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Abstract

In this paper, as an application of the theoretical result in [1], we
exhibit a family of payoffs ¢, (x) indexed by a measure h, for the Amer-
ican price of which an almost closed formula holds, which are very close
to the Put payoff (K — z)" in the following sense: @, (z) = (K —z)™"
for # < K* and x > K (K* is the exercise price of the perpetual op-
tion), @) (K% ) = @}, (K_) = —1. The (almost explicit) free boundary
T b () between the Exercice and Continuation Region shares with
that of the American Put the following properties: limy- t), () = K,
lim .+ th (z) = oo, T, is analytic on |K*, K[, and the equivalent in
K~ of Barles&alii [2| and Lamberton [3| holds. Unfortunately, we
can prove that there is no h such that @ (z) = (K —z)" every-
where. But by a numerical minimization of a discretized version of
sup,, |@p (z) — (K —x)ﬂ = err(a,h), we obtain a measure h* de-
pending only on a = % such that the quantity err* (a) = err(a, h*)
decreases with « and satisfies: err* (0.5) = 0.3%, err* (a) < 0.05%
for a > 7. The first interest of our result is to yield the corresponding
sub- and super- very sharp hedging strategies, since there is a hedge
ratio associated to our price. Also since the error is smoothed by the
probability of crossing the free boundary, the corresponding errors re-
garding the price is much smaller, thus yielding good approximations
of the Black-Scholes American Put price.
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Introduction

Counsider the classical Black-Scholes model

dXy = pX[dt+oX/dB, (1)
Xy = x>0
p €R

where B is a standard Brownian motion, p the instantaneous interest rate
and o the volatility of X and denote by

022
Af(2) = —=1"(x) + prf'(x) = pf(2)

the corresponding infinitesimal generator. Given a continuous function ) :

R} — Ry satisfying some growth assumptions, the price of the so-called

American option with payoff ¢, time to maturity ¢ > 0 and spot x is given

by the expression

v (t,x) = sup E[e Ty (X7)] (2)
TET(0,t)

where 7 runs across the set of stopping times of the Brownian filtration
such that 7 <t almost surely. For x > 0, the function ¢ — vj™ (¢, z) is
non-decreasing. Moreover, it is greater than ¢ (z) and typically the space
10,00 x R splits into two regions, the so-called Exercice region where
by definition vy™ = ¢ and its complement the Continuation region where
vy > .

In this paper, we are interested in the price v%" (¢,x) of the American Put
option given by 1 (z) = (K — z)" where K is some positive constant (the
strike of the option). In case p < 0, it is obvious by a convexity argument
that the optimal stopping price is 7 = ¢ and v¥7,(¢,x) is equal to the price
of the European Put option. From now on, we suppose that p > 0. Even
if there is no closed-form expression for v%7, (¢, z), its limit as ¢ — +o0, the
price of the so-called perpetual Put option, can be computed explicitly as:

am * T @

(oo n) = (K=K () luky+(E—o)lpaey ()
2 K

where a = —g and K* = 2=
o 1+«



K* is called the perpetual strike. Moreover there is a continuous non-
increasing function ¢ :]0, +oo[— [0, +00] with {(2) = +oo if # < K* and
t(z) = 0 if z > K such that the Exercice region of the American Put option
is given by {(t,x) : 0 <t < {#(x)}. In the (¢,7) plane the situation is thus
the following:

Stock x

K* ...........................................................

Time to maturity ¢

The purpose of the paper is to construct an approximation of v§7, (¢, x)
thanks to the following embedding result obtained in a previous work [1]:
let ¢ : R — R, be a continuous function such that sup,.,¢(z)/(z + %) <
+00 and v, (t,x) = E[e "¢ (X[)] denote the price of the European option
with payoff ¢. If the function + — $(z) = infy>g v, (¢, ) is continuous and if
there is a continuous function # :]0, +oo[— [0, +-00] such that Vz > 0, 3(z) =
v,(t(x), 2) (Convention : v, (00, ) = liminf;_, o v,(t,x)), then the price of
the American option with payoff ¢ is embedded in the function v,(¢,z) in
the following sense :

-~

V(t,z) € [0, +00[x]0, +oof, vg"(t,x) = v,(t Vt(z),v).

As an easy consequence, the set {(t,z) : 0 < ¢t < #(z)} is included in the
Exercice region of the American option.

The main drawback of the above result is that we do not know, at the
moment, how to design a function ¢ such that @ matches a given target
payoff of interest. Even in the special Put case, despite many attempts,
we could not find any European payoff ¢ with associated American payoff



-~

P(x) = (K — x)*. Nevertheless we rely on the above theoretical result to
design closed-form prices for a large class of payoffs very close to the Put
payoff. This is done in three steps.

First we design (section 1) a family of European payoffs which verify very
crude necessary conditions for p(z) = (K — )" to have any chance to hold.
This is the main step, it relies on the parameterization of ¢ by a measure h
related to Ap. Then we focus on the Continuation region. Amid our family
we find out necessary and sufficient conditions which grant that the equation
infy v, (t,2) = v,((x), z) defines a curve which displays the same features
as the free boundary of the American Put (section 2).

Unfortunately, it is easy to see that for any function amid our family p(z) =
(K—K*) (If*)fa L{z>k-} below K*, which is not satisfactory. The third step,
which is easy making use of the fact that K™ is the perpetual Put strike, is
to prove that the price of the American option with modified payoff (K —
2) <o} +@(2) 1> k+}, denoted by @, to emphasize the dependence on the
parameter h, and matching (K — x)* both for z > K and for x < K* is still
embedded in v, (t,7) 1 v3"(t,2) = (K — 1) Lzcr-y +0,(t V), )]s iy
This is done in section 3.

