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Abstract

This paper is dedicated to the probabilistic interpretation of the mass-flow equation which
is associated with the discrete Smoluchowski coagulation fragmentation equation. The mass-
flow equation describes the evolution in time of the distribution of the mass with respect
to the size of the clusters when the expected numbers of clusters follow Smoluchowski’s
equation. Under various assumptions on the coagulation and the fragmentation kernels, we
construct nonlinear processes linked with the mass-flow equation : the time-marginals of
their law solve this equation. When possible, we approximate these processes thanks to
simulable interacting particle systems. We deduce some existence and uniqueness results
concerning the discrete Smoluchowski coagulation fragmentation equation which seem to be
new.

The discrete Smoluchowski coagulation fragmentation equation describes the evolution of the
expected number ¢;(t) of clusters with mass ¢ € N* when two clusters with respective masses j
and k coagulate at rate K to form a cluster with mass j + &k whereas a cluster with mass j +k
breaks up at rate Fjj into two clusters with masses j and k :

{3t0t(i) = 5300 (Kiggeili — )e(d) — Fimjgei(d)) = X jene (Kijer(d)er(i) = Fijegi + )
co(i) = v(3).

(0.1)

We assume that the initial distribution v € R} has finite mass i.e Y, . i7(i) < +o0o. The
kernels K and Fjj are supposed to be non-negative and symmetric : Kj; = Ky ; and Fjj =
F}. ;. Since both in the coagulation phenomenom (j,k) — j + k and the reverse fragmentation
reaction j + k — (4, k), the mass is conserved, one would expect a solution of (0.1) to satisfy
Vt >0, > ien-ici(i) = Y ien- 97(é). In the pure fragmentation case (Kj; = 0), it is possible
to construct solutions with increasing mass (see [3]). These solutions have to be rejected for
obvious physical reasons. In the pure coagulation case (F}jj = 0), it may happen that the mass
decreases after a finite time. Intuitively, this phenomenom called gelation corresponds to the
formation of an infinite cluster. That is why we consider solutions of Smoluchowski’s equation
in the following sense : for T' € (0, +o0], we say t € [0,T) = ¢; € {c: N* = Ry, > . ic(i) <
> ien- ©¥(i)} solves this equation on [0,T) if Vi € N*, V¢t € [0,T), s = > o Kijes(j) and
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s — ZjeN* F; jcs(i + j) are integrable on (0,¢) and

t 1—1
ar(i) = (i) + /0 % D (Kijes(i— 5)es(d) — Fimjyes(i)— Y (Kijes(i)es (i) — Fyjes(i+ ) ds.
j=1 JEN*

Since ¢; solves (0.1) if and only if ¢;/ Y ;- #7(4) solves the same equation but with coagulation
kernel Kjj multiplied by ), . 7y(7) and initial data /) ;o 47(¢), we can suppose without
restriction that ) ;. 4y(i) = 1 i.e. that (p(é) = i7y(i))ien+ is a probability distribution on N*.
By symmetry of the kernels K and F,

1—1 i—1
{ . : 1 . . . .
5 2 Kimjges(i=es(i) = 5 D (= 4) + ) Kimjjes(i = )es(5)
i=1 j=1
i—1
K :
= =2 (jes (1)) (@ = 5)es (@ = 7)),
1 J
J
i—1 i—1 /. -1 .
1l (GE—j)+J i—J
and ]Zl Fijj = 9 ]Zl i Fijj = le Fivjj

Hence setting

j+k’
we obtain that (¢ (i)) solves (0.1) if and only if (p(i) = ici(i)) solves the mass-flow equation

(see 2] [10] where this link is made respectively for the discrete and the general Smoluchowski
equation without fragmentation)

- K. . -
Kk,j = % and Fk,j =

po(i) = p(i)
Ope (i) = 23;11 (Ki—j,jpt(i —)pe(j) — Fz'fj,jpt(i)> — X jew (Kz',jpt(i)Pt(j) — Fijpe(i + J))
= 23;11 Wz’—j,j(Pt) - EjeN* Wi,j(pt) for Wk,j(pt) - Kk,jpt(k)pt(j) - Fk,jpt(k +J)
(0.2)
in the following sense :
Definition 0.1 Let T € (0, +oc]. We say that t — p; solves (0.2) on [0,T) if Vt € (0,T),
(1) prefa: N =Ry, e q() <1}
(i) Vie N, s = 3 ione K ips(j) and s — > e F; jps(i + 7) are integrable on (0,t) and
t1—1 N N N ~
pi(i) = pli)+ /0 >~ (Riggpsli = ps() = Fiogps@)) = 3 (Kigpolidps(i) = Fogpali+3)) ds.
=1 jEN

In this paper, we are going to study (0.2) under various kind of assumptions on the coagulation
and fragmentation kernels. Following [7|, we say that

Ka) holds for some « € (1/2,1] if 3 > 0s.t. V4,5 > 1, K; j < ki%j® ie. K;; < ki®je 1L,
7.] ’.]

(F) holds for some 5 > 0 if Ypu > 0, 3C() > 0, Vi > 3, "\ V2 jrpy; o > C(u)irt# where
[z] denotes the integer part of x.



Hypothesis (F7y) is the so-called strong fragmentation condition and is satisfied for the kernel
Fjr = (jk)? with B = (y — 1)/2 and for the kernel Fj;, = (j + k) with 8 = v — 1. Note
that wh~en (Ka) holds for @ € (1/2,1] then for ¢ : N* — Ry such that } ;. q(j) < 1,
> jen Kija(j) < Ki% 3o 79 1q(j) < ki® and in definition 0.1, the integrability condition on

> jen- Kijps(j) in (i) is a consequence of (i).

Many mathematical studies have been devoted to the Smoluchowski coagulation equation par-
ticularly in the absence of fragmentation (F; ; = 0) : see for instance the survey of Aldous [1] and
the references cited therein. In the presence of fragmentation, less is known. In [17], assuming
K;j < o(i)p(j) with ¢(i)/i — 0 as i — 400 and boundedness of the total fragmentation rate
i E;;ll F;_j j, Spouge proved existence of a global non-negative solution to (0.1). Ball and Carr
[3] proved existence of a global mass-conserving solution in case K;; < k(i + j) but without
any assumption on the fragmentation kernel. To obtain uniqueness, further assumptions were
needed, in particular, some restrictions on the growth of the fragmentation coefficients. In the
so-called strong fragmentation case, assuming that for some a € (1/2,1] and v > « hypotheses
(Ka) and (F7y) hold, Da Costa [7] obtained existence of a unique global solution : see Proposi-
tion 2.1 below. Guias [12] and Jeon [13| studied probabilistic approximations of (0.1) based on
Markov jump processes. Assuming boundedness of the coagulation kernel and of the total frag-
mentation rate sequence (% Z;;ll F;_j )i, Guias obtained existence of a unique mass-conserving
solution of (0.1) and convergence of the probabilistic approximations. Among other studies of
the approximate Markov jumps processes, Jeon proved convergence to a solution of (0.1) in case
limy 4 o0 3 + Fij =0,

More recently, in the absence of fragmentation, Babovski [2], Eibeck and Wagner [10] and Dea-
conu Fournier Tanré [8] [9] have worked on the probabilistic interpretation of the mass-flow equa-
tion (0.2). Papers [10], [8] and [9] are devoted to the general mass-flow equation corresponding to
the non-necessarily discrete Smoluchowski coagulation equation but we are only going to present
their results in the discrete case. In [8], Deaconu, Fournier and Tanré prove existence of a non-
linear process linked with (0.2) in case Y, 1%p(i) < 400 and K;; < kij (vesp. K;j < k(i+j))
: the time-marginals of the law of this process provide a local (resp. global) solution of (0.2). In
case K; ; < ¢(i)p(j) with ¢(7)/7 non-increasing and lim; 400 % = 0, Eibeck and Wagner
[10] prove convergence to a solution of (0.2) of approximations based on Markov jump processes.
In [9], the authors prove convergence of similar stochastic approximations in case K; ;j < k(i + j)
and >, o 2p(1) < +o0.

In the first section of this paper, we introduce a class of Markov jump processes which enables us
to take into account the possible formation of infinite clusters called gelation in the probabilistic
interpretation and approximation of (0.2).

The second section is devoted to the strong fragmentation case introduced by Da Costa |7]. The
regularizing effect of the fragmentation prevents gelation. We introduce a nonlinear martingale
problem such that the time-marginals of any solution provide a solution of (0.2). After checking
existence and uniqueness for this martingale problem thanks to the results given in [7], we prove
propagation of chaos to its solution for a sequence of simulable interacting particle systems.

In the third section, we do not make any assumption on the fragmentation kernel. In balance, we
suppose that (K1) holds and that the initial data is small in the following sense : 3, . ip(7) <
+00. We obtain a local (in time) existence and uniqueness result for (0.2). Moreover we construct
an associated nonlinear process. In case the coagulation satisfies the stronger upper-bound
K, ; < k(i + j), the existence and uniqueness results turn out to be global and the propagation
of chaos result introduced in the strong framentation case still holds. Translated in terms of the
Smoluchowski equation (0.1), our existence and uniqueness results seem to be new.

