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Abstra
tThis paper is dedi
ated to the probabilisti
 interpretation of the mass-�ow equation whi
his asso
iated with the dis
rete Smolu
howski 
oagulation fragmentation equation. The mass-�ow equation des
ribes the evolution in time of the distribution of the mass with respe
tto the size of the 
lusters when the expe
ted numbers of 
lusters follow Smolu
howski'sequation. Under various assumptions on the 
oagulation and the fragmentation kernels, we
onstru
t nonlinear pro
esses linked with the mass-�ow equation : the time-marginals oftheir law solve this equation. When possible, we approximate these pro
esses thanks tosimulable intera
ting parti
le systems. We dedu
e some existen
e and uniqueness results
on
erning the dis
rete Smolu
howski 
oagulation fragmentation equation whi
h seem to benew.The dis
rete Smolu
howski 
oagulation fragmentation equation des
ribes the evolution of theexpe
ted number 
i(t) of 
lusters with mass i 2 N� when two 
lusters with respe
tive masses jand k 
oagulate at rate Kj;k to form a 
luster with mass j+ k whereas a 
luster with mass j+ kbreaks up at rate Fj;k into two 
lusters with masses j and k :(�t
t(i) = 12Pi�1j=1 (Ki�j;j
t(i� j)
t(j) � Fi�j;j
t(i)) �Pj2N� (Ki;j
t(j)
t(i)� Fi;j
t(i+ j))
0(i) = 
(i): (0.1)We assume that the initial distribution 
 2 RN�+ has �nite mass i.e Pi2N� i
(i) < +1. Thekernels Kj;k and Fj;k are supposed to be non-negative and symmetri
 : Kj;k = Kk;j and Fj;k =Fk;j. Sin
e both in the 
oagulation phenomenom (j; k) ! j + k and the reverse fragmentationrea
tion j + k ! (j; k), the mass is 
onserved, one would expe
t a solution of (0.1) to satisfy8t � 0; Pi2N� i
t(i) = Pi2N� i
(i). In the pure fragmentation 
ase (Kj;k � 0), it is possibleto 
onstru
t solutions with in
reasing mass (see [3℄). These solutions have to be reje
ted forobvious physi
al reasons. In the pure 
oagulation 
ase (Fj;k = 0), it may happen that the massde
reases after a �nite time. Intuitively, this phenomenom 
alled gelation 
orresponds to theformation of an in�nite 
luster. That is why we 
onsider solutions of Smolu
howski's equationin the following sense : for T 2 (0;+1℄, we say t 2 [0; T ) ! 
t 2 f
 : N� ! R+ ; Pi2N� i
(i) �Pi2N� i
(i)g solves this equation on [0; T ) if 8i 2 N� , 8t 2 [0; T ), s ! Pj2N� Ki;j
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s!Pj2N� Fi;j
s(i+ j) are integrable on (0; t) and
t(i) = 
(i)+Z t0 12 i�1Xj=1 (Ki�j;j
s(i� j)
s(j) � Fi�j;j
s(i))�Xj2N� (Ki;j
s(j)
s(i)� Fi;j
s(i+ j)) ds:Sin
e 
t solves (0.1) if and only if 
t=Pi2N� i
(i) solves the same equation but with 
oagulationkernel Kj;k multiplied by Pi2N� i
(i) and initial data 
=Pi2N� i
(i), we 
an suppose withoutrestri
tion that Pi2N� i
(i) = 1 i.e. that (�(i) = i
(i))i2N� is a probability distribution on N� .By symmetry of the kernels K and F ,i2 i�1Xj=1Ki�j;j
s(i� j)
s(j) = 12 i�1Xj=1((i� j) + j)Ki�j;j
s(i� j)
s(j)= i�1Xj=1 Ki�j;jj (j
s(j))((i � j)
s(i� j));and 12 i�1Xj=1 Fi�j;j = 12 i�1Xj=1 (i� j) + ji Fi�j;j = i�1Xj=1 i� ji Fi�j;j:Hen
e setting ~Kk;j = Kk;jj and ~Fk;j = kFk;jj + k ;we obtain that (
t(i)) solves (0.1) if and only if (pt(i) = i
t(i)) solves the mass-�ow equation(see [2℄ [10℄ where this link is made respe
tively for the dis
rete and the general Smolu
howskiequation without fragmentation)8>><>>:p0(i) = �(i)�tpt(i) =Pi�1j=1 � ~Ki�j;jpt(i� j)pt(j) � ~Fi�j;jpt(i)��Pj2N� � ~Ki;jpt(i)pt(j) � ~Fi;jpt(i+ j)�=Pi�1j=1Wi�j;j(pt)�Pj2N� Wi;j(pt) forWk;j(pt) = ~Kk;jpt(k)pt(j)� ~Fk;jpt(k + j) (0.2)in the following sense :De�nition 0.1 Let T 2 (0;+1℄. We say that t! pt solves (0.2) on [0; T ) if 8t 2 (0; T ),(i) pt 2 fq : N� ! R+ ; Pi2N� q(i) � 1g(ii) 8i 2 N� , s!Pj2N� ~Ki;jps(j) and s!Pj2N� ~Fi;jps(i+ j) are integrable on (0; t) andpt(i) = �(i)+Z t0 i�1Xj=1 � ~Ki�j;jps(i� j)ps(j) � ~Fi�j;jps(i)��Xj2N� � ~Ki;jps(j)ps(i)� ~Fi;jps(i+ j)� ds:In this paper, we are going to study (0.2) under various kind of assumptions on the 
oagulationand fragmentation kernels. Following [7℄, we say that(K�) holds for some � 2 (1=2; 1℄ if 9� > 0 s.t. 8i; j � 1; Ki;j � �i�j� i.e. ~Ki;j � �i�j��1.(F
) holds for some 
 > 0 if 8� � 0, 9C(�) > 0, 8i � 3, P[(i�1)=2℄j=1 j�Fj;i�j � C(�)i
+� where[x℄ denotes the integer part of x. 2



Hypothesis (F
) is the so-
alled strong fragmentation 
ondition and is satis�ed for the kernelFj;k = (jk)� with � = (
 � 1)=2 and for the kernel Fj;k = (j + k)� with � = 
 � 1. Notethat when (K�) holds for � 2 (1=2; 1℄ then for q : N� ! R+ su
h that Pj2N� q(j) � 1,Pj2N� ~Ki;jq(j) � �i�Pj2N� j��1q(j) � �i� and in de�nition 0.1, the integrability 
ondition onPj2N� ~Ki;jps(j) in (ii) is a 
onsequen
e of (i).Many mathemati
al studies have been devoted to the Smolu
howski 
oagulation equation par-ti
ularly in the absen
e of fragmentation (Fi;j � 0) : see for instan
e the survey of Aldous [1℄ andthe referen
es 
ited therein. In the presen
e of fragmentation, less is known. In [17℄, assumingKi;j � '(i)'(j) with '(i)=i ! 0 as i ! +1 and boundedness of the total fragmentation rate12Pi�1j=1 Fi�j;j, Spouge proved existen
e of a global non-negative solution to (0.1). Ball and Carr[3℄ proved existen
e of a global mass-
onserving solution in 
ase Ki;j � �(i + j) but withoutany assumption on the fragmentation kernel. To obtain uniqueness, further assumptions wereneeded, in parti
ular, some restri
tions on the growth of the fragmentation 
oe�
ients. In theso-
alled strong fragmentation 
ase, assuming that for some � 2 (1=2; 1℄ and 
 > � hypotheses(K�) and (F
) hold, Da Costa [7℄ obtained existen
e of a unique global solution : see Proposi-tion 2.1 below. Guias [12℄ and Jeon [13℄ studied probabilisti
 approximations of (0.1) based onMarkov jump pro
esses. Assuming boundedness of the 
oagulation kernel and of the total frag-mentation rate sequen
e (12Pi�1j=1 Fi�j;j)i, Guias obtained existen
e of a unique mass-
onservingsolution of (0.1) and 
onvergen
e of the probabilisti
 approximations. Among other studies ofthe approximate Markov jumps pro
esses, Jeon proved 
onvergen
e to a solution of (0.1) in 
aselimi+j!+1 Ki;jij + Fi;j = 0.More re
ently, in the absen
e of fragmentation, Babovski [2℄, Eibe
k and Wagner [10℄ and Dea-
onu Fournier Tanré [8℄ [9℄ have worked on the probabilisti
 interpretation of the mass-�ow equa-tion (0.2). Papers [10℄, [8℄ and [9℄ are devoted to the general mass-�ow equation 
orresponding tothe non-ne
essarily dis
rete Smolu
howski 
oagulation equation but we are only going to presenttheir results in the dis
rete 
ase. In [8℄, Dea
onu, Fournier and Tanré prove existen
e of a non-linear pro
ess linked with (0.2) in 
asePi2N� i2�(i) < +1 and Ki;j � �ij (resp. Ki;j � �(i+j)): the time-marginals of the law of this pro
ess provide a lo
al (resp. global) solution of (0.2). In
ase Ki;j � '(i)'(j) with '(i)=i non-in
reasing and limi+j!+1 Ki;j'(i)'(j) = 0, Eibe
k and Wagner[10℄ prove 
onvergen
e to a solution of (0.2) of approximations based on Markov jump pro
esses.In [9℄, the authors prove 
onvergen
e of similar sto
hasti
 approximations in 
ase Ki;j � �(i+ j)and Pi2N� i2�(i) < +1.In the �rst se
tion of this paper, we introdu
e a 
lass of Markov jump pro
esses whi
h enables usto take into a

ount the possible formation of in�nite 
lusters 
alled gelation in the probabilisti
interpretation and approximation of (0.2).The se
ond se
tion is devoted to the strong fragmentation 
ase introdu
ed by Da Costa [7℄. Theregularizing e�e
t of the fragmentation prevents gelation. We introdu
e a nonlinear martingaleproblem su
h that the time-marginals of any solution provide a solution of (0.2). After 
he
kingexisten
e and uniqueness for this martingale problem thanks to the results given in [7℄, we provepropagation of 
haos to its solution for a sequen
e of simulable intera
ting parti
le systems.In the third se
tion, we do not make any assumption on the fragmentation kernel. In balan
e, wesuppose that (K1) holds and that the initial data is small in the following sense : Pi2N� i�(i) <+1. We obtain a lo
al (in time) existen
e and uniqueness result for (0.2). Moreover we 
onstru
tan asso
iated nonlinear pro
ess. In 
ase the 
oagulation satis�es the stronger upper-boundKi;j � �(i+ j), the existen
e and uniqueness results turn out to be global and the propagationof 
haos result introdu
ed in the strong framentation 
ase still holds. Translated in terms of theSmolu
howski equation (0.1), our existen
e and uniqueness results seem to be new.In the last se
tion, we suppose that 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0. We obtain a global3