Since we show that @, cannot be equal to the Put payoff everywhere
(indeed @7 (K**) > 0), we believe that at this stage there is little to get from
further calculations. The last stage is to select amid our family the point h*
so that, in some sense, @y« is the closest payoff to (K — x)*. We choose the
criterion

Slip\sﬁh () — (K —=)"|

This is done in a numerical manner which is explained in detail in the last
section (section 4): choosing ¢ in a peculiar low-dimensional subclass, we
compute a discretized version of » and then minimize the above criterion.
The numerical results seem very good.

1 A first set of tentative payoffs ¢

Let us now look for a class of initial payoffs ¢ for which there is some hope
that @ (z) = (I — x)" holds, at least for 2 between K* and K.

Notice first that the European price of ¢ should match the American Put
price in the Continuation region. In particular it should increase from 0 to

(K—K*) (&) " ast goes from 0 to oo for x > K. This gives at once p(z) = 0




for x > K. Another condition is that the European price of ¢ decreases to
P (), for & between K* and K, as t goes from 0 to #(z) (the tentative free
boundary). This should also hold for 2 below K* with #(x) = co. Note that
these conditions are necessary only if we restrict ourselves to the simple case
of a single curve where inf;> v, (¢, z) is attained which splits the (¢, z) plane
in two regions where respectively d;v, < 0 and O,v, > 0. Thanks to the
Black-Scholes PDE this gives that Ap(z) (defined in any reasonable sense)
should be non-positive between 0 and K. Now a natural way to proceed is
to parameterize ¢ by Ag, or in other words to solve the ODE

Ap =m.

The solutions of Ay = 0 are the functions & — ax + bx~* for 2 reals (a, b).
By a straightforward integration this gives

2 “ > m(d
o(z) = ax + bx™* — gx_o‘/ yo‘/ m(21") (4)
0 Y

r

or yet by Fubini’s theorem, since m should be supported in |0, K| to ensure
¢ = 0 above K:

2 K m(dr)
QO(.Z') =ax + bx ¢ — ml‘ a/o (7" VAN .Z')a T (5)
as soon as the measure m satisfies fOK r*m|(dr) < oo.

Now by the Lebesgue theorem, it is easy to see that a = lim, @ which
gives for us @ = 0. Then ¢(z) = 0 for x > K gives the condition:

9 K
b= ———— *“Im(d 6

Ty T mla) ()

Observe next that since lim,_, #@) _ ¢ =0 and by Lebesgue Theorem
lim,, o+ i(,“;) = b, according to Appendix B, limy_,o v,(¢,2) = ax + ba™* =

br—¢. This gives the value of b: b = E_K-

We have not yet used the fact that m should be non-positive on |0, K.
Obviously for (6) to hold, since b is positive, m should be of the form:

oo+ 1)K*

5 h(dr)

m(dr) = cég(dr) — 1y k((r)



where h is a positive measure on |0, K[ (we wrote the indicator function for

(et K" before h will lead to easier calcula-

clarity’s sake. Also the factor 5
tions later on) and ¢ a strictly positive number.
By the way, c is related to the left derivative of ¢ at K: by (4) (¢(x)z®) =

-2z fK ™) \whence by ¢(K) = 0:

T r2

—O'2QOI(K_)K2
2

CcC =

As soon as ¢ has a few regularity properties on the left of K, since /t\(x) goes
to 0 as x goes to K from below, ¢'(x) should go to ¢'(K_). But @'(z) should
be —1, so we get the value of ¢: ¢ = ”22 -

The last point to check is that this is compatible with (6). This rewrites

now:

KZ Ko — [*©
KOé—l _ (K _ K*) K*Oc — K*i
(a+1) o

K
K*/ r h (dr) =
0

In particular this is a positive quantity.
So far we have reached the following:

Lemma 1 Let p(x) be a continuous payoff satisfying Ap = m where m is a
measure on |0, +oo| such that f0+oo r*m|(dr) < +oc.
Then the four conditions

(1) p(z) =0 forz > K

(ii) For every v > K, v,(t,x) — (K — K*)(3%) ™" ast — o0

(i13) In a weak sense Ap < 0 below K

(iv) ¢'(K7) = —1
hold if and only if m(dr) = "221(2 Sk (dr)— Mh(dr) where h is a positive
measure on |0, K[ such that fOK reth(dr) = (K — K**)/a and

o) = (=1 () = EL e [T oAy (o

An additional calculation (cf Appendix A) gives also:

Lemma 2 The function ¢ in (7) is non-negative.



1.1 Computing the corresponding price

>From now on we suppose that ¢ is given by (7). Let
e () = %@ Ax)*
e (x> )+ 2l (z <)

Then after (7), since the function z — 2z~ is invariant, also using K£ =1+

h (dr)

v, (t,z) () 1 K
wK* — Ka — —Vex (t,x)+/0 Ve, (t, )

v, (t, ) = e "' {er (x exp <<P - %2> t+ UBt))}

which gives after straightforward calculations (c¢f Appendix C):

where

Lemma 3 One has

o2t

2)

o2t

where N(z) = [*_ e—y2/2j_2y_7r denotes the cumulative distribution function of
the Normal law.

