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Abstract

In this paper, we give a probabilistic interpretation of a viscous scalar conservation law
in a bounded interval thanks to a nonlinear martingale problem. The underlying nonlinear
stochastic process is reflected at the boundary to take into account the Dirichlet conditions.
After proving uniqueness for the martingale problem, we show existence thanks to a propa-
gation of chaos result. Indeed we exhibit a system of N interacting particles, the empirical
measure of which converges to the unique solution of the martingale problem as N — +o0.
As a consequence, the solution of the viscous conservation law can be approximated thanks
to a numerical algorithm based on the simulation of the particle system. When this system
is discretized in time thanks to the Euler-Lépingle scheme [10], we show that the rate of
convergence of the error is in O(At + 1/v/N) where At denotes the time step. Finally, we
give numerical results which confirm this theoretical rate.

1 Introduction

We are interested in the following viscous scalar conservation law with non homogeneous
Dirichlet boundary conditions on the interval [0, 1] :

Du(t,x) = T Lou(t,x) — ZA®(t,2)),¥(t,z) € (0,+00) x (0,1)
Vz € 10,1], v(0,2) = vo(x), (1.1)
vVt >0, v(¢,0) =0 and v(t,1) =1,

We suppose that A : R — R is a C! function and that the initial data vg is the cumulative
distribution function of a probability measure Uy on [0, 1], which writes Vz € [0, 1], vo(z) =
Uo([0,x]) = H x Up(z) where H(y) = 17,>0; denotes the Heaviside function.

After giving a probabilistic interpretation of the solution of this equation thanks to a non-
linear martingale problem, we want to derive and study a particle approximation of this
solution. Our main motivation is that the spatial domain in equation (1.1) is bounded. To
our knowledge, the only paper about a probabilistic particle interpretation for the solution
of a partial differential equations posed in a bounded spatial domain is [1], that is dedicated
to the 2d inviscid Navier Stokes equation. In [1], the authors do not prove the convergence



of the proposed particle method. By considering the much simpler equation (1.1), we are
able not only to prove the convergence but also to bound the associated rate.

When the viscous scalar conservation law is posed in the spatial domain R instead of [0, 1],
one can show that its unique weak solution is equal to H % P;(x) where (P;)¢>o denote the
time-marginals of the probability measure P on C([0,400),R) characterized the following
martingale problem nonlinear in the sense of McKean [4] [§] :

Py =Uy
{ Vi € CE(R), o(X:) —p(Xo) — fot [";(p”(Xs) — A'(H x Ps(X5))¢'(Xs)| ds is a P-martingale

where X denotes the canonical process on C([0, 00), R).

Here, we follow a similar approach. To take into account the Dirichlet boundary condi-
tions, we work with a diffusion process with reflection. That is why we introduce (X, K) the
canonical process on the sample path space C = C([0, +00), [0, 1]) x C(]0, +o0), R) (endowed
with the topology of uniform convergence on compact sets). For P in P(C) the set of prob-
ability measures on C, (Pt)tzg is the set of time-marginals of the probability measure P on
C([0,+00),[0,1]) defined by P = P o X 1. We associate the following nonlinear problem
with (1.1)

Definition 1.1 A probability measure P € P(C) solves the martingale problem (M P) start-
ing at Uy ® o € P([0,1] x R), if

i) PO(XO,Ko)_l :Uo®(50

i) Vo € CRR), (X~ K1)~ p(Xo—Ko)— f§ 5" (Xy—K,)+ A (H+Py(X,))@! (X, ~ K,)ds
1s a P martingale

iil) P a.s.,Vt>0, [[dK|s < +oo, |K|i= [y lio1) (Xs)d|K|s and K; = [} (1-2X,)d|K]|,.

In section 2, we prove that if P solves problem (MP), then (t,z) — H * P;(x) is the
unique weak solution of (1.1). We deduce uniqueness for the martingale problem. Existence
is obtained thanks to a propagation of chaos result for a system of weakly interacting diffusion
processes.

In section 3, we discretize this system in time thanks to the version of the Euler scheme
introduced by Lépingle [10]. This way, we derive a numerical method to approximate the
solution of (1.1). We prove a theoretical rate of convergence in O(At + 1/v/N) where At
and N denote respectively the time-step and the number of particles. This rate is the same
as the one obtained by Bossy [3] when the spatial domain is R. As an important step in the
proof, we show that in case the diffusion coefficient is a constant, the weak error of the Euler
Lépingle scheme is in O(At). To our knowledge, this is the first result concerning the weak
error of this scheme.

The last section is devoted to numerical experiments which confirm the theoretical rate of
convergence of our particle method. The treatment of the reflection by the Euler Lépingle
scheme does not alter the convergence whereas we exhibit a sublinear numerical dependence
on the time step At when the particle system is discretized thanks to the cruder Euler
projection scheme.

To conclude the introduction, we should mention that using signed weights like in [8] and
[3], we could extend our approach to deal with the following more general boundary condi-
tionsin (1.1) : V¢ > 0, v(¢,0) = a and v(t,1) = b, and Vz € [0, 1], vo(x) = Up([0, z]) where Uy
is a bounded signed measure on [0, 1] satisfying the compatibility condition Uy([0, 1]) = b—a.
But we restrict ourselves to a simple case without weights to avoid further complication of
the already technical developments.



2 Probabilistic interpretation of the viscous scalar con-
servation law equation
For T > 0 let Qr = (0,T) x (0,1) and W3"* (Q7), W, "' (Qr) denote the Hilbert spaces with
respective scalar products (cf. [9])

(u,v) = Jo, (uv + 0yudyv)dzdt,
= fQT (uv + Opudpv + Opudsv)dzdt.

Wy (Qr)
Wy (Qr)

We introduce the Banach space V3" (Qr) = {u € Wy (Q7) N C((0,T), L*(0,1)) such that
||u||V2071(QT) = SUPp<i<T llu(t, z)l|2(0,1) + 102ullz2(0,) < +oo}. The corresponding sub-

(u,v)

spaces consisting in elements which vanish on [0,7] x {0,1} are respectively denoted by

0 0,1 o 1,1 00,1
Wy (Qr), Wy, (Qr),V, (Qr).
We first prove uniqueness of weak solutions of problem (1.1) defined in the following way :

Definition 2.1 A weak solution of (1.1) is a function v : LO, +00) x [0,1] = R satisfying the
boundary conditions and such that for any T > 0, v € V20’ (Qr) N L*(Qy) and for all ¢ in

o 1,1
Ws (Qr) and all t € [0,T],

/Olv(t,:c)¢(t,x)dx = /1 o(z)p(0, dx-i—/ / —¢ s, 2)v(s, z)dzds

// (v(s,z))dzds (2.1)
// an aiv(s,az)dazds,

Then we check that when P solves the martingale problem (M P), V (t,z) = H * P;(z) is a
weak solution of (1.1). Uniqueness for the martingale problem is derived from uniqueness
for this equation. The probabilistic interpretation is completed by a propagation of chaos
result which ensures existence for problem (M P).

2.1 Uniqueness result for equation (1.1)

Lemma 2.2 Equation (1.1) has no more than one weak solution in the sense of Definition
2.1.

Proof : Let v! and v? be two weak solutions of (1.1) and T' > 0. We set w = v! —v?. Then
50,1 o 1,1
wisin V, (Qr) and w(0,z) =0 for all x € [0, 1]. Moreover, for all $ € W, (Qr),

/Olw(t,x)¢(t,x)d:c _ /Ot/01%¢(8,$)w(s,x)d:cds

t 1 o L )
+/ / — (s,az){A(v (s,z)) — A(v*(s,2)) } deds  (2.2)

0
// 2&6 amw(s,x)dmds.

Thus, w is a generalized solution in the sense of Ladyzenskaja, Solonnikov and Ural’ceva
(cf. [9]) of a linear equation with uniformly bounded coefficients. We can apply results of
chapter 3 of [9]. In particular the identity ([9],2.13) of section 2, used to establish the energy
inequality holds and becomes in our case

—/ (z,t daz+/ / ( ) s, x)dzds s

/ / (s,2) {A(v" (5,2)) — AW (s, )} derds.



Formally, this identity is obtained by taking ¢ = w in (2.2) and integrating by part the first
term of the right hand side. As w is not sufficiently smooth to do so, the proof of (2.3) relies
on two steps. The first one consists in working with Steklov averagings in time of functions
¢ and showing that is it possible to integrate by parts the first term of the right hand side of
(2.2). The second one consists in proving that it is possible to replace ¢ by w in the obtained
identity.

Following techniques from chapter 3 of [9], we deduce from (2.3) that

.1 o 9 ow\”
min(2, Z) () 3 0, + /Q (52) ts.opaaas

8w 9
</t o (s,2) {A(v' (s,x)) — A(v*(s,2)) } duds.

