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We present in this article the numerical analysis of a simple micro-macro simulation of a
polymeric fluid flow, namely the shear flow for the Hookean dumbbells model. Although
restricted to this academic case (which is however used in practice as a test problem for
new numerical strategies to be applied to more sophisticated cases), our study can be
considered as a first step towards that of more complicated models. Our main result
states the convergence of the fully discretized scheme (finite element in space, finite
difference in time, plus Monte Carlo realizations) towards the coupled solution of a
partial differential equation / stochastic differential equation system.

1. Introduction.

We are concerned here with the numerical analysis of a simple micro-macro simu-
lation of a polymeric fluid flow. More precisely, we deal with the situation where
the polymeric liquid, which is here supposed to be an infinitely diluted solution of
polymers, experiences a pure shear flow and is modeled at the microscopic scale
by the dynamics of stochastic Hookean dumbbells. To the best of our knowledge,
such a study is new. We shall explain below why, despite the simplicity of the
underlying model, our work can be seen as a first step towards the treatment of the
more sophisticated models that are commonly used in the context of the so-called
micro-macro approach in computational rheology.

Numerical simulations of the flow of complex fluids such as polymeric liquids is
a long lasting challenge. The central difficulty is the rheology of these fluids, highly
non Newtonian in nature : there is no simple linear relation linking the stress tensor
7 and the deformation tensor 3 (Vu +! Vu) as in the case of Newtonian fluids. This
algebraic relation, the so-called constitutive equation of the fluid, is replaced in such
fluid by a partial differential equation (abbreviated in PDE in the sequel) of the
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form

D_t = f(T,V’U,), (11)

to be integrated along the Lagrangian trajectories of the particles, or by an integro-
differential equation (the integral is taken along the trajectories)

T = [ m(t — s)S¢(s) ds, (1.2)

where m is a memory function (typically a decreasing exponential) and S¢(s) is a
deformation-dependent tensor (typically a function of the Finger strain tensor).

The standard (“macroscopic”) approach to simulate an incompressible flow of
such polymeric liquids therefore consists in approximating the solution to a coupled
system of the form

D
p—u = —Vp+nAu + div T, (1.3)
Dt
divu =0, (1.4)
% = f(T,V’U,),
or (1.5)
T = ffoo m(t — 5)S¢(s) ds,

together with convenient initial and boundary conditions. The derivative % denotes
the convective derivative % +u.V, the vector u denotes the fluid velocity, p denotes
the pressure. The two constants p and 7 denote respectively the density and the
Newtonian viscosity of the solvent. We refer the reader to Refs. 131> for a general
introduction to this type of simulations, and to Refs. 10:11:24:26:27 for examples of
the numerous mathematical studies that have been devoted to such models. In this
field, the most recent contribution is due to P.L. Lions and N. Masmoudi in Ref. 20.

Although very efficient, this purely macroscopic approach is now being ques-
tioned. The main concerns are indeed to find good constitutive equations (1.1)
or (1.2) that could apply to the ever increasing number of non Newtonian fluids
of interest in today’s technology, and also to evaluate the impact of some closure
hypothesis made to build these constitutive equations on the quality / validity of
the final result. An alternative approach, which circumvents the bottleneck of ma-
king those closure hypothesis, has therefore been developed on the basis of kinetic
theory. In a nutshell, this approach consists in finding an expression of the macro-
scopic stress tensor in terms of the microscopic dynamics of the polymer chains and
in treating explicitly both scales in the simulation. On the contrary, constitutive
laws are derived in a more or less rigorous way from the kinetic theory with the help
of closure approximations, the kinetic foundation being next forgotten. Instead of
(1.5), the system that has therefore to be treated is (1.3)-(1.4) together with the
Fokker Planck equation describing the microscopic dynamics

o o

2
Bt +u.Vep = =div g <(VZ'U/Q - %F(Q))?/J) + FAQ@D, (1.6)
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and the expression of the stress tensor as the average

ren /(Q % F(Q)¥(t,z, Q) dQ — nkpT1d. (1.7)

The function ¢ (¢, x, Q) is the probability density function of the end-to-end vector
Q of the polymer at time ¢ and at position . The function F(Q) denotes the force
within the spring which models the polymer, ¢ denotes the friction, n is the number
density of polymers and o is defined by 02 = 2kpT'(, where T is the temperature.
We refer to Refs. 23721 for more details about the derivation of such equations.