In the last section, we suppose that Vi € N*, lim;_, o (K;; + Fj;)/j = 0. We obtain a global



existence result for (0.2) and consequently for (0.1) by considering the limit behaviour of the
particle system introduced in the second section as the total number of particles goes to +co. Our
hypothesis on the fragmentation (resp. coagulation) kernel is far (resp. slightly) less restrictive
than the ones made by Jeon |13] who assumes that lim; ;40 # +F; j = 0 to obtain existence
for (0.1). Moreover we can deal with coagulation kernels such as K; ; = (i5)? with 1/2 < 8 < 1,
for which the existence result of Ball and Carr [3] does not apply.

1 A Class of jump processes

Let £ = N* U {+o0}. In order to be able to take into account the gelification phenomenom,
we introduce for N € N* a class of Markov jump processes on £V such that some coordinates
become infinite when jumps accumulate. We prove existence and weak uniqueness for processes
among this class.

More precisely we endow £V with the metric d((z!,...,z"),(y',...,y")) = Zﬁf:l

(convention : +%.O = 0) and set

1

I?’L y?’L

Dy = {X teRy — Xy = (X}, ..., XY) € €N cadlag such that for 1 <n < N, X is continuous

at o, = inf{s > 0, X" V X' = 400} and satisfies Vs € [0y, +00), X = —1—00}.
(1.1)

The space Dy is endowed with the trace of the Skorokhod topology on the space D([0, +00),EN)

of cadlag functions from R, to £V and with the corresponding Borel sigma field. We have
D([0,4+00),N*NV) ¢ Dy € D([0, +0),EN).

Definition 1.1 A function \: (s,z,y) € Ry x EN x EN — (s, z,y) € Ry is called a transition
function on EN if

(i) Vz € &V, SUPg>g EyEEN As,z,y) = Alz) < +o00
(ii) Vz,y € EN with 2™ = +o00 and y™ < +oo for some 1 <n < N,

Vs > Oa )\(S,$,y) = >‘(37y7x) =0.

(iii) V1 <n <N, Vi € N, Sup,>( SUD eeN gnmi DyeeN i N8, 5 y) < +00.

Definition 1.2 For a probability measure v on N*Y and a transition function A on N, we say
that the D-valued process (Xi)i>o s a jump process with transition function X starting from v if

1. Xq is distributed according to v,

2. Vo : EN — R bounded and s.t. for some m € N*, Vo € EN, o(z) = o((x' Am, ..., 2N Am)),

t
MF = p(X0) = p(X) ~ [ 3 (plu) — (XA, Xasp)ds is 0 martingale.
0 yeé



Proposition 1.3 For any probability measure v on NV and any transition function \ on EV,
there exists a jump process with transition function X starting from v on a well-chosen probability
space. Moreover two jump processes with transition function \ starting from v have the same
law.

1.1 Proof of existence

Let Xy be a random variable with law v independent of a sequence of independent Poisson
processes with marks (T}, UJ)x>1 indexed by z € EN. More precisely for fixed z € £V, we
suppose that (7)) is the sequence of successive jump times of a Poisson process with rate A(x)
given by Definition 1.1 (ii) independent of the marks (U}); which are i.i.d. according to the
uniform distribution on [0, 1].

The process X; is constructed by induction. We set 79 = 0. Supposing that the process is
constructed up to time 7;, we define L = inf{k : TkX” > 7}, Weset 41 = Tz(”, fix Xy = X,

for all t € [TlaTl-i-l) and XTI+1 = zib(TH-l?XT,, UI),(”) with Q,b . & x 5N % [0’ 1] N EN defined by
Qﬁ(s,x,u) = y 1f Ez<y >\(8,$,Z) S A(m)u < Eygz )\(S,x,z)
x if EzEEN )\(8,$,Z) < A($)U

where £V is endowed with the lexicographical order. This way the process X; is constructed
on the time interval [0,lim;7;). We have to deal with the case lim;7; < +o00. For z € &V,
we introduce the Poisson random measure N(z,ds,du) = 3 4 drp yry on Ry x [0,1]. Let
1 <n < N and i € N*. The number of jumps leading from X7 =i to X # i on [0, A 7] is
equal to

2 Z/R oy s te(E )Ly (s, =, u)) Nz, ds, du).
+ s

T =1 Yy F£i

By compensation of the Poisson random measures, its expectation is equal to

E / 1{s§Tl/\t}1i(X;l) Z A(SaX&y)ds < tsup S]\l}lp ) Z )\(S,.’I),y).
R4 x[0,1] yeEN yn£i §20 ge&Npn=; yEEN yn£i

With assumption (iii) concerning the transition function A, we easily deduce that Vi > 0, a.s.
there are at most finitely many jumps leading from X! =i to X # 4 on [0,lim; 7y A t). Hence
a.s. on {lim; 7 < 400}, V1 < n < N, Vi € N*, there are at most finitely many jumps leading
from X7 =i to X # i for s € [0,lim; 7). As a consequence a.s. on {lim;7; < 400}, lim; X,
exists in V. We set Xiim;, = lim; X7, and carry on the construction : the next jump time is
X imy 7 . X imy 7, . . . .o
given by T; ™™ where L = inf{k : T, BT Jimy 77} and so on. By assumptions (i) and (ii)
concerning the transition function A, a.s. on lim; 77 < 400,

Jd1<n<N,Vse [O,lilmn), Xy < +o0 and lilmXZ = +o0. (1.2)

Because of assumption (ii) on A, the coordinates which become infinite at time lim; 7; remain so
afterwards. More generally, in the construction of the process Xj, a.s. at each finite accumulation
point of jump times, at least one of the coordinates which was finite so far becomes infinite and
remains so afterwards. As a consequence, there are at most N such finite accumulation points
and the process is constructed for ¢ € [0, +00).

Because of assumption (ii) on A, up to time lim; 77, the process X; only depends on the variable



X and the Poisson processes with indexes in N*VV. Hence using (1.2) and the independence
assumptions on the initial variable Xy and Poisson processes, we have

N
. Xlim T . . .
Pl dk: T =1 <§ E Pl Jk: TF =1 =0.
<1lmn < 400, & 1lmn> < (1lmn < 400, k 1lmn>

n=1z:x"=400

Since the same property holds for all the finite accumulation points of jump times, we easily
check that a.s.

VE>0, X, = Xo+ 3 / 1o (X,-) (s, Xym 1) — X, )N, ds,du). (13)
IEEN [Oat]x[ml}

We are now going to check that condition 2. in Definition 1.2 is satisfied by compensation of
the Poisson measures. Let ¢ : £ — R bounded and m € N* be such that Vo € &V, o(z) =
o((z* Am,...,2" Am)). For t > 0, in the computation of ¢(X;) from (1.3), only the jumps
such that for some 1 <n < N, X <m and X # X or X' >m and X < m contribute.
For fixed n, the total number of such jumps on [0, %] is necessarily smaller than one plus twice
the number of jumps of the first category (those leading from X' < m to X{ # X!'), the
expectation of which is smaller than 377! SUP>0 SUPpeeN sgn—i DoyeeN yn i A, T,Y) < +00.
Hence the expectation of the number of jumps on [0,%] contributing to ¢(X;) is finite. As a
consequence, a.s.,

Vi >0, o(X;) = (X 14(X,- $, Xe—u)) — p(Xs-))N(x,ds,du
>0, p(X) = o 0)+x§N /[Oyt]xm] (X,-) (o8 ) — (X)) ( )

and M, is a martingale by compensation of the Poisson random measures. Hence X; is a jump
process with transition function A starting from v.

1.2 Proof of weak uniqueness

Let P and @ denote the respective laws of two jump processes with transition function A starting
from v. We denote by (X;);>o the canonical process on D and by F; = 0(Xs,s < t) (Fo =
o(Xs,s > 0)) its natural filtration. For a stopping time 7 relative to (F;), we define F, = {4 €
Foo: VE2>0, AN{T <t} € F;}. According to |16] Exercise (4.21) p.45, Fr = 0(Xsar, s > 0).
We need to introduce the successive times when some of the coordinates of the process (Xt)tzo
become infinite. Let Ty = inf{s > 0: 31 <n < N, X VX = 400} (convention inf ) = +o0).
On {T} < +oo}, weset N1 = {1 <n < N: X;:f VX7 < +oo} and Ty = inf{s > Ty : In €
N1, X VX = +oo}. On the contrary event, Ny = 0, T, = +oo. Inductively we obtain stopping
times 77 < Ty < ... < Tyy1 = +oo and sets of indexes ) = Ny C ... C Ny C {1,...,N} with
for 1 <k <N, N,=0, Tpr1 =—+o0 if Ty = +oo and Ny = {n € Ny_1 : X7 VX} < +oo},
Thpy = inf{s > Ty : In € Nj, X" V X = 400} otherwise. *

We also introduce another increasing sequence of localizing stopping times. For m € N, let
Tm =inf{s > 0: 1 <n < N, X! > m}. Clearly lim,, 7,,, = T7. By Definition 1.2, the images
of P and @ by the mapping (X;); € D — (X¢ A 7i»): both solve a martingale problem with
jump rates bounded because of assumption (i) on the transition function A. According to [11]
Theorem 7.3 p.223, uniqueness holds for this problem. Hence P and @ coincide on o(Xspr,, s >
0) = F,,, C Fr, for any m and therefore on the sigma algebra V,,0(Xsnr,,,s > 0) C Fr,. On
{T1 < 400}, by definition of D (see (1.1)), ¢ — X; is continuous at 77. As a consequence Vs > 0,
Xsar, = limy, Xsar, is mesurable w.r.t. the sigma algebra V,,0(Xsar,, ,s > 0) which therefore
contains Fr, = o(Xsa1y,s > 0). Hence P and @ coincide on Fr,. Again by (1.1), on T} < +o0,



Vn € {1,...,N} \ N1, Vs > T}, X? = 4o00. Thanks to property (ii) of the transition function
A, we check that on {T} < +oo}, P and Q as., conditionally on Fry, (X7 ,,, n € Ni)s>o is

a jump process on (N* U {—i—oo})card(Nl) starting from the Dirac mass at (X7, n € N;) and
with modified transition function A;(s,s,¢) = AT} + s,x,y) where z,y € £V are obtained
from s, € (N* U {+OO})card(N1) by setting the coordinates in {1,..., N} \ N} equal to +oo.
Moreover, To — T is the first time when a coordinate of this process becomes infinite. Using
the partial uniqueness result already obtained, we deduce that P and () coincide on Fr,. By
induction, we conclude that P and @ coincide on Fry,, = Foo.