Now we observe that for M = [|v!|| L (gz) V [|0* || (0z)

8w

|, 5z AW (5,2) - A?(s,2)) } dods

< sup (4@ [ Jwls,) |22 (5, )duds
(oA

|z|<M Ox

b ow
< A 2 —_— 2 d
< swp [X@lsuplo)ln [ 152

lz|<M
Vit
< sup @I [sup )l + 15 o |-
jel<M s<t

by using Cauchy-Schwarz inequality and the upper-bound 2ab < a® + b2. Thus

‘ ow\?
: 2 2 2
min(1, %) li‘é‘i () [22(0.1) + /Q | (6—) (s,a)dads| < OVillwlon o,
and hence,
min(1,0%) 1 o) < OVl g,
Choose t; such that
min(1, o)
t1 < T AT
then ||w||v20.1(Qt1) = 0. Now, for t > t1, Equality (2.3) gives
I trle? (ow\?
= t)d — | = dxd
2/0w(:c,):v+/t1/0 5 (833) (s, z)dzds
:/ R ) A0} (s, 7)) — A(v (s, 7))} dds
4 Jo o
and the previous computation shows that for any t» < 7' such that
min(1,0*)
to — 11 < T
||w||vzo,1(Qt1’t2) = 0. Finally, we can iterate this procedure to obtain that ||w||V20.1(QT) =0
Since T is arbitrary v! = v2. [ |



2.2 Uniqueness for the martingale problem (M P) and link with
equation (1.1)

Proposition 2.3 If P solves the martingale problem (M P) starting at Uy®do, then V (t, ) =
H x Pi(x) is a weak solution of (1.1). Moreover, uniqueness holds for the martingale problem
(MP).

Proof : Clearly the function V (t,2) = H*P;(z) is bounded by 1. Let T' > 0. We check that
the function V' belongs to VTZO’l(QT) and satisfies the non homogeneous Dirichlet boundary
conditions in (1.1) thanks to the following Lemma the proof of which is postponed.

Lemma 2.4 If P solves the martingale problem (M P) then for any t > 0, P; has a density
Pt which belongs to L*([0,1]) and it holds that

1Pell 22 (0,1 < C(1 + t=/") exp(Ct).

We still have to check that V satisfies the identity (2.1). Let ¢ be a C* function on
[0,77 x [0,1] with ¢(t,0) = ¢(¢t,1) = 0 for all t € [0,T]. We set 9(t,x) = [ ¢(t,y)dy. Then
1 is C°° with %(t, 0) = %(t, 1) = 0. According to Definition 1.1 ii), under the probability
measure P, 1 (X; — K; — fot A'(V(s,Xs))ds) is a local martingale with quadratic variation t
i.e. a Brownian motion. Thus, by It6’s formula

¢ [aw o2 0%

+ ——} (S,Xs)ds+IE/0 g—i(s,Xs)A'(V(s,Xs))ds

Eu(t, Xi) = BY(0,Xo) + E [ | ZH+ T O

0

As p, = %(S, .), we deduce that

' 0 avo Loy, OV
/Ozp(t,x)a (t,z)dz /1/} (z)dz —l—/o ; 85( )%(s,x)d:ﬂds

NaCT e
/ / P(s,x)A"(V (s :1:))6a (s,z)dzds.

Applying Stieljes integration by parts formula in the spatial integrals in the first and last

lines of the previous equality, we get identity (2.1) for ¢ a C*° function vanishing for z = 0

and ¢ = 1. As V is in V' (Q7) we can extend the identity easily by density for any function
o 1,1

pin W, (Qr). _

Hence V(t,z) = H % P;(x) is a weak solution in the sense of Definition 2.1.

Uniqueness for the martingale problem (M P) is derived from the uniqueness result for the
problem (1.1): if P and @ solve (M P), then for any (t,z) € [0, +00) xR, HxP; (z) = H*Qq(x).
Hence P and @ solve a linear martingale problem with bounded drift term A’(H * Py(z))
and by Girsanov theorem, P = (. [ |

Proof of Lemma 2.4 : We just have to adapt to the case of reflected diffusion processes
the proof of Proposition 1.1 of Méléard and Roelly [12]. According to Definition 1.1 ii),
under the probability measure P, (X, — K; — fot A'(V(s,Xs))ds) a Brownian motion. As
supj 1] |4’ ()| < +o00, by Girsanov theorem, under the probability measure @ € P(C) such
that

dQ 1 t _ 1, _
7P . =z where Z; = exp </0 ;A'(H * Py(X,))d(Xs — K) — ﬁAI (H * PS(XS))ds> ,

B = %(Xt — K;) is a Brownian motion starting at %Xo and (X¢)¢>o0 is the doubly reflected
process associated with (o5:)¢>0.



For ¢ bounded and measurable, since EF ((X;)) = E? (¢)(X;)Z;), by Cauchy-Schwarz in-
equality

202

EP (¢(X; 12;L'U,t$d$§X Lu A (z
(6 >>s(/0¢(> () ) ep< sup| <>|>

where u(z) = fol Po2t(2,2)Up(dz) and

1 (z—z—2n)2 (z+z+2n)2
e 2t + e 3t
7=z )

nez

pe(z,x) =

denotes the transition density of the doubly reflected Brownian motion in [0,1]. For any
(z,z) € R? we easily check that p;(z,z) < \/% + 1. Thus,

EF (Y (X)) < C1+¢71/%) exp(C)|¥]| L2(p0,1))

which gives the lemma. [ |

2.3 The propagation of chaos result

The system of weakly interacting diffusion processes with normal reflecting boundary condi-
tions is given by the stochastic differential equation :

XN = Xé’]tv +oWi+ [ A'(H % g (ngN))dst+ KN 2.4
KN = [y Loy (XPNKPN],, KpN = [(1=2X0N)d[ KN, i <N
where Y = &+ Z;\Ll dyin and (W',..., W) is a N-dimensional Brownian motion inde-
pendent of the initial variables (Xé’N, e ,XéV’N) which are L.I.D. with law Uy.

As supjg ] |A’(x)| is bounded, by Girsanov theorem, this equation admits a unique weak
solution. Existence for problem (M P) is ensured by the following propagation of chaos
result:

Theorem 2.5 The particle systems (X1N, KVN), ... (XNN KNN)Y are P-chaotic where
P denotes the unique solution of the martingale problem (M P) starting at U0®60 i.e. for fized
j €N the law of (XYN, KYN), ... (XIN KIN)) converges weakly to P®J as N — +00.

Proof : Except in the treatment of the discontinuity of the Heaviside function, we follow
the proof given by Sznitman [14] Theorem 1.4. When possible, we take advantage of the
particular form of our diffusion domain (the interval [0, 1]) to simplify the arguments.

By Proposition 2.3, uniqueness holds for problem (M P). As the particles (X, K®V),<n
are exchangeable, the propagation of chaos result is equivalent to the weak convergence of
the law 7V of the empirical measure p = % Ziil d(xin ki~ to a probability measure
concentrated on solutions of problem (MP) when N — +oo (see [13] and the references
cited in it).

Again by exchangeability the tightness of the sequence (7V)y is equivalent to the tightness
of the laws of the couples (X1, K1), As supjg 1] |4’ ()| < +oo, the laws of the processes
YEN = XLN _ KLN are tight. Since the map sending y € C([0, +00),R) to the solution
(x, k) € C of the Skorokhod problem is continuous (see [11]), we deduce that the laws of the
couples (XN K%N) are tight. Hence (V) is a tight sequence.

Let 7°° be the limit of a converging subsequence that we still index by N for simplicity and @
denote the canonical variable on P(C). We are going to prove that 7°° a.s., () solves problem
(M P). Clearly, 7*° a.s., Qo (Xo, Ko) ™! = up(x)dz®Jp i.e. 7 a.s., condition i) in Definition



1.1 is satisfied. To deal with condition ii), we set ¢ € CZ(R), p > 1,¢t > s > s1 > ... > s, > 0,
g € Cp(R?P) and define a mapping F on the set P(C) of probability measures on C by

t 2
o _
F(Q) =<Q, (‘P(Xt - Ki) — p(Xs — Ks) — / ?‘P”(Xr - K;)+ AI(H * QT(XT))(IOI(XT - Kr)dr>
9( X, Koy oo, X K )) >
The mapping Fj, defined like F' with the Heaviside function H replaced by the Lipschitz

continuous approximation Hy(z) = k(z + 1) {~L<a<o} TL{z>0} is continuous and bounded.
Hence the weak convergence of 7V to 7 implies

E* |F(Q)| < limsup E™™ |F — Fi.(Q)| + limsup limsup E™ " |F — Fi(Q)| + limsup E* " |F(Q)]
k k N N
(2.5)

As the mappings Fj converge pointwise to F' and are bounded uniformly in k, the first term
of the right-hand-side is equal to 0. Applying It6’s formula, we check that the third term is
also nil. By the Lipschitz continuity of A’ on [0, 1],

t
5 P - @) < CE( <, [ (- 1) e ¥ (6> ).
Using the exchangeability of the particles X*V, i < N, we deduce that
t
limsup B |F — Fy(Q)| < C lim sup IE( / (Hy — H)(XBN — Xf’N)dr> : (2.6)
N N s