From the theoretical standpoint, this approach is clearly more satisfactory than
the previous one. It is however not perfect : current research in the modeling of
complex flows aims at going further the simple setting of “thermodynamics at equi-
librium” upon which this approach is based (see Refs. 1'®:?). From the mathematical
standpoint, systems of the type (1.3), (1.4), (1.6) and (1.7) have been studied for
instance in Refs. ©2° and are therefore rather well known. However, this approach,
as such, suffers from a severe drawback as far as numerical simulations are con-
cerned : the Fokker Planck equation, typically set on a space of large dimension
(say R”Y with N = 100), is not tractable numerically. The idea has emerged in the
early 90’s to simulate the underlying stochastic differential equation (abbreviated
in SDE in the sequel) rather than the Fokker Planck equation itself. This approach
has been called CONFESSIT!” which means Calculation of Non-Newtonian Fluids :
Finite Elements and Stochastic Simulation Techniques.

The “modern” way of simulating an incompressible flow of an infinitely diluted
solution of polymer is therefore to approximate

p(Z + u.Vu) = —=Vp+ nAu + div (1),

div (u) =0,

T =nE(Q ® F(Q)) — nkpTId, (1.8)
dQ + u.VQdt = (qu - %F(Q)) dt + Y22 4w,

where IE denotes the expectation and W, is a standard (multidimensional)
Brownian motion. This very lively field of numerical simulation can be approached
by the reading of works such as Refs. 42172130 (see other references therein). It
should be already clear in the reader’s mind that such an approach raises hundreds
of interesting questions, both theoretical and numerical, and all lying at the in-
tersection of the world of PDEs and SDEs (or even SPDEs i.e. stochastic partial
differential equations). So far as we know, no existing study deals with the exis-
tence of solution (u,T,Q,) to the above system (1.8) or any system of the same
family. Moreover, despite the numerous simulations done, no proof of convergence
of a numerical scheme towards the “continuous” solution has ever been established.

Our present work aims at giving a complete mathematical and numerical analysis
of a system such as (1.8). For reasons that will be clear below, we are bound to
restrict ourselves to a very simple case, that we hope however to be instructive
enough to motivate further studies.
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2. The model and our main result.
The system we study here is the following
ou

E(t,x) — 8§’$u(t,x) = 0,7(t,x) + fext(t, ), (2.9)
m(t,z) = EPQ@)Q[ ), (2.10)

aP(t) = —@dt +av;, (2.11)

dQ(t,z) = ((%u(t,x)P(t) - @) dt +dWy, (2.12)

complemented with ad hoc boundary and initial conditions, which will be both made
precise below. It is obtained from (1.8) by making the following assumptions :

e (H1) We consider a shear flow in 2D : u = uy(x)e, (see Figure 1). The
function u, is henceforth denoted by u. Consequently, the divergence free
condition (1.4) is automatically fulfilled. Another striking consequence of this
geometrical assumption is that the Navier term v.Vu in (1.3) and the trans-
port term .V in the stochastic equations both vanish. In equation (2.10),
7 denotes the (z,y) components of the stress tensor 7. In equations (2.11)
and (2.12), (P(t), Q(t,x)) (resp. (V, W;)) are the two components of the end-
to-end vector Q(t) (resp. the Brownian motion W;). In equation (2.9), feut
denotes an external force.

e (H2) The force F(Q) in (1.8) is chosen to be a simple linear force F(Q) = HQ
with H the coefficient of the Hookean spring which models the polymer (let us
incidentally mention that such a force has nothing to do with the modeling of
intra-molecular forces inside the polymer chain : it is only entropic in nature,
and models the simple property stating that when the polymer chain stretches,
the volume of the region of the configurations space visited by the polymer
gets smaller). A consequence of this “Hookean dumbbell” assumption is that
the model (1.8) is indeed equivalent (at least formally, but more can be said
than that) to a purely macroscopic model of the type (1.1), namely the famous
Oldroyd B model written here in its differential form :

T+ A% =nkpTA(Vu +' Vu), (2.13)

with the upper convected derivative % defined by

) 0
6_7t- = 8_7t- +u.VT — 7'Vu — Vur,
where \ = % is a characteristic time. In our simple case, (2.13) reduces to :
0
9y r=0,u. (2.14)

ot
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Fig. 1. Velocity profile in a shear flow of a dilute solution of polymers.