Setting a = In(K*), b = In(K), y = In(z), u = In(r), also A = = and
denoting the image of the measure h(dr) by the function r — In(r) by dh(e*),
we thus get

« o 2

(e (:5)3)
o [N (i ()

u
0o €

o [ i (55 1)

~ (a=1)(w=b) gh(eu
In terms of the measure h (du) = e S a dhe(ff L we get




Lemma 4 Let a =In(K*), b=1In(K), y =In(x), u =In(r), A = %, also

~ a—1)(u— dh u
h (du) = ae T (c")

eu

Then one has:

1 1
Oée_av‘ﬂ ()\7 y) - ea(a_y) — ea(b_:’/)N (_ (b o y) \/X . (O{ —+ ) —>
1

(oo (2£) )

b (07
a—1)(b— a+1)(u— 1
e(}z(by)/ e‘wh(du)]\f<(u y)\/__< +

2 Tentative ¢’s with good-looking theta-zero
curve

As we are interested in #(z) such that infisov,(t,x) = v,(t(x),z), we are
going to study the so-called theta-zero points solution of d,u,(t,z) = 0.
More precisely we look for conditions on the measure A which ensure that

-~

t(x) is continuous, t'(0) = [K, +oo[, ™ (+o0) =]0, K. (8)

2.1 The theta-zero curve

Since the price of the European option with payoff ¢ satisfies the Black-
Scholes partial differential equation Oy, (t,z) = Av,(t,z) for t,x > 0, in
order to find the theta-zero points, we compute Av, (¢, ).

One main advantage of our parameterization of ¢ by Ap = m is the
simplicity of the following computations. Indeed by the semi-group property
Av,(t,x) = va,(t, z). Since v4, solves the Black-Scholes Partial Differential
Equation

Vi, o >0, Owap(t,r) = Ava,(t,x), va,(0,.) =m,



by the Feynman-Kacs representation formula,

K
Vi, x >0, va,(t,x) = ept/ P (z,r)m(dr)
0

where p;*(z,r) is the transition density of the Black-Scholes process. If

T2
ne2 (2) = e 27 //2ra? denotes the Gaussian density, an easy calculation

yields p;* (z,7) = £ngz, (ln (%) - (p — %) t).
As a conclusion,

Lemma 5 We have

Auv, (t,7) = e /OK nyy (m (%) - (p— %) t) @.

We recall that m(dr) = "221(25;(((11") - Mh(dr). Changing notations
by setting

y=In(z), u=In(r), )\:L,a:ln(K*),b:ln(K).

o2t
we obtain that
Oy, (t,x) = Av,(t,z) = C (N, y) F (N, y)

where C(\,y) = 02V Ae (10 [8Aela=D0-1)/26b /(2\/277) > 0 for A > 0 and
2 b 2~
F(Ay)=e 300" / e300y (du) (9)

o0

Thus we are interested in the solutions of
F(\y)=0 (10)
>From now on, we suppose that

Ve < K, h(]Jz, K[) >0 and /Klnz(r)r%ah(dr) < 400 (11)

Lemma 6 The function F is C* on [0,+00) x R. Moreover, for y € R
the function A > 0 — F(\,y) vanishes at most twice. Lastly, Vy > b (resp
y <b), F(\y) is positive (resp. negative) for X big enough.

9



Proof. The integrability assumption in (11) is equivalent to the convergence
of f u?h(du). By Lebesgue theorem, we easily deduce that F is C.
Equatlon (10) writes

—%(b—y)2:ln (/_ioeA - h(du))

Hence for fixed y € R, the solutions are given by the intersection of a straight
line and the Log-Laplace transform of a positive measure which is strictly
convex under (11). We conclude that A > 0 — F(\,y) vanishes at most
twice. The last assertion is a consequence of the first part of (11). m

Let us now derive necessary conditions on h for (8) to hold.

If (8) holds then ¢ — v,(tV t(z),z) is non-decreasing. As a consequence,
when z €]K*, K|, Ov,(t,z) > 0 for t > t( ) i.e. when y €]a, b, F(\,y) >0
for A positive and small. For 2 < K*, t(z) = 400 ie. infov,(t, ) =
liminf, , | v,(¢,x). Since A > 0 — F()\, y) vanishes at most twice, so does
t >0 — 0v,(t,z). Hence when x < K*, 0yv,(t, ) < 0 for ¢ big enough i.e.
when y < a, F(A,y) < 0 for A positive and small.

Since F'is continuous, to get the previous sign conditions, we need F'(0,a) = 0
e.g. h is a probability measure

/b (du) = 1 (12)

As F(0,y) is independent of y, the sign conditions then imply respectively
O\F(0,y) > 0 for y €la,b[ and \F(0,y) < 0 for y < a. Since F is C*,
O\F(a,0) =0 e.g.

b
/ (u — a)*h(du) = (b — a)? (13)

The necessary conditions (12) and (13) will turn out to be sufficient for (8)
to hold:

Proposition 7 If Vy < b, h(Jy,b]) > 0 and (12) and (13) hold then
Vy € la,b[, 3N (y) >0 suchthat F (X" (y),y) =0
F(Ay) >0 for X€l0,\" (y)]

F(\y) <0 for A>X(y) (14)
Vy>b,  YA>0,F(\y) >0 (15)
Vy<a, VA>0,F(\y) <0 (16)

10



Proof. By (12), Vy € R, F(0,y) = 0. It is easy then to deduce (15) from
(9).

Next, Vy € R, writing (v — y)? = (v — a)? + (a — y)* — 2(y — a)(u — a),
developing (b — y)? in a similar way and using (12) and (13) we get

b b

PO = [ (=) hdn) =5 0= = -a) [ (- whd).

— 00 —00

Hence 0,F(0,y) is positive (resp. negative) for y > a (resp. y < a), which
implies that F'(\, y) is positive (resp. negative) for A positive and small when
y > a (resp. y < a). By Lemma 6, when y < b, F(A,y) is negative for A
big enough. Moreover, as A\ — F(A,y) vanishes at A = 0, this function
vanishes at most for at most one A\(y) > 0 and then 0,F(\(y),y) # 0. By
the intermediate value property, we deduce (14) and (16) for y < a. As
F(0,a) = 0,F(0,a) = 0, the function F'()\, a) does not vanish for A > 0 and
(16) also holds for y = a. m

Setting A*(y) = 0 for y < a and A\*(y) = +oo for y > b, then Vy €
R, @(e¥) = vy,(A*(y),y). It is enough to check that @ is continuous and that
A* is continuous and non-decreasing to conclude that (8) holds. Let us now
turn to a detailed study of \* and .