existen
e result for (0.2) and 
onsequently for (0.1) by 
onsidering the limit behaviour of theparti
le system introdu
ed in the se
ond se
tion as the total number of parti
les goes to +1. Ourhypothesis on the fragmentation (resp. 
oagulation) kernel is far (resp. slightly) less restri
tivethan the ones made by Jeon [13℄ who assumes that limi+j!+1 Ki;jij +Fi;j = 0 to obtain existen
efor (0.1). Moreover we 
an deal with 
oagulation kernels su
h as Ki;j = (ij)� with 1=2 < � < 1,for whi
h the existen
e result of Ball and Carr [3℄ does not apply.1 A Class of jump pro
essesLet E = N� [ f+1g. In order to be able to take into a

ount the geli�
ation phenomenom,we introdu
e for N 2 N� a 
lass of Markov jump pro
esses on EN su
h that some 
oordinatesbe
ome in�nite when jumps a

umulate. We prove existen
e and weak uniqueness for pro
essesamong this 
lass.More pre
isely we endow EN with the metri
 d((x1; : : : ; xN ); (y1; : : : ; yN )) = PNn=1 ��� 1xn � 1yn ���(
onvention : 1+1 = 0) and setDN = �X : t 2 R+ ! Xt = (X1t ; : : : ;XNt ) 2 EN 
àdlàg su
h that for 1 � n � N; X is 
ontinuousat �n = inffs � 0; Xns� _Xns = +1g and satis�es 8s 2 [�n;+1); Xns = +1�: (1.1)The spa
e DN is endowed with the tra
e of the Skorokhod topology on the spa
e D([0;+1); EN )of 
àdlàg fun
tions from R+ to EN and with the 
orresponding Borel sigma �eld. We haveD([0;+1);N�N ) � DN � D([0;+1); EN ).De�nition 1.1 A fun
tion � : (s; x; y) 2 R+ �EN �EN ! �(s; x; y) 2 R+ is 
alled a transitionfun
tion on EN if(i) 8x 2 EN ; sups�0Py2EN �(s; x; y) = �(x) < +1(ii) 8x; y 2 EN with xn = +1 and yn < +1 for some 1 � n � N;8s � 0; �(s; x; y) = �(s; y; x) = 0:(iii) 81 � n � N; 8i 2 N� ; sups�0 supx2EN :xn=iPy2EN :yn 6=i �(s; x; y) < +1.De�nition 1.2 For a probability measure � on N�N and a transition fun
tion � on EN , we saythat the D-valued pro
ess (Xt)t�0 is a jump pro
ess with transition fun
tion � starting from � if1. X0 is distributed a

ording to �,2. 8' : EN ! R bounded and s.t. for some m 2 N� , 8x 2 EN ; '(x) = '((x1^m; : : : ; xN^m)),M't = '(Xt)� '(X0)� Z t0 Xy2E('(y)� '(Xs))�(s;Xs; y)ds is a martingale:4



Proposition 1.3 For any probability measure � on N�N and any transition fun
tion � on EN ,there exists a jump pro
ess with transition fun
tion � starting from � on a well-
hosen probabilityspa
e. Moreover two jump pro
esses with transition fun
tion � starting from � have the samelaw.1.1 Proof of existen
eLet X0 be a random variable with law � independent of a sequen
e of independent Poissonpro
esses with marks (T xk ; Uxk )k�1 indexed by x 2 EN . More pre
isely for �xed x 2 EN , wesuppose that (T xk )k is the sequen
e of su

essive jump times of a Poisson pro
ess with rate �(x)given by De�nition 1.1 (ii) independent of the marks (Uxk )k whi
h are i.i.d. a

ording to theuniform distribution on [0; 1℄.The pro
ess Xt is 
onstru
ted by indu
tion. We set �0 = 0. Supposing that the pro
ess is
onstru
ted up to time �l, we de�ne L = inffk : TX�lk > �lg. We set �l+1 = TX�lL , �x Xt = X�lfor all t 2 [�l; �l+1) and X�l+1 =  (�l+1;X�l ; UX�lL ) with  : R+ � EN � [0; 1℄ ! EN de�ned by (s; x; u) = (y if Pz<y �(s; x; z) � �(x)u <Py�z �(s; x; z)x if Pz2EN �(s; x; z) � �(x)uwhere EN is endowed with the lexi
ographi
al order. This way the pro
ess Xt is 
onstru
tedon the time interval [0; liml �l). We have to deal with the 
ase liml �l < +1. For x 2 EN ,we introdu
e the Poisson random measure N(x; ds; du) = Pk�1 Æ(Txk ;Uxk ) on R+ � [0; 1℄. Let1 � n � N and i 2 N� . The number of jumps leading from Xns� = i to Xns 6= i on [0; t ^ �l℄ isequal to Xx:xn=i Xy:yn 6=i ZR+�[0;1℄ 1fs��l^tg1x(Xs�)1y( (s; x; u))N(x; ds; du):By 
ompensation of the Poisson random measures, its expe
tation is equal toE 0�ZR+�[0;1℄ 1fs��l^tg1i(Xns ) Xy2EN :yn 6=i�(s;Xs; y)ds1A � t sups�0 supx2EN :xn=i Xy2EN :yn 6=i �(s; x; y):With assumption (iii) 
on
erning the transition fun
tion �, we easily dedu
e that 8t > 0, a.s.there are at most �nitely many jumps leading from Xns� = i to Xns 6= i on [0; liml �l ^ t). Hen
ea.s. on fliml �l < +1g, 81 � n � N , 8i 2 N� , there are at most �nitely many jumps leadingfrom Xns� = i to Xns 6= i for s 2 [0; liml �l). As a 
onsequen
e a.s. on fliml �l < +1g, limlX�lexists in EN . We set Xliml �l = limlX�l and 
arry on the 
onstru
tion : the next jump time isgiven by TXliml �lL where L = inffk : TXliml �lk > liml �lg and so on. By assumptions (i) and (ii)
on
erning the transition fun
tion �, a.s. on liml �l < +1,91 � n � N; 8s 2 [0; liml �l); Xns < +1 and liml Xn�l = +1: (1.2)Be
ause of assumption (ii) on �, the 
oordinates whi
h be
ome in�nite at time liml �l remain soafterwards. More generally, in the 
onstru
tion of the pro
ess Xt, a.s. at ea
h �nite a

umulationpoint of jump times, at least one of the 
oordinates whi
h was �nite so far be
omes in�nite andremains so afterwards. As a 
onsequen
e, there are at most N su
h �nite a

umulation pointsand the pro
ess is 
onstru
ted for t 2 [0;+1).Be
ause of assumption (ii) on �, up to time liml �l, the pro
ess Xt only depends on the variable5



X0 and the Poisson pro
esses with indexes in N�N . Hen
e using (1.2) and the independen
eassumptions on the initial variable X0 and Poisson pro
esses, we haveP�liml �l < +1; 9k : TXliml �lk = liml �l� � NXn=1 Xx:xn=+1P�liml �l < +1; 9k : T xk = liml �l� = 0:Sin
e the same property holds for all the �nite a

umulation points of jump times, we easily
he
k that a.s.8t � 0; Xt = X0 + Xx2EN Z[0;t℄�[0;1℄ 1x(Xs�)( (s;Xs� ; u)�Xs�)N(x; ds; du): (1.3)We are now going to 
he
k that 
ondition 2. in De�nition 1.2 is satis�ed by 
ompensation ofthe Poisson measures. Let ' : EN ! R bounded and m 2 N� be su
h that 8x 2 EN ; '(x) ='((x1 ^m; : : : ; xn ^m)). For t > 0, in the 
omputation of '(Xt) from (1.3), only the jumpssu
h that for some 1 � n � N , Xns� < m and Xns 6= Xns� or Xns� � m and Xns < m 
ontribute.For �xed n, the total number of su
h jumps on [0; t℄ is ne
essarily smaller than one plus twi
ethe number of jumps of the �rst 
ategory (those leading from Xns� < m to Xns 6= Xns�), theexpe
tation of whi
h is smaller than tPm�1i=1 sups�0 supx2EN :xn=iPy2EN :yn 6=i �(s; x; y) < +1.Hen
e the expe
tation of the number of jumps on [0; t℄ 
ontributing to '(Xt) is �nite. As a
onsequen
e, a.s.,8t � 0; '(Xt) = '(X0) + Xx2EN Z[0;t℄�[0;1℄ 1x(Xs�)('( (s;Xs� ; u)) � '(Xs�))N(x; ds; du)and M't is a martingale by 
ompensation of the Poisson random measures. Hen
e Xt is a jumppro
ess with transition fun
tion � starting from �.1.2 Proof of weak uniquenessLet P and Q denote the respe
tive laws of two jump pro
esses with transition fun
tion � startingfrom �. We denote by (Xt)t�0 the 
anoni
al pro
ess on D and by Ft = �(Xs; s � t) (F1 =�(Xs; s � 0)) its natural �ltration. For a stopping time � relative to (Ft), we de�ne F� = fA 2F1 : 8t � 0; A \ f� � tg 2 Ftg. A

ording to [16℄ Exer
ise (4.21) p.45, F� = �(Xs^� ; s � 0).We need to introdu
e the su

essive times when some of the 
oordinates of the pro
ess (Xt)t�0be
ome in�nite. Let T1 = inffs � 0 : 91 � n � N; Xns� _Xns = +1g (
onvention inf ; = +1).On fT1 < +1g, we set N1 = f1 � n � N : XnT�1 _XnT1 < +1g and T2 = inffs � T1 : 9n 2N1; Xns�_Xns = +1g. On the 
ontrary event, N1 = ;, T2 = +1. Indu
tively we obtain stoppingtimes T1 � T2 � : : : � TN+1 = +1 and sets of indexes ; = NN � : : : � N1 � f1; : : : ; Ng withfor 1 � k � N , Nk = ;; Tk+1 = +1 if Tk = +1 and Nk = fn 2 Nk�1 : XnT�k _XnTk < +1g,Tk+1 = inffs � Tk : 9n 2 Nk; Xns� _Xns = +1g otherwise.We also introdu
e another in
reasing sequen
e of lo
alizing stopping times. For m 2 N� , let�m = inffs � 0 : 91 � n � N; Xns � mg. Clearly limm �m = T1. By De�nition 1.2, the imagesof P and Q by the mapping (Xt)t 2 D ! (Xt ^ �m)t both solve a martingale problem withjump rates bounded be
ause of assumption (i) on the transition fun
tion �. A

ording to [11℄Theorem 7.3 p.223, uniqueness holds for this problem. Hen
e P and Q 
oin
ide on �(Xs^�m ; s �0) = F�m � FT1 for any m and therefore on the sigma algebra _m�(Xs^�m ; s � 0) � FT1 . OnfT1 < +1g, by de�nition of D (see (1.1)), t! Xt is 
ontinuous at T1. As a 
onsequen
e 8s � 0,Xs^T1 = limmXs^�m is mesurable w.r.t. the sigma algebra _m�(Xs^�m ; s � 0) whi
h therefore
ontains FT1 = �(Xs^T1 ; s � 0). Hen
e P and Q 
oin
ide on FT1 . Again by (1.1), on T1 < +1,6



