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Abstract

For some nonlinear parabolic evolution equations, it is possible to construct probability
measures on the continuous sample-paths space such that either the time marginals or, in
the one-dimensional space case, the cumulative distribution functions of the time marginals
give a weak solution of the Cauchy problem. The class of initial conditions concerned is
naturaly restricted to probability measures in the first case and distribution functions of
such measures in the second case. Here, we present on the examples of the McKean-Vlasov
equation and of a viscous scalar conservation law an approach allowing to take into account
bounded signed measures or their distributions functions as initial conditions. In both cases,
we construct a probability measure P on the continuous sample-paths space linked with a
weak solution of the Cauchy problem. We then prove a propagation of chaos result to P for
a system of weakly interacting diffusions.

This paper is dedicated to the probabilistic interpretation of two nonlinear evolution equations.
These equations, although both of parabolic type, are quite different.

The first one is the McKean-Vlasov equation. As the nonlinearity is nonlocal, this equation
takes sense for a collection t — my € M(R?), where M(R?) denotes the space of bounded signed
measures on R?. It is written :
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with b(.,.) and o(.,.) bounded and Lipschitz continuous mappings on R?? with values in R? and
the space of d x k real matrices respectively.

When m € P(R?) is a probability measure, this equation has been studied from a probabilistic
point of view by several authors (see for instance McKean |7, Sznitman [11] and the references
cited in it). They have proved existence and trajectorial uniqueness for the nonlinear stochastic
differential equation

{Yt Yo + [ oYy, P)dBs + [LbY,, P)ds 02)

P with time marginals (FPs)s>0 is the distribution of Y.

where B is a RF-valued Brownian motion and Yj is a random variable with law m independent
of B. Applying Itd’s formula for a test function and taking expectations, it is easy to check that
s — Py is a weak solution of (0.1).

Let (B%);en+ be independent RF-valued Brownian motions, (Y§);en+ be random variables I.I.D.
with law m independent of the Brownian motions and Y, € N* denote the solution of (0.2) for
the Brownian motion B’ and the initial data Y. The convergence when n — +oo of any fixed
subsystem of the following interacting diffusion processes

Xp" =Y+ [y ol X9, pJdBy + [ b[XS", pilds, 1<i<n 03)
where p* = 1 >y dxsm € P(C([0, +00),R%)) is the empirical measure '
to the corresponding subsystem of (Y?);cn- is ensured by the classical estimate
VT > 0,supsup n IE( sup | X" — YSZ|2> < +00. (0.4)
1 n>i s<T

The second equation is a viscous scalar conservation law in the one dimensional space case and
presents a local nonlinearity :
ou  10%°u  0A(u)

o202 w0 B
where A : R — Ris a C? function, H(y) = lg,>o denotes the Heaviside function and m € M(R)
is a bounded signed measure on R.

This equation has also been studied from a probabilistic point of view in the particular case
m € P(R). When A(u) = u?/2 (viscous Burgers equation), Bossy and Talay [1] construct
a probability measure P € P(C([0,+o0),R)) with time marginals (P;)¢>o such that u(t,z) =
H x Pi(x) solves (0.5). This probability measure is characterized as the unique solution of the
nonlinear martingale problem :

€[0,400) xR, u(0,z) = m((—o0,z]) = H * m(z) (0.5)

Py =
Vo € CE(R), ¢(Xy) — fo < ¢"(Xs) + A'(H * Ps( s))gb’(Xs)) ds is a P-martingale.
(0.6)
They also prove a propagation of chaos result to P for the particle systems :
. . . 3 . 1 &
X" =€+ Bt [ AU N 1S i<, W= he 0)
j=1

where (B%);en- are independent R-valued Brownian motions and (£%);en- are random variables
LID. according to m. Indeed for any k& € N*, they show that the laws of (X7, ..., X*")
converge weakly to P®% as n — +o00. In [5], we adapt these results for A(u) = |u|?/q, ¢ > 2.



For both equations (0.1) and (0.5), our aim is to generalize the probabilistic interpretation to
take into account any bounded signed measure m # 0. In [2], Bossy and Talay adapt to the
viscous Burgers equation the approach developped by Marchioro and Pulvirenti [6] who study
the 2-dimensional Navier-Stokes equation for an uncompressible fluid. For any m € M(R) they
construct a function ¢ — m; € M(R) with mg = m such that u(¢, z) = m((—o0, z]) = H xmy(x)
solves (0.5) for A(u) = u?/2.

Our approach is similar to theirs in its principle but presents one main innovation : we construct
a probability measure P on the sample-paths space such that the knowledge of P entails the
knowledge of a function t — my such that my = m and

e in the case of the McKean-Vlasov model, ¢ — m; solves (0.1)

e in the case of the second model, u(t,z) = m;((—oo,x]) = H * m;(x) solves (0.5)

This enables us to take advantage of the classical framework of propagation of chaos (see Sznitman
[11] and the references cited in it). Let us introduce a few notations in order to precise the link
between P and the function t — my.