Using Girsanov theorem like in the proof of Lemma 2.4, we obtain that VN > 2, the couple
(XLNX2N) has a density that belongs to L2?([0,1] x [0,1]) with a norm smaller than
C (1+7r71/2) exp(Ct). Hence Vr € [0,t], E(H—H)(X}N-X2N) < O(t) (1 +r1/?) k5.
By (2.6), we deduce that lim sup, lim sup E*" |F — F(Q)] = 0. Hence each term of the
right-hand-side of (2.5) is nil and B~ |F(Q)| = 0. As a consequence, 7> a.s., () satisfies
condition ii) in Definition 1.1.
Let us check that 7% a.s., @) satisfies condition iii). The closeness of the following subset

of C

T t

FIM = {(:c,k)  klr < M, K|z :/ Loy (@o)dIkls, V¢ < T, ke :/ (1- 2xs)d|k|s}

0 0
which is stated in Lemma 2.6 implies that {Q € P(C) : Q(F1"M) > 1—¢} is also closed. By
the weak convergence of 7V to 7°°, we deduce

T{Q: QUETY) > 1—e}) > lmsupa" ({Q: QUETY) > 1 - €})
=1 -liminf 7V ({Q : Q({|klz > M}) > €})
< @, lklr >> _,_ liminfy E(EN )

N
> 1 — liminf E"
> 1t (S0 i

2.7)

As |KWN|p = fOT(l —2X1M)dKLN | by Ito’s formula, we obtain that |[K1V|r is equal to

1\’ 1> (7 r
<X§’N - 5) - (XQ;:N - 5) + / 2XIN 1A' (H « gN (X2N))ds + / o(2XHN — 1)aw}! + o*T.
0 0

Hence supy E(|KYV|r) < +oo. With (2.7), we deduce that 7°({Q : Q(Up=oF*7T) >
1 —€}) = 1. As € is arbitrary, we conclude that

(oo ) -

ie. 7 a.s. () satisfies Definition 1.1 iii) which puts an end to the proof. [ |



Lemma 2.6 The subset FT-M of C which consists in the couples (z,k) such that |k|7 < M,
klr = fof Loy (xs)d|k], and ¥t < T ke = [1(1 — 2z,)d|k|, is closed.

Proof : Let (z", k") € FT'M converge to (x,k) in C. AsVn > 0, |k"|r < M, by extraction
of a subsequence, we can suppose that the measures d|k|™ (resp. dk™) on the compact set
[0,T] converge weakly to da, a positive measure with mass smaller than M (resp. db a
signed measure). As k™ converges uniformly to k on [0,T], ¢t € [0,T] — k; is the cumulative
distribution function of the measure db.

If f:[0,7] — R is continuous, as z™ converges uniformly to z on [0, T,

T T T T
/ f(s)dbs = lim/ f(s)dk? = lim/ f(s)(1 —2z3)d|k"|s = / f(s)(1 — 2z4)das.
0 m Jo " Jo 0
Hence (1 — 2z,) is a density of db w.r.t. da and
¢
YVt € [0,T], ke = / (1 — 2x5)das. (2.8)
0

As (2™, k") € FTM fOT z?(1—2?)d|k"|s = 0. Letting n — +o00, we get fOT zs(1—z5)das =0
i.e. dasa.e. x5 € {0,1} and [1—-2x,] = 1. With (2.8), we deduce that da is the total variation
of dk and conclude that (z,k) € F©"M, | |

Corollary 2.7 It is possible to approzimate the weak solution V (t,x) = H % P;(z) of (1.1)
thanks to the empirical cumulative distribution function H x fil¥ (z) of the particle system.
More precisely ¥(t,z) € [0, +00) x [0,1], imn_ 100 E|V (t,2) — H x g¥ (z)| = 0.

Proof : Fort > 0 and z € [0,1], according to Lemma 2.4, the function @ € P(C) —
|H * Py(z) — H % Q¢(z)| € R is continuous at P. The weak convergence of the sequence
(7N)n to m° = &p implies

Jim B « Pi(a) — H i (@)] = B |H « Pi(x) — H * Qu(a)] = 0.
—400

In case t = 0, we conclude by the strong law of large numbers.

3 Particle method

In this section we describe a numerical particle method to approximate the solution V' of
equation (1.1) on [0,T] x [0,1] (where T is a positive constant) and analyse its rate of
convergence. According to Corollary 2.7, it is possible to approximate V (¢, z) by the empirical
cumulative distribution function H * g (z) = & Ejvzl H(x — XY of the particle system
(2.4). To transform this convergence result into a numerical approximation procedure, we
need to discretize in time the N-dimensional stochastic differential equation (2.4). To do so
we use the version of the Euler scheme introduce by Lépingle [10] which mimics the reflection
at the boundary. We choose At > 0 and L € N such that T = LAt and denote by Yt’l the
position of the i-th particle (1 <4 < N) at the discretization time ¢, = [At (0 <! < L). The
Euler-Lépingle scheme consists in setting 0 < ap < @1 < 1 and in generating exact reflexion
on the lower-boundary on [t;,¢;41] when Y;! < « and exact reflexion on the upper-boundary
on [t;, ti41] when Y > a;. The other cases of reflexion are treated by projection onto [0, 1].
We will actually let ag and a; depend on At in order to reduce the computational effort
but to simplify notations we do not emphasize this dependence unless necessary. Taking
advantage of the one-dimensional space domain, we invert the initial cumulative distribution
function Vp(z) = H xUp(x) to construct the set of initial positions of the numerical particles :

yé:inf{z:H*Ug(z)Z%} for 1<i<N. (3.1)



At time t;, the function V' (¢;, ) is approximated thanks to the empirical cumulative distri-
bution function

N
— 1 )
Vit,o) =5 ) H(w =Yy
i=1

and the positions of the ith particle are given inductively by

Vi, =6
vt e [t t11], Y =0V (){;l + a(W; - W;l) + (t— tl)A’_(V(tl, ;q))_+ CHn1
Cy =1 {¥} <ao} S}ipt] (Y + oWy =W) + (s —t)A'(V (1, Y3,))) (3.2)
s€ltr,
“Liyi>any S‘Elp] (Vi —14+0(W;=W))+ (s — tl)Al(v(tl:YZ)))+ .
sE|t,t

Since it is possible to simulate jointly the Brownian increment (W}, — W) and the corre-
sponding supeiy, ¢,,.] (Wi—W{ + (s — t;)a), this discretization scheme is feasible.

To obtain the optimal rate of convergence O(1/v/N + At) we are going to make rather
strong assumptions on the initial condition vo(z) = H *Upy(x) ensuring that the weak solution
of (1.1) is in fact a classical solution. These hypotheses are possibly too restrictive but they
avoid further complications of the already technical proof. For the solution of (1.1) to be
classical i.e. C*?2 (C! in the time variable ¢+ and C? in the space variable z), it is necessary
that v is C2. Moreover, since the Dirichlet boundary conditions are constant in time, for
r=0o0rz=1, ";&mv(t,az) — A'(v(t,2))0zv(t, x) = Orw(t,z) = 0. At time ¢t = 0, we obtain
the necessary compatibility conditions a?vfj (0) = 2A4'(0)v)(0) and o?vf (1) = 24" (1)vy(1).
Our hypothesis

vp € C?8([0,1]) (C? with v}l Hélder continuous with exponent 8) where 8 €]0, 1],
(H) § o?vy(0) = 24" (0)vy(0) and o?vf (1) = 24" (1)vh(1),
Ais a C? function

is slightly stronger than these necessary conditions. Combining Theorem 6.1 pp.452-453 [9]
which gives existence of a classical solution on [0, 7] x [0, 1] for (1.1) and the proof of Lemma
2.2 which gives uniqueness of weak solutions on [0,T] x [0, 1], we obtain

Lemma 3.1 Under hypothesis (H), the solution V(t,z) = H x Pi(x) of (1.1) belongs to
C+2([0,T] x [0,1]) and 8.V (t,z) is Hélder continuous with exponent (1 + ()/2 in the time
variable t on [0,T] x [0, 1].

In order to reduce the effort needed to compute the correction terms C} in (3.2), it is
interesting to let ag and a; depend on the time-step At and converge respectively to 0 and
1 as At — 0. Supposing that these convergence are not too quick, we obtain the following
estimate for the convergence rate of the particle method :

Theorem 3.2 Under hypothesis (H), if we assume that 0 < ag(At) < a1 (At) < 1 satisfy
ag(At) A (1 —a1(At)) > aAt” for 0 <y < 1/2 and a > 0, then there exists a strictly positive
constant C' depending on A, Uy, T,0,a and v such that

— 1
<I<L E — < — + At .
VO<I<L, le[l()r,)l] |V (t;,z) = V(t,z)| < C (\/N + t>

The proof follows the main ideas of Bossy [3] who deals with the convergence rate of a particle
approximation for the solution of the scalar conservation law with spatial domain R similar
to (1.1) even if some new difficulties arise in the present framework because of the reflexion.
Let W; denote a standard Brownian motion. To analyse the convergence rate, for y € [0, 1],
we introduce the stochastic differential equation with normal reflexion, constant diffusion
coefficient and drift coefficient A'(V (s, x)) :

{ng =y + oW, + [§ A'(V(s, XV))ds + K/, 53)

IKY|, = [1L o1y (XD d|KY],, K = [o(1—2XY)d|KY,.