Let also notice that we have chosen units of time and length such that A = 1 and

d = % = 1. Moreover, we have taken the physical parameters in order to
simplify the equations. All the results we give are of course also valid with different
conventions.

The main two results of our work, which are respectively stated in Theorem 1
and Theorem 3 in a very precise way show :

(a) that there exists a solution (u,@);) to the system in the natural energy spaces
associated to the problem, o

(b) that the fully discretized solution (@}, Z]]\il P Q7. (the velocity being
discretized over P1 finite elements in space, and by finite differences in time
while the SDE being discretized by an Euler scheme in time and the stress
tensor approximated by Monte Carlo realizations) converges up to a slight
technical modification, which is linked to the stability of the SDE and that
will be made precise in subsection 4.3, to the continuous solution at the order
(0] (h + 0t + ﬁ), where h is the space step, dt is the time step and M is the

number of realizations of the SDEs (i.e. the number of dumbbells per cell).

The sequel of this paper is devoted to the proof of these two assertions. However,
before we get to the heart of the matter, let us emphasize our goal, and also give
some comments that we believe such results deserve.

The proof of the existence (and in fact uniqueness and regularity) of the continu-
ous problem is reproduced here mainly for the sake of consistency. Although it does
not appear as such in the literature, it could be derived in a rather straightforward
way from the observation that our model is, as mentioned above, in fact equivalent
to an Oldroyd B type model. The only (slight) novelty is that, with a view to
tackle next the Galerkin approximation, we deliberately work in the natural energy
(Sobolev) spaces. On the contrary, studies such as Ref. 2° take a much more regular
setting and the study Ref. 2° considers another type of convective derivative (for de-
tails about convective derivatives and frame indifference, see for example Ref. 28).
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On the other hand, the “numerical analysis” part of our work seems completely
new. We are aware that the case we deal with, precisely because of its simplicity
and its formal equivalence with a purely macroscopic model (hypotheses (H1) and
(H2)) cannot be considered as a prototype (in terms of the mathematical difficulty)
of all models of type (1.8). However,

(a) the simple model (2.9)-(2.12) embodies many, if not all, difficulties of model
of type (1.8) : the coupling between the stochastic part and the macroscopic
flow part, the fact that at any fixed number of dumbbells the (apparently
determininistic) flow velocity is actually a stochastic variable. It is therefore
expected that the mathematical toolbox used for its study will be useful and
instructive for the analysis of the other cases. At least it is a preliminary
matter for them.

(b) the simple model (2.9)-(2.12) is indeed used in the numerical practice (and
coded as such) in order to serve as a test case for advanced numerical tech-
niques that will be then extended to more sophisticated cases. This justifies
(to our opinion at least) the need for the numerical analysis of this model
per se.

Remark 1 When the microscopic model is not that of Hookean dumbbells, the force
F(Q) is no longer linear but can be

_ HQ
or B HQ
FQ= 1w

which are respectively the case for the so-called FENE and FENE-P dumbbells case.
The FENE-P model is derived from the FENE model via a closure approzimation
(the so-called Peterlin approximation), which enables to obtain a purely macroscopic
equivalent of the microscopic model. In these models, b is a positive parameter
which is the square of the maximum elongation of the dumbbells. The mathematical
difficulty is then to ensure that Q does not leave the region |Q| < Vb and does not
even reach its boundary. Current research'? is directed towards trying to extend the
present analysis to this case.

Remark 2 When the macroscopic flow is no longer a pure shear flow, (at least)
four new difficulties arise :

(i) the divergence free constraint (1.4) has to be accounted for,

(i) the Navier term has to be treated,

(#5) the term uw.VQ, in the left hand side of the SDE of (1.8) has to be dealt
with,
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(iv) product of two non autonomous stochastic processes arises in the definition
of 7. (Note that in (2.10), P; is autonomous, i.e. does not depend on the

flow.)