For m # 0 a bounded signed measure on R?, let |m/|, |m|| and k denote respectively the absolute
value of m, the total variation of m and a density of m with respect to the probability measure
|m|/||m|| with values in {—||m/||,||m||}. For @ a probability measure on C([0, +00), R?), we define
Q€ M(RY) by

VB Borel subset of R*, Q;(B) = E? (15(X;)h(Xp))

where X denotes the canonical process on C([0, +00),R?). Each sample-path is given a signed
weight depending on the initial position.

The probability measure P that we construct has initial marginal Py = |m/|/||m|| and the function
t — my is defined as follows : Vi > 0, m; = Pt. For both models we generalize the results obtained
when m a is probability measure by replacing the time marginals Ps; and p? respectively by P,
and iy .

In the case of the McKean-Vlasov model, we obtain P as the law of the unique solution of
the nonlinear stochastic differential equation defined like (0.2) with O'[YS,PS] (resp. b[Ys,]ss])
replacing o[Y;, Ps] (resp. b[Yy, Ps]) and Yy distributed according to |m|/||m|. We also generalize
estimate (0.4) for the particle system (X', ..., X™") defined like (0.3) with o[Xy", "] (resp.
b[ X", i) replacing o[ X", u?] (resp. b[X¢", u?]) and (Y{)ien~ random variables I.I.D. with
law |m|/||m]|. Note that, as for s > 0 the measure

I R ;
= > h(Yy) O g
j=1

depends on the initial positions, the particle system is no longer markovian. The main difficulty
is to prove existence and uniqueness for the nonlinear stochastic differential equation. To adapt
the fixed-point method developped by Sznitman [11], we have to replace the Vaserstein metric
by a stronger metric for which the mapping @ — Qs is continuous. In return, the trajectorial
estimate (0.4) can be proved in the same way as in the case m € P(R?).

In the second model, P is obtained as the unique solution of the martingale problem defined like
(0.6) with the condition Py = m replaced by Py = |m|/|/m|| and the drift coefficient A'(H % Ps(x))
replaced by A'(H*P,(z)). We also prove propagation of chaos to P for the non-markovian particle
systems defined like (0.7) with A’'(H * p(Xo")) replaced by A’(H * g”(Xg")). This time, the



proof of existence and uniqueness for the martingale problem is very similar to the one given in
[5] in the particular case m € P(R) and A(u) = |u|?/q, ¢ > 2. However, the lack of regularity of
the density h is a new difficulty in the proof of the propagation of chaos result which is a weak
convergence result.

Several authors have studied another probabilistic interpretation of the viscous Burgers equation
((0.5) with A(u) = u?/2) in terms of nonlinear diffusion processes when the initial data is not a
distribution function but a probability measure on R. Calderoni and Pulvirenti [3], Oelschléger
[8], Sznitman [10] have constructed probability measures P € P(C([0,+00),R)) such that V¢ >
0, P, = u(t,z)dz and the function u is the solution of Burgers equation for initial data Py. In [9]
Roynette and Vallois deal with the more general nonlinearity A(u) = |u|?/q with ¢ > 1. Here,
we are not interested in this approach.

Acknowledgment : [ would like to thank professor Sylvie Méléard for her support and encour-
agements.

1 The McKean-Vlasov model with a signed measure as initial
data

Let m # 0 € M(R?), Yy be a random variable with distribution |m|/||m|| and B be a k-
dimensional brownian motion independent of Y. We are going to study the nonlinear stochastic
differential equation

(1.1)

Y, = Yo + [} o[Ys, B)dBs + [} bYs, Pylds
P is the distribution of Y.

If Y solves this problem, then for any ¢ € Cbl’z([O, +00) x R?), by Ito’s formula,

k t d 8¢
o0, = 90.%0) + 3 [ (a1 52 (v, )
=1 i=1 ¢
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- Y, P ii|Ys, Ps , Y b~Y;,Ps— , Y d
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Multiplying this equality by h(Yp) and taking expectations, we deduce that s — P, is a weak
solution of the McKean-Vlasov equation (0.1).

1.1 Existence and uniqueness for the stochastic differential equation (1.1)

This section is dedicated to the proof of the following result

Theorem 1.1 There is ezistence and uniqueness (trajectorial and in law) for the stochastic
differential equation (1.1).



Let Py, (C([0, +00),R%)) = {Q € P(C([0, +00),R?)), Qo = |m|/||m||}. Taking up the approach
of Sznitman [11], we introduce the map © which associates with @ € P,,(C([0, +00),R?)) the
distribution of the unique solution of the stochastic differential equation :

t t
Y, = Yo+ /0 oYy, O,]dB, + /0 Y, Oyds. (12)

If the stochastic process Y solves (1.1) then its distribution is a fixed-point of ©. Conversely, if
@ is a fixed-point of O, the solution Y of (1.2) solves (1.1). To deal with the fixed-point problem
for ©, we need continuity of the map @ € P(C([0, +o0),R%)) — (o[z, Qs], bz, Qs]). That is why
for any T' > 0, we endow the space P,,(C([0,T],R?)) = {Q € P(C([0,T],R?)), Qo = |m|/||m||}
with the metric

Dr(QL,Q?) = inf{ER (sgguf; _ XA 1), R e P(C(0, 7], RY)?)