Under hypothesis (H), according to Lemma 3.1, the function b(s, z) def A'(V(s,z)) is Lip-
schitz continuous in the space variable & uniformly for s € [0,T] and bounded. As a con-
sequence, for any y € [0,1] the above stochastic differential equation has a unique solution
(see for instance [11] Remark 3.3 p.525).
We are interested in the upper bound of

Error(t;) = sup E|V (t;,z) — V(t, )]

z€[0,1]
1 ‘
< sup |V(t,x) — — E(H(@x - X/
sw V(t2) N; (H( m)‘
1 & i
+ sup E|— E(H(z— X)) -V(t,z)|. 3.4
a,-e[ol?l] N; ( ( tl)) () G4

The first term of the right-hand-side is an initialization error, that we upper-bound in the
next paragraph. Since the dynamics of the particle system (3.2) on [t;,t;4+1] depends on
the approximate solution V' (#;,.) of (1.1) at time #;, the analysis of the second term of the
right-hand-side is more complicated than the analysis of the weak error of the discretization
by the Euler-Lépingle scheme of the Stochastic Differential Equation (3.3) where the drift
coefficient b(s,x) = A'(V (s, x)) is supposed to be known. We are going to deal with the latter
problem as a model problem : the obtained results are useful to solve the former problem.
They are also interesting by themselves because although limited to the case of a constant
diffusion coefficient, they form the first study of the weak rate of the Euler-Lépingle scheme
to our knowledge.

3.1 Initialization error

Lemma 3.3 Under hypothesis (H), the solution (X}) of (3.8) can be chosen continuous
in (t,y) € [0, T] [0 1] and nondecreasing iny for fixzed t € [0,T). Moreover, V(t,z) €

[0,T] % [0,1], V E(fy H(x — X{)Us(dy)).

Proof of Lemma 3.3 :  As (X —X/);c[o,7] is a continuous process with bounded variation,

t t
(X7 = X0 = @ =)+ [ 1o 005, X0) = W XN + [ 1 e (AT = i)

The third term of the right-hand-side is nonpositive. By the Lipschitz continuity of x —
b(s,z) and Gronwall’s lemma, we deduce that for some real constant C,

a.s., sup (X7 —X})" <Cr(z—y)". (3.5)
t€[0,T7]

Using the symmetric inequality for (X} — X{)*, we obtain that a.s. sup,efo 77 |[X{ — X}| <

Crl|z — y|. According to Kolmogorov continuity theorem, the C([0,T7],[0, 1])-valued process
(t = X/) indexed by y € [0,1] admits a continuous version that we still denote by X} to
simplify notations. By (3.5), as., Vg < ¢' € [0,1]NQ, Vt € [0,T], X¢ < X . With the
a.s. continuity of y € [0,1] — X/ in the variable y, we conclude that this function is a.s.
nondecreasing.

Let now X be an initial variable with law Uy independent of the Brownian motion W. We
easily check that the law of (XtXO,KtXO)te[O,T] on C([0,T1],[0,1] x R) solves the martingale
problem

i) Qo=Uy®do

ii) Yy € C2(R), p(X;—K¢) —p(Xo— Ko) — [1 5@ (Xs — K) + A'(V (5, X,))¢ (X, — K,)ds
is a () martingale

iil) Q as., V¥t >0, [i dK| < +oo, K| = [}1011(X,)d|K|s and K; = [5(1—2X,)d|K]|,.
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By Girsanov theorem, uniqueness holds for this martingale problem. Since the image of
the solution P of problem (M P) starting at Uy ® 0y by the canonical restriction from
C(]0,+0),[0,1] x R) to C([0,T1],]0, 1] x R) solves this martingale problem, we deduce that

V(t,z) € [0,T] % [0,1], V(t,z) = H x P,(z) = E (H(x - XXO)). By independence of X, and
W, we conclude that V (¢, z) fo (x — XU (dy)). |
We easily deduce that the initialization error is smaller than 1/N.

Lemma 3.4

N

1 i 1

Vi >0, sup |V(t,x) — — E(H(z — X°))| < —.

el $€[071] ( ) N ; ( ( t )) N
Proof : Let Uy = % Zf\il 6%. Clearly,

1 i
as, | H(z—X{)Uoldy) — > H(w - X*) = (Uo — To)({y € [0,1] : X} < a}).

[Orl] =1

Since by Lemma 3.3, y — X/ is a.s. continuous and increasing, if nonempty, the set {y :
X} <z} is equal to [0, ¢ (x)] where ¢¢(2) = inf{y : X} > z} . By definition of the initial
positions yj (see (3.1)), Vy € [0,1], 0 < (Up — Up)([0,y]) < 1/N. Hence

N
1 i
0< [ H(z—X))U(dy) - D H(z - X{) <

1
0,1] P N

We conclude by taking expectations. [ |

3.2 Weak error of the Euler-Lépingle scheme

We recall that T'= LAt (At > 0, L € N) and t; = [At for 0 <[ < L. The Euler-Lépingle
discretization of the Stochastic Differential Equation

{Xf’:y+aWt+f0tb(s,X§/)ds+Kty (3.6)

K] = ol oy (X)dIKY]s, KY = [y(1—2XY)d|K],
is given by
jztyo =y
Vt € [t taa], XY =0V ()ng + (W, — Wi,) +b(t, XU)(t— 1) + ct) Al
Cr =1 [X? <ao} SWPselt, ] (Xtyl +o(Wy — Wy,) + b(t, XE) (s — tl))

~ ~ +
L5 sy SWPscpr ) (X8 = 1+ o (Ve = W) + bt X)(s — 1)

In the next Proposition, assuming a regularity condition on the drift coefficient b(s,z) which
is satisfied by A'(V (s, x)) under hypothesis (H) (see Lemma 3.1), we upper-bound the weak
convergence rate of this scheme :

Proposition 3.5 Assume that b is C12 on [0,T] x [0,1], that for some a > 0, O,b(t,x)
is Hoélder continuous with exponent « in t and that 0 < ao(At) < ai1(At) < 1 satisfy
ap(At) A (1 — a1 (At)) > aAt” for v € [0,1/2) and a > 0. Then there is a constant C
depending on o,T,b,a,v but not on y and At such that when f :[0,1] — R is a function
with bounded variation and m denotes its distribution derivative,

i< L [B(£(X0) - 1(XD))| < car / ().

11



The error proceeds from two sources. The first one is the usual Euler discretization of the
drift coefficient. The second contribution is the inexact treatment of the reflexion on the
lower boundary (resp. the upper boundary, resp. both boundaries) between ¢; and t;41
when )N(Z > «y (resp. )?Z < ayg, Tesp. )Ztyl € (ap, 1)) which will turn out to be neglectable.
To get rid of it, we introduce the Euler-Peano discretization of (3.6). The Euler-Peano is
a theoretical discretization scheme which consists in freezing the drift coefficient on each
interval [t;,t;4+1] whereas the normal reflexion remains exact :

{Xf:y+0Wt+fg b(Ts,X,IZ_/S)dS-FIA(ZJ (3.7)

|KY]e = [{1 o1 (XD KV, K} = [i(1—2X¥)d|KY|,

where 7, = At [%] and [2] denotes the integral part of .

Lemma 3.6 Assume that b(-,-) is bounded and that 0 < «ap(At) < aq(At) < 1 satisfy
ap(At) A (1 — ai(At)) > aAt” for v €[0,1/2) and a > 0. Then for some positive constants
¢ and C independent of At and y

$27-1

VI<L, PEk<I, X! #X})<CAt 7 5e AT (3.8)

Proof : The proof follows the ideas of [10] even if this upper-bound is not stated. To
simplify notations, we do not emphasize the dependence of gy and a; on At.

~
|
—

PEk<I, X{ #X0) <Y P(XY =X}, X
0

£ XV ). (3.9)

trt1

=~
Il

When oy < Xtyk = )~(tyk < ai, we remark that V¢ € [tg,tg1], Xg’ = Xg’ unless both
processes reach 0 or 1 before ;1. As a consequence,

]P(Oé0<ch :)’Ztyk<0é1, ch+1;é§y )

trt1

<P ( sup (o(W; —Wy,) +b(tk,)?tyk)(t —ty) >1-— a1>

tE[tk,tht1]

+1p( inf (a(Wt—Wtk)+b(t,c,)~(gfk)(t—tk))<—a0>

tE [tk tet1]

<P ( sup Wy — Wy, | > (aAt” —sup |b(., .)|At)/o>

tE[tk,tht1]

Since v < 1, for At small enough, aAt” — sup |b(.,.)|At > aAt? /2. Then

Plag < X}, = X}, <oy, X{ # X[ )<P ( sup W, — Wi, | > aAﬂ/@a))

SE[tk trt1)

<2 i/J”’o 622/2Atd2<4—0\/§At§WeEZAtZW_l/SJZ‘
=V mAL Joar /(20 “alVn7

Since ap < a1, sy A(l—ag) > aAt"” and remarking that V¢ € [tg, tg+1], Ct < o SUP ety tes1] |Ws—

W, | +sup [b(.,.)|At, we easily obtain similar bounds for IP’(XtyL = )Ztyk > ay, ngm # )?t?’;H)
and P(Xtyk = )A(:tyk < ag, Xtka # )?tykﬂ) and we conclude by (3.9) since | < L =T/At. 1

Let I > 1, f:][0,1] — R be a function with bounded variation and m denote its distribution
derivative. According to the previous Lemma,

(r0et) - 1&) | < [ (£ - 1) [+ s 15 - fICAT e

z,2'€[0,1]

<|E(r(xp) - 1(X))| + carmtemear / ).