8n 2 f1; : : : ; Ng n N1, 8s � T1, Xns = +1. Thanks to property (ii) of the transition fun
tion�, we 
he
k that on fT1 < +1g, P and Q a.s., 
onditionally on FT1 , (XnT1+s; n 2 N1)s�0 isa jump pro
ess on (N� [ f+1g)
ard(N1) starting from the Dira
 mass at (XnT1 ; n 2 N1) andwith modi�ed transition fun
tion �1(s;{; �) = �(T1 + s; x; y) where x; y 2 EN are obtainedfrom {; � 2 (N� [ f+1g)
ard(N1) by setting the 
oordinates in f1; : : : ; Ng n N1 equal to +1.Moreover, T2 � T1 is the �rst time when a 
oordinate of this pro
ess be
omes in�nite. Usingthe partial uniqueness result already obtained, we dedu
e that P and Q 
oin
ide on FT2 . Byindu
tion, we 
on
lude that P and Q 
oin
ide on FTN+1 = F1.2 The strong fragmentation 
ase : for � 2 (1=2; 1℄ and 
 > � (K�)and (F
) hold.Be
ause of the link between (0.1) and (0.2), Theorem 5.1 [7℄ yields existen
e for (0.2). Moreover,sin
e we assume in our de�nition of solutions that the mass at time t is smaller than the initialmass 1, by an easy adaptation of the proof of Theorem 6.1 [7℄, uniqueness also holds.Proposition 2.1 There is a unique solution pt of (0.2) on [0;+1). This solution is mass
onserving (i.e. 8t � 0; Pi2N� pt(i) = 1) and su
h that 8� > 0,8t; Xi2N� i
�� Z t0 ps(i)ds < +1:Be
ause of the mass-
onserving property of the solution pt of (0.2), the paths of the pro
ess thatwe are going to asso
iate with it belong to the spa
e D([0;+1);N� ) of 
àdlàg fun
tions from[0;+1) to N� whi
h is stri
tly in
luded in D1. We endow D([0;+1);N� ) with the Skorokhodtopology. Let P(D([0;+1);N�)), (Xt)t�0 denote respe
tively the set of probability measuresand the 
anoni
al pro
ess on this spa
e. We asso
iate the following nonlinear martingale problemwith (0.2) :De�nition 2.2 A probability measure P on D([0;+1);N�) with time-marginals (Pt)t�0 solvesthe nonlinear martingale problem (MP) if(i)P0 = � i.e. 8i 2 N� ; P0(i) = �(i)(ii)8' : N� ! R s.t. 9m 2 N� , 8l � m; '(l) = '(m),M't = '(Xt)� '(X0)� Z t0 � Xj2N� ~KXs;j('(Xs + j)� '(Xs))Ps(j)+ Xs�1Xj=1 ~FXs�j;j('(Xs � j)� '(Xs))�ds is a P -martingale:
7



If P is a probability measure on D([0;+1);N� ), then 8t � 0, Pt satis�es 
ondition (i) inDe�nition 0.1. For i 2 N� , let '(l) = 1i(l). By (K�),������Xj2N� ~KXs;j(1i(Xs + j) � 1i(Xs))Ps(j) � Xs�1Xj=1 ~FXs�j;j1i(Xs)������� max0� max1�j�i�1 ~Ki�j;jPs(j); Xj2N� ~Ki;jPs(j) + i�1Xj=1 ~Fi�j;j1A � �i� + i�1Xj=1 ~Fi�j;j:Hen
e if P solves problem (MP), the integrability ofM't yields that E (R t0 PXs�1j=1 ~FXs�j;j1i(Xs�j)ds) = R t0 Pj2N� ~Fi;jPs(i + j)ds < +1. Moreover, by the 
onstan
y of the expe
tation of theP -martingale M't , we getPt(i) = P0(i)+ Z t0 i�1Xj=1 ~Ki�j;jPs(i� j)Ps(j) � Xj2N� ~Ki;jPs(i)Ps(j)ds+ Z t0 Xj2N� ~Fi;jPs(i+ j)� i�1Xj=1 ~Fi�j;jPs(i)dsHen
e we have established the following link between problem (MP) and equation (0.2):Lemma 2.3 If P solves problem (MP) then t! Pt solves (0.2) on [0;+1).2.1 Existen
e and uniqueness for problem (MP)Theorem 2.4 The martingale problem (MP) has a unique solution P . Moreover, Pt is theunique solution of (0.2) on [0;+1).Proof of uniqueness : If P and Q both solve (MP), then a

ording to Lemma 2.3, Pt andQt both solve (0.2) on [0;+1) and we dedu
e from Proposition 2.1 that 8t � 0; Pt = Qt = pt.Hen
e under both P and Q, the 
anoni
al pro
ess is a jump pro
ess starting from � and withtransition fun
tion8(s; i; j) 2 R+ � E � E ; �(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ips(j � i)1fi<j<+1g� :(2.1)A

ording to the weak uniqueness result in Proposition 1.3, P = Q.We still have to prove existen
e. A

ording to Proposition 2.1, (0.2) has a solution t! pt. LetX be a jump pro
ess with transition fun
tion given by (2.1) starting from � and qs denote thelaw of Xs on N� [ f+1g. The fa
t that the law of the pro
ess X solves problem (MP) is a
onsequen
e of the following Proposition :Proposition 2.5 8t � 0; 8i � 1; qt(i) = pt(i).8



Sin
e by Proposition 2.1, 8t � 0; Pi2N� pt(i) = 1, this result implies in parti
ular that 8t � 0,a.s. Xt < +1. By de�nition of D1, we dedu
e that 8t � 0, a.s. 8s 2 [0; t℄; Xs� _Xs < +1 i.e.sups2[0;t℄Xs < +1. Therefore a.s. X 2 D([0;+1);N�).Proof of Proposition 2.5 : A

ording to 2. in De�nition 1.2, for i 2 N� , 1i(Xt)� 1i(X0)�R t0 Pj2N� (1i(j)� 1i(Xs))�(s;Xs; j)ds is a martingale. Following the same line of reasoning as inthe proof of Lemma 2.3, we dedu
e from the 
onstan
y of its expe
tation that t! qt solves thefollowing linear equation(�tqt(i) =Pi�1j=1 � ~Ki�j;jqt(i� j)pt(j)� ~Fi�j;jqt(i)� �Pj2N� � ~Ki;jqt(i)pt(j)� ~Fi;jqt(i+ j)�q0(i) = �(i): (2.2)So does the solution pt of (0.2). Hen
e it is enough to prove uniqueness for this equation to
on
lude. Without the fragmentation terms, we 
ould prove that t ! pt(i) and t ! qt(i) areequal by indu
tion on i. Here, we take advantage of the strong fragmentation hypotheses (F
)and (K�) with 
 > � 2 (12 ; 1℄ and adapt ideas developped by Da Costa [7℄ in order to proveuniqueness for (0.1) in the same framework. Let sgs(i) denote the sign of ps(i) � qs(i). Sin
ewhen s! f(s) is absolutely 
ontinuous with derivative g(s), jf(s)j is absolutely 
ontinuous withderivative sign(f(s))g(s), 
ombining (0.2) and (2.2), we havenXi=1 jpt(i)� qt(i)j = Z t0 nXi=1 sgs(i)� i�1Xj=1( ~Ki�j;jps(j)(ps(i� j) � qs(i� j))� ~Fi�j;j(ps(i)� qs(i)))� Xj2N�( ~Ki;jps(j)(ps(i) � qs(i))� ~Fi;j(ps(i+ j)� qs(i+ j)))�dsEx
hanging summations over i and j in Pni=1 sgs(i)Pi�1j=1( ~Ki�j;jps(j)(ps(i � j) � qs(i � j)) �~Fi�j;j(ps(i)�qs(i))), then setting k = i� j and ex
hanging summations over j and k we get thatthis term writes Pn�1k=1Pn�kj=1 sgs(k + j)( ~Kk;jps(j)(ps(k) � qs(k)) � ~Fk;j(ps(k + j) � qs(k + j))).Hen
e Pni=1 jpt(i) � qt(i)j = R t0 Un(s) + Vn(s)ds whereUn(s) = n�1Xi=1 n�iXj=1(sgs(i+ j) � sgs(i))( ~Ki;jps(j)(ps(i)� qs(i))� ~Fi;j(ps(i+ j) � qs(i+ j))) � 0sin
e (sgs(i+ j)� sgs(i))(ps(i)� qs(i)) � 0 and (sgs(i+ j) � sgs(i))(ps(i+ j) � qs(i+ j)) � 0,and Vn(s) = � nXi=1 Xj�n+1�i sgs(i)( ~Ki;jps(j)(ps(i) � qs(i)) � ~Fi;j(ps(i+ j)� qs(i+ j)))� nXi=1 Xj�n+1�i ~Fi;j(ps(i+ j) + qs(i+ j)):Integrating (0.2) on [0; t℄ and summing the obtained result for 1 � i � n, we getZ t0 nXi=1 Xj�n+1�i ~Fi;jps(i+ j)ds = nXi=1 pt(i)� nXi=1 �(i) + Z t0 nXi=1 Xj�n+1�i ~Ki;jps(j)ps(i)ds:Sin
e � < 
, 
ombining (K�), the 
onservation of mass for pt (8s � 0; Pj2N� ps(j) = 1) andthe estimation given in Proposition 2.1, we getZ t0 Xi;j2N� ~Ki;jps(j)ps(i)ds � �Z t0 Xi2N� i�ps(i)ds < +1:9