RoX''=Q', Rox? ' =@ R({X{ =X3}) = 1}

where (X!, X?2) denotes the canonical process on C([0, 7], R9)2. If Q', Q? € P, (C([0, +00), RY)),
D7(Q', Q?) will denote the metric between the images of Q' and Q2 by the canonical restriction
from C([0, +00),R?) to C([0,T], RY).

In [11], Sznitman works with the Vaserstein metric which is defined like Dy but without the
condition R({X} = X2}) =1 and is therefore smaller than Dy

Let QY, Q% € P, (C([0,T],R?)), 2,9y € R? and s < T and R € P(C([0,T],R%)?) be such that
RoX'™'=Q! RoX?™" = Q? and R({X} = X2}) = 1. Using the Lipschitz continuity and the
boundedness of o, we obtain
|0—[$7Q;] - U[ya Q?” = |ER( (}
= [E™ (h(X3) (o (2, X;) = oy, X)) < [m[[EF|o(z, X;) = oy, X7)|
< K(EF (X, = XZ[ A1) + |z —yl)

h(Xg)o (e, X;) — M(X§)o(y, X7))]

And a similar upper-bound holds for |b[z, Q;] —bly, Qg] |. Taking the infimum for R with marginals
Q' and Q? and stisfying R({ X} = X2}) = 1, we deduce

Vs < T, Va,y € R, |o[z,Q;] — ofy, Q31| + bz, Q3] — bly, Q3| < K(Dr(Q", Q%) + |z — y))
(1.3)

This Lipschitz property which does not hold for the Vaserstein metric enables us to prove the
following contraction lemma :

Lemma 1.2

VST, VL QP € Pu(C(0, +00), BY),  DIO(QY),0(Q2) < Kr /(:DE(Ql,Q2)dS- (1.4)

Proof of Lemma 1.2 : Let Q',Q? € P,,(C([0,4+00),R?)) and Y, i = 1,2 be the solution of

. t , ~a t ) i
Vi =Yoo+ [ ol Qi+ [ blY!Qilas
0 0
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Using Burckholder inequality, the Lipschitz property (1.3) and Gronwall’s lemma, it is quite easy
to prove

t
Vi< T, ]E( sup v} - Y£|2) < Kr [ DHQ Qs
0

s<t

As ©(QY) is the law of Y? and a.s., Y = Y¢,
DF(0(Q"),0(Q%) < E(supm1 - Y/ )
s<t
Hence (1.4) holds. ||

Uniqueness for (1.1):

If Y! and Y2 solve the nonlinear stochastic differential equation (1.1), their distributions P! and
P? are fixed-points for ©. By (1.4) and Gronwall’s lemma, we get VI' > 0, Dy (P!, P?) = 0.
Hence P! = P? and uniqueness in law holds for (1.1). As for any Q € P,,,(C([0, +00),R?)) there
is trajectorial uniqueness for the linear equation (1.2), trajectorial uniqueness holds for (1.1).

Existence for (1.1):

Let Q € P, (C([0,4+00),R?)). Iterating (1.4), we obtain

KrT)"
vne N D3O 1(Q).0"(Q) < T Do), Q).
By (1.3), we deduce that Vs < T, Vz € R?,

lofz, O Q)] — o[z, 0™(Q) ]| + [blz, ©"1(Q),] - bz, O"(Q) ]| < K Dr(9(Q), Q).

n!

—~—

Hence Vz € R, Vs > 0, o[z,0"(Q),] and b[z, O"(Q),] converge respectively to oo (s, ) and
boo(s,z) when n goes to +o0o. Moreover for any 7' > 0, the convergence is uniform for (s,z) €
[0,7] x R?. Clearly the maps  — 04(s,2) and £ — by (s,z) are bounded and Lipschitz
continuous uniformly for s > 0. Let Y be the solution of the equation

t t
Yt:Y0+/ Uoo(s,Ys)st—l-/ by (5, V2)ds.
0 0

and Y be the solution of

—~—— ~——

¢ t
Y/ =Yy + /0 o[Y?,0m(Q),JdB, + /0 oY, 0n(Q),lds.

The uniform convergence on [0, 7] x R? of the coefficients of the stochastic equation satisfied by
Y™ to the coefficients of the equation satisfied by Y and the Lipschitz continuity of the coefficients
of the last equation imply
lim 1E< sup |V — Ys|2> =0.
n—-+o0o SST

Hence if P denotes the distribution of Y, V1" > 0, lim, 40 Dr(P,0"(Q)) = 0. By (1.3) we
deduce that 0 (s, z) = o[z, Ps] and b (s, x) = bz, Ps]. We conclude that Y solves the nonlinear
stochastic differential equation (1.1).



Remark 1.3 It is also possible to adapt the proof given by Dobrushin [4] for the Vaserstein
metric to prove that (P,,(C([0,T],R%)), Dr) is a complete metric space. The contraction estimate
(1.4) then implies that the map which associates with Q € Pp,(C([0,T],R?)) the distribution of
the solution of (1.2) for t <T admits a unique fized-point Pr. It is easy to check that the family
Pr, T > 0 s consistent and that the corresponding probability measure on C([O,—i—oo),Rd) 18 a
fized-point of ©.

1.2 Propagation of chaos

Let (B%);en be a sequence of k-dimensional independent Brownian motions and (Y§)ien a
sequence of independent random variables distributed according to the probability measure
|m|/[jm|| (and independent of the Brownian motions).