2 The strong fragmentation case : for o € (1/2,1] and v > o (Ka)
and (Fv) hold.

Because of the link between (0.1) and (0.2), Theorem 5.1 [7] yields existence for (0.2). Moreover,
since we assume in our definition of solutions that the mass at time ¢ is smaller than the initial
mass 1, by an easy adaptation of the proof of Theorem 6.1 [7], uniqueness also holds.

Proposition 2.1 There is a unique solution p; of (0.2) on [0,+00). This solution is mass
conserving (i.e. Yt >0, Y - pe(i) = 1) and such that Ve > 0,

t
Vt, Z i"’e/ ps(i)ds < +o0.
0

1EN*

Because of the mass-conserving property of the solution p; of (0.2), the paths of the process that
we are going to associate with it belong to the space D([0,+00),N*) of cadlag functions from
[0,+00) to N* which is strictly included in D;. We endow D([0,400),N*) with the Skorokhod
topology. Let P(D([0,400),N*)), (X;)i>0 denote respectively the set of probability measures
and the canonical process on this space. We associate the following nonlinear martingale problem
with (0.2) :

Definition 2.2 A probability measure P on D([0,400),N*) with time-marginals (P;);>0 solves
the nonlinear martingale problem (MP) if

(i) Py = p ie. Vi € N*, Py(i) = p(1)

(ii)Ve : N* 5 R s.t. Im € N*, VI > m, ¢(l) = ¢(m),

M7 =060 = p%0) = [ (3 Rl +.9) = plX NP0
0 Njew
Xo=1
+ Z Fx,_ji(p(Xs —7) — go(Xs))>ds is a P-martingale.
j=1



If P is a probability measure on D([0,400),N*), then V¢ > 0, P, satisfies condition (i) in
Definition 0.1. For 7 € N*, let ¢(l) = 1;(I). By (Ka),

Xs—1
3 K, j(Li(Xs + ) — LX) P(j) — Y Fx,—jiLi(Xs)
JEN* j=1
1—1 .
<max | max K; ;P Z K jPs(j) + ZFz—g,y < ki + ZFi—j,j-

1<5<i—1

Hence if P solves problem (MP), the integrability of My yields that E( [ 3 0 XS YFyx, jiLli(Xs—

fo jEN FJP (1 4 j)ds < +o00. Moreover, by the constancy of the expectatlon of the
P martmgale My, we get

t i—1

= Po(i)‘i‘/o Y KijiPi(i—§)Ps(§) — Y KijPs(i)Ps(j)ds
P :
/ZF”P i+ j) iﬁzm
JeN J=1

Hence we have established the following link between problem (MP) and equation (0.2):

Lemma 2.3 If P solves problem (MP) then t — P, solves (0.2) on [0,400).

2.1 Existence and uniqueness for problem (MP)

Theorem 2.4 The martingale problem (MP) has a unique solution P. Moreover, P, is the
unique solution of (0.2) on [0,400).

Proof of uniqueness : If P and @ both solve (MP), then according to Lemma 2.3, P; and
Q¢ both solve (0.2) on [0,+00) and we deduce from Proposition 2.1 that V¢t > 0, P, = Q; = p;
Hence under both P and @, the canonical process is a jump process starting from p and with
transition function

V(s4,5) € R x EXE, As,4,5) = 1{z<+oo} ( Jii— ]1{1<]<Z} + Kzg iDs(J — Z)l{z<]<+oo}>
(2.1)

According to the weak uniqueness result in Proposition 1.3, P = Q. | |

We still have to prove existence. According to Proposition 2.1, (0.2) has a solution ¢ — p;. Let

X be a jump process with transition function given by (2.1) starting from p and g5 denote the
law of X; on N* U {+o0}. The fact that the law of the process X solves problem (MP) is a
consequence of the following Proposition :

Proposition 2.5 Vt >0, Vi > 1, q.(i) = p(7).



Since by Proposition 2.1, V& > 0, Y, - p¢(i) = 1, this result implies in particular that V¢ > 0,
a.s. X; < +oo. By definition of Dy, we deduce that V¢ > 0, a.s. Vs € [0,t], X,- V Xy < +o0 i.e.

SuPsefo,g Xs < +00. Therefore a.s. X € D([0, +00),N").
Proof of Pr0p051t10n 2.5 : According to 2. in Definition 1.2, for ¢ € N*, 1;(X;) — 1;(Xo) —
fO jen- (Li(j) — Li(X5))A(s, X, j)ds is a martingale. Following the same line of reasoning as in

the proof of Lemma 2.3, we deduce from the constancy of its expectation that ¢ — ¢, solves the
following linear equation

{3t(It(i) = E;;ﬁ (f(z'—j,j(It(’i —7)pe(d) — Fifj,j(It(i)) = Djen (-f(i,j(It(i)Pt(j) — Fijq(i+ J))
q0(7) = p(3).
(2.2)

So does the solution p; of (0.2). Hence it is enough to prove uniqueness for this equation to
conclude. Without the fragmentation terms, we could prove that ¢ — p(i) and t — g¢.(¢) are
equal by induction on 7. Here, we take advantage of the strong fragmentation hypotheses (Fy)
and (Ka) with v > « € (3,1] and adapt ideas developped by Da Costa |7] in order to prove
uniqueness for (0.1) in the same framework. Let sg,(i) denote the sign of ps(i) — ¢s(7). Since
when s — f(s) is absolutely continuous with derivative g(s), |f(s)| is absolutely continuous with
derivative sign(f(s))g(s), combining (0.2) and (2.2), we have

n i—1
Z|pt( —q(i / ZSQS (Z i— ],yps(])(ps(i_j) —qs(i — 7)) — Fz—],]( s(1) — qs(i)))
=1 j=1

= ¥ R 00) — 0.0) = Foglpuli-+) = auli + ) ) s

JEN*

Exchanging summations over i and j in Y ;" | sg(4) E;;ll(ﬁ'i_jyjps(j)(ps(i —7) —qs(i — 7)) —

F’i_jyj (ps(7) — qs(7))), then setting k = i — j and exchanging summations over j and k we get that
this term writes Y3} S7_F Sgs(k + J)(Kk iPs () (Ps (k) = gs(k)) = Fi j(ps(k +7) = gs(k + 7))

Hence > | pi(i) — qi(4)] = fo Vo (s)ds where
n—1n—t
=D (5950 +5) — 595(D) (K jps () (ps (i) — q5(i)) — Fij(ps(i + §) — qs(i +5))) <0
i=1 j=1

since (sgs(i + ) — 9, (6)) (ps (i) — 4,(3)) < 0 and (g4 (i + ) — 59,(6)) (ps i + 7) — @i +4)) = O,

and V Z Z sgs zyps(])(ps(i) - QS(i)) - F'i,j(ps(i +]) - QS(i +])))

z:l] n+l—:
Z 1,j ps Z+])+Qs(2+]))
=1 j>n+1—

Integrating (0.2) on [O, t] and summing the obtained result for 1 <¢ < n, we get

/Z . Fips(i+ ds—Zpt /Z S Kigps (s (i)ds.

1=1 j>n+1—1 1=1 j>n+1—1

Since @ < 1, combining (K«), the conservation of mass for p; (Vs > 0, >,y ps(j) = 1) and
the estimation given in Proposition 2.1, we get

/ZKJpS J)ps (i ds<n/Zzps )ds < +o00.

1,J EN* 1EN*



We deduce that fot >t ijnJrlfi Ki,jps(j)ps(i)ds and fot i Ejznﬂ—iﬁi,jpsu + j)ds con-
verge to 0 as n — +oo. By the following estimation the proof of which is postponed,

Lemma 2.6 Ve >0, Vt > 0, [0 3, . 17 gs(i)ds < +00
we obtain similarly that f[f Dot D isna—i F; jqs(i + j)ds converges to > o (i) — 1 < 0.

