+1);Rd)) thedistribution of the unique solution of the stochastic di�erential equation :Yt = Y0 + Z t0 �[Ys; ~Qs]dBs + Z t0 b[Ys; ~Qs]ds: (1.2)If the stochastic process Y solves (1.1) then its distribution is a �xed-point of �. Conversely, ifQ is a �xed-point of �, the solution Y of (1.2) solves (1.1). To deal with the �xed-point problemfor �, we need continuity of the map Q 2 P(C([0;+1);Rd))! (�[x; ~Qs]; b[x; ~Qs]). That is whyfor any T > 0, we endow the space Pm(C([0; T ];Rd )) = fQ 2 P(C([0; T ];Rd )); Q0 = jmj=kmkgwith the metricDT (Q1; Q2) = inf �ER� sups�T jX1s �X2s j ^ 1�; R 2 P(C([0; T ];Rd)2)R �X1�1 = Q1; R �X2�1 = Q2; R(fX10 = X20g) = 1�where (X1;X2) denotes the canonical process on C([0; T ];Rd)2. If Q1; Q2 2 Pm(C([0;+1);Rd)),DT (Q1; Q2) will denote the metric between the images of Q1 and Q2 by the canonical restrictionfrom C([0;+1);Rd) to C([0; T ];Rd ).In [11], Sznitman works with the Vaserstein metric which is de�ned like DT but without thecondition R(fX10 = X20g) = 1 and is therefore smaller than DT .Let Q1; Q2 2 Pm(C([0; T ];Rd )), x; y 2 Rd and s � T and R 2 P(C([0; T ];Rd )2) be such thatR �X1�1 = Q1, R �X2�1 = Q2 and R(fX10 = X20g) = 1. Using the Lipschitz continuity and theboundedness of �, we obtainj�[x; ~Q1s ]� �[y; ~Q2s]j = jER(h(X10 )�(x;X1s )� h(X20 )�(y;X2s ))j= jER(h(X10 )(�(x;X1s )� �(y;X2s )))j � kmkER j�(x;X1s )� �(y;X2s )j� K(ER (jX1s �X2s j ^ 1) + jx� yj)And a similar upper-bound holds for jb[x; ~Q1s]�b[y; ~Q2s]j. Taking the in�mum for R with marginalsQ1 and Q2 and stisfying R(fX10 = X20g) = 1, we deduce8s � T; 8x; y 2 Rd ; j�[x; ~Q1s]� �[y; ~Q2s]j+ jb[x; ~Q1s]� b[y; ~Q2s]j � K(DT (Q1; Q2) + jx� yj)(1.3)This Lipschitz property which does not hold for the Vaserstein metric enables us to prove thefollowing contraction lemma :Lemma 1.28t � T; 8Q1; Q2 2 Pm(C([0;+1);Rd)); D2t (�(Q1);�(Q2)) � KT Z t0 D2s(Q1; Q2)ds: (1.4)
Proof of Lemma 1.2 : Let Q1; Q2 2 Pm(C([0;+1);Rd )) and Y i; i = 1; 2 be the solution ofY it = Y0 + Z t0 �[Y is ; ~Qis]dBs + Z t0 b[Y is ; ~Qis]ds:5



Using Burckholder inequality, the Lipschitz property (1.3) and Gronwall's lemma, it is quite easyto prove 8t � T; E� sups�t jY 1s � Y 2s j2� � KT Z t0 D2s(Q1; Q2)ds:As �(Qi) is the law of Y i and a.s., Y 10 = Y 20 ,D2t (�(Q1);�(Q2)) � E� sups�t jY 1s � Y 2s j2�:Hence (1.4) holds.Uniqueness for (1.1):If Y 1 and Y 2 solve the nonlinear stochastic di�erential equation (1.1), their distributions P 1 andP 2 are �xed-points for �. By (1.4) and Gronwall's lemma, we get 8T > 0; DT (P 1; P 2) = 0.Hence P 1 = P 2 and uniqueness in law holds for (1.1). As for any Q 2 Pm(C([0;+1);Rd )) thereis trajectorial uniqueness for the linear equation (1.2), trajectorial uniqueness holds for (1.1).Existence for (1.1):Let Q 2 Pm(C([0;+1);Rd)). Iterating (1.4), we obtain8n 2 N; D2T (�n+1(Q);�n(Q)) � (KTT )nn! D2T (�(Q); Q):By (1.3), we deduce that 8s � T; 8x 2 Rd ;j�[x; ^�n+1(Q)s]� �[x; �̂n(Q)s]j+ jb[x; ^�n+1(Q)s]� b[x; �̂n(Q)s]j � Kr(KTT )nn! DT (�(Q); Q):Hence 8x 2 Rd ; 8s � 0; �[x; �̂n(Q)s] and b[x; �̂n(Q)s] converge respectively to �1(s; x) andb1(s; x) when n goes to +1. Moreover for