Let n € N*. We define a system of n interacting particles by the following stochastic differential
equation :

. ) t . . t
X;:":your/ a[X;n,gg]dB;+/ BIXEM iMds, 1<i<n (1.5)
0 0

where p" = 1 > i1 0xin € P(C([0, +00), R%)) is the empirical measure of the system.

Lemma 1.4 There is existence and trajectorial uniqueness for the particle system (1.5).

Proof : Writing the definition of i, we get

n

X :yg+/0 (EZU(Xg’”,Xg’”)h(X{)’ ))dB;+/ ( Zb (X0, XIMR(XE )>ds

j=1

Without the term h(Xg’n), this equation would enter the classical It0’s framework. .

If X» = (Xb",...,X™") and X,, = (X'",...,X™") are two solutions, h(X}™) = h(X}") =
h(Yy). Hence, by the boundedness of h and the Lipschitz continuity assumptions made on o, we
get

1 ) _ . 1 & . w
o 2o XPROG™) = 1 ST o (R KERE")

< K|X} — X7|.

The same is true for b. We easily deduce
~ T ~
B suplxt - K1) <K [ (A7 - K2R
s<T 0

By Gronwall’s lemma we conclude that trajectorial uniqueness holds for (1.5).
Similar computations enable us to apply the classical iteration scheme to prove existence. [ |

For i € N*, let Y be the solution of the nonlinear equation (1.1) for the initial condition Y{
and the Brownian motion B?. By the coupling between the independent processes Y* and the
particle systems (1.5), we generalize the trajectorial estimate obtained in the case m € P(RY)
(see for instance Sznitman [11]) :



Theorem 1.5

VT >0, supn ]E( sup | X" — Y;'|2> < 400 (1.6)
n s<T

Remark 1.6 This estimate obviously implies that the laws of the particle systems (X", ... X™")
are P-chaotic where P denotes the common distribution of the nonlinear processes Y i.e.

VE e N, L(X5",..., X)) = poio0 POF weakly.

Proof : By Burckholder inequality, for any ¢ <T

2
E(sumxzﬂ —Y;’F) < KE( Zh vg)(o(xim, X3m) — o(vi, v9))| ds
s<t
2
Zh (Y))o(YE,Y7) — oYY, By]| ds
+ similar terms corresponding to b ) (1.7)

For notational simplicity we also denote by o a fixed coefficient of the matrix o. If [ < n satisfies
l # i and [ # j, by independence of Y! and (Y?,Y7),

§7°S

B (1), Y9) - o1y, PN, ) - ol R
= 5{ (W) 37 77) = o, PE( o (V1. V) = 017, P

2) K
<=
n

This inequality and the Llpschltz properties of o enable us to upper-bound respectively the
second term and the first term of the right-hand-side of (1.7) and obtain

(YZ',YJ'))) =0

Hence

(‘ Zh (Y))o(YE, YY) — o[YY, Py]

B sup i - Vi) < & ( + B - ZEW viP)

s<t

Then summing over 4, using the exchangeability of the variables (Y¢, X*"), 1 < i < n and
applying Gronwall’s lemma, we conclude that (1.6) holds. [ |

2 A viscous scalar conservation law

This section is dedicated to the viscous scalar conservation law :
ou  10*u  0A(u)
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, (t,z) € [0,400) xR, w(0,z) = up(z). (2.1)



where A : R — R is a C? function. To give a probabilistic interpretation of this equation when
the initial function ug(z) is equal to H * m(xz) where m # 0 € M(R), we study the following
martingale problem.

Définition 2.1 We say that P € P(C([0,400),R)) solves the martingale problem (M P4) start-
ing at m if Py = |m|/||m|| and

t
Vo € CZ(R), $(Xy) — p(Xo) — /0 (%gb"(Xs) + A'(H * PS(XS))gb'(Xs)) ds is a P-martingale.
(2.2)

2.1 Existence and uniqueness for the martingale problem (M Py)

Proposition 2.2 For any m # 0 € M(R), the martingale problem (M Py4) starting at m admits
a unique solution P.

Proof : The main idea is the following : P solves problem (PM4) starting at m if and only
if s — P, is a fixed-point of the mapping which associates with s — v, € M(R) the function
s — 155” where P” solves the linear martingale problem defined like (PM4) with H % v4 replacing
H * P, in (2.2). We are going to apply Picard fixed-point theorem locally in time.

We endow M(R) with the total variation norm || || and define for 7' > 0

Ly = {v € C((0,T], M(R)), sup [lv(@)|| <[lml[}

te[0,7T7

which is complete for the metric Dy (v, ') = supye(o 77 lv(t) — v/ (2)]]-

For v € Ly, the function (s,z) € (0,+00) x R — A'(H xvspp(z)) is measurable and bounded by
My, = supjz<|jm A" (x)]. By Girsanov theorem, there exists a unique P € P(C([0, +00), R))
such that P} = |m|/||m|| and V¢ € CZ(R),

t
¢(Xy) — p(Xo) — /0 %Qﬁﬂ(Xs) + A'(H x vspr(X5))¢' (Xs)ds is PY-martingale.