Of these four difficulties, difficulties (%) and (iv) are so far as we understand the
most embarrassing ones. Difficulty (i) is standard, and (i) is a classical well-known
difficulty of the mathematical analysis of incompressible (Newtonian) Navier-Stokes
equation (and we cannot hope to go further in the analysis of the present models than
in that of the Navier Stokes equation). Difficulty (i), namely the appearance of a
transport term in the SDE (which ipso facto becomes a SPDE), creates at once an
interesting question : in what sense can we consider the SDE of the system (1.8) ¢
A way to circumvent the difficulty is to set the SDE in the Lagrangian setting, i.e.
follow the characteristics of the flow and write the SDE along them. But as we have
in mind to deal with a weak solution w of the macroscopic flow equations (think of
the 8d case), it is not an easy task to define these characteristics, and also to give a
rigorous foundation to the Lagrangian form (because of the term VuQ in the right-
hand-side which lacks of regularity with respect to Q if w is only H'). We refer
the interested reader to Ref. '® where it is shown that one can adapt and complete
the Di Perna-Lions theory of almost everywhere flows to accommodate for this new
situation.

Remark 3 When the solution is no longer infinitely diluted, other models arise.
For high densities, models like those issued from the theory of reptation (Doi-
Edwards models) appear. Then again, macroscopic models and micro-macro models
are two alternatives. Questions like those of simulation of reflected Brownian pro-
cesses then come into the picture (see Ref. 2'), giving also rise to questions of
interest for the numerical analysist. Let us also mention that what is expected to be
the most challenging case with respect to the difficulty of its modeling is neither the
infinitely dilute case, nor the polymer melt case, but the case in between !

Let us end this section saying that we hope to complement the results of the
present work at least in two directions :

(a) evaluate on the same toy-model both by numerical analysis and computational
experiments the validity of well known and commonly used techniques of this
field of computational rheology such as variance reduction methods,

(b) do the same analysis as that of the present paper for some of the more difficult
cases mentioned in the above remarks.

We refer the reader to Refs. 121 for both aspects.

3. Brief mathematical analysis of the continuous problem.

3.1. Precise setting of the equations and definition of solutions.
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As announced above, we complement system (2.9)-(2.12) with the following
boundary conditions :

u(t,0) = fo(t),
{ u(t,1) = f?(t), (3.15)

together with the initial data :

u(0,2) = wup(x),
Q0,2) = Qo, (3.16)
P(0) = B,

Let us also make precise the notations : Py and )y denote two independent nor-
mal random variables (because we suppose that the polymers are initially at equi-
librium), also independent of V; and W; which denote two standard independent
Brownian motions. Notice that, as function of the space variable x, (V;, W) is
constant. In the following, we have (¢,z) € (0,7) x O with O = (0,1).

The following regularity for the external forces and the initial velocity are sup-
posed :
fewt € L% (H;) n WtLl(Li)?
fext(0,7) € L2, (3.17)
Ug € H?

It is to be remarked that although the regularities (3.17) have been chosen for
simplicity and because they are necessary for our result of convergence (Theorem 3),
some parts of the arguments below may be done under less regular requirements.
Let us also notice that all the results we give are also valid with other assumptions
of regularity on fe.:.

We restrict ourselves to the case of homogeneous boundary conditions (fy = f1 =
0), the modifications to deal with the other cases being only a technical matter. In
the following, ¢,  and w denote respectively the variable in time, space and probabil-
ity. For example, Q; € Lg°(L3(LZ)) means that supess,e o 7)1/, E(QF) dr} < oo,

We are now in position to define the notion of solution we shall deal with.

We say that (u,Q) is a weak solution of the homogeneous problem if u €
L°(L2) N LF(Hg,) and Q; € L°(L2(LZ)) satisfy that for all v € Hj(O),

d
— [ wv +/03zu8xv = —/O]E(PtQt(x))azU +/Ofezt(t:$)va (3.18)

dt /o
t t s—t t s—t
for a.e. (z,w), Vt € (0,T), Q¢(x) = e 2Qp 4—/6T dWs +/678qus ds,(3.19)
0 0
with .
P,=e¢ %P, +/ e V. (3.20)
0

Equation (3.18) holds in the sense of distributions in time. As usual, one may
equivalently use time dependent test functions v € L°(L2) N L (Hj ,)-
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3.2. Formal a priori estimates.