any T > 0, the convergence is uniform for (s; x) 2[0; T ] � Rd . Clearly the maps x ! �1(s; x) and x ! b1(s; x) are bounded and Lipschitzcontinuous uniformly for s � 0. Let Y be the solution of the equationYt = Y0 + Z t0 �1(s; Ys)dBs + Z t0 b1(s; Ys)ds:and Y n be the solution ofY nt = Y0 + Z t0 �[Y ns ; �̂n(Q)s]dBs + Z t0 b[Y ns ; �̂n(Q)s]ds:The uniform convergence on [0; T ]�Rd of the coe�cients of the stochastic equation satis�ed byY n to the coe�cients of the equation satis�ed by Y and the Lipschitz continuity of the coe�cientsof the last equation imply limn!+1E� sups�T jY ns � Ysj2� = 0:Hence if P denotes the distribution of Y , 8T > 0; limn!+1DT (P;�n(Q)) = 0: By (1.3) wededuce that �1(s; x) = �[x; ~Ps] and b1(s; x) = b[x; ~Ps]. We conclude that Y solves the nonlinearstochastic di�erential equation (1.1). 6



Remark 1.3 It is also possible to adapt the proof given by Dobrushin [4] for the Vasersteinmetric to prove that (Pm(C([0; T ];Rd));DT ) is a complete metric space. The contraction estimate(1.4) then implies that the map which associates with Q 2 Pm(C([0; T ];Rd)) the distribution ofthe solution of (1.2) for t � T admits a unique �xed-point PT . It is easy to check that the familyPT ; T � 0 is consistent and that the corresponding probability measure on C([0;+1);Rd) is a�xed-point of �.1.2 Propagation of chaosLet (Bi)i2N� be a sequence of k-dimensional independent Brownian motions and (Y i0 )i2N� asequence of independent random variables distributed according to the probability measurejmj=kmk (and independent of the Brownian motions).Let n 2 N� . We de�ne a system of n interacting particles by the following stochastic di�erentialequation : Xi;nt = Y i0 + Z t0 �[Xi;ns ; ~�ns ]dBis + Z t0 b[Xi;ns ; ~�ns ]ds; 1 � i � n (1.5)where �n = 1nPnj=1 �Xj;n 2 P(C([0;+1);Rd)) is the empirical measure of the system.Lemma 1.4 There is existence and trajectorial uniqueness for the particle system (1.5).Proof : Writing the de�nition of ~�ns , we getXi;nt = Y i0 + Z t0 � 1n nXj=1 �(Xi;ns ;Xj;ns )h(Xj;n0 )�dBis + Z t0 � 1n nXj=1 b(Xi;ns ;Xj;ns )h(Xj;n0 )�dsWithout the term h(Xj;n0 ), this equation would enter the classical Itô's framework.If Xn = (X1;n; : : : ;Xn;n) and ~Xn = (X̂1;n; : : : ; X̂n;n) are two solutions, h(Xj;n0 ) = h(X̂j;n0 ) =h(Y j0 ). Hence, by the boundedness of h and the Lipschitz continuity assumptions made on �, weget ���� 1n nXj=1 �(Xi;ns ;Xj;ns )h(Xj;n0 )� 1n nXj=1 �(X̂i;ns ; X̂j;ns )h(X̂j;n0 )���� � KjXns � X̂ns j:The same is true for b. We easily deduceE� sups�T jXns � X̂ns j2� � K Z T0 E (jXns � X̂ns j2)ds:By Gronwall's lemma we conclude that trajectorial uniqueness holds for (1.5).Similar computations enable us to apply the classical iteration scheme to prove existence.For i 2 N� , let Y i be the solution of the nonlinear equation (1.1) for the initial condition Y i0and the Brownian motion Bi. By the coupling between the independent processes Y i and theparticle systems (1.5), we generalize the trajectorial estimate obtained in the case m 2 P(Rd )(see for instance Sznitman [11]) : 7