Moreover Vs > 0, P? is absolutely continuous w.r.t. Lebesgue measure. We set ¢ (v)(s) =

P?, s € (0,T]. The absolute continuity of P’ entails that 17 ()(s) has a density p,(s,.). We

S S
are going to prove that ¢ is a contraction for 7" small enough by writing an evolution equation
satisfied by p,(s,.).
By Lévy characterization, X; — Xy — f(f A'(H * vspp(Xs))ds is a PY Brownian motion. Let

t€(0,T). If ¢ € C°([0,1] x R) and

2
<%(r, X,) + %%(7‘, X))+ A'(H * I/r/\T(X,«))a—(’I“, Xr)> dr,

M2 = g5, X0) = 910.X0) — [ (5

0



then (Mf)se[o,t] is a P”-martingale. So is (h(Xg)Ms“b)SE[O’ﬂ. As the expectation of this martingale
is constant,

/R (1, 2)py (£, 3)d = /R (0, 2)m (dz)

0 107 0
+ /(O,t]><R (8—(5(3,.%) + iﬁ(s,x) + A'(H * VSAT(x))a_i(S’x)> pu(s,x)dzds
The choice ¢(s,z) = Ny_s * f(x) where f : R — Ris a C? function with compact support and Ny

denotes the heat kernel on R (N,(z) = exp(—x2/2s)/v/27s) enables us to get rid of % + %%
and obtain

t 8]ths
0 8.’1)

dx a.e., p,(t,z) = Ny xm(z) — * (pu(s, VA (H xvsar () (z)ds.

Combining the upper-bound ||p,(s,.)||r: < EF" (|h|(Xo)) = ||m]|, the continuity of ¢ — N; * m
in LY(R) for t > 0, and the computation

~ /2 (2.3)

L(R) s

HBNS(.)
oxr

we easily prove that t — p,(t,.) € C((0,T], L'(R)) and deduce that ¢ (v) € Ly.
Let v’ be another element of Ly and Ky = supj<|m||A”(z)]. Using (2.3), we obtain for
t € (0,7],

8]ths

oz

t
1 (8 2) = por (&, )1 < /0 Iy (s, ) A'(H * vs(.)) — pur(s, ) A"(H # v ()] 1 ds

Ll

<y /0 (HpV(s,.)HLIHHA'(H*us(.»—A'(Hw;(»)um

ds
Vi—s

+ v (s,.) = pur (s, )l |A'(H + Vé(-))HLoo)

< 22 (I D0,/ + M1 0,10

Hence
(1 —2+/2T /7 M) Dy (7 (v), (V') < 24/2T /7 ||m|| Ky Dr(v, V).

From now on, we set 7 = m/(8(Mp, + 2||m|/K)?). Then for v,v' € L., D, (¢, (v), %, (V")) <
D, (v,v')/2. Hence v admits a unique fixed-point v! € L,.

In order to iterate the fixed-point technique, we need a few more notations. For v € Ly, we
define
Ly ={v € Lyy, such that Vt € (0,T], v(t) =o(t)}

which is complete for the metric sup,cip - [lv(2) — v/ (2)]]-
When v € Ly, we set ¢(v)(s) = P, s € (0,T + 7).

IfvelL,, P and PY coincide on the o-field F, = o(X,, s € [0,7]). We deduce that
Y1 (Lyr ;) C Ly . By computations similar to the ones that we have made for ¢, we prove

10



that 1,1 is a contraction on L,1 ;. This mapping admits a unique fixed-point v?. By induction,
we construct for n > 2, v" € Ln-1 ; fixed-point of 9,n-1. When 4,5 € N*, the restrictions of vt
and v7 to (0, (i A j)7] are equal. This property enables us to check that the probability measures
PY" converge weakly to a solution P of problem (PM,) starting at m when n — +oo.

We still have to prove uniqueness for this problem. Let P be a solution. By the reasoning made
to prove that ¢r(Ly) C Ly, we obtain that for any T > 0, s € (0,7] — P, belongs to Ly
Therefore t € (0,7] — P, is a fixed-point of 9, in L, and V¢ € (0, 7], P, = v!(t). By induction,
we obtain Vn € N*, V¢ € (0,n7], P; = v™(t). Hence P solves the linear martingale problem with
drift coefficient (t,2) — >, cne Lin=1)r,nr) (1) A'(H * v*(x)). By Girsanov theorem uniqueness
holds for this problem, which puts an end to the proof. [ |

2.2 Link with equation (2.1)

We say that u : [0,400) x R — R is a weak solution of the Cauchy problem (2.1) if for any C*°
with compact support function 1 : [0,+00) x R - R :

Op | ud*p B, B
/(0,+oo)><R < U T 592 T A(u)%> (s, 2)dsdx = — /Rqﬁ(o,x)uo (z)dx. (2.4)

Proposition 2.3 Let m # 0 € M(R) and P be the solution of problem (PMa) starting at m.
The function u(t,x) = H * Py(z) is the unique weak solution of (2.1) for the initial condition
uo(z) = H x m(x).