We dedu
e that R t0 Pni=1Pj�n+1�i ~Ki;jps(j)ps(i)ds and R t0 Pni=1Pj�n+1�i ~Fi;jps(i + j)ds 
on-verge to 0 as n! +1. By the following estimation the proof of whi
h is postponed,Lemma 2.6 8� > 0; 8t � 0; R t0 Pi2N� i
��qs(i)ds < +1we obtain similarly that R t0 Pni=1Pj�n+1�i ~Fi;jqs(i + j)ds 
onverges to Pi2N� qt(i) � 1 � 0.Hen
e lim supn!+1 R t0 Vn(s)ds � 0. We 
on
lude that 8t � 0; Pi2N� jpt(i)� qt(i)j = 0.Proof of Lemma 2.6 : Let � 2 [�1; 0). Integrating (2.2) on [0; t℄ summing the obtainedresult multiplied by i� for 1 � i � n and removing one of the two 
oagulations terms and theterm involving the initial 
ondition �, we getZ t0 0� nXi=1 i� Xj2N� ~Fi;jqs(i+ j)� nXi=1 i�qs(i) i�1Xj=1 ~Fi�j;j1A ds �Z t0 nXi=1 i� Xj2N� ~Ki;jqs(i)ps(j)ds+ nXi=1 i�qt(i) (2.3)Setting l = i+ j, ex
hanging summations then repla
ing indexes (l; i) by (i; j) we getnXi=1 i� Xj2N� ~Fi;jqs(i+ j) =Xl�2 qs(l) n^(l�1)Xi=1 i� ~Fi;l�i � nXi=2 qs(i) i�1Xj=1 j� ~Fj;i�j:Inserting this bound, (K�) and Pi2N� i�qt(i) � Pi2N� qt(i) � 1 in (2.3) and using moreoverPi�1j=1 ~Fi�j;j =Pi�1j=1 ~Fj;i�j we obtain thatZ t0 nXi=1 qs(i) i�1Xj=1(j� � i�) ~Fj;i�jds � 1 + �Z t0 Xi2N� i�+�qs(i)ds:By the strong fragmentation hypothesis (F
), for C� > 0, 8i � 3,i�1Xj=1(j� � i�) ~Fj;i�j = 1i i�1Xj=1 j1+� 1�� ij��!Fj;i�j � 1� 2�i [(i�1)=2℄Xj=1 j1+�Fj;i�j � C�i�+
 :Hen
e for � = �+ � 2 [�1 + �; �),C��� Z t0 X3�i<+1 i�+
��qs(i)ds � 1 + �2� + �Z t0 X3�i<+1 i�qs(i)ds: (2.4)We have 
 � � > 0. Let �l = l(
 � �) and L = inffl : �l � �g. Sin
e 8s � 0; Pi2N� qs(i) � 1,R t0 P3�i<+1 i�0qs(i)ds < t. Using (2.4), we dedu
e indu
tively that for any l smaller than L,R t0 P3�i<+1 i�lqs(i)ds < +1. Hen
e R t0 P3�i<+1 i�qs(i)ds < +1. We 
omplete the proof by
hoosing � = �� � in (2.4).
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2.2 Propagation of 
haos2.2.1 The system of N parti
lesThe parti
le system (Y 1;Nt ; : : : ; Y N;Nt ) that we 
onsider is a jump pro
ess on EN starting from�
N and with time-homogeneous transition fun
tion equal to zero for transitions modifying morethan one 
oordinate and for transitions involving an in�nite 
oordinate. If (e1; : : : ; eN ) denotesthe 
anoni
al basis on RN , the transitions involving the n-th 
oordinate when �nite are given by8y 2 EN with yn < +1; 81 � j � yn � 1; �(y; y � jen) = ~Fyn�j;jand 81 � m � N with ym < +1; �(y; y + ymen) = 1N ~Kyn;ym : (2.5)Without fragmentation and with 
oagulation kernel Ki;j = �i�j� for � 2 (1=2; 1℄, parti
les maybe
ome in�nite in �nite time. For N = 1 and Y 1;10 = 1, at ea
h jump the size of the parti
ledoubles and 
onsequently the times between the su

essive jumps are independent exponentialvariables with su

essive expe
tations ( 1�2�(2��1)n)n�0. Sin
e this sequen
e is summable, a.s.the parti
le be
omes in�nite in �nite time.2.2.2 TightnessWe are �rst going to prove that the hypotheses on the 
oagulation and fragmentation kernelsimply that a.s. no parti
le be
omes in�nite in �nite time. As a 
onsequen
e, the empiri
almeasure �N = 1N PNn=1 ÆY n;N of the parti
le system is a r.v. with values in P(D([0;+1);N�)).Then, we are going to prove tightness of the sequen
e of the laws of these variables �N .Sin
e the initial measure �
N and the transition fun
tion (2.5) are symmetri
, by the weakuniqueness result in Proposition 1.3, the parti
les are ex
hangeable. Hen
e for �xed N � 2,P(Y n;Nt = i) (resp P(Y n;Nt = i; Y m;Nt = j)) is independent of n 2 [1; N ℄ (resp independent of(n;m) with n 6= m 2 [1; N ℄). Let p1;Nt (i) and p2;Nt (i; j) denote respe
tively this one-parti
le(resp. two parti
les) measure. By a reasoning analogous to the one made to obtain (2.2), we
he
k that for i 2 N� ,�tp1;Nt (i) = i�1Xj=1� 1N ~Ki�j;j �(N � 1)p2;Nt (i� j; j) + 1fi�j=jgp1;Nt (j)� � ~Fi�j;jp1;Nt (i)�� Xj2N� � 1N ~Ki;j �(N � 1)p2;Nt (i; j) + 1fi=jgp1;Nt (i)�� ~Fi;jp1;Nt (i+ j)� : (2.6)Sin
e be
ause of the possibility for parti
les to be
ome in�nite, Pj2N� p2;Nt (i; j) � p1;Nt (i),by (K�); Xj2N� 1N ~Ki;j �(N � 1)p2;Nt (i; j) + 1fi=jgp1;Nt (i)� � �i�p1;Nt (i):Hen
e by an easy adaptation of the proof of Lemma 2.6, we obtain that (2.4) still holds with qsrepla
ed by p1;Ns and dedu
e the �rst assertion in the following Lemma :Lemma 2.7 8� > 0; 8t � 0; supN�1 R t0 Pi2N� i
��p1;Ns (i)ds < +1.Moreover, 8t � 0; 81 � n � N; P(Y n;Nt < +1) = 1.Lastly,8<:if � 2 (12 ; 1); 8t � 0; supN sup1�n�N E �sups�t(Y n;Ns )1�� � (Y n;N0 )1��� < +1if � = 1; 8t � 0; supN sup1�n�N E �ln�sups�t Y n;Ns =Y n;N0 �� < +111



Proof : We only have to prove the se
ond and last assertions. Integrating (2.6) on [0; t℄,summing the obtained result for 1 � i � I and removing the fragmentation terms, we getIXi=1 p1;Nt (i) + Z t0 IXi=1 Xj�I�i+1 1N ~Ki;j �(N � 1)p2;Ns (i; j) + 1fi=jgp1;Ns (i)� ds � IXi=1 �(i)Sin
e by (K�), Pi2N�Pj2N� 1N ~Ki;j �(N � 1)p2;Ns (i; j) + 1fi=jgp1;Ns (i)� ds � �Pi2N� i�p1;Ns (i)whi
h is integrable on [0; t℄ by the �rst assertion, the se
ond term of the left-hand-side 
onvergesto 0 as I ! +1. Hen
e Pi2N� p1;Nt (i) �Pi2N� �(i) = 1 and the se
ond assertion holds.Let us now suppose that � 2 (12 ; 1). Then 1 � � 2 (0; 12). By ex
hangeability of the parti
les,we only need to 
he
k the upper-bound for n = 1. The variable sups�t(Y 1;Ns )1�� is smaller thanthe sum of (Y 1;N0 )1�� and of the 
ontributions of the a.s. �nite (otherwise Y 1;Nt would be equalto +1) number of jumps of s 2 [0; t℄! Y 1;Ns with Y 1;Ns > Y 1;Ns� i.e.sups�t (Y 1;Ns )1�� � (Y 1;N0 )1�� �Xs�t 1fY 1;Ns >Y 1;Ns� g �(Y 1;Ns )1�� � (Y 1;Ns� )1��� :Taking expe
tations, using the inequality (y + y0)1�� � y1�� � (y0)1��, hypothesis (K�), weobtainE �sups�t (Y 1;Ns )1�� � (Y 1;N0 )1��� � E  Z t0 1N NXm=1 ~KY 1;Ns ;Ym;Ns �(Y 1;Ns + Y m;Ns )1�� � (Y 1;Ns )1��� ds!� �N Z t0 NXm=1 E((Y 1;Ns )�(Y m;Ns )��1(Y m;Ns )1��)ds� �Z t0 Xi2N� i�p1;Ns (i)ds < +1 sin
e � < 
:In 
ase � = 1, the 
on
lusion is obtained in the same way by using the inequality 8y; y0 2N� ; ln(y + y0)� ln(y) � y0=y.Proposition 2.8 The sequen
e of the laws of the empiri
al measures �N 
onsidered as randomvariables with values in P(D([0;+1);N�)) is tight.Proof : By ex
hangeability of the parti
les, a

ording to [18℄ and the referen
es therein, theProposition is equivalent to the tightness of the laws of the variables (Y 1;N )N in D([0;+1);N� ).Sin
e D([0;+1);N� ) is a 
losed subset of D([0;+1);R) endowed with the Skorokhod topology,it is enough to prove the tightness of the laws of the variables (Y 1;N )N in D([0;+1);R). Indeedby the 
losed sets 
hara
terization of weak 
onvergen
e ([4℄ Theorem 2.1 (iii)), when probabilitymeasures on D([0;+1);R) giving full weight to D([0;+1);N�) 
onverge weakly, their restri
-tions to D([0;+1);N�) also 
onverge weakly. We are going to do so by 
he
king that Aldoustightness 
riterion (see for instan
e [14℄ p.35) is satis�ed.12



Let t � 0 and M 2 N� . Supposing that � < 1, we haveP�sups�t Y 1;Ns > M� = P�sups�t (Y 1;Ns )1�� > M1���� P�(Y 1;N0 )1�� > M1��2 �+ P�sups�t (Y 1;Ns )1�� � (Y 1;N0 )1�� > M1��2 �� P�Y 1;N0 > M21=(1��)�+ 2M1�� E �sups�t (Y 1;Ns )1�� � (Y 1;N0 )1���By the third assertion in Lemma 2.7, we dedu
e that when � < 1,8t � 0; limM!+1 supN P�sups�t Y 1;Ns �M� = 0: (2.7)We 
he
k this property for � = 1 by repla
ing y ! y1�� by y ! ln(y) in the above 
omputation.As a 
onsequen
e 8s � 0 the laws of the real variables (Y 1;Ns )N are tight.Let T > 0 and for N � 1, �N be a stopping time of the �ltration FNt = �((Y 1;Ns ; : : : ; Y N;Ns ); s �t) smaller than T . For Æ; � > 0,sup�2[0;Æ℄P(jY 1;N�N+� � Y 1;N�N j > �) � P sup�2[0;Æ℄ jY 1;N�N+� � Y 1;N�N j > �!� P sups�T Y 1;Ns �M!+ P�Y 1;N�N �M and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N � (2.8)By (2.7), the �rst term of the right-hand-side is arbitrarily small uniformly in N for M bigenough. Therefore it is enough to 
he
k that for �xed M the se
ond term is arbitrarily smalluniformly in (N; �N ) for Æ small to 
on
lude that Aldous tightness 
riterion holds. Let 1 � i �M ,�i = inffs � �N : Y 1;Ns 6= ig and '(y1; : : : ; yN ) = 1i(y1). For the jump pro
ess (Y 1;N ; : : : ; Y N;N )with transition fun
tion de�ned by (2.5), the martingale M't given by De�nition 1.2 is su
h thata.s. on fY 1;N�N = ig,M'�i^(�N+Æ) �M'�N = �1f�i��N+Æg + Z �i^(�N+Æ)�N 1N NXn=1 ~Ki;Y n;Ns + i�1Xj=1 ~Fi�j;jds:As E �1fY 1;N�N =ig(M'�i^(�N+Æ) �M'�N )� = 0, we dedu
e thatP�Y 1;N�N = i and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N � � Æ��i� + i�1Xj=1 ~Fi�j;j�P(Y 1;N�N = i):By summation over i 2 [1; N ℄, we dedu
e that the se
ond term of the r.h.s. of (2.8) is smallerthan Æ��M� +max1�i�MPi�1j=1 ~Fi�j;j� whi
h 
on
ludes the proof.
2.2.3 Identi�
ation of the limitTheorem 2.9 We assume (K�) and (F
) with 
 > � 2 (12 ; 1℄. The empiri
al measures �N
onverge in law to the unique solution P of the nonlinear martingale problem (MP) as N ! +1.13