Hence limsup,,_, , f(f Vi(s)ds < 0. We conclude that ¥Vt > 0, > ;- [pe(7) — q:()| = 0. ||

Proof of Lemma 2.6 : Let A € [—1,0). Integrating (2.2) on [0,¢] summing the obtained
result multiplied by #* for 1 < i < n and removing one of the two coagulations terms and the
term involving the initial condition p, we get

/0 Zz > Fijgs(i +j) qus ZFZ y ds</z > Kijas(i)ps(5)ds

=1 JEN* =1 JEN*
+ Z () (2.3)
i=1
Setting [ =i + j, exchanging summations then replacing indexes ([,4) by (i,7) we get
n n/\(l—l) n —
Zi)\ Z Fi,j‘]s(i'*_j) :ZQS(Z) Z Z.)\Fi,lfz' Z qu Z ],z YN
i=1  jeN 1>2 i=1 i=2 =1

Inserting this bound, (Ka) and ;o 1%q:(i) < 3;cn- ¢6(i) < 1 in (2.3) and using moreover
El VF = Zl ! Fj; ; we obtain that
i—1

t n
/OZQs(Z)Z( — N Fj, st<1_|_,€/ Zz)\_,_a

i=1 j=1 S\

By the strong fragmentation hypothesis (F7y), for Cy > 0, Vi > 3,

i—1 } = AN 1 _ oA [(G—1)/2]
20 -2 = T8 (1 (5] 2 5L cen
st =1 J j=1
Hence for f = A+ a € [-1+a,q),
t
Cﬂ—a/ PTIm0q(i)ds < 1+ k2% + n/ i? qy(i)ds. (2.4)
0 3<i< 400 0 3<i<+00

We have v —a > 0. Let §; = I(y — @) and L = inf{l : §; > a}. Since Vs > 0, >, ¢s(2) < 1,
fot Z3<Z<+OO Poqy(i)ds < t. Using (2.4), we deduce inductively that for any I smaller than L,

fo Z3<Z<+Ooz lgs(i)ds < 4+o00. Hence fo D 3<icioo 170s(i)ds < +00. We complete the proof by
choosing 8 = o — € in (2.4). ||
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2.2 Propagation of chaos
2.2.1 The system of N particles

The particle system (Ytl’N, . ,Y;N’N) that we consider is a jump process on EV starting from
®N
p

than one coordinate and for transitions involving an infinite coordinate. If (ey,...,ey) denotes
the canonical basis on RY | the transitions involving the n-th coordinate when finite are given by

and with time-homogeneous transition function equal to zero for transitions modifying more

Vy € EN with 4" < 400, V1 < j <y" — 1, My, y — je,) = Fyn,jyj
1 -~
and V1 < m < N with y™ < 400, A(y,y +y™ep) = NKyn,ym. (2.5)

Without fragmentation and with coagulation kernel K; ; = xi%j® for a € (1/2, 1], particles may
become infinite in finite time. For N = 1 and Yol’1 = 1, at each jump the size of the particle
doubles and consequently the times between the successive jumps are independent exponential
variables with successive expectations (%2_(2‘1_1)”)”20. Since this sequence is summable, a.s.
the particle becomes infinite in finite time.

2.2.2 Tightness

We are first going to prove that the hypotheses on the coagulation and fragmentation kernels
imply that a.s. no particle becomes infinite in finite time. As a consequence, the empirical
measure p" = 3 Zﬁf:l dyn.n of the particle system is a r.v. with values in P(D([0, +00), N*)).
Then, we are going to prove tightness of the sequence of the laws of these variables p? .

Since the initial measure p®Y and the transition function (2.5) are symmetric, by the weak
uniqueness result in Proposition 1.3, the particles are exchangeable. Hence for fixed N > 2,
P(Y;"N =) (resp P(Y;"" = i,Y/™" = j)) is independent of n € [1, N] (resp independent of
(n,m) with n # m € [1,N]). Let pi’N(i) and p?’N(i,j) denote respectively this one-particle
(resp. two particles) measure. By a reasoning analogous to the one made to obtain (2.2), we
check that for 7 € N*,

i1

. 1 - L ) ~ .

oy (6) = Z (NKi—j,j ((N — VN (i~ 4,5) + 1{i7j:j}p;7N(])) - Fi—j,jptl’N(Z)>
=

1 - . . ~ L

= 2 (o (V= 0 )+ 1ol Y 0) - Fpl i 40)) . (20)
JEN*
Since because of the possibility for particles to become infinite, >,y pf’N(i,j) < ptI’N(i),
I~ o . . .
by (Ka), Y- Ky (N = Dpf (i,9) + La=gypr ¥ () < wi®pp™ ().
JeEN*

Hence by an easy adaptation of the proof of Lemma 2.6, we obtain that (2.4) still holds with g

replaced by p;’N and deduce the first assertion in the following Lemma :

Lemma 2.7 Ve >0, Vt > 0, supy>; f(f > ien- eptN (i)ds < +o00.
Moreover, YVt > 0, V1 <n < N, ]P’(Ytn’N < 4o00) =1.
if a € (3,1), Vt >0, supy supj<p<ny E SuPsgt(st’N)lfa - (Yon’N)lfa) < 400

Lastly,
'Lfa — ]_7 Vt Z 0’ SupN SuplSTLSNE (ln Supsgt YSTZ,N/YOTL,N)) < +OO

11



Proof : We only have to prove the second and last assertions. Integrating (2.6) on [0,¢],
summing the obtained result for 1 <7 < I and removing the fragmentation terms, we get

I
/ 5 S K (V=052 0) + LV (@) ds > 3 ol
=1

i=1j>1— z+1

Since by (Ke), Yiene Yjene 1 Kij ((N — Dp2N (6, 5) + Lymjype™ (i)) ds < &Y sene 105 (i)

which is integrable on [0, ¢] by the first assertion, the second term of the left-hand-side converges

to 0 as I — +oo. Hence ) ;- (i) > > ien- p() = 1 and the second assertion holds.

Let us now suppose that a € (%, 1). Then 1 — «a € (0, %) By exchangeability of the particles,
,N)l—a

we only need to check the upper-bound for n = 1. The variable supsgt(Ys1 is smaller than

the sum of (Y} Yy ") and of the contributions of the a.s. finite (otherwise ¥;"" would be equal
to +00) number of jumps of s € [0,#] = V"V with "V > Ysle ie.

_ 1,N — 1,N
Slilt)(YsLN)l (YO )1 @ < Z 1{Y1 N>Y1 N} ((YSI,N)I a (1/57 )1 a) ]
5% s<t

Taking expectations, using the inequality (y + ¢')!™% — y!~® < (y/)!7%, hypothesis (Ka), we
obtain

| /\

E (Sup(Y'Sl,N)l (YOI N >
s<t

(/ ZK LN ymoN (VY 4+ ymlyle _(y L)L) ds)
/ Z Yl N Ym,N)afl(szm,N)lfa)dS
<k Zzo‘plN( )ds < 400 since o < 7.

In case a = 1, the conclusion is obtained in the same way by using the inequality Vy,y' €
N, In(y +y') —In(y) <y'/y. n

Proposition 2.8 The sequence of the laws of the empirical measures p considered as random
variables with values in P(D([0, +00),N*)) is tight.

Proof : By exchangeability of the particles, according to [18] and the references therein, the
Proposition is equivalent to the tightness of the laws of the variables (Y'1")y in D(]0, +00), N*).
Since D([0,400),N*) is a closed subset of D([0,+00),R) endowed with the Skorokhod topology,
it is enough to prove the tightness of the laws of the variables (Y1) y in D([0,4+00),R). Indeed
by the closed sets characterization of weak convergence (|4] Theorem 2.1 (iii)), when probability
measures on D([O +00),R) giving full weight to D([0, +00),N*) converge weakly, their restric-
tions to D([0,+00),N*) also converge weakly. We are going to do so by checking that Aldous
tightness criterion (see for instance [14] p.35) is satisfied.

12



Let t > 0 and M € N*. Supposing that o < 1, we have

P <sup Y > M) =P (sup(Ysl’N)l_a > Ml—“>

s<t s<t

IN

Ml M1«
P ((YOI,N)I—a > 5 > 4P (Sglt)(YsLN)l_a o (Yol,N)l—a > 5 )
s;

1,N M 2 Nyl— 1,N\1—
SP(YO ) +M1_a]E sup(Y,2)1 e — (¥ )

s<t

By the third assertion in Lemma 2.7, we deduce that when o < 1,

Vt >0, lim supP (sup YN > M> =0. (2.7)
M—+o0o N s<t

We check this property for & = 1 by replacing y — y* = by y — In(y) in the above computation.
As a consequence Vs > 0 the laws of the real variables (Y;")y are tight.
1,N

Let 7 > 0 and for N > 1, 7y be a stopping time of the filtration F = o((Ys ", ... YN s <
t) smaller than T'. For d,n > 0,

1N 1N 1N 1,N
sup P(J)Y. 0, =Y | >n) <P sup Y, —Y | >n
e | VTP e VTN

<P (il”% yLN > M) +P (YQ&N < M and 30 € [0,0] s.t. YN # Y}I\;N) (2.8)
By (2.7), the first term of the right-hand-side is arbitrarily small uniformly in N for M big
enough. Therefore it is enough to check that for fixed M the second term is arbitrarily small
uniformly in (N, ) for ¢ small to conclude that Aldous tightness criterion holds. Let 1 <7 < M,
o; =inf{s > 7y : v #itand o(y',...,y") = 1;(y"). For the jump process (Y LV, ... Y N:N)
with transition function defined by (2.5), the martingale M,” given by Definition 1.2 is such that
a.s. on {YAY =i},

0 aiN(Tn +0) 1 N 5 i—1 ~
My oy +8) — My = —Yo<ry+oy + / v Y K yun + Y Fijyds
™ n=1 j=1