We now establish formal a priori estimates on the solution (u, Q). These esti-
mates will be made rigorous at the discrete level in the next subsection.
Multiplying (2.9) by u, next integrating over the domain and in time, we obtain

%/Ou(t,xf—%/Ouo(x)2+/0t/0(8xu)2 - —/Ot/O]E(Pst(»’U))azU(Sax)
+/Ot/0fm(saw)u(8;w)-

Next we compute Q? by 1t6’s formula using (2.12), take expectations and integrate
again on O and in time to obtain

s [E@)-3=[ [Erawousn - [ [ B@)+]

Summing up these two equalities, we obtain

1
iz 0+ [ o + 5 [ @+ //JE ds = 3wl
1+t //fel.tu (3.21)

lullZ 22y + ||U||ig(Hg)m) HQellF e (2 (22)) + 1QellTz (1212
<O (1 lluollBs + 7 + | featl By 12)) (3.22)

which yields the first energy inequality :

with C a constant independent of the data of the problem.

At this stage, it is to be remarked that using the same arguments as in the
derivation of (3.21) or (3.22) with v = u; — uy and @ = Q1 — @2, one can show
the uniqueness of solution. This point should be not surprising for the reader as
the system (2.9)-(2.12) (once written in terms of u only, using equation (2.10) on 7
and equation (2.12)) on @), is indeed a linear system with respect to the variable u.
This is obviously a consequence of our simplifying assumptions (H1) and (H2).

We must also notice that this energy estimate shows that the regularity of the
solution is at least : uw € L}(H}) and 2% € L¥(H;'). This shows in fact that u €
C([0,T], L*(O)) which allows us to define u(0) (see Ref. 2* Chapter III, Lemma 1.2).

Let us now turn to the second energy inequality. This time, we multiply (2.9)
by —82 ,u and integrate over the domain to obtain

G Loy + [ @7 =~ [ 08RQizu= | fndi o

We need to control the first term in the right-hand side. Computing d(P;Q:) from
(2.11) and (2.12) and taking expectations, we get the following equation (equivalent
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0 (2.14)) :
O
o

By a standard application of Gronwall’s lemma, this yields the following bound

t
10 BPQ)IE: < [ 11020l

which we use to finally obtain (using again Gronwall’s lemma) the second energy
inequality :

llullpeo (mr1ynL2 2y < C (||U0||H; + ||fext||Lg(H;)) ; (3.24)
where C' only depends on T'.
Likewise, we multiply (2.9) by % after derivating it in time (all this is done

formally we recall), and we integrate over O to obtain

\ o [
L2

Using again equation (3.23), we obtain (by Gronwall inequality)

oull?
ot

88$u
ot

|
iz || Ot

+
2z || Ot

2 Hafezt

2
L2

L(L2) t=0

e <o (1l + el )

L3(L2)

and we then derive another reqularity in time :

where C only depends on T'.

ou
ot

< C (1 + ||’U’0||H2 + ||fezt||Wt1>1(L§) + ||fezt(07w)||L§) )

(3.25)

L (L2)NL2(HL)

3.3. Existence.

We can now show the existence of a solution of problem (3.18)-(3.19).

3.3.1. Semi-discretized weak formulation.

Let us define a Riesz basis {v; }i=1..co of Hi(O). We set V,,, = Vect{vy, ..., v, }.
The semi-discretized problem is the following :
Find U™ € (L{°(R))™ and Q) € L{°(L2(L?)) such that, for all 1 < i < m, the
couple (u™(t,x), Q7" (x)), where u™(t,x) =Y, U™ (t)vi(x), satisfies :

i/umv,
dt o "

t t
Qr = e_%Q0+/ e T dWs-i—/ e T O,u Py ds, (3.27)
0 0

—/Oamumazvi—/O]E(PtQ;"(az))amvi+/Ofeztvi, (3.26)
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with Q' = Qo and u(t = 0) = II,,,(ug) where II,, is the H'-projection on V.
Again, (3.27) has to make sense for a.e. (z,w), for all ¢t € (0,T).