2.2 Behaviour of \*(y) for y €]a, ]

Proposition 8 Under the assumptions of Proposition 7, the function \* is
analytic and increasing from ]a, b to R and satisfies

lim X" (y) =0, lim \* (y) = oo.

y—at y—b—

More precisely,
N (y) (b= y)* =y 0. (17)

If we suppose moreover that dh is absolutely continuous in a neighborhood of

b i.e. for some b, €la,b] h(du) = h(u)du on |b,,b[ and that lim,_,- h(u) =
h(b~) > 0 exists, then

lim L@/)Q S (18)
u=b= A" (y) (b —y) 2

11



Lastly, the following equivalent holds for \*(y) asy — a™ :

b

A (Y) ~ysa+ 8(y —a) /_

(b—u)%(du)/(/_ (u—a)ih (du)—(b—a)4>. (19)
In case, f_boo(u — a)*h(du) = +oo (& fOK In*(r)r*T m(dr) = 4o00), (19)
means that \*(y) = o(y — a).

Before coming to the proof of the proposition let us notice that (18) is equiv-
alent to the equivalent of Barles&Alii [2] and Lamberton [3]:

Lemma 9 Let \* (y) — 0o asy — b~ . Then (18) holds if and only if

Ny b-y)?
AT )

Proof. If (20) holds then In(A*) 4+ 2In(b — y) — In(In(A\*)) — 0. By dividing
by A (b — y)?, which is far from zero since it goes to infinity by (20) we get

In In(b— In(In(A* In(In(A
A*(é y))2 + 2)\*((1)_5))2 — Af(b( ))) — 0 which gives (18) since 1((/\(*))) — 0.
Conversely we get from (18) In(—In(b —y)) — In(\*) +21In(b — y) - —In(2)
whence if (18) holds bl — AL, 9 B4 — 0 then (20) since
In(— In(b—y)) S50 m

In(b—y) )

(20)

Let us now prove the proposition:
Proof. We first compute the first order derivatives of F :

@F@w)=:A(w—yw%“ﬂf—/w@w—wfﬁww%um)

o0

F(y) = —3b=we 100 g [ ey A0 i),

Let y €]a,b[. Applying Jensen inequality to the strictly convex function
z1In(z) and the moment equality F'(A*(y),y) = 0, we get O\F'(A\*(y),y) < 0.
Moreover, using F'(A\*(y),y) = 0, we get

@ﬂxw»mzAmn/ (b — w)e™ 5200 (du) > 0.

—00

12



Now the price v, (¢, z) of the European option is analytic on R x R’ , there-
fore 0y, (A, y) is analytic on R x R. Since for y €]a,b[, A*(y) is the unique
A > 0 solution of d,v, (), y) =0 and

Ox (Gr0p (X" (), ) = C(X* (1), Y)ONE (X (), y) <0, 9y (910, (X" (y), y)) > 0,

by the implicit functions theorem for analytic functions \* is analytic with a
positive derivative on |a, b[.

We deduce that A*(y) has a limit when y — a®. Since F' is continuous,
F(lim,_,,+ A*(y),a) = 0. Now the unique A > 0 such that F(\,a) = 0
is 0. Hence lim, ,,+ A*(y) = 0. By a similar reasoning, we check that
lim,_,,- A*(y) = +o0.

To precise the speed of convergence, we recall that \*(y) is given by

* b *
B R U / e 2(1"1)(“73’)27L(du). (21)

—o0

Asy — b7, A*(y) = +oo and Vu < b, e~ Y w-9)® 5 (). Hence by Lebesgue

theorem the right-hand-side of (21) goes to 0 and A\*(y)(b — y)? — +o0.
Let us now turn to (18). By Lebesgue theorem,

. 2y—b N . 2y—b x ~
e 2(y)(by)2/ e 2 Wy (du) = / e byt gy —y—b- 0.

—o0 —o0

We now suppose that iL(du) has a density h on |bs, b[ and that lim,, ;- B(u) =
h(b~) > 0. Setting u =y + [ (b — y) we get from the above remark:

~  (b—y)h(b") / e 3B g

Therefore, by the Laplace method,

% - 1 * *(y 2 —y 2 .
( 1 >>\ (¥)(b—y)? N (h(b_)/ e_Aéy)(()_3/)2(/[32_1)dﬁ>X () b=y) S sup 6_(/82_1) — e

b—y Bel-1,1]

13



which gives (18).
To precise the behaviour of \*(y) as y — a™, we make Taylor expansions
in (21):

YO 14 o)

_ /boo (1 - %(y)(u — )2+ %‘y)z(u —y)! /01(1 - 9)6—“3(”<u—y>2d9> B (du)

which simplifies after (12) and (13), writing (b —y)*> = (b — a)* + (y — a)* +
2(b — a)(a — y), developing (u — y)? and also (b — y)* in a similar way, to

b

Yo - [
= vt [0 e e ) o

—0o0

(b — w)h(du) + W oM (y)?)

In case f_boo(u — a)*h(du) < +o0 the r.h.s. is equivalent to
b ~
X ()? / (u— a)h(du) /5.

Since h is not a Dirac mass, by Jensen inequality

/b (u— a)4}~z,(du) > (/h (u— a)2f~1,(du))2 = (b—a)* according to (13)

o0 —00

and we deduce (19).
This assertion still holds in case f_boo(u — a)*h(du) = +o0: indeed by Fatou

lemma
1 _ b - B
/ TQ (/ (u— y)4e_”2( )(“_y)2h(du)> df — +o0.
0 —

o0

2.3 The price along the theta-zero curve

The interesting price is obtained by setting A = A* (y) :

14



Proposition 10 Under the assumptions of Proposition 7, the payoff o is
given for x between K* and K (y between a and b) by

ae=iG (¢) = ea(a—y)_ea(b—y)N< b )\/—_<a+1> %>
Wb ((b— ) VA <a+1> 7)
e /booe(““““ 2 ( DV — (a;ﬂ)

a—1)(b— b a+1)(u ]_ 1
+e(?z(by)/ e Mh(du)N((u—y)\/_—<aJ2r )—)\)

where A = X* (y) > 0 is given by F(A\*(y),y) = 0.