AsE (1{Y£];,N:i}(M:rpi/\(rN+6) - MfN)) = 0, we deduce that

i—1
P (VAN =iand 30 € [0,0] st VY, £ YAN) < 5<m'a +3 Fij,j>P(yT;N =),
j=1

By summation over i € [1, N], we deduce that the second term of the r.h.s. of (2.8) is smaller

than ¢ (/@M“ + maxi<i<m E;-;l F'i_j,j> which concludes the proof. [ |

2.2.3 Identification of the limit

Theorem 2.9 We assume (Ka) and (Fvy) with v > a € (3,1]. The empirical measures p”
converge in law to the unique solution P of the nonlinear martingale problem (MP) as N — +oo0.
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Proof : Let 7" denote the law of the empirical measure . According to Proposition 2.8 the
sequence (7)) is tight. Let 7 be the limit of a weakly convergent subsequence that we still
index by N for notational simplicity. Denoting by @ with time-marginals (Q))s>0 the canonical
variable on P(D([0,400),N*)), we are going to check that 7> a.s., @ solves the nonlinear
martingale problem (MP). Since the coordinates of the initial vector (Yol’N,...,YON’N) N are
ii.d. according to the probability measure p on N* we easily check that 7 a.s., Qy = p
i.e. (@ satisfies condition (i) in definition 2.2. To conclude, we have to check that 7> a.s.,
condition (ii) is satisfied. Since a function ¢ : N* — R such that VI > m, ¢(l) = p(m) writes
() = p(m) + 3" 1 1;(1) (p(i) — p(m)) it is enough to prove that Vi € N*, 7% a.s.

Bi(X,Q) =Li(X,) — 1, / S R s (1(Xs +9) — Li(X,)@Q5(G)ds

JEN*
t1—1
/ ZFZ,” s)ds — / Z F; j1;4;(X,)ds is a Q-martingale. (2.9)

JeEN*
Using (K «), we bound the absolute value of the sum of the four first terms in the above expression
of ®(X,Q) by 1+ (ki + Y/} Fi_jj)t.
Hence the integrability condition 7 a.s. < Q, |®i(X,Q)| >< 400 can be proved by checking
that E7™ (fot > jen F; ;Qs(i +j)ds) is finite. By continuity of @ — fot Ejzl F; ;Qs(i + j)ds
for J € N* and exchangeability of the particles YLV ... YN We obtain that this expectation
is smaller than the supremum over N of E (fo jen- FZ-, IH_]( )ds) Since the number of

jumps on [0, t] leading from YS_ ito YN =i is by construction smaller than the number of

jumps on [0, ¢] leading from YSI_’N =i to YoV # 1 plus 1, taking expectations we conclude that

= (| 35 o) sops( [| 3 At s) < (s SR

JEN* JEN*
(2.10)

ForlEN*,g:N*l%RjL bounded and 0 < 51 <590 < ... < g <r <, we set
G : Q € P(D([0, +00),N*)) =< Q, (24X, Q) — ¥}(X,Q))g(Xsy, .., X)) >€ RU{—o00}.
Our aim is to prove that E™ |G(Q)| = 0. For 1 < n < N, the processes

Mtn,N 1 (Yn N) i 1 nN / N (1 (YnN+Ym N) 1.(st,N))

t1—1
/ZFl—JJ YnNds_/ ZF,JIH-] N)ds

JEN*

are square integrable martingales with brackets

< M™N MY >=1y, n}(/ ZKYnNYmN( (YN YNy (v ds
ti—1
/ ZFl il ds+/ > Filig (V7 )ds>
JEN*

satisfying E(< M™N, M"Y >) < Lin=nn} (1 + 2(/%"" + Zﬁij,j>t> by (K«) and (2.10).
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Since G(u") = + SN (MY — MM (VN YY), we deduce that

(B 1GQ)I) < BE (1) < & —xossm0 0. (2.11)

The function G being neither continuous nor bounded, the convergence of the sequence (%) y
to 7 is not enough to deduce that ™ |G(Q)| = 0. Weak convergence of a sequence (Q"), to
Q implies that for t ¢ Do = {s > 0, Q({Xs- # Xs}) > 0}, limy 100 D jen 1QF (7) — Qe(2)| = 0.
Hence for si,...,s,7,t ¢ Dg, the contribution in G of the first four terms in the definition
(2.9) of @2 is continuous at Q. And the function G’ obtained by replacing the fifth term
f: > jen Fijlivi(Xs)ds by f: E‘j]:l F; j1i1i(Xs)ds is bounded and continuous at Q. We fix
$1,...,81,7,t outside of the at most countable set {s > 0, 7*°({Q : s € Dg}) > 0}. Then 7*°

gives full weight to continuity points of G” and limy E™ IG7(Q)| = E™ |GY(Q)]. With (2.11),
we deduce

E™ |G(Q)] < limsupE™™ |G — G”|(Q) + limsuplimsup E" " |G — G”|(Q)

J =40 J—+00 N—+o0

Applying Lebesgue theorem thanks to the upper-bound (2.10), we get that the first term of
the r.h.s. is nil. To deal with the second one, we use successively the exchangeability of the
processes YLV YNV Cauchy-Schwarz inequality, the above definition of MtI’N and bound
of E(< MUY MUY >)) -

2 t 2
N ~
(EW|G——GJKQ{) 5(7<E(HNHSHQW>HJLA E _th+ﬂY?Nym>>

i>J+1

t B 2
< CIP(Squsl,N >i—|—J>E<(/ Z P’i,jlz.Jrj(}/sl,N)dS) >
0

s<t JEN*

1—1 2
SCT(mmY}N>i+J>E<ON@WL+I+<ma+§:ﬂﬁ%%>>

s<t j=1

< C]P’(sup YSI’N >+ J> where C' does not depend on N.
s<t

By (2.7), we deduce that for any [ € N*, g : N*! = R, bounded and s1,...,s;,7 ¢ outside of the
at most countable set {s > 0, 7°({Q : s € Dg}) > 0}, 7™ a.s.,

< Q,(PYX,Q) — DX, Q))g(Xs,,- .., Xs5,) >=0.

The process X being cadlag, we deduce that 7> a.s. (®4(X,Q)); is a Q-martingale, which
completes the proof. [ |

3 Coagulation kernel satisfying (K1) and small initial data

(2ien 9p(1) < 00):

We only suppose that (K1) holds and do not make any assumption on the fragmentation kernel.
Instead we assume that Y ;.. 4p(6) < +00 i.e. Yo 27(6) < +oo.
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3.1 Existence for (0.2)

Since by (K1), K;; < ¢(i)¢(j) for the linear function ¢(i) = v/ i and p; solves (0.2) if and only
if ¢;(7) = pe(2)/7 solves (0.1), the following definition of strong solutions to (0.2) is consistent
with the definition of strong solutions of the non necessarily discrete Smoluchowski coagulation
equation introduced by Norris [15]

Definition 3.1 A solution t € [0,T) — p; of (0.2) in the sense of Definition 0.1 is called a
strong solution if ¥t < T, fot Yien- iDs(i)ds < +00.

Remark 3.2 Any strong solution is mass-conserving. Indeed if p; is a strong solution on [0,T),
integrating (0.2) on [0,t] for t <T and summing the obtained result for 1 <i <n, we get

Zpt(i) /Z Z Wi i (ps) ds>Zp /Z Z K jps (i)ps(§)ds.
i=1

i=1 j>n+1—1 =1 j>n+1—1

By (K1) and the strong solution assumption, the second term of the r.h.s. converges to 0 asn —
+00 and Y ;o Pe(i) > D ien- p(i) = 1. The converse inequality holds according to Definition
0.1.

Proposition 3.3 If Y, . ip(i) < +oo then equation (0.2) admits a strong solution p; on
[0,7),) where T, = (k> ;cn- ip(1)) " (k is the constant in assumption (K1)) satisfying Vt €
[Oan)u ZieN* Zpt(z) S (K'(TP - t))_l

The proof follows ideas developped in |7] and consists in taking the limit n — 400 in the following
n-dimensional density conserving truncation of (0.2) :

Vi < n, p(i) = p(i) and dp} (i ZW; i) ZWi,j(p?) (3.1)
j=1

This system has a unique solution on [0, +00) with pf*(7) > 0and >_;" | p(i) = >, p(i). Indeed
local existence and uniqueness can be proved by a standard fixed-point approach. Since p}(7) is
a factor in all terms with sign minus in the right-hand-side of (3.1), p}(¢) remains non-negative.
With the mass conservation, which writes Y. | 9;p}(i) = 0 and is a consequence of the Lemma

Lemma 3.4 For1<m < n, Z?:m (E;_:ll Qi—j,j — Z] 1 al,]) E Z] =m—i ¥+

for the choice m =1 and a;; = W, j(p}), we deduce that V1 < i <mn, 0 <pp() <>, p(i).
This bound allows to iterate the fixed-point technique to obtain a unique global solution.

Proof of Lemma 3.4 : Exchanging summations over ¢+ and j and setting k = ¢ — j yields

n n m—1 n—k n n—k
> Zaz 5 = Z Z ks = > Z ks = )IDILITED DD IS
i=m j=1 j=1k= k=1j= k=1 m—k k=m j=1
and the conclusion follows readily. [ |

Before proving Proposition 3.3 let us check that the estimation given in this Proposition for p;
holds for p}.
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Lemma 3.5 Vt € [0,7},), >, ipi(i) < (x(T, —t)) L.