Proof : Let �N denote the law of the empiri
al measure �N . A

ording to Proposition 2.8 thesequen
e (�N )N is tight. Let �1 be the limit of a weakly 
onvergent subsequen
e that we stillindex by N for notational simpli
ity. Denoting by Q with time-marginals (Qs)s�0 the 
anoni
alvariable on P(D([0;+1);N�)), we are going to 
he
k that �1 a.s., Q solves the nonlinearmartingale problem (MP). Sin
e the 
oordinates of the initial ve
tor (Y 1;N0 ; : : : ; Y N;N0 )N arei.i.d. a

ording to the probability measure � on N� , we easily 
he
k that �1 a.s., Q0 = �i.e. Q satis�es 
ondition (i) in de�nition 2.2. To 
on
lude, we have to 
he
k that �1 a.s.,
ondition (ii) is satis�ed. Sin
e a fun
tion ' : N� ! R su
h that 8l � m; '(l) = '(m) writes'(l) = '(m) +Pm�1i=1 1i(l)('(i) � '(m)) it is enough to prove that 8i 2 N� , �1 a.s.�it(X;Q) =1i(Xt)� 1i(X0)� Z t0 Xj2N� ~KXs;j(1i(Xs + j)� 1i(Xs))Qs(j)ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Xs)ds� Z t0 Xj2N� ~Fi;j1i+j(Xs)ds is a Q-martingale. (2.9)Using (K�), we bound the absolute value of the sum of the four �rst terms in the above expressionof �it(X;Q) by 1 + (�i� +Pi�1j=1 ~Fi�j;j)t.Hen
e the integrability 
ondition �1 a.s. < Q; j�it(X;Q)j >< +1 
an be proved by 
he
kingthat E�1 �R t0 Pj2N� ~Fi;jQs(i+ j)ds� is �nite. By 
ontinuity of Q ! R t0 PJj=1 ~Fi;jQs(i + j)dsfor J 2 N� and ex
hangeability of the parti
les Y 1;N ; : : : ; Y N;N we obtain that this expe
tationis smaller than the supremum over N of E �R t0 Pj2N� ~Fi;j1i+j(Y 1;Ns )ds�. Sin
e the number ofjumps on [0; t℄ leading from Y 1;Ns� > i to Y 1;Ns = i is by 
onstru
tion smaller than the number ofjumps on [0; t℄ leading from Y 1;Ns� = i to Y 1;Ns 6= i plus 1, taking expe
tations we 
on
lude thatE�1�Z t0 Xj2N� ~Fi;jQs(i+ j)ds� � supN E� Z t0 Xj2N� ~Fi;j1i+j(Y 1;Ns )ds� � 1 +��i� + i�1Xj=1 ~Fi�j;j�t:(2.10)For l 2 N� , g : N� l ! R+ bounded and 0 � s1 � s2 � ::: � sl � r � t, we setG : Q 2 P(D([0;+1);N�))!< Q; (�it(X;Q) ��ir(X;Q))g(Xs1 ; : : : ;Xsl) >2 R [ f�1g:Our aim is to prove that E�1 jG(Q)j = 0. For 1 � n � N , the pro
essesMn;Nt = 1i(Y n;Nt )� 1i(Y n;N0 )� Z t0 1N NXm=1 ~KY n;Ns ;Ym;Ns (1i(Y n;Ns + Y m;Ns )� 1i(Y n;Ns ))+ Z t0 i�1Xj=1 ~Fi�j;j1i(Y n;Ns )ds� Z t0 Xj2N� ~Fi;j1i+j(Y n;Ns )dsare square integrable martingales with bra
kets< Mn;N ;Mn0;N >t= 1fn=n0g�Z t0 1N NXm=1 ~KY n;Ns ;Ym;Ns (1i(Y n;Ns + Y m;Ns )� 1i(Y n;Ns ))2ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Y n;Ns )ds+ Z t0 Xj2N� ~Fi;j1i+j(Y n;Ns )ds�satisfying E (< Mn;N ;Mn0;N >t) � 1fn=n0g�1 + 2��i� + i�1Xj=1 ~Fi�j;j�t� by (K�) and (2.10):14



Sin
e G(�N) = 1N PNn=1(Mn;Nt �Mn;Nr )g(Y n;Ns1 ; : : : ; Y n;Nsl ), we dedu
e that(E�N jG(Q)j)2 � E (G2(�N ))) � CN !N!+1 0: (2.11)The fun
tion G being neither 
ontinuous nor bounded, the 
onvergen
e of the sequen
e (�N )Nto �1 is not enough to dedu
e that E�1 jG(Q)j = 0. Weak 
onvergen
e of a sequen
e (Qn)n toQ implies that for t =2 DQ = fs � 0; Q(fXs� 6= Xsg) > 0g, limn!+1Pi2N� jQnt (i)�Qt(i)j = 0.Hen
e for s1; : : : ; sl; r; t =2 DQ, the 
ontribution in G of the �rst four terms in the de�nition(2.9) of �it is 
ontinuous at Q. And the fun
tion GJ obtained by repla
ing the �fth termR tr Pj2N� ~Fi;j1i+j(Xs)ds by R tr PJj=1 ~Fi;j1i+j(Xs)ds is bounded and 
ontinuous at Q. We �xs1; : : : ; sl; r; t outside of the at most 
ountable set fs � 0; �1(fQ : s 2 DQg) > 0g. Then �1gives full weight to 
ontinuity points of GJ and limN E�N jGJ(Q)j = E�1 jGJ(Q)j. With (2.11),we dedu
e E�1 jG(Q)j � lim supJ!+1 E�1 jG�GJ j(Q) + lim supJ!+1 lim supN!+1 E�N jG�GJ j(Q)Applying Lebesgue theorem thanks to the upper-bound (2.10), we get that the �rst term ofthe r.h.s. is nil. To deal with the se
ond one, we use su

essively the ex
hangeability of thepro
esses Y 1;N ; : : : ; Y N;N , Cau
hy-S
hwarz inequality, the above de�nition of M1;Nt and boundof E(< M1;N ;M1;N >t) :�E�N jG�GJ j(Q)�2 � C�E�1fsups�t Y 1;Ns >i+Jg Z t0 Xj�J+1 ~Fi;j1i+j(Y 1;Ns )ds��2� CP� sups�t Y 1;Ns > i+ J�E��Z t0 Xj2N� ~Fi;j1i+j(Y 1;Ns )ds�2�� CP� sups�t Y 1;Ns > i+ J�E��jM1;Nt j+ 1 +��i� + i�1Xj=1 ~Fi�j;j�t�2�� CP� sups�t Y 1;Ns > i+ J� where C does not depend on N .By (2.7), we dedu
e that for any l 2 N� , g : N� l ! R+ bounded and s1; : : : ; sl; r; t outside of theat most 
ountable set fs � 0; �1(fQ : s 2 DQg) > 0g, �1 a.s.,< Q; (�it(X;Q)� �ir(X;Q))g(Xs1 ; : : : ;Xsl) >= 0:The pro
ess X being 
àdlàg, we dedu
e that �1 a.s. (�it(X;Q))t is a Q-martingale, whi
h
ompletes the proof.
3 Coagulation kernel satisfying (K1) and small initial data(Pi2N� i�(i) <1):We only suppose that (K1) holds and do not make any assumption on the fragmentation kernel.Instead we assume that Pi2N� i�(i) < +1 i.e. Pi2N� i2
(i) < +1.15



3.1 Existen
e for (0.2)Sin
e by (K1), Ki;j � '(i)'(j) for the linear fun
tion '(i) = p� i and pt solves (0.2) if and onlyif 
t(i) = pt(i)=i solves (0.1), the following de�nition of strong solutions to (0.2) is 
onsistentwith the de�nition of strong solutions of the non ne
essarily dis
rete Smolu
howski 
oagulationequation introdu
ed by Norris [15℄De�nition 3.1 A solution t 2 [0; T ) ! pt of (0.2) in the sense of De�nition 0.1 is 
alled astrong solution if 8t < T , R t0 Pi2N� ips(i)ds < +1.Remark 3.2 Any strong solution is mass-
onserving. Indeed if pt is a strong solution on [0; T ),integrating (0.2) on [0; t℄ for t < T and summing the obtained result for 1 � i � n, we getnXi=1 pt(i) = nXi=1 �(i)� Z t0 nXi=1 Xj�n+1�iWi;j(ps)ds � nXi=1 �(i)� Z t0 nXi=1 Xj�n+1�i ~Ki;jps(i)ps(j)ds:By (K1) and the strong solution assumption, the se
ond term of the r.h.s. 
onverges to 0 as n!+1 and Pi2N� pt(i) � Pi2N� �(i) = 1. The 
onverse inequality holds a

ording to De�nition0.1.Proposition 3.3 If Pi2N� i�(i) < +1 then equation (0.2) admits a strong solution pt on[0; T�) where T� = (�Pi2N� i�(i))�1 (� is the 
onstant in assumption (K1)) satisfying 8t 2[0; T�); Pi2N� ipt(i) � (�(T� � t))�1.The proof follows ideas developped in [7℄ and 
onsists in taking the limit n! +1 in the followingn-dimensional density 
onserving trun
ation of (0.2) :8i � n; pn0 (i) = �(i) and �tpnt (i) = i�1Xj=1Wi�j;j(pnt )� n�iXj=1Wi;j(pnt ) (3.1)This system has a unique solution on [0;+1) with pnt (i) � 0 andPni=1 pnt (i) =Pni=1 �(i). Indeedlo
al existen
e and uniqueness 
an be proved by a standard �xed-point approa
h. Sin
e pnt (i) isa fa
tor in all terms with sign minus in the right-hand-side of (3.1), pnt (i) remains non-negative.With the mass 
onservation, whi
h writes Pni=1 �tpnt (i) = 0 and is a 
onsequen
e of the LemmaLemma 3.4 For 1 � m � n, Pni=m �Pi�1j=1 ai�j;j �Pn�ij=1 ai;j� =Pm�1i=1 Pn�ij=m�i ai;j:for the 
hoi
e m = 1 and ai;j = Wi;j(pnt ), we dedu
e that 81 � i � n; 0 � pnt (i) � Pni=1 �(i).This bound allows to iterate the �xed-point te
hnique to obtain a unique global solution.Proof of Lemma 3.4 : Ex
hanging summations over i and j and setting k = i� j yieldsnXi=m i�1Xj=1 ai�j;j = n�1Xj=1 n�jXk=(m�j)_1 ak;j = nXk=1 n�kXj=(m�k)_1 ak;j = m�1Xk=1 n�kXm�k ak;j + nXk=mn�kXj=1 ak;j:and the 
on
lusion follows readily.Before proving Proposition 3.3 let us 
he
k that the estimation given in this Proposition for ptholds for pnt . 16