3.3.2. Exitence of a semi-discretized solution.

It is standard to find a solution to the discretized problem (3.26)-(3.27) using
e.g. a fixed-point argument on the function

X —

X
F ( U(t) ) . (UO—A1 (Jy (BU(s) = [ B(P,Q)O.V + Fuut)) )
Q:(z) e 5Qo+ [ie T AW, + [l e ¥, Uid,viP;

where X = {(U,Q;) € (L{°(R))™ x L¥(L2(L2%))} is a Banach space for the norm
(U, @0llx = IUlleg + 11QcllLg=(z2(L2)), Aij = /vaj, Bij = /Oaxviaxvj; Viis

a field of components v; and F.,; is a vector of components fo fewtvj.
The point is the following result stating the regularity of the discretized solution.

Lemma 1 (Regularity of the space-discretized solution) Assumingug € L2
and fert € LE(L2), we have :

™ 1L 2y + 1™ L2 ) + QT 1T 2(22)) + 1@ 222 (22))
<C(T+luolBs + T+ fetlBy ), (3:28)
with C independent of the data of the problem.
Assuming ug € H2 and for € th’l(Li), we have :

ou™
ot

<C (||U0||H2 + | featllwrr 2y + ||femt(07$)||L§) , (3.29)
Ly (L3)NLE(HY)

92y
ot?

< C (|[uwolla> + || featllyp 12 + 1 fext(0, 0|2 ) » (3.30)
L3(HZ ;) ’ )

" _ |Jo gv]
where C' only depends on T. By definition, ||g||,-1 = sup —==—.
e wevm [|0wl|L2
Proof. To obtain the first two estimates (3.28) and (3.29) is a classical exercise :
one just needs to reproduce in a more rigorous way the a priori estimates (3.22)
and (3.25) of the former subsection. The last result (3.30) is obtained by writing
the derivative in time of (3.26) and observing that ZE(PQT) = —E(PQ7) +
9, u™E(P?) which ensures 2IE(P,Q") € L} (L2). O

3.3.3. Convergence towards a continuous solution.
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We assume ug € L2 and fe,s € L}(L2). According to the former lemma, we
have ||Um||L§°(L§)ﬂL§(H;) + ||Qm||L§o(L§(L3)) < C with C independent of m. The
convergence of the sequence (u™, Q™) en then classically derives from this estimate
(notice that there are only linear terms in «™ and Q™ in the equations (3.26) and
(3.27), since P; is autonomous), following the next three steps :

Step 1 Using the estimate on (u™),,enN, one can define a function u € L°(L2)N
L}(Hj ) such that ™ converges towards u weakly in L7 (H;) and for the weak-*
topology of L{°(L2) (and therefore in D'((0,T) x ©)). This function u satisfies the
first energy inequality (3.22) (taking the inferior hmlt)

Step 2 One can then define Q by Q = e~ 2Q0+f0 2 AW, —|—f0 ez dyu(s, )P, ds
and check that Q € L{°(L2(L2)).

Step 3 It remains to check the convergence of the terms of the equation (3.26)
satisfied by u™. The only non-trivial term is [, IE(PQ{"*(x))0;v;. We use that for
w € L3(0),

t t
/]E(Pth"‘(:c))w = /]E (Pt/esT_tawumPs ds) w = / /8wumesT_t]E(PsPt)w ds dx,
o o 0 0Jo

and this last term goes to [, fot dpue T E(P,P)wdsde = Jo E(PQ¢(z))w (be-
cause O,u™ converges weakly towards d,u in L7(L2)).

We have therefore obtained a solution of the problem (3.18)-(3.19). Let us show
now the convergence of ;" towards (); as well as the strong convergence of u™
towards u.

Lemma 2 Assume uy € H? and fo,; € W' (L2). Set (u,Q;) the solution of the
problem (3.18)-(3.19). Set V,, a subspace of Hy and (u™, Q") the solution of the
semi-discretized problem (3.26)-(3.27) with an initial velocity uj'. Then, we have
for all t € 10,71,

t 1 t
lJu(t) = u™(#)||Z2 + /0||8$(u —ulZz +11Qr = Q2 (uz) +3 /0||Qs — Q122 (z2)
< o gl + ing (3100 (0~ w)l B, + Cllu = wllzzas))

with a constant C' which depends on the data of the problem : ug, fezt and T'.