Proof : To prove this result, we bound " ; ¢0;pj*(i). Since the fragmentation terms have a
non-positive contribution,

n n i—1 ~ n—1 n—1
Siowr() <3 iy Kijpi(i— iy Kip} (i)p} (5)
i=1 i=1 j=1 i=1 j=1
n—1ln—j ~ n—1 n—i
= Z Z(k + ) Ky,ip} (K)pi (5) — ZZ Ki,jpt (9)pf (4)
j=1 k=1 i=1 j=1
n—1n—i ~ n ~
=3 K pp(ipi(5) < (> ip}(i))? since by (K1), Kij = Kij/j < si.
i=1 j=1 =

We conclude by comparison with the solution of the O.D.E. d,y(t) = ry%(t), y(0) = > | ip(i).
||

Proof of Proposition 3.3 : We set Vi > n, V¢ >0, p{(i) = 0.

According to Lemma 2.3 [3], for m € N*, £ 3"  p%(i) is smaller than a constant independent
of n > m. Since 1 pP(i) € [0, 1], we deduce that for fixed m the functions (3., p{(¢))n>m
and consequently (p}’(m)), are of uniform bounded variation on [0,+00). Combining Helly’s
theorem (see [5] p.130) and a diagonal extraction procedure, we obtain a subsequence, that we
still index by n for notational simplicity, such that Ym € N*, V¢ > 0, p}(m) — pi(m). By
Lemma 3.5 and Fatou lemma,

VE>0, > pi(i) < lim inf > pi(i) =land Vt € [0,7),), Y ip(i) < (5(T, — 1)~ (32)
1EN* 1EN* 1EN*

The remainder of the proof consists in checking that p; is a solution of (0.2) on [0,7},).
Integration of (3.1) yields

t1—1
i +/ > Wiji(py)ds /ps > Kipr(i d8+/ > Fypii+j)d
0 B
J=1

JEN* JEN*

Since Vi € N*, p (i ) [0, 1], according to Lebesgue theorem, the second term of the right-hand-
side converges to fo > j=1Wi—jj(ps)ds. Combining (K1) and Lemma 3.5, we check that for
t € [0,7),) the series fo P z')f(i’jp?(j)ds)jEN* are summable over j uniformly in n. Hence Vi €

[0,7),), the third term of the r.h.s. converges to — f(fps ' ]EN* K; jPs(7)ds. As a consequence
for t € [0,7),) the last term of the r.h.s. has a limit f;(7) that we still have to identify. Let ¢t < T,.
Since forn —k >m > 1,

t n—k ~ t ~ tm—1 ~
|3 Bt ivds = [ Fogpbe s — |37 Bt e+ )ds,
0 j=m 0 jenr 0 j=1

t n—k
limsuplimsup/ ZFMPS (k+j)ds = fi(k / Z Fk,]ps k+j)ds.

m—+o0 n——+00 JEN*
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We are going to prove that the Lh.s. is nil. We suppose that n —k >m >k + 1.

n—k m—1 n—i n—i
Z Fy jip% (k+7) < Z Jps (i+7) Z ZFl IRTA(C ZF jPs(i+7) | by Lemma 3.4.
j=m i=1 j=m—1t i=m j=1

Integrating (3.1) w.r.t. the time variable, summing the result for m < ¢ < n and using Lemma
3.4, we deduce that

tn—Fk N tm 1 n i
[ X et yis < / R gl ()pl(j)ds

j=m i=m =1 _] =m—1
t m—1 n—i
SWOE > k) 3 pi (33)
i=m ':77’!,77;

Since, by the mass-conservation for (3.1), 377" ip™(i i) >0 ~!p™(j) < m — 1, applying Fatou
lemma, we obtain

tm—1 —1
limsuplimsup/ Z ip (%) Z py(7)ds = 0.
, N

m—+00 n—-+00

By (3.3), we conclude that V¢ € [0,7},), limsup,, limsup, fo Sk Bept(k 4 §)ds = 0 ie. py
solves (0.2) on [0,7}). |

Remark 3.6 In case (K1) is replaced by the stronger assumption K;; < k(i + j), using this
bound in the proof of Lemma 3.5, we obtain 9y 1, ipf (1) < 26>, ip}(i) and conclude by
Gronwall lemma that Vt > 0, Y7 | ipf(i) < e** Y.\ ip(i). Following the proof of Proposition
3.3, we deduce that if ) ;. ip(i) < +00, then (0.2) has a strong solution on [0,+00) satisfying
VE> 0, Dien (i) < €213 o ip(i), which is also a consequence of the combination of [3]
Theorem 2.4 and [6] Theorem 3.2 concerning the original Smoluchowski equation (0.1).

3.2 Nonlinear process and uniqueness for (0.2)

Givent € [0,T) = us € {q: N = Ry : Y . q(i) < 1}, let X* denote a one-dimensional jump
process starting from p and with transition function

V(s,i,7) E R X E X E, A(s,4,5) = 1{z<—|—oo} ( Jri— ]1{1<]<z} +KZ] ius(j — Z)1{1<]<-i-oo}>
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Proposition 3.7 When u; solves (0.2) on [0,T"), the process X" is nonlinear in the following
sense : Yt € [0,T AT,), Vi € N*, P(X} = i) = uy(d).

This result is obtained by an adaptation of the proof of Proposition 2.5. The estimations given
in Proposition 2.1 and Lemma 2.6 are replaced by the following one

Vt € [0,T AT,), max <Z iug(i), Y iP(X} = i)) < (K(T, — 1))~} (3.4)

1EN* 1EN*

which is deduced from comparison with the mass-conserving solution (Ut)te[o,Tp) of the equation
with multiplicative coagulation kernel xi5 and no fragmentation given by Proposition 3.3:

. il
Ve, i) = ol [ (0= G- Do) = i Y o) s (35)

j=1 g2l

Since 1
STiw@) =3 Y w@) =Y 1= u@)
1EN* neN* i>n neN* i=1

and 3oy tue(d) (resp. Y iP(XY = i) is smaller than 37, . (1 — 307 ue(4)) (resp.
Y omens (1 — 2?2—11 P(X}{ = 1))), estimation (3.4) is obtained by combination of the estimation
Siens (i) < (k(T, —t)) ! given in Proposition 3.3 and the following comparison between vy,
uy and the law of X' :

Lemma 3.8 If u; solves (0.2) on [0,T) then

Vt € [0,T AT,), ¥n € N*, > (i) < min (Z (i), Y P(X} = i)) .

=1 =1 1=1

The proof of this lemma is postponed to the next section. We are now ready to state our main
result concerning general fragmentation kernels and coagulation kernels satisfying (K1) :

Theorem 3.9 Suppose that ), . ip(i) < +oo. If uy and py solve (0.2) on [0,T) and p; is a
strong solution then uy = py on [0,T). Moreover (0.2) admits a unique mazimal strong solution
pe on [0,T) with T > T, = (kYo ip(1))™" and the process XP is nonlinear on [0,T) :
Ve [0,7), Vi e N, P(XP =) = py(i).

Translated on Smoluchowski’s equation (0.1), this result is similar to [15] Theorem 2.1 for the

choice (i) = \/k 1.
With remark 3.6, we easily deduce :

Corollary 3.10 Assume that ), . ip(i) < 400 and that K; j < k(i+j) then uniqueness holds
for (0.2) and therefore for (0.1).

In their uniqueness result (Theorem 4.1), Ball and Carr 3] make more stringent assumptions on
both the coagulation and the fragmentation kernels : they suppose that for some « € [0,1/2],

(Ka) holds and that 3C > 0, Vi > 2 EE-(EI)mjl*aFi_j,j < Ci'~®. On the other hand,
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we suppose that the initial data v is such that ) ; . i?y(i) < +oo whereas they only assume
> ien- 1v(1) < +oo.

Proof of Theorem 3.9 : The proof of the uniqueness statement is based on a coupling
argument. Let (X, Y:);c(o,) denote a two-dimensional jump process starting from the image of
pbyi €N — (i,4) € N* x N and with transition function equal to zero for transitions involving
an infinite coordinate and defined otherwise by

Ve e N, V1<j<z—1, As,(z,z), (z j,x—j))zﬁw,j,j
Vi € N, A(s, (z,2), (z + j, 2 + ) = Ky j min(ps(5), us (5))
(s, (2, 2), (z + j,x)) = Ky j(ps () — min(ps (), us ()
A(s, (2, 2), (z,2 + ) = Ko j(us(5) — min(ps(5), us(4)))

V(z,y) € N* x & with  # y,
Vi<j<z—1, A(s, (z,9), (z —J, y)) A(s, (v, 2), (2 — ) = Fojj
Vi €N, A(s, (2,9), (z + J,y)) = Ko jps())
A(s, (4, @), (> @ + ) = Ka jus ()

We easily check that X (resp. Y) is a jump process starting from p with transition function
A(8,%,5) = Lictoo} (Fj,i—j1{1§j<i} + K j_ips(J — i)l{i<j<+oo}) (resp. the previous one with ps
replaced by us). By the weak uniqueness result in Proposition 1.3 and by Proposition 3.7, we
deduce that Vt € [0,T A T),), Vi € N*, P(X; = i) = p;(i) and P(Y; = 1) = w;(d).