Lemma 3.5 8t 2 [0; T�); Pni=1 ipnt (i) � (�(T� � t))�1:Proof : To prove this result, we bound Pni=1 i�tpnt (i). Sin
e the fragmentation terms have anon-positive 
ontribution,nXi=1 i�tpnt (i) � nXi=1 i i�1Xj=1 ~Ki�j;jpnt (i� j)pnt (j) � n�1Xi=1 i n�iXj=1 ~Ki;jpnt (i)pnt (j)= n�1Xj=1 n�jXk=1(k + j) ~Kk;jpnt (k)pnt (j) � n�1Xi=1 i n�iXj=1 ~Ki;jpnt (i)pnt (j)= n�1Xi=1 n�iXj=1 j ~Ki;jpnt (i)pnt (j) � �( nXi=1 ipnt (i))2 sin
e by (K1), ~Ki;j = Ki;j=j � �i.We 
on
lude by 
omparison with the solution of the O.D.E. �ty(t) = �y2(t); y(0) =Pni=1 i�(i):Proof of Proposition 3.3 : We set 8i > n; 8t � 0; pnt (i) = 0.A

ording to Lemma 2.3 [3℄, for m 2 N� , ddtPni=m pnt (i) is smaller than a 
onstant independentof n � m. Sin
e Pni=m pnt (i) 2 [0; 1℄, we dedu
e that for �xed m the fun
tions (Pni=m pnt (i))n�mand 
onsequently (pnt (m))n are of uniform bounded variation on [0;+1). Combining Helly'stheorem (see [5℄ p.130) and a diagonal extra
tion pro
edure, we obtain a subsequen
e, that westill index by n for notational simpli
ity, su
h that 8m 2 N� ; 8t � 0; pnt (m) ! pt(m). ByLemma 3.5 and Fatou lemma,8t � 0; Xi2N� pt(i) � lim infn Xi2N� pnt (i) = 1 and 8t 2 [0; T�);Xi2N� ipt(i) � (�(T� � t))�1: (3.2)The remainder of the proof 
onsists in 
he
king that pt is a solution of (0.2) on [0; T�).Integration of (3.1) yieldspnt (i) = �(i) + Z t0 i�1Xj=1Wi�j;j(pns )ds� Z t0 pns (i) Xj2N� ~Ki;jpns (j)ds+ Z t0 Xj2N� ~Fi;jpns (i+ j)ds:Sin
e 8i 2 N� ; pnt (i) 2 [0; 1℄, a

ording to Lebesgue theorem, the se
ond term of the right-hand-side 
onverges to R t0 Pij=1Wi�j;j(ps)ds. Combining (K1) and Lemma 3.5, we 
he
k that fort 2 [0; T�) the series (R t0 pns (i) ~Ki;jpns (j)ds)j2N� are summable over j uniformly in n. Hen
e 8t 2[0; T�), the third term of the r.h.s. 
onverges to � R t0 ps(i)Pj2N� ~Ki;jps(j)ds. As a 
onsequen
efor t 2 [0; T�) the last term of the r.h.s. has a limit ft(i) that we still have to identify. Let t < T�.Sin
e for n� k � m � 1,Z t0 n�kXj=m ~Fk;jpns (k + j)ds = Z t0 Xj2N� ~Fk;jpns (k + j)ds� Z t0 m�1Xj=1 ~Fk;jpns (k + j)ds;lim supm!+1 lim supn!+1 Z t0 n�kXj=m ~Fk;jpns (k + j)ds = ft(k)� Z t0 Xj2N� ~Fk;jps(k + j)ds:17



We are going to prove that the l.h.s. is nil. We suppose that n� k � m � k + 1.n�kXj=m ~Fk;jpns (k+j) � m�1Xi=1 n�iXj=m�i ~Fi;jpns (i+j) = nXi=m0� i�1Xj=1 ~Fi�j;jpns (i)� n�iXj=1 ~Fi;jpns (i+ j)1A by Lemma 3.4:Integrating (3.1) w.r.t. the time variable, summing the result for m � i � n and using Lemma3.4, we dedu
e thatZ t0 n�kXj=m ~Fk;jpns (k + j)ds � nXi=m �(i) + Z t0 m�1Xi=1 n�iXj=m�i ~Ki;jpns (i)pns (j)ds� nXi=m �(i) + �Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds (3.3)Sin
e, by the mass-
onservation for (3.1), Pm�1i=1 ipns (i)Pn�ij=m�i pns (j) � m � 1, applying Fatoulemma, we obtainlim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds � Z t0 m�1Xi=1 ips(i) lim supn!+1 n�iXj=m�i pns (j)ds:Using Lemma 3.5, we 
he
k that Pn�ij=m�i pns (j) !Pj�m�i ps(j) as n! +1. Hen
elim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds � Z t0 Xi+j�m ips(i)ps(j)ds:As by (3.2) 8t 2 [0; T�); R t0 Pi;j2N� ips(i)ps(j)ds � ln(1 + t=(T� � t))=�,lim supm!+1 lim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds = 0:By (3.3), we 
on
lude that 8t 2 [0; T�), lim supm lim supn R t0 Pn�kj=m ~Fk;jpns (k + j)ds = 0 i.e. ptsolves (0.2) on [0; T�).Remark 3.6 In 
ase (K1) is repla
ed by the stronger assumption Ki;j � �(i + j), using thisbound in the proof of Lemma 3.5, we obtain �tPni=1 ipnt (i) � 2�Pni=1 ipnt (i) and 
on
lude byGronwall lemma that 8t � 0; Pni=1 ipnt (i) � e2�tPi2N� i�(i). Following the proof of Proposition3.3, we dedu
e that if Pi2N� i�(i) < +1, then (0.2) has a strong solution on [0;+1) satisfying8t � 0; Pi2N� ipt(i) � e2�tPi2N� i�(i), whi
h is also a 
onsequen
e of the 
ombination of [3℄Theorem 2.4 and [6℄ Theorem 3.2 
on
erning the original Smolu
howski equation (0.1).3.2 Nonlinear pro
ess and uniqueness for (0.2)Given t 2 [0; T ) ! ut 2 fq : N� ! R+ : Pi2N� q(i) � 1g, let Xu denote a one-dimensional jumppro
ess starting from � and with transition fun
tion8(s; i; j) 2 R+ � E � E ; �(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ius(j � i)1fi<j<+1g� :18



Proposition 3.7 When ut solves (0.2) on [0; T ), the pro
ess Xu is nonlinear in the followingsense : 8t 2 [0; T ^ T�); 8i 2 N� ; P(Xut = i) = ut(i).This result is obtained by an adaptation of the proof of Proposition 2.5. The estimations givenin Proposition 2.1 and Lemma 2.6 are repla
ed by the following one8t 2 [0; T ^ T�); max Xi2N� iut(i);Xi2N� iP(Xut = i)! � (�(T� � t))�1; (3.4)whi
h is dedu
ed from 
omparison with the mass-
onserving solution (vt)t2[0;T�) of the equationwith multipli
ative 
oagulation kernel �ij and no fragmentation given by Proposition 3.3:8i 2 N� ; vt(i) = �(i) + �Z t0 � i�1Xj=1(i� j)vs(i� j)vs(j) � ivs(i)Xj�1 vs(j)�ds: (3.5)Sin
e Xi2N� ivt(i) = Xn2N�Xi�n vt(i) = Xn2N�(1� n�1Xi=1 vt(i))and Pi2N� iut(i) (resp. Pi2N� iP(Xut = i))) is smaller than Pn2N� (1 � Pn�1i=1 ut(i)) (resp.Pn2N� (1 �Pn�1i=1 P(Xut = i))), estimation (3.4) is obtained by 
ombination of the estimationPi2N� ivt(i) � (�(T� � t))�1 given in Proposition 3.3 and the following 
omparison between vt,ut and the law of Xut :Lemma 3.8 If ut solves (0.2) on [0; T ) then8t 2 [0; T ^ T�); 8n 2 N� ; nXi=1 vt(i) � min nXi=1 ut(i); nXi=1 P(Xut = i)! :The proof of this lemma is postponed to the next se
tion. We are now ready to state our mainresult 
on
erning general fragmentation kernels and 
oagulation kernels satisfying (K1) :Theorem 3.9 Suppose that Pi2N� i�(i) < +1. If ut and pt solve (0.2) on [0; T ) and pt is astrong solution then ut = pt on [0; T ). Moreover (0.2) admits a unique maximal strong solutionpt on [0;T ) with T � T� = (�Pi2N� i�(i))�1 and the pro
ess Xp is nonlinear on [0;T ) :8t 2 [0;T ); 8i 2 N� ; P(Xpt = i) = pt(i).Translated on Smolu
howski's equation (0.1), this result is similar to [15℄ Theorem 2.1 for the
hoi
e '(i) = p� i.With remark 3.6, we easily dedu
e :Corollary 3.10 Assume that Pi2N� i�(i) < +1 and that Ki;j � �(i+ j) then uniqueness holdsfor (0.2) and therefore for (0.1).In their uniqueness result (Theorem 4.1), Ball and Carr [3℄ make more stringent assumptions onboth the 
oagulation and the fragmentation kernels : they suppose that for some � 2 [0; 1=2℄,(K�) holds and that 9C > 0; 8i � 2; P[(i+1)=2℄j=1 j1��Fi�j;j � Ci1��. On the other hand,19