Theorem 1.5 8T > 0; supn n E� sups�T jXi;ns � Y is j2� < +1 (1.6)Remark 1.6 This estimate obviously implies that the laws of the particle systems (X1;n; : : : ;Xn;n)are P -chaotic where P denotes the common distribution of the nonlinear processes Y i i.e.8k 2 N� ; L((X1;n; : : : ;Xk;n))!n!+1 P
k weakly:Proof : By Burckholder inequality, for any t � TE� sups�t jXi;ns � Y is j2� � KE� Z t0 ���� 1n nXj=1 h(Y j0 )(�(Xi;ns ;Xj;ns )� �(Y is ; Y js ))����2ds+ Z t0 ���� 1n nXj=1 h(Y j0 )�(Y is ; Y js )� �[Y is ; ~Ps]����2ds+ similar terms corresponding to b � (1.7)For notational simplicity we also denote by � a �xed coe�cient of the matrix �. If l � n satis�esl 6= i and l 6= j, by independence of Y l and (Y i; Y j),E�(h(Y j0 )�(Y is ; Y js )� �[Y is ; ~Ps])(h(Y l0 )�(Y is ; Y ls )� �[Y is ; ~Ps])�= E�(h(Y j0 )�(Y is ; Y js )� �[Y is ; ~Ps])E�h(Y l0 )�(Y is ; Y ls )� �[Y is ; ~Ps]����(Y i; Y j)�� = 0Hence E����� 1n nXj=1 h(Y j0 )�(Y is ; Y js )� �[Y is ; ~Ps]����2� � Kn :This inequality and the Lipschitz properties of � enable us to upper-bound respectively thesecond term and the �rst term of the right-hand-side of (1.7) and obtainE� sups�t jXi;ns � Y is j2� � K� 1n + E (jXi;ns � Y is j2) + 1n nXj=1 E (jXj;ns � Y js j2)�Then summing over i, using the exchangeability of the variables (Y i;Xi;n); 1 � i � n andapplying Gronwall's lemma, we conclude that (1.6) holds.
2 A viscous scalar conservation lawThis section is dedicated to the viscous scalar conservation law :@u@t = 12 @2u@x2 � @A(u)@x ; (t; x) 2 [0;+1)� R; u(0; x) = u0(x): (2.1)8



where A : R ! R is a C2 function. To give a probabilistic interpretation of this equation whenthe initial function u0(x) is equal to H � m(x) where m 6= 0 2 M(R), we study the followingmartingale problem.Dé�nition 2.1 We say that P 2 P(C([0;+1);R)) solves the martingale problem (MPA) start-ing at m if P0 = jmj=kmk and8� 2 C2b (R); �(Xt)� �(X0)� Z t0 �12�00(Xs) +A0(H � ~Ps(Xs))�0(Xs)�ds is a P -martingale.(2.2)2.1 Existence and uniqueness for the martingale problem (MPA)Proposition 2.2 For any m 6= 0 2M(R), the martingale problem (MPA) starting at m admitsa unique solution P .Proof : The main idea is the following : P solves problem (PMA) starting at m if and onlyif s ! ~Ps is a �xed-point of the mapping which associates with s ! �s 2 M(R) the functions! ~P �s where P � solves the linear martingale problem de�ned like (PMA) with H ��s replacingH � ~Ps in (2.2). We are going to apply Picard �xed-point theorem locally in time.We endow M(R) with the total variation norm k k and de�ne for T > 0LT = f� 2 C((0; T ];M(R)); supt2[0;T ] k�(t)k � kmkgwhich is complete for the metric DT (�; � 0) = supt2(0;T ] k�(t)� � 0(t)k.For � 2 LT , the function (s; x) 2 (0;+1)�R ! A0(H � �s^T (x)) is measurable and bounded byMm = supjxj�kmk jA0(x)j. By Girsanov theorem, there exists a unique P � 2 P(C([0;+1);R))such that P �0 = jmj=kmk and 8� 2 C2b (R),�(Xt)� �(X0)� Z t0 12�00(Xs) +A0(H � �s^T (Xs))�0(Xs)ds is P �-martingale:Moreover 8s > 0, P �s is absolutely continuous w.r.t. Lebesgue measure. We set  T (�)(s) =~P �s ; s 2 (0; T ]. The absolute continuity of P �s entails that  T (�)(s) has a density p�(s; :). Weare going to prove that  T is a contraction for T small enough by writing an evolution equationsatis�ed by p�(s; :).By Lévy characterization, Xt � X0 � R t0 A0(H � �s^T (Xs))ds is a P � Brownian motion. Lett 2 (0; T ]. If � 2 C1;2b ([0; t] � R) andM�s = �(s;Xs)� �(0;X0)� Z s0 �@�@r (r;Xr) + 12 @2�@x2 (r;Xr) +A0(H � �r^T (Xr))@�@x (r;Xr)� dr;