Therefore for t <T AT,

D IpG) —w(G) = D PXy =4) =Py =4)| < Y P(Xy =5,Y; # j) + P(X, # 5. Y; = j)
JEN* JEN* jEN*
<2P(X, £Y,) < 2P(3s < t, X, #Yy).

For t < T A T,, the probability that for some s < ¢, Xy # Y, is smaller than the expec-

tation E(f[f dien LiXo=vi=i} 2o jen K j|ps(j) —us(j)|ds) of the number of jumps on [0,?]

leading form X,- = Y- to Xs; # Y,, which by (K1) is smaller than Iﬁ}fotz
()] EieN* ips(i)ds.

Hence Vt € [0,T AT)) Z Ipe(3) — ue ()] < 2/@/ Z Ips(3) — us(4)] Z ips(i)ds

jEN* jEN* iEN*

jen= |Ps (]) -

As p; is a strong solution, we conclude by Gronwall lemma that V¢ € [0, AT,), ps = u; and
consequently P(X; =Y;) = 1.

Let t, =sup{t < T :Vs € [0,t], Vi € N*, P(X, = 1) = ps(i) = us(i) = P(Ys = 7) and P(X;, =
Y;) = 1}. Assuming that ¢, < T, we are going to obtain a contradiction. We have 0 < T, <
ty < T. Since p; is a strong solution, fot” Y ien- iPs(i)ds < +oo. Hence for some s € (0,t,),
Ty, = (KX ;en ws(1)) ™" > ty — 5. Both ¢ — ugpy and ¢ — pyiy solve (0.2) on [0,T — s) with
initial condition p replaced by ps. Moreover, ps1¢ is a strong solution and P(X; = Y;) = 1. By
the reasoning we have just made, we deduce that V¢ € [0, (T'— s) AT),), Vi € N*, P(X,14 =1) =
Ps+t(1) = usq4(i) = P(Ysyy = 1) and P(X54¢ = Ys4¢) = 1. Since T' A (s + T, ) > t, this gives the
desired contradiction and ¢, = T.

With Proposition 3.3 we easily deduce the last assertion in the Theorem. |
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3.3 Proof of Lemma 3.8

Fort € [0,T) — q; € {q: N* = Ry : >,y q(i) < 1}, let Y79 denote a jump process starting
from p and with transition function

V(S,i,j) € [OaT) X & x 57 )\(S,i,j) = 1{i<j<+oo}’€ i QS(j - Z)

We easily check that

t ,t—1
vienr, B =i) = o)+ [ (6= R0 =i - 9a) - P =) Y au) ) as.
j=1 j>1

For the solution u; of (0.2) on [0,7) considered in Lemma 3.8, we have

Lemma 3.11 V¢t € [0,T), Vn € N, P(Y* <n) <min (D7, u(i), P(X} < n)).

Proof : Combining (0.2) and (3.6), then using (K1), we get

atz V=i —u@ =Y Y (= Frjua + ) + K jua (§)wn(j) — wiP(Y" = i)ui(5) )

i=1 j>n—i+1
<k (w(i) =PV =10)i D> (). (3.7)
i=1 j>n—i+1

For n = 1, this equation writes 9y (P(Y;* = 1) —u¢(1)) < K37 e ue(4)(ue(1) —P(Y* = 1)). Since
up(1) = p(1) = P(Y* = 1), we deduce that Vt € [0,T), P(Y* = 1) < u(1).
Supposing inductively that for 1 <m <n —1, Vt € [0,T), > /%, (w (i) —P(Y* = i)) > 0 and

using that ¢ =137, ;. ui(j) is non-decreasing on {1,...,n}, we obtain
S (n S wl -1 X ) - B = i)
i=1 N jeN* j>n—it1
Z(m+1 Z w(j) —m Z )Zut(i)_]?(ytuzz))>0
ji>n—m j>n—m+1 =1
and deduce from (3.7)
n n
00 Y (P =) —w(i) < kn Y ue(f) D (ug(d) — P = i)).
=1 JEN* =1

With 7 ug(é) = Y0 P(Yy = i), we conclude that V¢ € [0,T), >0 | P(Y* =14) < 37 | ug(d).
Replacing (0.2) by the linear equation analogous to (2.2) satisfied by the law of X} and following
the same line of reasoning, we get that Y. | P(Y;* =) < > | P(X} =14). ||
As a consequence, for ¢ € [0,T), the function

up (6) = 1=y POV = 1) + Limgy (ue(2) + we(1) = PV = 1)) + Loy ue(d)
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belongs to {g : N* — R, 3. 1. q(i) = Y ,cn ()} and satisfies Vn € N*, 3% ul(i) <
Sor ug(d). We assume inductively that we have constructed uf, ..., uf € {g: N* = R, 3, . q(i) =
> ien- w (i)} such that V¢ € [0,T), Vn € N,

=1
n n n n
douf) <D ufTHE) << Y ui(i) < D weli).
i=1 i=1 i=1 i=1
and for 0 <1 < k — 1 (convention u° = u),

P =i)if 1 <i<i+1
uf i) = § (S wl) - DI PO = ) ifi=i+2 (3.)
w(i) if i > 1+ 2

1

Lemma 3.12 Vt € [0,T), Vn € N, IP’(Yt“k <n)< IP(Y;“k* < n).

Proof : This result as well as the comparison between P(Y* < n) and P(X}* < n) given in
Lemma 3.11 could be proved by a probabilistic coupling argument but we give a shorter analytic
proof. By the hypothesis concerning u*~! and u*, we have Vt € [0,T), Vn € N*,

n—1 n—1
Souf 6 = D0 wl) =Y u ) < D w) = D uf(G) =D uf ().
jzn JEN* Jj=1 JEN* Jj=1 j>n

Using (3.6) and then the previous upper-bound, we obtain

n
QY <n)-PEMT <n) =Y i [P =0 Y WG P =0) Y ub()
i=1 j>n—i+1 j>n—it+l

n
<w Y (PO = —ro =0)) i Y uEG).
i=1
We conclude like in the proof of lemma 3.11. [ |

We deduce that the function uf ™! defined by (3.8) for | = k belongs to {¢ : N* — R, Yien- (i) =
Sien- (i)} and satisfies Vt € [0,T), Vn € N*, 30 aufTH(5) < 0 k(i)

By induction we obtain for ¢t € [0,7) a sequence (uf)ren € {g : N* — RT, Y. . q(i) =
> ien- we(é)} such that Vn € N*, (357 uf(é))x is non-increasing and for k > n, (X < n) >
]P’(Yt“kf1 <n)=Y" uf(i). We deduce that Vi € N*, uf (i) converges to a limit u{° (i) such that

u® € {q: N" > R", > q(i) < Y w(i)} and ¥n € N*, ¥ uf®(i) < min (Z w (i), P(XP < m) .
=1

1EN* 1EN* =1

Hence to conclude the proof of Lemma 3.8 it is enough to check that
Lemma 3.13 Vt € [0, A T},), uf® = v;.
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1

Proof : Fork>ie N, V1<j<i, P(Y' ' =j)=uk(j) and (3.6) writes

t i—1
uk (i) = p(>+n/0 S G — )t (i — HubLG) — ik () 3 us(f)ds.

j=1 JEN*

Taking the limit ¥ — +oo in this equation, we obtain that V¢ € [0,T), Vi € N*,

=p(i)+m/zz—g (i — u() — (i) 3 us(j)ds.

jEN*

This equation also writes

t i—1
) = pli)e b Ksene O g [ e e O S (i = ) ) .
7=1

Since by Remark 3.2 v; is mass-conserving on [0,7),), we have similarly

i—1

t
Vi€ [0,T,), Vi€ N, u,(i) = pli)e —mfm/o e~ i — o (i — ), () ds.

j=1

Using that Vr € [0,T), > ;- ur(j) < 1, we check by induction on ¢ € N* that V¢ € [0,T" A

Tp), ve(i) < ug®(i).
By Fatou Lemma, V¢ € [0,T), > icne uf® (i) < D iene ue(i) < 1. Sincefort € [0,T)), D e ve(i) =
1, we conclude that Vt € [0,T AT)), ui® = v;.

3.4 Propagation of chaos in case K;; < k(i + j)

Combining Remarks 3.2, 3.6, Theorem 3.9 and Corollary 3.10, we obtain :

Proposition 3.14 Assume that ) ;. ip(i) < +o00 and K;j < k(i + j). Then the nonlinear
martingale problem (MP) (see Definition 2.2) has a unique solution P. Moreover, t € [0, +00) —
P, is the unique solution of (0.2).