we suppose that the initial data 
 is su
h that Pi2N� i2
(i) < +1 whereas they only assumePi2N� i
(i) < +1.Proof of Theorem 3.9 : The proof of the uniqueness statement is based on a 
ouplingargument. Let (Xt; Yt)t2[0;T ) denote a two-dimensional jump pro
ess starting from the image of� by i 2 N� ! (i; i) 2 N��N� and with transition fun
tion equal to zero for transitions involvingan in�nite 
oordinate and de�ned otherwise by8x 2 N� ; 81 � j � x� 1; �(s; (x; x); (x � j; x� j)) = ~Fx�j;j8j 2 N� ; �(s; (x; x); (x + j; x+ j)) = ~Kx;j min(ps(j); us(j))�(s; (x; x); (x + j; x)) = ~Kx;j(ps(j)�min(ps(j); us(j)))�(s; (x; x); (x; x + j)) = ~Kx;j(us(j)�min(ps(j); us(j)))8(x; y) 2 N� � E with x 6= y;81 � j � x� 1; �(s; (x; y); (x � j; y)) = �(s; (y; x); (y; x � j)) = ~Fx�j;j8j 2 N� ; �(s; (x; y); (x + j; y)) = ~Kx;jps(j)�(s; (y; x); (y; x + j)) = ~Kx;jus(j):We easily 
he
k that X (resp. Y ) is a jump pro
ess starting from � with transition fun
tion�(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ips(j � i)1fi<j<+1g� (resp. the previous one with psrepla
ed by us). By the weak uniqueness result in Proposition 1.3 and by Proposition 3.7, wededu
e that 8t 2 [0; T ^ T�), 8i 2 N� , P(Xt = i) = pt(i) and P(Yt = i) = ut(i).Therefore for t < T ^ T�,Xj2N� jpt(j) � ut(j)j = Xj2N� jP(Xt = j)� P(Yt = j)j � Xj2N� P(Xt = j; Yt 6= j) + P(Xt 6= j; Yt = j)� 2P(Xt 6= Yt) � 2P(9s � t; Xs 6= Ys):For t < T ^ T�, the probability that for some s � t, Xs 6= Ys is smaller than the expe
-tation E �R t0 Pi2N� 1fXs=Ys=igPj2N� ~Ki;j jps(j) � us(j)jds� of the number of jumps on [0; t℄leading form Xs� = Ys� to Xs 6= Ys, whi
h by (K1) is smaller than � R t0 Pj2N� jps(j) �us(j)jPi2N� ips(i)ds.Hen
e 8t 2 [0; T ^ T�); Xj2N� jpt(j) � ut(j)j � 2�Z t0 Xj2N� jps(j)� us(j)jXi2N� ips(i)ds:As pt is a strong solution, we 
on
lude by Gronwall lemma that 8t 2 [0; T ^ T�); pt = ut and
onsequently P(Xt = Yt) = 1.Let tu = supft < T : 8s 2 [0; t℄; 8i 2 N� ; P(Xs = i) = ps(i) = us(i) = P(Ys = i) and P(Xs =Ys) = 1g. Assuming that tu < T , we are going to obtain a 
ontradi
tion. We have 0 < T� �tu < T . Sin
e pt is a strong solution, R tu0 Pi2N� ips(i)ds < +1. Hen
e for some s 2 (0; tu),Tps = (�Pi2N� ips(i))�1 > tu � s. Both t ! us+t and t ! ps+t solve (0.2) on [0; T � s) withinitial 
ondition � repla
ed by ps. Moreover, ps+t is a strong solution and P(Xs = Ys) = 1. Bythe reasoning we have just made, we dedu
e that 8t 2 [0; (T � s)^Tps); 8i 2 N� ; P(Xs+t = i) =ps+t(i) = us+t(i) = P(Ys+t = i) and P(Xs+t = Ys+t) = 1. Sin
e T ^ (s+ Tps) > tu this gives thedesired 
ontradi
tion and tu = T .With Proposition 3.3 we easily dedu
e the last assertion in the Theorem.
20



3.3 Proof of Lemma 3.8For t 2 [0; T ) ! qt 2 fq : N� ! R+ : Pi2N� q(i) � 1g, let Y q denote a jump pro
ess startingfrom � and with transition fun
tion8(s; i; j) 2 [0; T )� E � E ; �(s; i; j) = 1fi<j<+1g� i qs(j � i):We easily 
he
k that8i 2 N� ; P(Y qt = i) = �(i) + �Z t0 � i�1Xj=1(i� j)P(Y qs = i� j)qs(j) � iP(Y qs = i)Xj�1 qs(j)�ds:(3.6)For the solution ut of (0.2) on [0; T ) 
onsidered in Lemma 3.8, we haveLemma 3.11 8t 2 [0; T ); 8n 2 N� , P(Y ut � n) � min (Pni=1 ut(i);P(Xut � n)).Proof : Combining (0.2) and (3.6), then using (K1), we get�t nXi=1(P(Y ut = i)� ut(i)) = nXi=1 Xj�n�i+1�� ~Fi;jut(i+ j) + ~Ki;jut(i)ut(j) � �iP(Y ut = i)ut(j)�� � nXi=1(ut(i)� P(Y ut = i))i Xj�n�i+1 ut(j): (3.7)For n = 1, this equation writes �t(P(Y ut = 1)�ut(1)) � �Pj2N� ut(j)(ut(1)�P(Y ut = 1)). Sin
eu0(1) = �(1) = P(Y ut = 1), we dedu
e that 8t 2 [0; T ); P(Y ut = 1) � ut(1).Supposing indu
tively that for 1 � m � n � 1, 8t 2 [0; T ), Pmi=1(ut(i) � P(Y ut = i)) � 0 andusing that i! iPj�n�i+1 ut(j) is non-de
reasing on f1; : : : ; ng, we obtainnXi=1 �nXj2N� ut(j) � i Xj�n�i+1ut(j)�(ut(i)� P(Y ut = i))= n�1Xm=1�(m+ 1) Xj�n�mut(j) �m Xj�n�m+1ut(j)� mXi=1(ut(i)� P(Y ut = i)) � 0and dedu
e from (3.7)�t nXi=1(P(Y ut = i)� ut(i)) � �nXj2N� ut(j) nXi=1(ut(i)� P(Y ut = i)):WithPni=1 u0(i) =Pni=1 P(Y u0 = i), we 
on
lude that 8t 2 [0; T ); Pni=1 P(Y ut = i) �Pni=1 ut(i).Repla
ing (0.2) by the linear equation analogous to (2.2) satis�ed by the law of Xut and followingthe same line of reasoning, we get that Pni=1 P(Y ut = i) �Pni=1 P(Xut = i).As a 
onsequen
e, for t 2 [0; T ), the fun
tionu1t (i) = 1fi=1gP(Y ut = 1) + 1fi=2g(ut(2) + ut(1)� P(Y ut = 1)) + 1fi>2gut(i)21



belongs to fq : N� ! R+ ; Pi2N� q(i) = Pi2N� ut(i)g and satis�es 8n 2 N� ; Pni=1 u1t (i) �Pni=1 ut(i). We assume indu
tively that we have 
onstru
ted u1t ; : : : ; ukt 2 fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g su
h that 8t 2 [0; T ), 8n 2 N� ,P(Y uk�1t � n) � : : : � P(Y u1t � n) � P(Y ut � n) � min P(Xut � n); nXi=1 ut(i)! ;nXi=1 ukt (i) � nXi=1 uk�1t (i) � : : : � nXi=1 u1t (i) � nXi=1 ut(i):and for 0 � l � k � 1 (
onvention u0 = u),ul+1t (i) = 8>><>>:P(Y ult = i) if 1 � i � l + 1�Pl+2j=1 ut(j) �Pl+1j=1 P(Y ult = i)� if i = l + 2ut(i) if i > l + 2 : (3.8)Lemma 3.12 8t 2 [0; T ); 8n 2 N� ; P(Y ukt � n) � P(Y uk�1t � n).Proof : This result as well as the 
omparison between P(Y ut � n) and P(Xut � n) given inLemma 3.11 
ould be proved by a probabilisti
 
oupling argument but we give a shorter analyti
proof. By the hypothesis 
on
erning uk�1 and uk, we have 8t 2 [0; T ); 8n 2 N� ;Xj�nuk�1t (j) = Xj2N� ut(j) � n�1Xj=1 uk�1t (j) � Xj2N� ut(j)� n�1Xj=1 ukt (j) =Xj�nukt (j):Using (3.6) and then the previous upper-bound, we obtain�t(P(Y ukt � n)� P(Y uk�1t � n)) = � nXi=1 i0�P(Y uk�1t = i) Xj�n�i+1uk�1t (j)� P(Y ukt = i) Xj�n�i+1 ukt (j)1A� � nXi=1 �P(Y uk�1t = i)� P(Y ukt = i)� i Xj�n�i+1ukt (j):We 
on
lude like in the proof of lemma 3.11.We dedu
e that the fun
tion uk+1t de�ned by (3.8) for l = k belongs to fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g and satis�es 8t 2 [0; T ); 8n 2 N� ; Pni=1 uk+1t (i) �Pni=1 ukt (i).By indu
tion we obtain for t 2 [0; T ) a sequen
e (ukt )k2N 2 fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g su
h that 8n 2 N� , (Pni=1 ukt (i))k is non-in
reasing and for k � n, P(Xut � n) �P(Y uk�1t � n) =Pni=1 ukt (i). We dedu
e that 8i 2 N� , ukt (i) 
onverges to a limit u1t (i) su
h thatu1t 2 fq : N� ! R+ ; Xi2N� q(i) � Xi2N� ut(i)g and 8n 2 N� ; nXi=1 u1t (i) � min nXi=1 ut(i);P(Xut � n)! :Hen
e to 
on
lude the proof of Lemma 3.8 it is enough to 
he
k thatLemma 3.13 8t 2 [0; T ^ T�); u1t = vt: 22



Proof : For k � i 2 N� , 81 � j � i; P(Y uk�1t = j) = ukt (j) and (3.6) writesukt (i) = �(i) + �Z t0 i�1Xj=1(i� j)uks (i� j)uk�1s (j) � iuks(i) Xj2N� us(j)ds:Taking the limit k ! +1 in this equation, we obtain that 8t 2 [0; T ); 8i 2 N� ;u1t (i) = �(i) + �Z t0 i�1Xj=1(i� j)u1s (i� j)u1s (j) � iu1s (i) Xj2N� us(j)ds:This equation also writesu1t (i) = �(i)e��i R t0 Pj2N� ur(j)dr + �Z t0 e��i R ts Pj2N� ur(j)dr i�1Xj=1(i� j)u1s (i� j)u1s (j)ds:Sin
e by Remark 3.2 vt is mass-
onserving on [0; T�), we have similarly8t 2 [0; T�); 8i 2 N� ; vt(i) = �(i)e��it + �Z t0 e��i(t�s) i�1Xj=1(i� j)vs(i� j)vs(j)ds:Using that 8r 2 [0; T ); Pj2N� ur(j) � 1, we 
he
k by indu
tion on i 2 N� that 8t 2 [0; T ^T�); vt(i) � u1t (i).By Fatou Lemma, 8t 2 [0; T ); Pi2N� u1t (i) �Pi2N� ut(i) � 1. Sin
e for t 2 [0; T�),Pi2N� vt(i) =1, we 
on
lude that 8t 2 [0; T ^ T�); u1t = vt.
3.4 Propagation of 
haos in 
ase Ki;j � �(i+ j)Combining Remarks 3.2, 3.6, Theorem 3.9 and Corollary 3.10, we obtain :Proposition 3.14 Assume that Pi2N� i�(i) < +1 and Ki;j � �(i + j). Then the nonlinearmartingale problem (MP) (see De�nition 2.2) has a unique solution P . Moreover, t 2 [0;+1)!Pt is the unique solution of (0.2).If Y 1;N ; : : : ; Y N;N denotes the system ofN -parti
les introdu
ed in Se
tion 2.2.1, repla
ing Lemma2.7 by the following estimationLemma 3.15 If Ki;j � �(i+ j), 8N 2 N� ; 8t � 0; E �sups�t Y 1;Ns � � e2�tPi2N� i�(i):in the Proofs of Proposition 2.8 and Theorem 2.9, we get :Theorem 3.16 Assume that Pi2N� i�(i) < +1 and Ki;j � �(i + j). Then as N ! +1,the empiri
al measures �N = 1N PNn=1 ÆY n;N 
onsidered as P(D([0;+1);N� )) random variables
onverge in law to the 
onstant P where P denotes the unique solution of the nonlinear martingaleproblem (MP). 23