9



then (M�s )s2[0;t] is a P �-martingale. So is (h(X0)M�s )s2[0;t]. As the expectation of this martingaleis constant,ZR �(t; x)p�(t; x)dx = ZR �(0; x)m(dx)+ Z(0;t]�R�@�@s (s; x) + 12 @2�@x2 (s; x) +A0(H � �s^T (x))@�@x (s; x)� p�(s; x)dxdsThe choice �(s; x) = Nt�s �f(x) where f : R ! R is a C2 function with compact support and Nsdenotes the heat kernel on R (Ns(x) = exp(�x2=2s)=p2�s) enables us to get rid of @�@s + 12 @2�@x2and obtaindx a.e.; p�(t; x) = Nt �m(x)� Z t0 @Nt�s@x � �p�(s; :)A0(H � �s^T (:))� (x)ds:Combining the upper-bound kp�(s; :)kL1 � EP � (jhj(X0)) = kmk, the continuity of t ! Nt �min L1(R) for t > 0, and the computation



@Ns(:)@x 



L1(R) =r 2�s; (2.3)we easily prove that t! p�(t; :) 2 C((0; T ]; L1(R)) and deduce that  T (�) 2 LT .Let � 0 be another element of LT and Km = supjxj�kmk jA00(x)j. Using (2.3), we obtain fort 2 (0; T ],kp�(t; :) � p�0(t; :)kL1 � Z t0 
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L1 kp�(s; :)A0(H � �s(:)) � p�0(s; :)A0(H � � 0s(:))kL1ds�r 2� Z t0 �kp�(s; :)kL1kkA0(H � �s(:))�A0(H � � 0s(:))kL1+ kp�(s; :)� p�0(s; :)kL1kA0(H � � 0s(:))kL1� dspt� s� 2r2T� �kmkKmDT (�; � 0) +MmDT ( T (�);  T (� 0))�Hence (1� 2p2T=� Mm)DT ( T (�);  T (� 0)) � 2p2T=� kmkKmDT (�; � 0):From now on, we set � = �=(8(Mm + 2kmkKm)2). Then for �; � 0 2 L� , D� ( � (�);  � (� 0)) �D� (�; � 0)=2. Hence  admits a unique �xed-point �1 2 L� .In order to iterate the �xed-point technique, we need a few more notations. For �� 2 LT , wede�ne L��;� = f� 2 LT+� such that 8t 2 (0; T ]; �(t) = ��(t)gwhich is complete for the metric supt2[T;T+� ] k�(t)� � 0(t)k.When � 2 L��;� , we set  ��(�)(s) = ~P �s ; s 2 (0; T + � ].If � 2 L�1;� , P �1 and P � coincide on the �-�eld F� = �(Xs; s 2 [0; � ]). We deduce that �1(L�1;� ) � L�1;� . By computations similar to the ones that we have made for  � , we prove10



that  �1 is a contraction on L�1;� . This mapping admits a unique �xed-point �2. By induction,we construct for n � 2, �n 2 L�n�1;� �xed-point of  �n�1 . When i; j 2 N� , the restrictions of �iand �j to (0; (i^ j)� ] are equal. This property enables us to check that the probability measuresP �n converge weakly to a solution P of problem (PMA) starting at m when n! +1.We still have to prove uniqueness for this problem. Let P be a solution. By the reasoning madeto prove that  T (LT ) � LT , we obtain that for any T > 0, s 2 (0; T ] ! ~Ps belongs to LT .Therefore t 2 (0; � ] ! ~Pt is a �xed-point of  � in L� and 8t 2 (0; � ]; ~Pt = �1(t). By induction,we obtain 8n 2 N� ; 8t 2 (0; n� ]; ~Pt = �n(t). Hence P solves the linear martingale problem withdrift coe�cient (t; x) ! Pn2N� 1((n�1)�;n� ](t)A0(H � �nt (x)). By Girsanov theorem uniquenessholds for this problem, which puts an end to the proof.