Remark 2.4 So far, our approach enables us to give a probabilistic interpretation of (2.1) for
any initial condition uy with bounded variation satisfying limg—,_ouo(z) = 0. It is not difficult to
get rid of the last condition. Let ug be any non-constant function on R with bounded variation.
Then 3¢ € R, limg, ug(z) = c. If Ac(.) = A(c+.) and P denotes the solution of the
martingale problem (PMa,) starting at the measure dugy, then an easy adaptation of the proof of
Proposition 2.3 ensures that the function u(t,x) = ¢+ H * ]5,5(3:) 1s the unique weak solution of
(2.1) for the initial condition ug(z).

Proof : We first check that u(t, z) = H*P,(z) is a weak solution of (2.1). Let ¢ : [0, +00) xR —
R be a C* with compact support function. We set ¢(t,x) f ¥ (t,y)dy. The function ¢ is
C, bounded together with its derivatives and equal to 0 for ¢ blg enough.
By Lévy characterization, X; — Xo — f(f A'(H * Ps(X;))ds is a P-Brownian motion. Hence
Lrog  10% 0
MY = ¢(t, X;) — $(0, Xo) — A'(H * Py(X X;)ds
£ =030 - 90.30) — [ (24558 (530 4 A+ PG G )

is a P-martingale. So is h(Xg)Mf’. Hence
+00 82 y P i
/ / [( ;a ?) (s, ) +AI(H*Ps(x))£( )] Py(dx)ds /¢> (0, z)m(dz) (2.5)
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Let s > 0. By Girsanov theorem, Py is absolutely continuous with respect to Lebesgue measure,
which implies that P, does not weight points. Thus the distribution function of the measure
A'(H % Py(.))P, is A(H  P,(.)) — A(0) = A(u(s,.)) — A(0). Applying Stieljes integration by parts
formula in the spatial integrals of equality (2.5), we get

too /o o M ud*p o
/0 (PS(R) /R g(s,y)dy> ds — /(0,+oo)><R ( U + > 9a2 + A(u)%> (s,z)dsdx

= =m(®) [ 50y + [ 40,0 H «m(a)da

As Vs >0, Py(R) = EF (h(Xp)) = m(R),

11%)/R1,b(0,y)dy+/OHo (PS(R)/Rg—f(s,y)dy> ds = 0.

Hence u is a weak solution of (2.1) for the initial condition ug(x) = H *m(z). The boundedness
of u on [0,+00) x R is clear. To prove that u is continuous on (0,+00) x R, we set ¢ > 0,

s€[t, 3 and z,y eR
ult, ) — u(s, )] < B ((H (2 — X;) — H(z — X))h(Xo)| + [ml|E” (| (z — X.) — H(y — X))

Girsanov theorem implies that the L? norm of the density of P, w.r.t. Lebesgue measure is

bounded by K (t) < +oo uniformly for s € [£, 3]. By Cauchy-Schwarz inequality, we deduce

Ju(t,2) —u(s,y)| < [E7((H(z — X¢) = H(z — X,))h(X0))| + |m| K (t)vE = y.

As P, does not weight points, the first term of the right hand side converges to 0 when s — t.
We conclude that u is continuous on (0, 4+00) x R.

Let v be a weak solution of (2.1) for the initial condition uwy = H * m, bounded by M, on
[0, +00) x R and continuous on (0, +00) x R. For ¢t > 0 and f : R — R a C? with compact support
function, we set ¥(s,x) = 1194(s)Nt—s * f(x) (we recall that Ns(z) = exp(—22/2s)/v2ms.). It
is possible to approximate v, its first order time derivative and its first and second order spatial
derivatives in L!([0,] x R) by C'* functions 4" with compact support on [0,#) x R and their
derivatives. Writing (2.4) for ¢" and taking the limit n — 400, we get

/Rv(t,x)@b(t,x)dx:/R@b(O,x)uo(x)der/(O’t)XR( O 0O A(v)8_¢

9s 2022 e
As ’/’—I—%ngon[Ot]xR we deduce
v(t, z)dr = ok f(x)uo(z)dr + — 0 & f(x)dzds.
f d N F(@)uo(z)d Ne f(z)dzd
ox

t
V(t,z) € (0,400) X R, v(t,z) = Ny * ug(z) —/0 (31(\97;—5 * A(v(s, ))) (z)ds.

) (s, 2)dzds

Hence

This equation is also satisfied by u(t,z) = H * Py(z). Let K = SUD{|g|<||m|jvas, } |4 ()] Writing
the equation satisfied by v — u and taking (2.3) into account, we obtain

LKl oo
o) e gy <2 [ I,

We iterate this inequality and apply Gronwall lemma to conclude that v = v on [0,400) x R. I

12



2.3 Propagation of chaos

Let (e,)n be a sequence of strictly positive numbers converging to 0. We approximate the

Heaviside function by the Lipschitz continuous functions

T+ €
€

H,(z) =

L e<a<oy + L{a>0)-

Let (B%);en- be a sequence of independent one-dimensional Brownian motions and (£%); be a
sequence of I.I.D. random variables with law |m|/||m|| (independent of the Brownian motions).
We define a system of n interacting particles by the following stochastic differential equation

X" =&+ By +/ A'(Hp + g2(X2™)ds, 1<i<n (2.6)
0

where p" = 1 > i1 0xim-
By a proof similar to the one given for Lemma 1.4, we obtain existence and trajectorial uniqueness
for this stochastic differential equation.