Proof. Let w be a function in V,,,. One can easily obtain, using the linearity of
the variational formulations, and integrating in time :

1/(u—u //|8 1/(UO_UO)2
_//]E (Qs = Q)0 (u — u™ //E Q)0 (u — w)
//6tu—u (u—w //5 (u—u")0:(u —w). (3.31)
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Using the equations on (); and @Q7*, one can show that :

s [ r@-arr=[ [ Er@-emoa-u - [ [ Be.-
Summing up (3.31) and (3.32), we have :
%/C()u—u //|8 u—u™)|*+ /]EQt Qm)? //]E
=5 [ o —up)? //E Q) (u — w)
//atu—u (= w //a U — u™), (1 — w)(3.33)

Using Cauchy-Schwarz inequalities, we have

//au—u //|au—u|2 //|au—

and (using E(P?) = 1)

/Ot/O]E(PS(Qs—QT))aw(u—w) Si/ot/O]E(QS—QTV+/Ot/o|5x(u_w)2

The estimation of ||%||L2(L2) given by Lemma 1 also holds for the con-

(3. 32)

tinuous solution u (taking the inferior limit). This yields the final estimate :
t m
I Jo %(“_“ J(u—w) < Cllu—w||pzLz)- O

In the former proof, we notice that we can assume that w also depends on the
time variable. Choosing w = II,,,(u) (we recall that II,, is the operator of the H!-
projection on V,;,), one can therefore show the strong convergence of v towards u
in L°(L2)NL?(H}) and the strong convergence of Q" towards Q; in L{°(L2(L?2)).
We have therefore proved the following result :

Theorem 1 (Existence of a continuous solution) Let us assume ug € L2 and
feet € L}(L2). The problem (3.18)-(3.19) admits a unique solution
w e C(0, 7], L2(0)) N L3 (HL,) and Qu € LP(LA(12)).

The solution (u™, Q") of the semi-discretized problem (3.26)-(3.27) is unique. As-
suming ug € H? and forr € WH(L2), (u™, Q") converges towards (u, Q) in the
following sense : u™ — u strongly in L$°(L2) N L?(HL) and Q7 — Q; strongly
in L (L2(L2)).

Remark 4 It is clear that, under the hypothesis uy € H? and fo.,; € W' (L2),
the continuous solution w is a function of L{°(L%) N L?(HY) which satisfies the
inequality (3.25). Moreover, under the assumptions ug € H! and fo,:+ € L}(H}),
we can also prove that the solution satisfies the second energy estimate (3.24), what
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will be used in the subection 4.1. To prove this result, one uses the uniqueness of
the solution and the fact that one can construct a sequence of approximations of the
solution which satisfies (3.24) by a Galerkin method on a special base (stable for
the laplacian). One can then also obtain (3.24) for the solution, taking the inferior
limit.

4. Analysis of the numerical scheme.

In this section, we want to show the convergence of a standard discretization
of the problem (2.9)-(2.12). As above, we will suppose ug € HZ, fert € Li(H.)
and 2fe=t € L1(L2), which yields, using the a priori estimates (3.24) and (3.25) :
we LE(HY) N L3 (H2) and 3% € Li(L2) N L(HY),

For the sake of simplicity, we also assume here homogeneous Dirichlet boundary
conditions. Standard modifications of our arguments yield the same conclusions
with non homogeneous Dirichlet boundary conditions (see e.g. Remark 6.2.2 in
Ref. 23.)

The original problem is discretized in three steps : in space (by a Galerkin
method), in time (by an Euler semi-implicit scheme) and finally using the Monte
Carlo method. We choose a P1 discretization in space of the velocity : the velocity
space functions V}, is the space of the piecewise polynomials of degree 1 on a mesh 7Tj,
where h is the space discretization step. The time interval (0,7 is discretized with
a constant step 0t. We consider M realizations of the dumbbell processes (P, Q¢)-
The scheme we use will be made precise in the subsection 4.3 (see equations (4.48)-
(4.50)).