2.2 Link with equation (2.1)We say that u : [0;+1)� R ! R is a weak solution of the Cauchy problem (2.1) if for any C1with compact support function  : [0;+1)� R ! R :Z(0;+1)�R�u@ @s + u2 @2 @x2 +A(u)@ @x� (s; x)dsdx = �ZR  (0; x)u0(x)dx: (2.4)Proposition 2.3 Let m 6= 0 2 M(R) and P be the solution of problem (PMA) starting at m.The function u(t; x) = H � ~Pt(x) is the unique weak solution of (2.1) for the initial conditionu0(x) = H �m(x).Remark 2.4 So far, our approach enables us to give a probabilistic interpretation of (2.1) forany initial condition u0 with bounded variation satisfying limx!�1u0(x) = 0. It is not di�cult toget rid of the last condition. Let u0 be any non-constant function on R with bounded variation.Then 9c 2 R; limx!�1 u0(x) = c. If Ac(:) = A(c + :) and P denotes the solution of themartingale problem (PMAc) starting at the measure du0, then an easy adaptation of the proof ofProposition 2.3 ensures that the function u(t; x) = c +H � ~Pt(x) is the unique weak solution of(2.1) for the initial condition u0(x).Proof : We �rst check that u(t; x) = H� ~Pt(x) is a weak solution of (2.1). Let  : [0;+1)�R !R be a C1 with compact support function. We set �(t; x) = R x�1  (t; y)dy. The function � isC1, bounded together with its derivatives and equal to 0 for t big enough.By Lévy characterization, Xt �X0 � R t0 A0(H � ~Ps(Xs))ds is a P -Brownian motion. HenceM�t = �(t;Xt)� �(0;X0)� Z t0 �@�@s + 12 @2�@x2� (s;Xs) +A0(H � ~Ps(Xs))@�@x (s;Xs)dsis a P -martingale. So is h(X0)M�t . HenceZ +10 ZR ��@�@s + 12 @2�@x2� (s; x) +A0(H � ~Ps(x))@�@x (s; x)� ~Ps(dx)ds = �ZR �(0; x)m(dx) (2.5)11



Let s > 0. By Girsanov theorem, Ps is absolutely continuous with respect to Lebesgue measure,which implies that ~Ps does not weight points. Thus the distribution function of the measureA0(H � ~Ps(:)) ~Ps is A(H � ~Ps(:))�A(0) = A(u(s; :))�A(0). Applying Stieljes integration by partsformula in the spatial integrals of equality (2.5), we getZ +10 � ~Ps(R) ZR @ @s (s; y)dy� ds� Z(0;+1)�R�u@ @s + u2 @2 @x2 +A(u)@ @x� (s; x)dsdx= �m(R) ZR  (0; y)dy + ZR  (0; x)H �m(x)dxAs 8s � 0; ~Ps(R) = EP (h(X0)) = m(R),m(R) ZR  (0; y)dy + Z +10 � ~Ps(R)ZR @ @s (s; y)dy� ds = 0:Hence u is a weak solution of (2.1) for the initial condition u0(x) = H �m(x). The boundednessof u on [0;+1) � R is clear. To prove that u is continuous on (0;+1) � R, we set t > 0,s 2 [ t2 ; 3t2 ] and x; y 2 R.ju(t; x)� u(s; y)j � jEP ((H(x�Xt)�H(x�Xs))h(X0))j+ kmkEP (jH(x�Xs)�H(y �Xs)j)Girsanov theorem implies that the L2 norm of the density of Ps w.r.t. Lebesgue measure isbounded by K(t) < +1 uniformly for s 2 [ t2 ; 3t2 ]. By Cauchy-Schwarz inequality, we deduceju(t; x) � u(s; y)j � jEP ((H(x�Xt)�H(x�Xs))h(X0))j + kmkK(t)px� y:As Pt does not weight points, the �rst term of the right hand side converges to 0 when s ! t.We conclude that u is continuous on (0;+1)� R.Let v be a weak solution of (2.1) for the initial condition u0 = H � m, bounded by Mv on[0;+1)�R and continuous on (0;+1)�R. For t > 0 and f : R ! R a C2 with compact supportfunction, we set  (s; x) = 1[0;t](s)Nt�s � f(x) (we recall that Ns(x) = exp(�x2=2s)=p2�s.). Itis possible to approximate  , its �rst order time derivative and its �rst and second order spatialderivatives in L1([0; t] � R) by C1 functions  n with compact support on [0; t) � R and