12



The set Dy of discontinuity points of f is denumerate. For y < z € [0,1] \ Dy, f(z) =
fly) + f; m(dz) = f(y) + fol H(z —vy) — H(x — z)m(dz). As the function b(.,.) is bounded,
by Girsanov theorem both variables X/ and XZ have densities w.r.t. Lebesgue measure.
Hence P(X} € Dy) + P(X} € Dy) =0 and

‘E(f(ngl) - f(ngl))‘ = /011[*3(H(:c ~X!)-H(z —Xg)) m(dz)

Therefore the proof of Proposition 3.5 is completed as soon as we obtain the following weak
convergence rate for the Euler Peano scheme :

Proposition 3.7 Under the assumptions of Proposition 3.5, there is a constant C' depending
on o,T,b but not on x, y and At such that

Vi< L, Vz,y €[0,1],

E(H(x—Xg) —H(;c—ngl))‘ < CAt.

In case | = 0, the conclusion is clear. As for all other values of [ the proof is the same, we
are only going to deal with the case [ = L i.e. t; = T'. By Girsanov theorem both variables
X4 and X¥ admit densities with respect to Lebesgue measure. Hence

E (H(o — XY)— H(0— X;ﬁ)) = P(XY = 0) — P(XZ

Il
=
=
Il
=
I
o
Il
o

E(H(I—X%)—H(I—X%)) —P(XL<1)-PXL<1)=1-1=

and the conclusion holds for z € {0,1}.
>From now on, we assume that = € (0,1). We follow the idea first introduced by Talay and
Tubaro : if the function v solves the parabolic problem

{@v + Z9%0 + b(t, 2)0,0 = 0, (t,2) €[0,T) x [0,1] (3.10)

Vz € [0,1], v(T,2) = H(z — 2z), YVt € [0,T],0,v(t,0) = 0,v(¢,1) =0

computing formally H(z — X%) — H(z — X%) = v(T, X%) — v(T, X%) by It6’s formula and
taking expectations we obtain

T
E(H(z — X}) — H(z — X})) = E (/O (b(s, X¥) — b(Ts,st))(—azv(s,XE))d8> :

The function v appears only through the opposite of its spatial derivative, which justifies our
interest in the parabolic problem satisfied by w = —0,v

{&w + 202w + b(t, 2)0.w + B.b(t, z)w = 0, (t,2) € [0,T) x [0,1], 3.11)

vt € [0,T),w(t,0) = w(t,1) = 0, w(T,.) = 6,(.).

According to section IV.16 [9] and section 3.7 [7] which are dedicated to Green’s functions,
the following holds :

Lemma 3.8 Under the assumptions of Proposition 3.5, there is a continuous function (x,t,z) €
(0,1) x [0,T) x [0,1] = w(z,t,2) € R such that :

e for fited x € (0,1), (t,2) = w(x,t,2) € CL2([0,T) x [0,1]), solves

{atw + 202w + b(t, 2)0.w + 0:b(t, 2)w = 0, (t,2) € [0,T) x [0,1] (512)

vVt € [0,T),w(z,t,0) =w(x,t,1) =0

and takes the terminal value w(x,T,.) = 0,(.) in the distribution sense.

e For any integers r and s such that 2r + s < 2,

142r+4s _— 2
vVt €10,T), Vz,z, |0;0iw(x,t,2)| < C(T —t)~ 5 exp (—c(zT _a:t) ) .
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e for any function ¢ continuous on [0,1], the function
WP (t,2) = fo (2,t,2) (a:')da:' ift<T
p(z) if t =
is continuous on [0,T] x [0,1] and satisfies (3.12).
Thanks to these results, we express rigorously E(H (z — X%) — H(z — X%)) in terms of w :

Lemma 3.9

T
E(H(z — X¥) — H(z — X1)) = E (/0 (b(s, XY) — b(rs, X2 )w(a, S,X;/)ds> . (3.13)

Proof : For e > 0, we set p(z') = e~ (&' =2)"/(29) /\/27¢ and ve(t, 2) le w¥" (t,2")dz'. By
Lemma 3.8, the function v¢ is continuous on [O T] x [0, 1] and satisfies

V(t,2) € [0,T) x [0,1], Qv + 820" + b(t, 2)d,0° + T-0,w? (t,1) =0

vVt €[0,T), 0,v°(t,0) = 0,v°(t,1) = 0.
Hence for ¢t < T', by Itd’s formula,

t
o (6, XY) — v (1, XY) = / o(820° (5, X¥) — 0.0 (s, XV))dIV,
0

+/ (b(s, XY) — b(rs, X)) (=00 (s, XY))ds.
0

This equation still holds for ¢ = T by continuity of both sides, since for s < T, by the
upperbound of w given in Lemma 3.8 and the convolution property of Gaussian kernels

|00 (s, 2)| < /0 o ()|w(z', s, 2)|dz’ < C/\/e+ (T — s). (3.14)

Taking expectations, we deduce that
T
E(v¢ (T, X)) — v (T, X%)) =E (/ (b(s, XY) — b(7s, XY ))(=0:0 (s, Xg/))ds> . (3.15)
0

The function z — v¢(T,z) = le ©¢(z")dz" is bounded by 1 uniformly in e¢ and converges
pointwise tol {.—,1/2 +1 ., as € = 0. By Lebesgue theorem, the left-hand-side of (3.15)
converges to

E(H(x — £Y) — H(w — X3)) + 2 (B(XY = @) — P(X}. = 2)) = E(H(x — Y) - H(x — X1)
since by Girsanov theorem both variables X and Xéi admit densities w.r.t. Lebesgue
measure.

By continuity of the function w, V(s,z) € [0,T) x [0, 1], —0,v* fo (z', s, 2) 0 (z")dx’
converges to w(z,s,z) as € — 0. Using (3.14), we obtain by Lebesgue theorem that the
right-hand-side of (3.15) converges to E(fOT(b(s,Xg”) - b(Ts,Xﬁs))w(x,s,Xg)ds). Hence

(3.13) holds. | |

In the sequel z € (0,1) is fixed and we denote w(t, z) instead of w(z,t, 2).
Applying It6’s formula to the function g;(¢,z) = (b(t,z) — b(t;, X{))w(t, z) we get that for
l S L—1andse€ [ttatH-l)-

s 2
(b(s, X7) — b1, X2 )w(s, X¥) = / (00 + Z-02 + b(t1, X)0.)01(0, X116

ty

" 0.01(6, RV)dRY +a/ 9.g1(6, X)dW,  (3.16)

t1

def
Sl G o
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We divide the integral on [0, T] in the right-hand-side of (3.13) into integrals on [t;, t;41], 0 <
[ < L —1 and treat separetely the first and last term,

sttrte — 22— e = x0)| < [ ([ 06,50 0. p)wte x2)05)|

L—-2 tryn
E Z/ T+ T2 + T3ds (3.17)

1=1 7t

+

A~

T
+ E(/t (b(s, XV) —b(tL1,X§’L1))w(s,X§/)ds>‘.

To upper-bound the last term we need the following Lemma the proof of which is postponed :

Lemma 3.10

VO<t<s<T, IE( sup (X} — X¥)? + (|KY|s — |f(’v’|t)2> < C(s —t).
0€(t,s]

Combining this result, the regularity assumptions on b and the upperbound |w(s,.)| < C(T —
5)~1/2 given in Lemma 3.8, we get

([ 050 - bas X, s X200

tr—1

T
/ C(T —s)"'%ds < CAt

tr—1

<E sup_|b(s, X¥) ~b(tr-1, XY, )
[tr-1,T]

The same bound is valid for ‘IE (fotl (b(s, XV) — b(O,y))w(s,Xé’/)dS) ‘ Once we check that

Lemma 3.11
Vs € [0,T), BT} < C/ ((T — )" V2 (T - 0)*2/30*1/3) do (3.18)

V€ (0,1/2), V1 <1< L—1,Vs € [ti, tia|, BIT2| < Oty T2M/A0=0 74 G-am)/ 4 _ )1
(3.19)

tp—1
E (/ T3d5> =0. (3.20)
t1

we deduce from (3.17) that

tr—1

‘E(H(:U - Xﬁ,ﬁ) —H(z — X;j,i))‘ <CAT +C /Ts ((T —9) Y2y (T - 0)—2/3071/3) a0

t1

L—-2
+ CAB—1m)/4 Z tlf(lfzﬂ)/‘l(l*n) (T — tl+1)_1At
=1

<C (At + AtC—4M/4 At|) < CAt by choosing n < 1/4.
i.e. Proposition 3.7 holds.