2.4 Computation of ¢’ for K* < z < K:
By derivation of (e¥) with respect to y (see Appendix D), we obtain :

Lemma 11 Fory €]a, b,

Sr{ena- (453

b
_—(at)y —<a.1>b/ lethug N(_ NV — <a+1> 1 )
€ e 2 e 2 u u

(a—1)b

+— /_booeWﬁ(du)N<(u—y)\/_—<a;1>%> (22)

where A = X* (y) > 0 is given by F(A\*(y),y) = 0.

2.5 Behaviour of ¢ as z — K**:

Proposition 12 Under the assumptions of Proposition 7,

lim ¢(zr)=K - K".

z—K*T

15



Moreover, lim,_, .+ ¢'(x) = —1 and
. P@)+1 a+1
lim =
ekt r — K* K*
i.e. the behaviour of p(x) when v — K** is similar to the one of the perpetual
Put price and @ cannot be equal to K — x on [K*, K].

> 0.

Proof. We recall that lim, ,,+ A*(y) = 0. Hence, in the expression of
e *p(eY) given by Proposition 10, when y — a™, the first term has a limit
equal to 1/a and the second and third terms go to 0. The fourth and the
fifth term also vanish according to Lebesgue theorem and the following upper-
bounds: Yu < b, Yy > a,

e (5 5)

6_(a;_/\1)2 ) N e(a+1)2(b—a) N (_ o+ 1> 1
{u—y<—(a+1)/47} 4\/X {u—y>—(a+1)/47}

_(at1)? (a+1)(b=a) a+1
e s +4+e 2 NJ|-—

4\
(e () )

_ (a+D)(at+1-2vN)
4N

< e Lw—ypva(28) 513
1 (atl)(u—y) _1 (u_y)ﬁ_(a_l)L 2
e : ERVAVIN
+ \/%e 2 e 2( 2 /\) 1{(u—y)ﬁ—(“71)%§—1}
_ (a+D)(a+1-2vX) _ (at+1)?
< [5) +e 8\

Hence lim,_, .+ §(z) = e*/a = K*/a = K — K*.

Denoting by T;(y), 1 < ¢ < 5 the terms of the right-hand-side of (22), we
have T)(a) = —e™® and T{(a) = (a + 1)e=*. We conclude the proof by
checking that V2 < ¢ <5, Vn € N, lim,_,,+ Ti(y)/(y — a)" = 0 thanks to (19)
and the previous upper-bounds. m

2.6 Behaviour of p as ¢ — K:

Proposition 13 If the assumptions of Proposition 7 are satisfied and

K Ko — K*«
/ r® th(dr) = ——
0 (07
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which is equivalent to

where IR (o
h (du) = ae(a_l)‘z(u_b) (c")

eu
then R
lim $(x) =0 and lim ¢'(z) = —1.

K~ K~

Proof. Since lim, ,;- VA(b — y) = +oo, taking the limit y — b~ in the

expression of e “¢(e¥) given by Proposition 10,
(a+1)(u=b) ~

b
lim e “p(e¥) = +0—-—+ —/ e 2 h(du)+0
y—b- o a o f_o

— (ea(a—b) — 14 e—ab(eab . eaa)) /CY =0
Taking the limit in (22), we obtain

—b b _
lim efaa(ey) — _ea(afb)efb +0— 6_ . ef(a+1)be(a721)b / e(agl)u h(du) 40
y—b— (0% —00
e 1
— _ea(a—b)e—b s 6—(a+1)b(eab - eaa) — —€_b 1+ —
o} Q
= —e
|
Remark 14 e In case dh is absolutely continuous in a neighborhood of

b with a density h such that lim,_,, h(u) = h(b~) > 0 exists, it is
possible to prove that the second order derivative of » at K~ depends

on h(b™) :
-~ (LY N T
k- T —K y—b— y—b K
e Under the assumptions of the Proposition, we have Y(K™) =-1=

o~

P'(K7). If moreover, the above assumption on dh is satisfied, we can
check that o"(K~) = %(b_) = @"(K~). The equality of the first and
second derivatives of ¢ and @ at K~ is not surprising since fory €la, b|,

o(e¥) = v, (#*(y), ey) and #*(y) =o((b—y)?) asy — b".
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3 The main result

We are now ready to summarize all the properties of #(x) = 1/(c?\*(In(z))
and @ and to apply the embedding result of [1|. First we state a theorem
which is a direct application of [1], then a modification well-suited to the Put
case.

Note that (12) and (13) rewrites into the two last conditions on A in the
following theorem.

Theorem 15 Assume that

o) = (K — 1) () = LD e [T e

where h is a positive measure on |0, K[ such that Vo < K, h(]z, K[) > 0 and
K
/ r*"th(dr) = (K%—K")/a
0
K a=3 a—1
/ rz h(dr) = K= Ja
0

K
/ W2(r /K2 h(dr) = K5 n2(K/KY)/a
0
then P(x) = infy>q v, (t, ) is continuous equal to 0 for x > K, equal to (K —
K*) (&)™ if < K*, satisfies §(K*") = §'(K™) = —1 and §"(K**) =
(a+1)/K*. Moreover 3(x) = v,(t(x), x) wheret is continuous, non-increasing,
analytic on |K*, K[, equal to 0 for x > K and to +oo for T < K*. The price
of the American option with payoff @ is vg"(t,x) = v, (t V t(z), x).