theirderivatives. Writing (2.4) for  n and taking the limit n! +1, we getZR v(t; x) (t; x)dx = ZR  (0; x)u0(x)dx+ Z(0;t)�R�v@ @s + v2 @2 @x2 +A(v)@ @x� (s; x)dxdsAs @ @s + 12 @2 @x2 on [0; t]� R, we deduceZR f(x)v(t; x)dx = ZRNt � f(x)u0(x)dx+ Z t0 ZRA(v(s; x))@Nt�s@x � f(x)dxds:Hence 8(t; x) 2 (0;+1) � R; v(t; x) = Nt � u0(x)� Z t0 �@Nt�s@x � A(v(s; :))� (x)ds:This equation is also satis�ed by u(t; x) = H � ~Pt(x). Let K = supfjxj�kmk_Mvg jA0(x)j. Writingthe equation satis�ed by v � u and taking (2.3) into account, we obtainkv(t; :) � u(t; :)kL1(R) �r 2� Z t0 Kkv(s; :) � u(s; :)kL1(R)pt� s ds:We iterate this inequality and apply Gronwall lemma to conclude that u = v on [0;+1)� R.12



2.3 Propagation of chaosLet (�n)n be a sequence of strictly positive numbers converging to 0. We approximate theHeaviside function by the Lipschitz continuous functionsHn(x) = x+ �n� 1f���x�0g + 1fx>0g:Let (Bi)i2N� be a sequence of independent one-dimensional Brownian motions and (�i)i be asequence of I.I.D. random variables with law jmj=kmk (independent of the Brownian motions).We de�ne a system of n interacting particles by the following stochastic di�erential equationXi;nt = �i +Bit + Z t0 A0(Hn � ~�ns (Xi;ns ))ds; 1 � i � n (2.6)where �n = 1nPnj=1 �Xj;n .By a proof similar to the one given for Lemma 1.4, we obtain existence and trajectorial uniquenessfor this stochastic di�erential equation.Proposition 2.5 The particle systems (X1;n; : : : ;Xn;n) are P -chaotic where P denotes theunique solution of the problem (MPA) starting at m.Remark 2.6 By Girsanov theorem, the stochastic di�erential equation (2.6) where Hn is re-placed by H admits a unique weak solution. Let Qn be the law of the solution. It is possible toprove that the sequence (Qn)n is P -chaotic by computations similar to the ones made in the proofof Proposition 2.5. We have introduced Hn in the stochastic di�erential equation (2.6) only toobtain a strong solution.The propagation of chaos result that we prove is a convergence in distribution result. To dealwith such a convergence, we need continuous functions. But the density h may be irregular. Thefollowing lemma ensures that it is possible to approximate h by Lipschitz continuous functions.Lemma 2.7 Let B be a Borel subset of Rd and � 2 P(Rd ). For any � > 0, there is a Lipschitzcontinuous function fB;� with 0 � fB;� � 1 such that �(f1B 6= fB;�g) � �.Proof : Since the probability measure � is regular, there exits a closed set F � B such that�(B n F ) � �=2.Let fk(x) = (1 � kd(F; x)) _ 0 where d(F; x) = infy2F jx � yj. The function fk is Lipschitzcontinuous and satis�es 0 � fk � 1. Moreover as k ! +1, ffk 6= 1F g & ;. Hence there is k0such that �(ffk0 6= 1F g) � �=2.�(ffk0 6= 1Bg) � �(ffk0 6= 1F g) + �(f1F 6= 1Bg) � �=2 + �(B n F ) � �:We set fB;� = fk0.Applying this lemma with d = 1, � = jmj=kmk, B = fh = kmkg, we de�ne hn = 2kmk�fB; 1n � 12�.Then hn is a Lipschitz continuous function with values in [�kmk; kmk]. Moreover,jmjkmk (fhn 6= hg) � 1n (2.7)13