Proof of Lemma 3.10 : Let¢p:z € R—>1—|1—z+2[z/2]|€[0,1]]and 0 <t <T. By
Girsanov theorem, since b is bounded, the stochastic differential equation

0
Yy = X} +a(Wy — Wy) +/ (=)™ (7, $(V7,))dr
t

has a unique weak solution. Moreover the processes (¢(Y3))s>+ and (Xg)gzt have the same
law. Since ¢ is Lipschitz continuous with constant 1, we deduce that

E( sup (X} _Xty)2> gE( sup (Vs —Xty)2> < C(s —1t).

felt,s] 0elt,s)
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)? = (XY = 3)°, we get

Now applying It6’s formula to compute (X v— 5

K], — |KY), = / (XY — 1)(0dW, + b(ry, XY )dr) + (s — ) + (XY — XV)(XY + XV —1).
t

Using the previous upper-bound, we conclude that E ((|I§'y|s - |Ky|t)2) < C(s—t). ||

Proof of Lemma 3.11 : Using (3.11) we check that VO <1 < L —1, Vs € [t;,t141),

s 2
T! :/ w(f, X}) (6& + %85 + (20(t;, XY)) — b(0,X§’))8z> b0, X} )do
ty
S
+/ (c20:5(6.X3) — (60, X3) — blt1, X2))?) D9, X3)d6
ty
By the regularity assumptions on the function b(.,.) and the upper-bound |w(#,.)| < C(T" -
6)'/? given in Lemma 3.8, we deduce that E|T}| < C [>(T — 0)~'/* + B9 w(9, X})|d6.
Since the rough upper-bound C/(T" — ) of d.w(#,.) is not integrable for 6 € [0,7] we are
going to make use of Girsanov theorem : for a well-chosen exponential martingale Z;, if 5
denotes the doubly reflected process associated with the Brownian motion y + ocW;, we have
. . o N\1/3 2/3
B0 w0, X3)| = E (10.w(6,8)|2r) < (E(Z3)) " (Bo-w(e, 5)172) "

Since V@ €]0, T, Vy € [0,1], the density of 3§ is smaller than C6~'/2, by Lemma 3.8,

1 )2
B0, w(8, BY)** < c/ (T —0) %% exp (—c%) 9~ 2dz < C(T —9) Lo 1/2
; —

and we deduce that E|d,w(8, X})| < C(T — 0)~2/39=1/3. Hence (3.18) holds.
We turn to the proof of (3.19). Let 0 < I < L —1 and s € [t;,t;41). As d|KY|p =
10,13 (X§)d|KY]p and w(t,0) = w(t,1) =0,

T; = / (b(8, X) — b(ts, X7;)) 0w (6, X)) 0,13 (X)) dKY .
t;

We deduce that

[t1,8] [t ti1]

1/2
E|T7| < sup [0.w(8,0)| V 0.w(8,1)] x <E< sup ((b(&ffé’) — b(t;, X{)))"1 {0,1}(555’))))

N N 5 1/2
X <E(|Ky|tl+1 - |Ky|tz) > : (3.21)

Let us upper-bound the three terms of the right-hand-side. By Lemma 3.8, supy, ;1 |0-w(6,0)|V
0.w(8,1)] < C(T —5). Let n € (0,1/2),

]E( sup ((b(8, X¥) — b(ty, X¥))2 {Xg:0}> <dsup [b(.,.)[>P (x;f > At/ o XY :0)

e [t ti1]
+E(1L (XY <At-m/2} sup (b(e, 0) _ b(tl, Xtyl))Z
" [tr,t141]

Following the same approach as in the proof of (3.8), we upper-bound the first term of
the right-hand-side by CA#"/2¢=¢/A"" " The second term is smaller than CAt'="P(X} <
At(1=1/2) and by using Girsanov Theorem like in the derivation of (3.18), when [ > 1, we
get
P(XY < AtU=m/2) < BZ0D/mynli=np gy < A¢(1=m/2)(1=20)/(1=n)
= = >
—(1—2n)/2(1— _
S Ctl ( n)/2( U)At(l 277)/2'
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Treating in a symmetric way E(SUP[tht,H]((b(g:X;’) - b(tl,Xtyl))Qll {X;’=1})v we deduce that
when [ > 1,

]E( sup ((b(6, XY) — bltr, X2)) 0.1y (X, )) < Ot AL Ay (34 /2

[ti,ti41]

Since according to Lemma 3.10, the third term of right-hand-side of (3.21) is smaller than
CAt'/? we conclude that (3.19) holds.
Let us finally check (3.20). By the integration by parts formula, for I < L —2

tit1 tig1 R N ~ N ~
/ T3ds = a/ (t131—0) ((b(o,Xg) — b(t, X))0-w(0, XY) + 8zb(0,X§’)w(0,X§’)) dW,.

tr ty
Since according to Lemma 3.8, |w(f,.)| < C(T — 6)~'/2, |0.w(f,.)| < C(T — )~ and the
functions b and 0.b are bounded, we deduce that VO <[ < L -2, E (fttl’“ des) = 0. Hence
(3.20) holds.

Remark 3.12 Our proof only works in case the diffusion coefficient is constant because
otherwise the analysis of the error would involve higher order derivatives of the Green’s
function w.

3.3 Proof of Theorem 3.2

We come back to the analysis of the stochastic particle method and the estimation of
SUD,¢(0,1] E|V (t;,z) — V (t1,z)| = Error(t;), for 0 <1 < L. Now, we set

b(t,z) = A (V(t,z)).

By Lemma 3.1, this drift function satisfies the regularity assumptions made in the study of
the weak error of the Euler-Lépingle scheme. By (3.4) and Lemma 3.4,

1 i —
Error(t;) < —+ sup E ]E( x — Xyo)) —V(t,x)
N 2€[0,1] N Z 1y
To deal with the inexact treatment of the reflexion by the Euler-Lépingle scheme, we in-
troduce the system of processes (Z%,i = 1,...,N) evolving according to the Euler-Peano
scheme on [tl;tl+1) and reinitialized at the positions (Y, , 1 <@ < N) at time t;41 (for
0<I<L-1):

VOIS L =1, VE€ [ty tin), 2 = Vi + o (Wi = Wi) + (t = ) A'(V (1, V) + Ki = K,
t t
&= [ Vou) (ZDAR, and K= [ (1-22)d|E..
0 0
(3.22)

Since we assume that v < 1/2, according to Lemma 3.6, V1 < i < N, P(Fk < [ : ZZ, #
. k
Yy ) < CAt. Hence

1
Error(t;)) < — +CAt+ sup E

N
1 _ _ vy i
~ sw B\ ;:1;11 (ke 7_—x,) (]E(H(a: X)) - H(x Zt_)) ‘ .

We introduce the solution w(z,t,z) of the parabolic problem

Brw + 5 02w + b(t, 2)B,w + A.b(t, 2)w = 0, (t,2) € [0,4) x [0,1],
Yt € [0,t), w(t,0) = w(t, 1) =0, w(t,.) = 6,(.).

Lemma 3.8 remains valid with ¢; replacing T'.
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Lemma 3.13

N
1 i )
]E‘ N E 1,]1 {V1<k<I, Z:'; =Y} } (E(H(ﬂf - XZO)) - H(z - th_)
1=

4

) 2/ w5 Z)A (00 ¥E)) = b Z)s )| < € (2 + 1)

where the constant C > 0 does not depend on x € [0, 1].