Proof of Lemma 3.15 : Let M 2 N� , sups�t Y 1;Ns ^M is ne
essarily smaller than the sumof Y 1;N0 and of the 
ontributions of the a.s. �nite number of jumps of s 2 [0; t℄ ! Y 1;Ns leadingfrom Y 1;Ns� �M to Y 1;Ns > Y 1;Ns� i.e.sups�t Y 1;Ns ^M � 0�Y 1;N0 +Xs�t 1fY 1;Ns� <Y 1;Ns g1fY 1;Ns� �Mg(Y 1;Ns � Y 1;Ns� )1A ^M� Y 1;N0 +Xs�t 1fY 1;Ns� <Y 1;Ns g1fY 1;Ns� �Mg((Y 1;Ns � Y 1;Ns� ) ^M):Taking expe
tations, using (2.5) then Ki;j � �(i + j) and the ex
hangeability of the pro
esses(Y n;N )1�n�N , we dedu
eE �sups�t Y 1;Ns ^M� � E (Y 1;N0 ) + Z t0 E  1fY 1;Ns �Mg 1N NXn=1 ~KY 1;Ns ;Y n;Ns (Y n;Ns ^M)! ds� Xi2N� i�(i) + �Z t0 E  1fY 1;Ns �MgY 1;Ns + 1N NXn=1(Y n;Ns ^M)! ds� Xi2N� i�(i) + 2�Z t0 E �supr�s Y 1;Nr ^M� ds:We apply Gronwall's lemma then let M ! +1 to 
on
lude.
4 Existen
e for (0.2) in 
ase 8i 2 N � ; limj!+1(Ki;j + Fi;j)=j = 0The existen
e result that we are going to prove implies existen
e for (0.1). It is obtained by
onsidering the limit behaviour as N ! +1 of the parti
le system (Y 1;N ; : : : ; Y N;N ) introdu
edin se
tion 2.2.1. We �rst 
he
k a tightness result.We endow the spa
e D([0;+1); E) of 
àdlàg fun
tions from [0;+1) to E with the Skorokhodtopology. Note that D1 � D([0;+1); E).Lemma 4.1 Assume that 8i 2 N� ; supj2N� (Ki;j + Fi;j)=j < +1. Then the sequen
e (�N )N ofthe laws of the empiri
al measures �N = 1N PNn=1 ÆY n;N 
onsidered as P(D([0;+1); E)) valuedrandom variables is tight.Proof : Like in the Proof of Proposition 2.8, it is enough to 
he
k the tightness of the laws ofthe D([0;+1); E)-valued pro
esses (Y 1;N )N thanks to Aldous 
riterion.We re
all that E = N� [f+1g is endowed with the metri
 d(x; y) = ��� 1x � 1y ��� where by 
onvention1+1 = 0. Sin
e this spa
e is 
ompa
t, for any s � 0 the laws of the E valued variables (Y 1;Ns )Nare tight.Let T > 0 and for N � 1, �N be a stopping time of the �ltration FNt = �((Y 1;Ns ; : : : ; Y N;Ns ); s �24



t) smaller than T . For Æ; � > 0,sup�2[0;Æ℄P(d(Y 1;N�N+�; Y 1;N�N ) > �) � P sup�2[0;Æ℄d(Y 1;N�N+�; Y 1;N�N ) > �!� P�Y 1;N�N � 1� and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N �+ P�Y 1;N�N > 1� and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� � 1��Let [1=�℄ denote the integer part of 1=�. Like in the proof of Proposition 2.8, we upper-boundthe �rst term of the right-hand-side by Æmax1�i�[1=�℄ �supj2N� ~Ki;j +Pi�1j=1 ~Fj;i�j�.To deal with the se
ond term, we introdu
e the stopping time �N = inffs � �N : Y 1;Ns � 1=�gand set '(y1; : : : ; yN ) = 1fy1�1=�g. For the jump pro
ess (Y 1;N ; : : : ; Y N;N ) with transitionfun
tion de�ned by (2.5), the martingaleM't given by De�nition 1.2 is su
h that a.s. on fY 1;N�N >1=�g, M'�N^(�N+Æ) �M'�N = 1f�N��N+Æg � Z �N^(�N+Æ)�N Xj>[1=�℄ 1j(Y 1;Ns ) [1=�℄Xi=1 ~Fi;j�ids:As E �1fY 1;N�N >1=�g(M'�N^(�N+Æ) �M'�N )� = 0, we easily dedu
e that the se
ond term is smallerthan Æ supj>[1=�℄P[1=�℄i=1 ~Fi;j�i.By the assumption made on the kernels, we dedu
e that sup�2[0;Æ℄ P(d(Y 1;N�N+�; Y 1;N�N ) > �) isarbitrarily small uniformly in (N; �N ) for Æ small, whi
h puts an end to the proof.Under more stringent assumptions on the kernels, we are able to give the following partial
hara
terization for weak limits of the sequen
e (�N )N .Proposition 4.2 Assume that 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0. Then any weak limit ofthe sequen
e (�N )N gives full weight to the subset of P(D([0;+1); E)) 
onsisting in probabilitymeasures Q with marginals (Qt)t su
h that Q0 = � and for any ' : N� ! R satisfying '(l) ='(l ^m) for some m 2 N� ,M't = '(Xt)� '(X0)� Z t0 � Xj2N� ~KXs;j('(Xs + j) � '(Xs))Qs(j)+ Xs�1Xj=1 ~FXs�j;j('(Xs � j)� '(Xs))�ds is a Q-martingale (4.1)where Xt denotes the 
anoni
al pro
ess on D([0;+1); E).Writing for i 2 N� the 
onstan
y of the expe
tation of the Q-martingale (M1it )t, we dedu
e :Corollary 4.3 If 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0, then any weak limit of the sequen
e(�N )N gives full weight to the subset of P(D([0;+1); E)) 
onsisting in probability measures Qsu
h that t! Qt solves (0.2) on [0;+1).Translated in terms of the original Smolu
howki's 
oagulation fragmentation equation, this pro-vides a global existen
e result. 25



Proof of Proposition 4.2 : Let �1 denote the weak limit of a 
onverging subsequen
e of(�N )N that we still index by N for simpli
ity. Like in the proof of Theorem 2.9, it is enough to
he
k that 8i 2 N� , �1 a.s.,�it(X;Q) =1i(Xt)� 1i(X0)� Z t0 Xj2N� ~KXs;j(1i(Xs + j)� 1i(Xs))Qs(j)ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Xs)ds� Z t0 Xj2N� ~Fi;j1i+j(Xs)ds is a Q-martingale.By the assumptions made on the kernelsK and F , the fun
tion �it is bounded on D([0;+1); E)�P(D([0;+1); E)) :8(X;Q); j�it(X;Q)j � 1 + t0�maxk�i supj2N� ~Kk;j +max0� i�1Xj=1 ~Fi�j;j; supj2N� ~Fi;j1A1A :For l 2 N� , g : E l ! R 
ontinuous and bounded and 0 � s1 � s2 � ::: � sl � r � t,we de�ne the bounded fun
tion G : P(D([0;+1); E)) ! R by G(Q) =< Q; (�it(X;Q) ��ir(X;Q))g(Xs1 ; : : : ;Xsl) >.By a reasoning similar to the one made in the Proof of Theorem 2.9, we obtain thatlimN!+1 E�N jG(Q)j = 0:When Qn 
onverges weakly in P(D([0;+1); E)) to Q then for t =2 DQ = fs � 0; Q(Xs 6=Xs�) > 0g, Qnt 
onverges weakly to Qt in P(E) i.e. 8i 2 N� , Qnt (i) ! Qt(i) (but Qnt (+1) doesnot ne
essarily 
onverge to Qt(+1)). With the assumptions on the kernels, we dedu
e that fors1; : : : ; sl; r; t =2 DQ, G is 
ontinuous at Q. Hen
e for s1; : : : ; sl; r; t outside the at most 
ountableset fs � 0; �1(fQ : s 2 DQg) > 0g, E�1 jG(Q)j = limN!+1 E�N jG(Q)j = 0. The 
anoni
alpro
ess X being 
àdlàg, we easily dedu
e that �1 a.s., (�it(X;Q))t is a Q-martingale.An interesting question is whether any weak limit of the sequen
e (�N )N gives full weight tofQ 2 P(D([0;+1); E)) : Q(D1) = 1g. As D1 is not a 
losed subset of D([0;+1); E), theanswer is not obvious. But in 
ase the sequen
e of total fragmentation rates (Pi�1j=1 Fj;i�j)i2N�is bounded, it turns out to be positive :Lemma 4.4 Assume that 8i 2 N� ; supj2N� Fi;j=j < +1 and supi2N�Pi�1j=1 Fj;i�j < +1. Thenany Q 2 P(D([0;+1); E)) su
h that for any ' : N� ! R satisfying '(l) = '(l ^m) for somem 2 N� (4.1) holds gives full weight to D1.Proof : We introdu
e the stopping times � = inffs � 0; Xs� _ Xs = +1g, �k = inffs �0; Xs � kg and �k = inffs � �; Xs � kg where k 2 N� . We also set � = limk!+1 �k = inffs ��; Xs < +1g. Let t > 0 and 1 � i < k,M1i�^t �M1i�k^t � 1f��tg1i(X�)� supj2N� �1fj<ig ~Ki�j;j + 1fj>ig ~Fi;j�i� (� ^ t� �k ^ t):By the optional stopping Theorem, the expe
tation under Q of the left-hand-side is nil. ThereforeQ(� � t;X� = i) � supj2N� �1fj<ig ~Ki�j;j + 1fj>ig ~Fi;j�i� < Q;�^t��k^t >. Letting k ! +1,26



we dedu
e that Q(� � t;X� = i) = 0. Hen
e Q(� � t;X� < +1) = 0. As a 
onsequen
e setting'(l) = 1fl�kg and using that Xt = +1 on (�; �), we getQ a.s., M'�k^t �M'�^t = 1f�k�tg � Z �k^t�^t Xi�k+1 1i(Xs) kXj=1 ~Fj;i�jds:By the optional stopping Theorem, we dedu
e thatQ(�k � t) � supk2N� supi�k+1 kXj=1 ~Fj;i�j < Q; �k ^ t� � ^ t > :Using the de�nition of ~F , we obtain thatsupk2N� supi�k+1 kXj=1 ~Fj;i�j = supi�2 sup1�k�i�1 kXj=1 ~Fj;i�j = 12 supi�2 i�1Xj=1 Fj;i�j < +1:Letting k ! +1 we get Q(� < t) = 0. As t is arbitrary, we 
on
lude that Q(� < +1) = 0.
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