Proof : The particles are exchangeable. Hence the propagation of chaos result is equiv-alent to the weak convergence of the laws �n of the empirical measures �n considered asP(C([0;+1);R))-valued random variables to �P (see for instance [11] and the references citedin it). We are going to prove this convergence. Again by exchangeability, the tightness of thesequence (�n)n is equivalent to the tightness of the laws of the random variables (X1;n)n whichis an easy consequence of the bound uniform in n8(x1; : : : ; xn) 2 Rn ; 8(y1; : : : ; yn) 2 Rn ; ����A0� 1n nXj=1Hn(x1 � xj)h(yj)����� � supfjxj�kmkg jA0(x)j:Let �1 be the limit of a convergent subsequence that we still index by n for notational simplicity.In order to check that �1 = �P , we set p 2 N� , � 2 C2b (R), g 2 Cb(Rp) and t � s � s1 � : : : �sp � 0 and de�ne a mapping F on P(C([0;+1);R)) byF (Q) =< Q;��(Xt)� �(Xs)� Z ts 12�00(Xr) +A0(H � ~Qr(Xr))�0(Xr)dr�g(Xs1 ; : : : ;Xsp) > :For k 2 N� , we de�ne Fk and Gk like F replacing H � ~Qr respectively by Hk � ~Qr and Hk � ~Qkrwhere the measure ~Qkr is de�ned by :8B Borel subset of R ; ~Qkr(B) = EQ(1B(Xr)hk(X0)):The functions Q ! Hk � ~Qkr(x) =< Q;Hk(x �Xr)hk(X0) > are equicontinuous and uniformlybounded by kmk for (r; x) 2 [s; t]�R. As A0 is Lipschitz continuous on [�kmk; kmk], we deducethat the functions Gk are continuous. HenceE�1 ((F (Q))2) � 2 lim supk E�1 ((F (Q) �Gk(Q))2) + 4 lim supn E ((Fn(�n))2)+ 4 lim supk lim supn E ((Fn(�n)�Gk(�n))2) (2.8)We are going to prove that each term of the right hand side of (2.8) is 0.Taking into account the Lipschitz continuity of A0 on [�kmk; kmk], we getE�1 ((F (Q)�Gk(Q))2) � KE�1� < Q;Z ts jH � ~Qr(Xr)�Hk � ~Qkr(Xr)jdr > �Now; jH � ~Qr(x)�Hk � ~Qkr (x)j = j < Q;H(x�Xr)h(X0)�Hk(x�Xr)hk(X0) > j� kmkjH �Hkj �Qr(x)+ < Q; jh(X0)� hk(X0)j >Therefore E�1 ((F (Q)�Gk(Q))2) is bounded byK�E�1� < Q;Z ts jH �Hkj �Qr(Xr)dr > �+ E�1 (< Q; jh(X0)� hk(X0)j >)�Since jH �Hkj goes pointwise to 0 as k ! +1, Lebesgue theorem implies the �rst term of theright hand side converges to 0. Moreover, as �1 a.s., Q0 = jmj=kmk, by (2.7), we obtain thatthe second term also goes to 0. Hence the �rst term of the right hand side of (2.8) is 0.By Itô's formula, Fn(�n) = 1nPni=1 g(Xi;ns1 ; : : : ;Xi;nsp ) R ts �0(Xi;nr )dBir.Hence E ((Fn(�n))2) � K=n and the second term of the right hand side of (2.8) is zero.14



We still have to prove that the third term is zero. By computations similar to the ones made forthe �rst term, we getE((Gk � Fn)2(�n)) � KE (< �n;Z ts jHn �Hkj � �nr (Xr)dr >) +KE(< �n; jh(X0)� hk(X0)j >)(2.9)� K�E� < �n 
 �n;Z ts 1fjXr�Yrj��n_�kgdr > �+ E (jh(�1)� hk(�1)j)� (2.10)where (X;Y ) denotes the canonical process on C([0;+1);R)2 .Since the distribution of �1 is jmj=kmk, according to (2.7), the second term of the right handside of (2.10) goes to 0 when k ! +1.The variablesXi;n are exchangeable. Moreover, the convergence of (�n)n to 0 ensures that �n � �kfor n big enough. Hencelim supn!+1 E� < �n 
 �n;Z ts 1fjXr�Yrj��n_�kgdr > � = lim supn!+1 E� Z ts 1fjX1;nr �X2;nr j��kgdr�� lim supn!+1 E� Z ts 1fjX1;nr �X2;nr j��kg1fjX1;nr j� 1p�k gdr�+ lim supn!+1 Z ts P�jX1;nr j � 1p�k�dr(2.11)The inequalityP�jX1;nr j � 1p�k� � P�jB1r j � 12p�k � rMm2 �+ P�j�1j � 12p�k � rMm2 �where Mm = supfjxj�kmkg jA0(x)j implies that the second term of the right hand side of (2.11)goes to 0 when k ! +1.We easily obtain by Girsanov theorem the following bound for the couples (X1;n;X2;n)n :8f 2 L2(R2); 8n � 2; 8r > 0; jE (f(X1;nr ;X2;nr ))j � 1p2�r exp(M2mr)kfkL2(R2)Hence 8n � 2; E� R ts 1fjX1;nr �X2;nr j��kg1fjX1;nr j� 1p�k gdr� � K� 14k . We deduce that the �rst termof