Proposition 2.5 The particle systems (X", ..., X™") are P-chaotic where P denotes the
unique solution of the problem (M Py) starting at m.

Remark 2.6 By Girsanov theorem, the stochastic differential equation (2.6) where Hy is re-
placed by H admits o unique weak solution. Let Q™ be the law of the solution. It is possible to
prove that the sequence (Q™),, is P-chaotic by computations similar to the ones made in the proof
of Proposition 2.5. We have introduced Hy, in the stochastic differential equation (2.6) only to
obtain a strong solution.

The propagation of chaos result that we prove is a convergence in distribution result. To deal
with such a convergence, we need continuous functions. But the density A may be irregular. The
following lemma ensures that it is possible to approximate h by Lipschitz continuous functions.

Lemma 2.7 Let B be a Borel subset of RS and v € P(RY). For any o > 0, there is a Lipschitz
continuous function fp o with 0 < fp o <1 such that v({1p # fBa}) < .

Proof : Since the probability measure v is regular, there exits a closed set F' C B such that
v(B\ F) <a/2.
Let f¥(z) = (1 — kd(F,z)) V 0 where d(F,z) = infyer |z — y|. The function f* is Lipschitz
continuous and satisfies 0 < f¥ < 1. Moreover as k — 400, {f¥ # 1} N\, 0. Hence there is ko
such that v({f*o # 1x}) < a/2.

V({7 £ 1Y) < v £ 16)) +v({1r £ 15}) < @/2+ v(B\ F) < a.
We set fp o = fFo. [ |

Applying this lemma with d = 1, v = |m|/||ml], B = {h = |m||}, we define h, = 2||m|| (fB’l . %).

Then h,, is a Lipschitz continuous function with values in [—||m/|, |[m]|]. Moreover,

(2.7)



Proof : The particles are exchangeable. Hence the propagation of chaos result is equiv-
alent to the weak convergence of the laws ™ of the empirical measures p™ considered as
P(C([0,+00),R))-valued random variables to dp (see for instance [11] and the references cited
in it). We are going to prove this convergence. Again by exchangeability, the tightness of the
sequence ("), is equivalent to the tightness of the laws of the random variables (X*"),, which
is an easy consequence of the bound uniform in n

( ZH (z' — 27)h( J))‘ sup |A'(z)].

{la|<[lmll}

V(zt,...,z") e R, Y(y',...,y") € R", |A

Let 7 be the limit of a convergent subsequence that we still index by n for notational simplicity.
In order to check that 7°° = dp, we set p € N*, ¢ € CZ(R), g € Cp(RP) and ¢t > s > 51 > ... >
sp > 0 and define a mapping F on P(C([0,+00),R)) by

F(Q) =< Q, (d)( / ~¢"(X,) + A'(H * Qr(X ))¢>’(X,)dr>g(Xsl,...,Xsp) >

For k € N*, we define Fj; and Gy, like F' replacing H * Q. respectively by Hy, « Q, and Hj, Q,’f
where the measure Qf is defined by :

VB Borel subset of R, QF(B) = E? (15(X,)hi(Xo)).

The functions Q@ — Hy * Q¥(x) =< Q, Hy(z — X,)hi(Xo) > are equicontinuous and uniformly
bounded by ||m]| for (r,z) € [s,t] x R. As A" is Lipschitz continuous on [—||m/|, |m||], we deduce
that the functions Gy, are continuous. Hence

o0

E™((F(Q))%) < 2limksup1E”°° (F(Q) — Gr(@))*) + 4lim sup B((F, ("))

+ 4limksup limnsup]E((Fn (") — Gr(u™)?) (2.8)

We are going to prove that each term of the right hand side of (2.8) is 0.
Taking into account the Lipschitz continuity of A’ on [—|m]|, ||m||], we get

o0

t
E™ (F(Q) - Gu(Q))?) < KE™ ( Q. [ 1H Q) — Hy e QX > )

Now, |H*Qr(2) — Hy* Qf(2)] = | < Q, H(z — X;)h(Xo) — Hy(x — X;)hi(Xo) > |
< |Iml[|H = Hi| * Qr(z)+ < Q, [h(Xo) — by (Xo)| >

Therefore E™ ((F(Q) — G1(Q))?) is bounded by
t
K(5 (<@ [ 1= s @) > ) + B (< QUK — (X)) >))
S
Since |H — Hy| goes pointwise to 0 as k — 400, Lebesgue theorem implies the first term of the

right hand side converges to 0. Moreover, as 7 a.s., Qo = |m|/|/m||, by (2.7), we obtain that
the second term also goes to 0. Hence the first term of the right hand side of (2.8) is 0.

By It6’s formula, F,(u") = n2?19(ina--- f¢' Z”dBl
Hence E((F, (1"))?) < K/n and the second term of the right hand side of (2.8) is zero.
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We still have to prove that the third term is zero. By computations similar to the ones made for
the first term, we get

E((Gf, — F)2(u") < KE(< ", / H — Hil ol (X2)dr >) + KE(< 1™, [b(Xo) — hie(Xo)| )

t
<k (B( <, [ L vicovadr> ) +BIME) ~ hu(€))) (210)

where (X,Y) denotes the canonical process on C([0, +00), R)?.