Here is now the main result:

Theorem 16 Under the assumptions of the previous theorem, the payoff
on(x) = (K — 2) gk + @(x)lizskey s continuous and its American
price s given by

(K =) Lpzsey + 0, (VT (@) ) Lo

Proof. It is easily seen that @y (z) = (K —2)" < (K — K*)(z/K*)~® =
P(z) for z < K*, therefore the American price vg" (¢,z) is smaller than

18



vg™ (t,z). Now in the region z > K*, the American price of @, is greater
than v, (¢ Vt(z) ,x): indeed the latter may be written as E[e "), (X7)]
where 7 is the entrance time in the region {t < ?(az)} (convention 7 = 0 if
t < t(x)) and $p(X?) = H(X?). Therefore vgh (t,z) = v, (t Vit(z) ,z) for
x > K* and also > K* by continuity. In particular the line x = K* is
contained in the Exercice region.

Take now a point (¢, ) with © < K*. By the optimal stopping represen-
tation of the American price, one has

vg (t,2) = sup E e (X7)]
where 7 runs across the set of stopping times of the Brownian filtration less
than the crossing time 7* of the boundary {(0,z), x < K*}U{(¢, K*), t > 0}.
In this area @, is equal to the Put payoff, therefore this quantity is less than
the American price of the Put. But by definition of K* we lie in the Exercice
region of the American Put, so v3" (¢,z) < (K — 2)" and on another hand

(K —2)" =@, (2) < vg” (t,z).m

Remark 17 The same result holds for any continuous payoff obtained by
replacing p(x) under K* by a continuous function ¢(x) smaller than (K —
K*) (&)™ with (K*) = (K — K*) and such that the region {x < K*} lies
in the Exercice region of the modified payoff. For instance in case k < K* it is
easy to check by comparison with the Put option that the region {x < K*} is
included in the exercise region of the American Put-Spread option with payoff
(K—x)t—(k—x)t = (K —k)A(K —x)". Hence the price of the American
option with modified payoff P (x) = (K —k)AN(K —2) T 1z<k+} +P(2) 1 {z> k)
s

~

(K — k)N (K — 37)+1{$§K*} + 0, (tV EH(x), )L {zs k-

It is natural to wonder whether the payoff ¥}, is non-increasing like the Put
payoff. The answer is positive at least for values of « of practical interest
since :

Lemma 18 There is a constant oy < 1/2, such that when o > «p, under
the assumptions of Theorem 15, both @ and @y are non-increasing.

The proof of this Lemma is postponed to Appendix E.
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4  Discretization

In this section we solve a discretized version of the program:
inf sup |3, () — (K —2)"
inf sup |2y (z) — (K — )|

where H is a low-dimensional subspace of the set of measures h which verify
the moment conditions of the theorems.

4.1 Normalization

For practical purposes, it would be interesting to get a measure h* which
depend on as few parameters as possible. It will certainly depend on «, but
we can design an approximation which will work for every value of K in the

following way: we normalize the situation so that K* = 1, (any other value

would work!), therefore K = k “ +1

This does not matter in the following sense: to emphasize the dependence on
the strike K, we denote by v%7, (¢, x, K') the American Put price for the matu-
rity ¢t and the underlying value x. If we manage to design an approximation
such that, for a given value of ¢ :

sup |vpy; (t, @, k) — Approx (t,z,k)| < e
T

then since obv10usly vEm (t,x, k) = —Uput (t, %x, k:) , the approximation by
?Approx( , K,x k:) will satisfy
K k K
sup ven (t,x, K) — ?Approaj ( ek k'> <€

In other words, the error we face in term of a percentage of the strike K is
given by <.
>From now on we work thus with:

def

1
K=LkYK=1+-,(K-kK™ =K K" =
(6%

e

and with the variables y = In(x) and A = 1/(c%t)
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4.2 Choice of a peculiar class of h

We further restrict ourselves to a peculiar class of measures h which lead to
easy implementation. Whatever the measure h at hand there is a priori two
steps to obtain v3" (A, y) for given values of y €]a =0,b = In(k)[ and A > 0:
first compute the value of the theta-zero curve i.e. find A\* (y) €]0, +oo]
solving F'(A*(y), y) = 0 then compute the price v, (A A A*(y),y) = v3"(\, y).
In general both steps require numerical procedures, a dichotomy to find the
zero of the time derivative (there is exactly one for every y €|a, b[ after the
above calculations), next a numerical (one-dimensional) integration (with
respect to TL) to get the price. In case y > b, only the second step is required
since \*(y) = 400 and in case y <0, v3" = (k — ev).

We choose to work with a low-dimensional family of combination of point
measures. This allows the direct computation of the price at the second step.

Notice that the condition A(]y,b[) > 0 for y < b is not satisfied yet:
so we add a uniform measure £1jg,du, for which it is easily seen that the
corresponding contribution to the price may be computed explicitly. We have
implemented the case of 3-points measures, which gives already astonishing
results. Our family may be parametrized in the following way:

h (du) = 81]07b[du
+ﬁ 610g(7“1) (du) + 7610g(7"2) (d’LL)
+ (1 —eb—= 5 —7) biog(ry) (du)

withe >0,eb<1,8>0,y>0and f+v<1—¢b.
By convention we choose log (r1) < log (r2) < log (r3) .