the right hand side of (2.11) goes to 0 when k ! +1. Inequalities (2.10) and (2.11) enableus to conclude that lim supk lim supn E ((Fn(�n)�Gk(�n))2) = 0.Since each term of the right hand side of (2.8) is 0, E�1 ((F (Q))2) = 0. We deduce that �1 a.s.,Q solves the martingale problem (MPA) starting at m. Hence �1 = �P .Remark 2.8 The propagation of chaos result implies of course that it is possible to approximatethe function u(t; x) = H � ~Pt(x) thanks to the particle systems. For instance, when (t; x) 2(0;+1)� R, 1nPnj=1H(x�Xj;ns )h(�j) converges in L1 to u(t; x). Indeed,E ����u(t; x)� 1n nXj=1H(x�Xj;nt )h(�j)���� � ju(t; x)� < P;Hk(x�Xt)hk(X0) > j+ E ���� < P � �n;Hk(x�Xt)hk(X0) > ����+ kmkE (jHk �Hj(x�X1;nt )) + E jhk (�1)� h(�1)j15



The �rst and the fourth term of the right hand side converge to 0 when k goes to +1. ByProposition (2.5), the random variables �n � (X0;Xt)�1 converge in probability to the constantP � (X0;Xt)�1. As (y; z) 2 R2 ! Hk(x� y)hk(z) is a Lipschitz continuous function, for �xed k,the second term goes to 0 as n! +1. Lastly, the estimate 8f 2 L2(R);8n 2 N� ; jE (f(X1;nt )j �KtkfkL2 which is a consequence of Girsanov theorem, implies that the third term converges to 0uniformly in n when k ! +1.Remark 2.9 Let (�n)n be a sequence of probability measures on R converging weakly to jmj=kmk.The study of the asymptotic behaviour for n! +1 of the particle systemsXi;nt = �i;n +Bit + Z t0 A0(Hn � ~�ns (Xi;ns ))ds; 1 � i � n (2.12)where the initial positions (�i;n)1�i�n are I.I.D. according to �n (and independent of the Brownianmotions) is a natural question. Unlike the solution of (2.6), the solution of (2.12) may dependon the choice of the density h. We are going to give a su�cient condition on m ensuring that,for a good choice of h, the propagation of chaos result still holds.If m admits a continuous density f w.r.t. Lebesgue measure (condition equivalent to u0 =H �m 2 C1(R)), we set h = kmk �1ff�0g � 1ff<0g�. For any sequence (�n)n converging weaklyto jmj=kmk, the particles (X1;n; : : : ;Xn;n) solving (2.12) are P chaotic. The only signi�cantdi�erence with the proof of Proposition 2.5 is the treatment of the second term of the right handside of (2.9) : E (< �n; jh(X0)� hk(X0)j >).Since B = ff � 0g is a closed subset of R, it is possible to ensure hk � h by choosinghk(x) = 2kmk (((1� nkd(B; x)) _ 0)� 1=2)for nk big enough. ThenE(< �n; jh(X0)� hk(X0)j >) =< �n; hk > �kmk(�n(ff � 0g) � �n(ff < 0g)):The continuity of f ensures that the boundaries �ff � 0g and �ff < 0g are included in ff = 0g.Hence jmj=kmk(�ff � 0g) = jmj=kmk(�ff < 0g) = 0. We conclude thatlimk!+1 limn!+1 E (< �n; jh(X0)� hk(X0)j >) = limk!+1 < jmjkmk ; hk � h >= 0:More generally, if there exists B a closed subset of R such that jmj(�B) = 0 and kmk (1B � 1Bc)is a density of m w.r.t. jmj=kmk, then, for the choice h = kmk (1B � 1Bc), the previous proofcan be adapted and the propagation of chaos result holds.References[1] M. Bossy and D. Talay. Convergence rate for the approximation of the limit law of weaklyinteracting particles: Application to the Burgers equation. Annals of applied prob., 6(3):818�861, 1996.[2] M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and theBurgers equation. Math. Comp., 66(217):157�192, 1997.16
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