Since the distribution of &' is |m|/||m||, according to (2.7), the second term of the right hand
side of (2.10) goes to 0 when k — +oo0.

The variables X" are exchangeable. Moreover, the convergence of (€,,),, to 0 ensures that €, < €
for n big enough. Hence

t t
limsup]E( <pu"® un,/s Lix, vy |<enver ydr > ) = limsupE</s 1{X},n_X3,nSEk}dr>

n—-+0o0o n——+0o0o

t ¢ 1

< limsupE /1 n v2n 1 n dr)—l—limsu /IP’(XI’” >—>dr

- n—H-OcP ( s {‘XTI _XTZ |<ew) {‘XTI |S\/15_k} n—)—l—ocE) s | " |_ \ €k
(2.11)

The inequality

PIxt > ——) <P(1B! 2 —— - “Mm) g p(jery > L Thm
NC 2 2 2 2

where My, = supy|y|<|im|y |4’ (#)| implies that the second term of the right hand side of (2.11)

goes to 0 when k — +o0o0.
We easily obtain by Girsanov theorem the following bound for the couples (X7, X%m), :

1
U € L2(R), ¥n 2 2, Ve > 0, [B(F(XP", X2M)| < o exp(Man e

t
Hence Vn > 2, E(fs ].{‘Xrl,n_X‘TZ,n'Sek}].{‘Xrl,n|s\/1€_k

of the right hand side of (2.11) goes to 0 when k — +o0. Inequalities (2.10) and (2.11) enable
us to conclude that lim supy, lim sup,, E((F}, (¢n) — Gk (1n))?) = 0.

1
}dr> < Ke;. We deduce that the first term

Since each term of the right hand side of (2.8) is 0, E™™ ((F(Q))?) = 0. We deduce that 7> a.s.,
@ solves the martingale problem (M P,4) starting at m. Hence 7% = dp. ||

Remark 2.8 The propagation of chaos result implies of course that it is possible to approximate
the function u(t,z) = H * Pi(x) thanks to the particle systems. For instance, when (t,z) €
(0, +00) X R, %E}Ll H(z — X2™")h(€7) converges in L' to u(t,z). Indeed,

<|u(t,z)— < P, Hp(z — X;)hi(Xo) > |

Blu(t, ) — > Hlw — XF)h(e)
j=1

+E‘ <P — ", Hy(z — X¢)hi(Xo) >

+ Iml|E(Hy — H|(z — X;"™)) + Elhy, (6") = h()]
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The first and the fourth term of the right hand side converge to 0 when k goes to +o0o0. By
Proposition (2.5), the random variables p™ o (Xo, X;)~! converge in probability to the constant
Po(Xy, X;) L. As (y,2) € R? — Hyp(x —y)hi(2) is a Lipschitz continuous function, for fived k,
the second term goes to 0 as n — +oo. Lastly, the estimate Vf € L2(R),Vn € N*, |E(f(X}™)| <
Ki||f|lz2 which is a consequence of Girsanov theorem, implies that the third term converges to 0
uniformly in n when k — +o0.

Remark 2.9 Let (vy), be a sequence of probability measures on R converging weakly to |m|/||m/]|.
The study of the asymptotic behaviour for n — +oo of the particle systems

. . . t .
X" = ¢4 Bl 4 /0 A'(Hy, * i(X5™)ds, 1 <i<n (2.12)

where the initial positions (ﬁi’n)lgign are L1.D. according to v, (and independent of the Brownian
motions) is a natural question. Unlike the solution of (2.6), the solution of (2.12) may depend
on the choice of the density h. We are going to give a sufficient condition on m ensuring that,
for a good choice of h, the propagation of chaos result still holds.

If m admits a continuous density f w.r.t. Lebesque measure (condition equivalent to ug =
H xm € CYR)), we set h = ||m|| (L{>0y — Liy<oy). For any sequence (vy)n converging weakly
to |m|/||ml||, the particles (Xb™,..., X™") solving (2.12) are P chaotic. The only significant
difference with the proof of Proposition 2.5 is the treatment of the second term of the right hand
side of (2.9) : E(< p", |h(Xo) — hi(Xo)| >).

Since B = {f > 0} is a closed subset of R, it is possible to ensure hy > h by choosing

hi(z) = 2|lm[| (1 — ned(B,z)) vV 0) — 1/2)
for ny big enough. Then
E(< u", |h(Xo) — h(Xo)| >) =< vy, hig > —[Im||(vn({f > 0}) — vu({f < O})).

The continuity of f ensures that the boundaries 6{f > 0} and é{f < 0} are included in {f = 0}.
Hence |m|/||m||(0{f > 0}) = |m]|/||m||(6{f < 0}) = 0. We conclude that
lim lim E(< p", |h(Xo) — hx(Xo)| >) = lim < m,hk —h>=0.

k—+00 n—+00 k—too  |ml]

More generally, if there exists B a closed subset of R such that |m|(60B) = 0 and |m| (1 — 1pc)
is a density of m w.r.t. |m|/||m||, then, for the choice h = ||m|| (1p — 1), the previous proof
can be adapted and the propagation of chaos result holds.
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