IfYLN .. YNV denotes the system of N-particles introduced in Section 2.2.1, replacing Lemma
2.7 by the following estimation

Lemma 3.15 If K; ; < k(i+j), VN e N*, Vt >0, E (Supsgt Ysl,N) < et ip(i).

in the Proofs of Proposition 2.8 and Theorem 2.9, we get :

Theorem 3.16 Assume that ), . ip(i) < +oo and K;; < k(i + j). Then as N — +oo,
the empirical measures p = % Zﬁf:l dyn.n considered as P(D([0,+00),N*)) random variables

converge in law to the constant P where P denotes the unique solution of the nonlinear martingale
problem (MP).
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Proof of Lemma 3.15 : Let M € N, sup,; YN A M s necessarily smaller than the sum
of YOI’N and of the contributions of the a.s. finite number of jumps of s € [0,t] — YV leading
from Ysle < M to YSI’N > YSILN ie.

sup VPN A M < YOI’N + Z 1{
s<t s<t

LN , LN
<Y, -l-zl{Yl_,N<Y51,N}I{Yl_,NSM}((Y;lN—Ys, ) A M).
s<t s s

1N LN
Y17,N<YSI,N}1{Y17,N§M}(YS = Ys, Y| AM

Taking expectations, using (2.5) then K;; < (i + j) and the exchangeability of the processes
(Yn’N)1§n§N, we deduce

t 1 N ~
1,N , M
E(supysl,N A M) < E(Y, )+/0 E (1{1/51,N§M} E KYSI,Nyysn,N (yan A M) ) ds
n=1

s<t

t 1 N

<> ip(i) + /ﬁ?/o E (1{KI,N§M}YSLN + >N A M)) ds
1EN* n=1

t
< Z ip(i) -I—2/<o/ E(Squrl’N/\M> ds.
0

iEN* rss

We apply Gronwall’s lemma then let M — +00 to conclude. [ |

4 Existence for (0.2) in case Vi € N*, lim;, (K, ; + F;;)/i =0

The existence result that we are going to prove implies existence for (0.1). It is obtained by
considering the limit behaviour as N — 400 of the particle system (YL, ... YVN) introduced
in section 2.2.1. We first check a tightness result.

We endow the space D([0,+00),€&) of cadlag functions from [0, +o0) to £ with the Skorokhod
topology. Note that D; C D([0,+00),&).

Lemma 4.1 Assume that Vi € N*, sup;cn- (K;j + Fij)/j < +00. Then the sequence (7™)y of

the laws of the empirical measures pv = + SN Sy considered as P(D([0,+00),E)) valued
random variables is tight.

Proof : Like in the Proof of Proposition 2.8, it is enough to check the tightness of the laws of
the D([0,+00), E)-valued processes (Y1V)y thanks to Aldous criterion.

We recall that £ = N* U{+o0} is endowed with the metric d(z,y) = |£ — l‘ where by convention
1

Ty
—sc = 0. Since this space is compact, for any s > 0 the laws of the & valued variables (Ysl’N) N
are tight.

Let T > 0 and for N > 1, 7y be a stopping time of the filtration F}¥ = 0((Y51’N, .. ,YSN’N), s <
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t) smaller than T'. For §,n > 0,

sup IP’dYT ,YTlN <P| sup d(Y ,YTIN >
0€0,0] (@Y o4 Yri™) > 1) 0€0,0] ¥, w0 Y ) >

1
gP(Y“V< and 30 € [0,0] s.t. Y #Yﬁﬁ)+P(ﬁ¥V>—mﬁﬂeem&sm)ﬁﬂ9<
n n

Let [1/7n] denote the integer part of 1/n. Like in the proof of Proposition 2.8, we upper-bound
the first term of the right-hand-side by d max;<;<[1/y (supJEN* K; ij+ Zl 1 F] i ]>

To deal with the second term, we introduce the stopping time on = inf{s > 7 : YSI’N < 1/n}
and set o(y',...,y") = lyyi<ijyy. For the jump process (YULN L YNN) with transition
function defined by (2.5), the martingale M;” given by Definition 1.2 is such that a.s. on (AN >

1/n},

on (TN +90) N (1/n] N
MfN/\(TN‘HS) o MfN - I{UNSTNJHS} _/ Z lj(Ys’ ) Z F;j_ids.
™ J>[1/n] i=1

As E (I{YI,N>1/T]} (M(‘fN/\(TNM) - MfN)> = 0, we easily deduce that the second term is smaller
™

Ll =
than ¢ Supj>[1/n} EY[/:/{]} -Fi,jfi-
By the assumption made on the kernels, we deduce that supgc g Pd(Y SN, VAN > p) is

TN +6?
arbitrarily small uniformly in (N, 7x) for § small, which puts an end to the proof. |

Under more stringent assumptions on the kernels, we are able to give the following partial
characterization for weak limits of the sequence (7).

Proposition 4.2 Assume that Vi € N*, limj_, | (K;; + F;;)/j = 0. Then any weak limit of
the sequence (m)y gives full weight to the subset of P(D([0,+o0),&)) consisting in probability
measures @ with marginals (Q¢)¢ such that Qo = p and for any ¢ : N* — R satisfying ¢(l) =
o(l Am) for some m € N*,

M = (X)) — / (ZKXS,] (X +4) — 9(X:)Q: ()
JEN*
Xs—1

+ Z Fx, ji(p(Xs—34) — go(Xs))> ds is a Q-martingale (4.1)
where Xy denotes the canonical process on D([0,+00),E).
Writing for ¢+ € N* the constancy of the expectation of the Q-martingale (Mtli)t, we deduce :

Corollary 4.3 If Vi € N*, limj_,o(K;; + FZJ)/ 0, then any weak limit of the sequence
(7MY N gives full weight to the subset of P(D([0,4+00),&)) consisting in probability measures Q)
such that t — Qy solves (0.2) on [0,400).

Translated in terms of the original Smoluchowki’s coagulation fragmentation equation, this pro-
vides a global existence result.
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Proof of Proposition 4.2 : Let 7 denote the weak limit of a converging subsequence of
(V) n that we still index by N for simplicity. Like in the proof of Theorem 2.9, it is enough to
check that Vi € N*, 7% a.s.,

Bi(X, Q) =Li(X,) — 1;(Xo) /ZKXS,J (X + ) — LX) Qs (5)ds

JEN*
ti—1 ~
+/ ZFi—jJ s)ds —/ Z F; j1;1;(Xs)ds is a Q-martingale.
0 4
J=1 JeN

By the assumptions made on the kernels K and F, the function ® is bounded on D([0, +00), £) x
P(D(0, +0),6))

1—1
V(X,Q), |24(X,Q)| <1+t | max sup Kkj+max ZFZ ”,sup F;;
k)<l JGN* ] 1 i

For | € N*, ¢ : E' - R continuous and bounded and 0 < s; < s9 < ... < 5 < r < t,
we define the bounded function G' : P(D([0,+0),E)) — R by G(Q) =< Q,(®L(X,Q) —
(X, Q)g(Xr, . Xs)) >,

By a reasoning similar to the one made in the Proof of Theorem 2.9, we obtain that

lim E™ |G(Q)] = 0.

i ETG(Q)]

When Q™ converges weakly in P(D([0,400),&)) to Q then for ¢t ¢ Dg = {s > 0,Q(X, #
X,-) > 0}, QF converges weakly to Q; in P(€) i.e. Vi e N*, QF(i) = Q(7) (but QF(400) does
not necessarily converge to Q;(+00)). With the assumptions on the kernels, we deduce that for
$1,...,5,7,t ¢ Dg, G is continuous at ). Hence for s1,...,s;,r,t outside the at most countable
set {s > 0,7°({Q : s € Do}) > 0}, E™|G(Q)| = limy—400 E™" |G(Q)| = 0. The canonical
process X being cadlag, we easily deduce that 7 a.s., (P}(X, Q)); is a Q-martingale. |
An interesting question is whether any weak limit of the sequence (7V)y gives full weight to
{Q € P(D([0,+),&)) : Q(D1) = 1}. As D; is not a closed subset of D(]0, +oo) £), the

answer is not obvious. But in case the sequence of total fragmentation rates (E Fji—j)ien-
is bounded, it turns out to be positive :

Lemma 4.4 Assume that Vi € N*,sup;cn- Fij/j < +00 and sup;cy- E;;ll Fj; j < +oo. Then
any Q € P(D([0,4+00),&)) such that for any ¢ : N* — R satisfying p(l) = @I Am) for some
m € N* (4.1) holds gives full weight to D;.

Proof : We introduce the stopping times o = inf{s > 0, X,- V X; = 400}, o = inf{s >
0, X5 > k} and 7 = inf{s > 0, X <k} where k € N*. We also set 7 = limy_, o, 7 = inf{s >
o, Xs < +oo}. Let t >0 and 1 <i <k,
My, — M;,i/\t > Lo li(Xo) — S? (1{j<i}ffz>j,j + 1{j>i}ﬁ1i,jfz’) (o Nt —op At).
JEN*

By the optional stopping Theorem, the expectation under @) of the left-hand-side is nil. Therefore
Qo <t,X,=1) < SUpPjen- <l{j<i}ﬁ'i_j7j + 1{j>z~}ﬁ'i7j_i> < Q,0At—op At >. Letting k — 400,
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we deduce that Q(o < t,X, =14) =0. Hence Q(o < t, X, < 400) = 0. As a consequence setting
¢(l) = ly<ky and using that X; = 400 on (o,7), we get

T AL k _
Qas., MP,\, — M7, =11, <y — / Z s)ZFj,ifde-

i>k+1 j=1
By the optional stopping Theorem, we deduce that

Q(mx <t) < sup sup ZF’Z F< QT ANt—TAt>.
keN" i>k+1 5]

Using the definition of F', we obtain that

1—1

1
sup sup g F,Z _j=sup sup E F,Z = supE Fj;_; < +oo.
REN® i>k+1 7 i>2 1<k<i—1 ] 2 i>2 i

Letting k — +00 we get Q(7 < t) =0. As t is arbitrary, we conclude that Q(7 < +o00) =0. 1
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