Remember that the support of h should lie below b, so we further set

log (r3) = pb

and also

log(r1) = zipb
log(r2) = zapb

Therefore the parameter (g, u, 1, z3) should live in: 0 <e <b, p <1, 2; <
) S 1.
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For a given value of (¢, p, 1, x9) we compute the values of 5 and v which
fit the two remaining moment conditions:

/ b Wh(du) = b

o0

b ab
(e+Du~ e —1
/ e 2 h(du) = @15
—0o0

This translates in the 2x2 linear system

1 1

(at+D)(zy—1)pb (at+1)(zo—=1) pb
(1 —e 2 ) 0+ (1 —e P ) ¥

9 _(a+é)ub
I [ — (e(agl)b - 1) —b|+1-— P R (1 - e’ab)
(a+1)

which gives close-formula for 3 and 7. In case one of the conditions 5 >
0, v > 0 and f+v < 1—¢b is not satisfied the point (g, i, x1, x2) is rejected,
otherwise we sample the range |0, b[ with n points, say y; = %b with0 <7 <n
and for every y; we proceed as follows.

4.3 Calculation of \* (y)

We find A\* (y;) by a dichotomy algorithm making use of the closed formula
for F' (A, y) . This is obviously very fast, altough a little care is required when
y; is near 0 or b to deal with possibly very high or small values of \* (y;) .

4.4 Computation of the price

This is also very fast since no numerical integration is required. We make use
of the standard approximation of the normal cumulative distribution which
relies on the classical series expansion.

4.5 Selection of the optimal point
Then for a given value of (g, i, 1, x2) we compute the error quantity

err (&, ft, T1, T2) = sup ‘@(eyi) — (k- eyi)"“
i
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and next after a clever or systematic scan of the domain we pick the point
which minimizes this criteria, with a value err* = err (¢*, p*, o7, 23). The
corresponding American payoff is denoted by @*.

4.6 Archiving the results

The optimal point will depend on «. In practice we maintain an archive with
100 values of « equally sampled between 0.5 and 50.0 (for an annual interest
rate of 5%, o = 0.4 is 0 = 50%, o = 25.6 is 0 = 6.25%). The computation of
the archive is done once for all, the practical usage for the ambient value of
a consists in picking up the closest value of the table or performing a linear
interpolation since the optimal point, for our choice of the domain at least,
depends “continuously” on «.

Therefore the computation time is that of the dichotomy (typically ten
iterations...) and of the price, which is very fast.

4.7 Numerical Results

Let us first plot err* as a function of «, expressed in percentage of the strike
K
0.3

0.25 \
0.2

%K 0.15 \

T T T I
Err* in % of the strike K ——

0.1

0.05
\

m—

T

—
—_—

05255 10 15 20 25 30 50
(0%

The fact that this plot is decreasing corresponds to the fact that the
size of the range |K*, K[ increases as « decreases, whereas our family of
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approximating payoffs does not get richer as a decreases. It seems that at
least for values of o not too small, this error is relevant in practice.

Here are now the difference D(x) = ¢*(z) — (k — )T for @ = 1, in
percentage of the strike & = 2 and next of the premium at maturity (i.e.
(k —x)"):

Error

Error
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0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25

60

T T T T
Error in % of K »~\

\ [\
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N

A

1.3

1.4 1.5 1.6 1.7 1.8 1.9 2
Spot

50

I T T T
Error in % of the Premium

40
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20
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-10

1.1

1.2

1.3

14 1.5 1.6 1.7 1.8 1.9 2
Spot

The price error will be much smaller since err* is the maximal error
over the underlying and since it will be smoothed by the probability law
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of the spot value at the time the free boundary is reached and reduced by
the corresponding discounting factor. More precisely, if 7., and 7, denote
respectively the entrance times in the exercise regions of the American Put
option and of the American option with payoff ©*, then

ot a) = B[ (k= X2 )*] and o (tw) = B [ 5 (XD)]

and as 7, and 7, are optimal stopping times, we easily check that

v (t,2) —E [e*pT*D(Xf*)] < vpy(t,x) < vzl (t z)+E [eiPT"Pt(—D(Xfopt))] )
The larger the maturity, the more effective the smoothing of the error. The
next plots show the comparison with a heavy finite-difference method (PSOR
algorithm) with a large number of steps (500), so that the yielded price may

be considered as the right one, for different values of «.
20 0220%,025%,T|:1,K|:100

| |
YAAAP ——
18 PSOR 500 steps m

16
14
12
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S N e O

80 85 90 95 100 105 110 115 120
Spot
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o=20%,p=5%,T=2%,K =100

50

20 T T T T
YAAAP ——

PSOR, 500 steps
15
Price 10
)
0

80 85 90 95 100 105 110 115 120

Spot

5 Conclusion: practical considerations

In this paper, we apply the theoretical result in [1| to the pricing of the
American Put in the Black-Scholes model. We get a closed-formula for a
payoff which is very close to the Put payoff. Let us insist on some remark-
able features of our approximation: unlike many other kind of numerical
approximation methods there is a hedge ratio associated to our price, which
can be computed through the same type of almost-closed formula. Moreover,
the YAAAP prices and deltas are the exact Black-Scholes American prices
and deltas of a contingent claim the payoff of which matches the Put payoff
below K* and above K, is analytic within the range |K*, K[, has the right
first derivative —1 at K} and K_, and lastly which deviates at most of err*
from the Put payoff within |K™*, K[. Therefore a safe way of making use of
our approximation method is to trade the corresponding sub- and super-
strategies with the YAAAP deltas and the selling price YAAAP price-terr*,
buying price price-err*, which leaving aside discrete-time hedging and model
errors considerations will allways yield a non-negative Profit&Loss. Remem-

ber that err* is less than 0.15% of the strike as soon as % is greater than

2.
Because of the oscillating behavior of the difference @(x) — (K — )™, in
case of the trading of a portfolio of Puts spread across different strikes it is
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likely that the YAAAP prices may be used directly since the Profit&Loss for
the different strikes will compensate eachother.