Proof : For e > 0, we set ¢°(z') = e_(g”’_w)z/@f)/\/%'e and v¢(t,z) = le w? (t,2")dz" =
f fo (z',t, 2" (z")dx'dz’. Applying Ito’s formula like in the proof of Lemma 3.9, we
obtain that 1f Vl <k <lI, ZZ_ = Ytllc

k

tk+1 )
Eot (81, X2 — v (1, Z0) — / b(s, Z) — A'(V (g, Y, )))0s0" (s, Z1)ds
tr
ty

=—0 8 ve(s, ZD)dW! = —o D0 (s, Z)dW} (3.24)
0 0
where Z' is the continuous process satisfying
Z§ =y B
vt € [tk,tkH] Z{ =7} +o(Wi—=Wi)+ (¢t —te) A (V(t, Y)) + K
¢
K|, = / Lo.1y(Z)d|K?|,, and K| = / (1-2Z))d|K'|,.
0

Since according to Lemma 3.8, (9,v¢(s, 2))? < tl% exp (—c(z_z)z), the inequality

tlfs
E(8. v (s, Z8))? < C(t; — s)~2/3s71/3
where the constant C' does not depend on e and z, is obtained like the upperbound of

A tl A .
E[0: w(#, X})| in the proof of Lemma 3.11. Hence E </ (0,0 (s, Z;))2d3> < C and
0

N t
1 Z ! o B )
i iy 0

N ¢
1 ! A :
+ N E ]E‘]l {alskSL Zi7 7£Ytlk} o az’Ue(S, Z;)dWSl
e

i=1

NZ v (s, Z2)dW!
1/2

(NQZIE le))d>

%Z( N<k<L, 7 ¢3g1))1/2<1@/()

<c (— + At) according to Lemma 3.6.
N

By (3.24), we deduce that

t

1/2
(0,v° (s, ZAi))st>

N
1 € Yo € i
E‘ ~ E 1]1 {V1<k<L, Zti,: =Y } <E(U (tr, tho)) — v (ty, sz)
i=

- ;Z / :k“(A'(Wtk,Yti» ~ b5, Z1)) (= 00" (s, z:;>ds) ‘ <c (lev ; At)

18



and we conclude by taking the limit ¢ — 0 like in the proof of Lemma 3.9. [ |

By (3.23) and the previous Lemma, we obtain that

Error(t;)) < C (% + At)

-1 trt1 ) . )
+ SUP,¢(o0,1] ]E‘_ Z]l {v1<k<l, Z’ =Y} } Z/t w(z,s, Z,) (A’(V(tk; )) = b(s, Z;)) ds
i=1 k=0 """k

Since according to Lemma 3.8, w(z, s, z) < C/+/t; — s, using once more Lemma 3.6, we get

Error(t;)) <C (ﬁ + At)

Nll
1

/ (@5, 20 (AT (12, Yi ) — bs, Z1)) ds

zlkOtk

+SUPy¢(o,1 E

We consider now the last term in the upperbound of Error(¢;). We split it in two parts,
in order to introduce the difference between the drift function b(tx,-) = A'(V (¢, .)) and its
approximation A'(V (tg,-)) at the same point Y. AsV0 <k < L—1, Z} =Y/ we get

1 N -1 trir
1 (Y7 '3 i
Bl 5 [ wte s 20 (A (00, ¥4) ~ s, 20) ds
Nz 1 k=0"tk
1 N [-1 trir .
<E\y Z/ w(z, s, Z}) (b(s, Z%) — b(te, Z{,)) ds (3.25)
i=1 k=0"tr
N l 1 tht1 B
/ w(a, s, Z1) (b(t, i) — A'(V(tx, V7)) ds|.
i= lk 07tk

The first term in the right-hand-side of (3.25) is a time discretization error. In order to
obtain an error bound of order O(At), we need an expectation inside the absolute value.

If for £ € {0,...,L}, we denote Fs, def o(Wh0 < s < tg,i = 1,...,N), then for all

def

$ € [tk,trt1), the variables (R , = w(z,s,Z%) [b(s, Zt) — b(tk,Zt’k)] ;i =1,...,N) are

tr,S
Fi.-independent. Hence,

N
1 1 i\ < Z
S ﬁ Nizgl]E(Rtk’s) S E(w CU S, Z )

Using once more that w(z,s,z) < C//t; — s, we easily obtain that

1 L .
E NZR;MS —E (Rzms)

i=1

1 N l 1 trt1 1
2 / (z,5,Z3) (b(s, Z3) = b(tx, Z,)) ds
N t
i=1 k=0""
N [-1 /tk+1 —C
ZZ E {w(z,s, ZL) [b(s, ZL) — b(ty, 2, )] } ds| + N
N i=1 k=0 k N

To obtain an upper-bound of order O(At) for the first term in the right-hand-side of the
previous inequality, we just have to remark that we are now in the same context as in the
proof of Proposition 3.7 : Equality (3.16) and Lemma 3.11 are valid replacing X by Z and
T by t;. Following the proof of Proposition 3.7 we conclude that

Nll

1 /'““ w(z, s, 2%) (b(s, Z2) — blty, Zi,)) ds

zlkOtk

c
<CAt+ —.  (3.26
< Wi (3.26)

sup E
z€[0,1]
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For the second term in (3.25), by the upper-bound C/+/t; — s for w(z, s, z) and since by
definition b(t,.) = A'(V(¢,.)), we get

N -1 t
1 k+1 . _
Sup,cjo.1] E NZZ t w(x,s,Z) (b(ty, Vi) — A'(V(t, Y}))) ds
Z:%—klzo ktk+1 1 N (327)
<C sup |A'(v) d> E |V (tg, V(tk,y )
v€[0,1] | | i—o o, Vi—s ; | |
Lemma 3.14

N
1 iva i
VOIS L, =D [V Ye) - Vit Yy)| < C(—= + Ab).

pesi \/N
Using Lemma 3.14 in (3.27), with (3.26) we come back to (3.25) and deduce that
1
Error(t;) < C(—= + At),
( l) = (\/N )

which ends the proof of Theorem 3.2.
We are now concentrated on the upper bound of

NZE|th7 (tlay;ill)|

given in Lemma 3.14. Because of the complex form of V(#,Y}!), we need to introduce

another auxiliary family of discrete time processes : let (Yi, te0,T],i=1,...,N) denote
the solution of the following Euler-Peano equations,
— i
Xo =0 ' . ' '
— =i . . i ——i
Vt € [tl,tlJrl],Xt = th + U'(th — Wtzl) + (t— tl)b(tl,th) + K, (3.28)
t

) t . . . ) )
K= [ 1oy (C)dIE ), and K = [ (0= 2X)al.
0 0

We will compare V(#,Y;) = + Ejvzl H(Y} — Ytjl) With. the same expression written with
the system of independent particles + Z;\rzl H (Yil - Yi,)
First, we note that

E|V(t,Y}) - V(tz,Yi,)

= E‘V(th Z) - V(tl,Yi,)

<E|V(t,2)) -V, X))+ CA

<clzj - X, |+ CAL.

The first inequality is obtained thanks to Lemma 3.6 which compares Peano and Lépingle
schemes. The second one uses the Lipschitz property of V stated in Lemma 3.1. Now, using
arguments similar to those given at the beginning of the proof of Lemma 3.3, one can easily
check that

1z -X,| < IV, —72 N+ ACV (Lo, YE ) = Vit Xy, )
1

|+ CAE + AtOIV (11, Vi ) = Vitiy, Xo ).

i
< |Ztli1 - tl 1
By induction, we deduce that
i

-1 N
ZE‘V 4,V = V(t;, X )‘ < C’At %ZE‘V(tm,Yg’m) —V(tm, X, )|+ CAL
= i=1

(3.29)
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For all k£ € {0,... ,L} we set

so that, by (3.29),

-1
—ZE|V (t,Y7) =Vt YE)| < E(t)+CAt Y E(ty) + CAL. (3.30)
m=0
We have transformed the estimation of + Zf\il E | V(ts, Ytzl) - V(t, Y;l)| into the estimation
of each E(ty,) for 0 <m < L. For m = 0, E(0) = & SN LIV0,48) — V(0,48)] < +, by
Lemma 3.4. For m > 1, we insert the term + Z;Vﬂ H(Yil - Yil) in the expression of E(t,,)
to split it in two part :

N N
B(tm) <5 > E[V(tnY;,) - 5> H(E, -Xi,)
i=1 j=1
Il |1 & :
i j
+NZE NZH(Xt = X4,) = Vtm, Xy,,)
. ;’fl =t (3.31)
<Nz ZE‘H(YZH_W )-H(X,, -X;)
ig=1
Il |1 & : :
7 j i
+NZE 2 HE,, -X,) - V(tn X))
i=1 j=1

To deal with the first term in the right-hand-side, we introduce the errors E(t,) for k < m—1.
The second term is very similar to error terms we have already treated. The upper-bound of
these terms are respectively given in the following Lemmas the proofs of which are postponed :

Lemma 3.15

m—1

N
1 i i 1 ~J tk)
— E E‘H(Y’ -Y/)-HX, —X;) <C’At+C’AtE
2 tm tm tm tm
N P \/ — tg
Lemma 3.16

N N
1 1 —i —j —i
N}:E NE H(X,, —X; )= V(tm, X;,)| < + CAt.
i=1 j=1

Coming back to (3.31), we have obtained that

Bk

C " E(ty)
E(tm) <CAt+ — + CAt S —FL
( )_ vIN ZO Vtm_tk

Using a dlscrete time version of Gronwall’s Lemma, we obtain that Vm < L, E(t,) <
CAt + \F By (3.30), we conclude that Lemma 3.14 holds.

Proof of Lemma 3.15 : The main difficulty is to deal with the non Lipschitz Heaviside
function H. To overcome this difficulty, the idea consists in smoothing H thanks to the
probability transition density of the Euler-Peano scheme. First, we note that

HY! -Y))-HX,, -X;,)

m—1 ) . ) .
iyt g, Yy —Jstm—k,Y{ —bytm—k—1,Yy —stm—k—1,Y
= E H <Xtm mk _Xtm mk ) - H Xtm mok—1 _Xtm mok=1)
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where for 0 < k < L,y € [0,1]] and 1 < 7 < N, (Xz tk’y)te[tkj] denote the Euler Peano

process starting from X by = y at time ¢}, and with posterior evolution given by (3.28). By

Lemma 3.6, replacing Yt . by ZZ in the expression above has a cost of order (’)(AtQ).