A Proof of lemma 2

Indeed by (4):

2 K m(dr)
— -« 2 -« A a+1 "\
QD(.’L') b.’L’ 02(a + 1).’L' A (T ‘T) 7”2
where by (6) b = % fOK r®~tm(dr). Therefore
2 -« K a—1 (7” A x)a-}-l
p(z) = mﬂf /0 [r - T]m(dr)
Now m = "22K2(5K(dr) - 1}07K[(T)Mh, whence
—a K a+1
T B 4 (rAx)

— Ka—l—l_K at+l] aK*/ al_ihd
oo) = gl - (K na) ) =i [ 2 Jngar)
For x < K

r%p(x) 1 e /K rett — (r Az)ott h(dr)

Kotl — (K Az)ett — (a+1) Kotl — (K N x)otl p2

T.a+17(7,./\$)a+1

ro 1 . K oa— fo] * QY
Now gasr—(rmeer < farr, Plugging [ r* ' A(dr) = (K* — K*°) /o we get
z%p(x) ! @ a
> >0
Kotl — (K Azx)ett = (a+ 1)(a+ 1)

and ¢ is non-negative.

B Behaviour of the European price as the ma-
turity goes to +oo

We prove here the following:
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Proposition 19 Let ¢ : Ry — R a measurable function such that

sup |¢|(z)/(z + %) < +00
x>0

e(x) p(z)

r—«

If a = lim, and b = lim,_,q+ exist and are finite, then

tlggo v,(t, x) = ax + br~
Proof.
v (t,1) = e "Elp (X])]
Xx
B R
XP + (X7)
i (X7)

E ¥ (Xt ) — ethtl] + T °F |: ¥
) Xt +

Xy + (X¢ (X¥)

0'2 . .
Since e "X} = e“Pt=7! by Girsanov theorem the first term is equal to

p Y _ 2,2 5,2 ~ .
zEP [71/901((;2)_& ] where Y;* = geftto(Bimot)+oit=5t — pepttoBitst and B is
t t

~ ~ ~ 0_2
a P Brownian motion. In particular P a.s., e?ToBt+5t 5 o0 as t — oo.

Therefore by Lebesgue theorem limy_, E” [% ] = lim, o)

_ —Q — _a g
In the same way e #' (X})™" = e 7B~

second term is equal to

e ((25)7+)
Zi +(21)

! is a martingale and the

~ 2 2
7a€pt+aert+ a 2"

v °EF where Z =2z L

Q=

-

L'O(y_a) =@ limy_m e(y) m

y—r

Therefore it goes to 27 lim,_,

_1
@

y+y
C Proof of lemma 3
One has
eMv,, (t,x) = ra“x’ae_a(p_é)tﬂﬂ [exp (—aoBt) LiarB,>al(2)}]
+xe(p_§)tE [exp (0By) I{UBKZ(I)}}
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where 2
= (5) - (r-5)¢

(a0)?
9

Since a% = p and ap =

oo 2
Ve, (t,x) = e ) [exp (—aoBy) 1{a03t>al(x)}}

+ae” B [exp (0B) o<t

Now,

, 2 00 _ 22 d
e~ TR [exp (—vBy) 1{"/Bt>6}] - 6_%t/ e mn :
B

In the same way

i Byt
e 7'E [exp (YBy) Liyp,<py] =N ( 2
ot
Whence
l *t L) — 0%
ve, (t,w) = 1Mz N | — aoi(o) + (o) ol (0 Y 2 :
(ao)’t o




D Computation of ' for K* <z < K

Fory €la, b, P(e¥) = Pp(A\*(y),y) is given in Proposition 10. Since 0yv,(A*(y),y) =
—W@%(A (y),y) = 0, derivation with respect to y yields :

e ‘P(e?) = e e G R e U Y (— (b—1y) VA — (a ;— 1) %)
~vealb-y) a+1) 1
T TN (- )V - —
o (e-a- (55) )

o (5) )
+%bﬁz\f' ((b—y)\/X— (O‘;1 %)

b
a— @ [ ]- ]-
ety 21)b/ o5 h (du) N (- (w—y)VA- a—; ) —)\)
_(a+1)y a—1 b o7 lu 1 1
— eg/ o (dU)\fN'< (u— )\/X—<Oé;r ) A)

(a—1)b

— /_;e”*zl”‘%(du)z\r((u—y)f— <O“2”> %)
N

(a—1)b

o /; -y, (du)\/_N’<( )f—(O‘Q1 %)

where for notation simplicity A stands for A*(y).
Since

e (i (1) ) A e

using the definition of A*(y), we obtain that the sum of the third and the
seventh terms of the r.h.s. is nil. Similarly the sum of the fifth and the ninth
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terms is nil.

E  Proof of lemma 18

If ¢ is non-increasing then V¢t > 0, x — v,(¢,x) is non-increasing. Since
P(x) = inf;>gv,(t, z), the same property holds for @ and for the modified

payoff &y,.
Therefore, we are going to study the monotony of ﬁ Let x < K. We recall
that (z go( ——020‘me'”— —z% + %K [ hidr) - As

o(2) = (K~ K) <[:>a— K <a: /K h(r‘ir) Fae /0 ralh(dr)> ,

and 1/(a+1) = (K — K*)/K, we deduce that

() = (K — K°) (xaa / i o R !

r2 T T

We upper-bound f

second moment assumption on A :

/ h(CiT) < o / r%h(dr) _ K ‘
z r 0 o

Combining this inequality with z/K + aK**/z > 22°7 \/aK**/K we ob-

tain

2% (1) < (K — K*)a* T K% (1 —9 a(K*/K)a) .

Hence ¢ is non-increasing as soon as 4« ( +1) > 1. It is easy to check that
the function « €]0, +oo[— f(a) = 4a (a+1)a is increasing. Since f(1/2) =

4/3 > 1 and lim,_,o f(a) = 0, the equation f(«) = 1 has a unique solution
ap. Moreover ag < 1/2 and Va > «g, ¢ is non-increasing.
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