—k
Hence, using the inequality

E|H(A) — H(B)| =P(A>0,B<0)+P(A<0,B>0)<P(B|<|B-A|),

itk Y —ditm—1, Y] it k1, Yy —dti—me1,Y]
tm—k m—k m—k—1 l—m—1
‘H < - X - H Xtm — th

tm

(Y A Jotm—k, Z7_ . ; ] ;
. — TR — t —btm—k—1,Y; —Jitm—k—1,Y;
< CAt* +E|H (Xtm =X, ™k ) - H (Xtm X moket
m—k—1,Yy —dstm—t—1,Y;
< CA? +P <‘Xt et X ok
. . - i J
—ivtm—k—lyytz ket —jvtm—k—l,YtJ . _l,tm,k”Z _k Jrtm— k7Z .
<X, m - X, m -X,, m +Xtm fm
2 kLY kY
< CAt"+P Xt -X,

< CAt (|V ~V|tm—i-1,Y )+ |V =V]|(tm—r—1, Yg{n,k,l)) )

asfori=1,...,N,

. i it — ke, 2" : i
—tm—k—1,Y; __btm—k 4 —tm—k—1,Y; .
m—k—1 m—k m—k—1 (3
‘ ‘ - X, < ClXy, . _thn_k
174 i
< CAHV = V|(tm—r—1,Y¢ _,_,)-
The variable |V V| ke 1,Ym o) |V V| ke 1,Y _w_,) is Fi, ., measur-
. . .. iyt —e— 17Y .
able. Moreover, for i # j, conditionally on F; , ,, the variables X, mok-1oand

_j7tm_k_1,Ytj o . . . .
. ™%~ are independent and admit densities with respect to Lebesgue measure

with a L? norm smaller than C'/(tg41)"/* (by Girsanov Theorem, as in the proof of Lemma

Y’ —Jstm—k—1,Y;
—btm—k-1,Yy Jtm—k—1,Y¢

2.4). Hence, conditionally on F; _,_,, the variable X, - X
admits a density with respect to Lebesgue measure w1th a L norm smaller than C/+/tx+1
and we deduce that

tm tm

it k_1,Y} —irtmek_1,Y}
( tm—k—1,Y¢ Jtm—k—1,1¢{

<C’At(|V V| k=1, Ye )|V =V|( mklanmkl))>

<At
T Vit

We conclude that

IE(|V - V| (tmfkflay'tin_k_l) + |V —V| (tm*’cfl’n{n—k—l)) )

1 & i j =i ~i ity E(tm-k-1)
5 Y E|H(Y; -Yi) - H(X,, -X] )| <cat+oary =l

t
ij=1 k=0 k+1

Proof of Lemma 3.16 : We are going to decompose the expression of interest in order
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to introduce error terms that we have already bounded.

N N
1 1
+ =Y Bl =) [EH(z — X{°) - EH(z — X7, )| _
NI Nj:l =X,
1 & 1 &
~7
NZE NZ(EH(x_Xt Moo — H(Xy, — X3 )
i=1 j=1
< sup |V(tm,z ZIEH Xf’o
z€[0,1]
+  sup ‘EH(x—ng)—EH(x—X{m)
z€[0,1],j <N
1 1 & : : :
<5 < <5
rx 2 (B(§r X @6 -y - B, -X1)
i=1 J.k=1

2

(e ~ X1, s~ HOKL, ~X0)

The first term in the right-hand-side is the initialisation error bounded in Lemma 3.4 by %
The second term is the weak time discretization error for the Euler-Peano scheme bounded
in Proposition 3.7 by CAt. The last term is a statistical error : it is smaller than 1/v/ N since

by independence of the variables (Yﬁm,l < j < N), each term of the summation Zj.vk:l
with j # k is nil.

4 Numerical experiments

As a numerical benchmark, we consider the following Dirichlet problem for the viscous Burg-
ers equation which corresponds to the choice A(z) = 2?/2 :

9 0% ov
Zou(t,z) = =—(t,z) —v(t,z)=—(t,z),t > 0,z € [0, 27]
o D or (4.1
sin(z :
= — > = =
v(0, z) cos(@) 1 ¢ € [0,2x] and Vt > 0, v(t,0) = 0,v(¢,27) =0,

The exact solution is (see [2]) V (¢, z) = 2sin(z)/(cos(x) 4+ e +?).

The spatial domain [0, 27] is different from the one considered so far but our results re-
main true for any bounded interval replacing [0, 1]. The fact that the distribution derivative
mo(x)dz of the initial data v(0, z) given by mo(x) = (24 2e cos(z))/(cos(z)+e)? is not a prob-
ability measure but a bounded signed measure represents a more significant modification.
In fact, we could not find any explicit solution when v(0,.) is the cumulative distribution
function of a probability measure.

To take into account this modification, we use weighted particles (Yt’l ,whi<i<n (see for in-
stance [8] which deals with a spatial domain equal to R). The N initial locations y§ =
inf{y; H * |mol/|lmollr1(0.2x)) () = %}) are chosen in order to approximate the cumu-
lative distribution function of the probability measure |mol|(x)dz/||mol|L1(0,2+) and the
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corresponding weights are w; = |[mol|£1([0,2+])sign(mo(y§)). The approximate solution is
given by the weighted cumulative distribution function of the particle system V(t;,2) =
% SN wiH(z - Y;') where the successive positions are defined inductively by (3.2) but
with Al (resp. —1) replaced by A2x (resp. —2m) in the second (resp. last) line.

The parameters of Lépingle scheme are ag = 0.25 and a3 = 27 — 0.25. We have plotted on
Figure 1 the numerical solution at time ¢ = 1. As the dependence of the error on the number

0.8 T T . : — —
‘ : ‘ ; ; initial condition
! : ; : approximation at time t=1 --—-——---
exact solution at time t=1 ----------
0.6 e : IR k ‘ -

-0.2 e - g o
-0.4
~0.6 | N\
-0.8 L i i |\/| i
(o] 1 2 3 4 5 6 7

Figure 1: Ezact and numerical solutions of (4.1) obtained at time t = 1, for 10° particles and
At = 10~2 with the Lépingle scheme.

of particles is standard and corresponds to the usual central limit theorem rate (see [4][5][8]
for numerical results in case the spatial domain is R), we concentrate our numerical study on
the dependence on the time step. That is why we take a large number of particles N = 108.
According to Theorem 3.2, B[V (1,.) =V (1, )l L1 (jo,2x]) < 27 Sup,[g0q EIV (1, 2) =V (1,2)| <
C(At + N—1/2). Since it is not possible to compute the last quantity, we compute the first
one by averaging ||V (1,.) = V(1,.)||11([0,24]) OVer 20 runs of the particle method and give the
dependence of the result on At in Table 1 and Figure 2.

At || Lépingle Confidence Projection Confidence
scheme | interval at 95% scheme interval at 95%
21 0.0940 [0.0933,0.0946] 0.2510 [0.2501,0.2519]
272 0.0585 [0.0579,0.0591] 0.2320 [0.2309,0.2329]
273 0.0329 [0.0322,0.0336] 0.1964 [0.1953,0.1975]
2—4 0.0173 [0.0166,0.0180] 0.1568 [0.1557,0.1578]
270 0.0083 [0.0076,0.0090] 0.1241 [0.1227,0.1254]
26 0.0053 [0.0045,0.0060] 0.0982 [0.0969,0.0995]
27 0.0049 [0.0043,0.0055] 0.0779 [0.0765,0.0793]
28 0.0050 [0.0042,0.0058] 0.0635 [0.0627,0.0643]

Table 1: Expectation of L' norm of error att =1 for N = 10° particles (|V (-, 1)|| 1 (0,2 = 1.09)

We need to check that our test case (4.1) produces a significant rate of effective reflections.
If this rate is too small, we only observe the effect of the classical Euler scheme (without
reflection) with weak convergence also in A¢, and we cannot conclude on the convergence of
the Lépingle scheme. The rate of effective reflections is around 10% for this test case : more
precisely there are about 10% of the particles in [0, ap]U [y, 27] at each time-step. For these
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particles, we compute the correction term C'in (3.2). When we discretize the particle system
according to the projected Euler scheme, which treats the reflection simply by projection
onto [0, 1], we clearly observe a sublinear convergence in At (see Table 1 and Figure 2). The
projected Euler scheme does not use the correction term C whatever the position of the
particle and its weak convergence rate is in O(At/?), (see [6]). Therefore we can conclude
that the quasi-linear decreasing of the error for the Lépingle scheme confirms our theoretical
analysis.

' LepingleI —_—
Projection ---><---

S |

0.15 -

0.05

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time step

Figure 2: B[V (-,1) = V(;,1)|l 1 (&) in terms of At (N = 10°).
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