The aim of this section is to show Theorem 3 which states that the order of
convergence of this scheme is O (h + 0t + ﬁ)

4.1. Convergence of the space-discretized problem.

We consider here the space-discretized problem which is (3.26)-(3.27) with V'™ =
Vi, C H} (we use a Galerkin method). Notice that since the velocity uy, is a piece-
wise linear function (P1), the process @)}, (and therefore the stress 7, = E(PQ4))
is a discontinuous piecewise constant function (discontinuous P0). We have al-
ready shown in subsection 3.3 that this problem admits a unique solution. More-
over, Lemma 2, together with the standard finite elements approximation inequality
= a3 + 2102w — T ()32 < Ch*Jull yields -

Lemma 3 (Convergence of the space-discretized problem) Let us assume
up € H2, fexe € Lt (HL) and % € L}(L%). Set (u,Qy) the solution of the problem
(3.18)-(3.19). Let us assume a P1 space discretization for the velocity. Set Vy, the
velocity space functions and (up, Q) the solution of the semi-discretized problem
(3.26)-(3.27) with an initial velocity upo = Iy (ug) € V3. Then we have :

lw(t) = un(O)llTe 12 + 1102 (w = un)l|Tz(12) + Qe = Qnellize 222y < CR?,
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with C a constant which depends on the data of the problem : ug, fezt and T'.

4.2. Convergence of the time-discretized problem.

We turn now to the semi-discretized problem in time and in space. We have
already compared the continuous solution (u, @) with the space-discretized solution
(up,Qr) and we want to estimate the error introduced by discretizing (un, @n) by
an Euler scheme in time.

More precisely, we consider the following problem

Being given (u, Qn,n, Pn), we compute (u L Qhint1, Puy1) by the following algo-

rithm : uZ“ is such that Yv € Vp,,

1
= / (W —ul ot /O Dl 0,0 = — /O E(PoQnn (1)) 00+ /O Fot(tn)v. (4.34)

Qnnt+1 and P,y are then computed by :

Qh,n—l—l - Qh,n = <az Z+1Pn - Qh,n) ot + th+1 - tha (435)

1
Poyi=Pu = —5Padt+ Vi, = Ve (4.36)

-

This problem is complemented with the initial data w0, Po and Q.
We will first show the stability of the scheme and then the convergence.

Lemma 4 (Stability of the space-time-discretized problem) We assume that
fext € LY (L2) and ug € L2. Under the assumption 0t < , we have : for alln < L 570

5t &
||UZ||ig+||Qh,n||ig(Lg)+§ Z/o |0pug|® < 1+||Uh70||2L§+T (1 + C||fezt||2L;>°(L§)) ;
k=1

where C is a constant independent of the data of the problem.

Proof. In order to lighten the notations, we set uy = u, and Qpn = @Qn. We
also set || f|| -1 = sup,ey, H@fm If f € L?, one clearly has [l gz= < CllfllLz-
We choose v = up41 in (4.34), what yields

1
(5t/ n+1+/(a Un+1 = (5 /Unun+1+/ fext Un—i—l /EP Qn 6 Un+1
u+ U, Optini1)? + C||fen _1—/]EPQn8un .
<o (Lot ) + 5 [ @i+ Cllitelly o

One multiplies next (4.35) with @, and takes the expectation value :

E(Qu1Qu) ~ B(@2) = (E@.u,11PQ.) - FE@)) ot
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1

3 (BE(Q5,,) —E(@))) + ]E(Qi)fst = Opun+1IE(P,Qn)0t + %]E((Qn+1 —Qn)?).

Summing this estimate multiplied by % and integrated in space, and the one on
Up, We get :

gt (o = 1) + g ([B@h) - [B@D) + 5 foruniry
= /Om@g) < Ol fenet) s + / E((Quir — Qu)?). (4.37)

It remains to estimate the last term in the right-hand side. This is done by taking
the square of (4.35) and then the expectation value :

2
E((Qn+1 - Qn)z) = E ((aazun+lpn - %Qn> ) 5t2 + ot

< 2(0puny1 ) EB(P2)6t? + ]E(Q2)6t2+6t
It is easy to show that IE(P?) is bounded by 4_—5t (by induction, using
E(P?2.,)=(1- —) E(P2) + §t). We obtain then :

E((Qn+1 — Qn)?) < (Outing1)’ ——= + SE(Q;)5t° + dt. (4.38)

Using (4.37) and (4.38), one threfore obtains :

7)) o

1 46
+5 [B@) £ Cllfeat)lyms + 12 [Greni? /E )ty (139

Under the assumption 6t < §, one has [, u,; — [, u2 + [, B(Q2,,)— [, E
At [o(Dptin11)? < Ot (2C||fm( 2 + 1) (with 4 = 8 > 1) We conclude by
summation over n. O

We are now going to show the convergence of this scheme. We will first show
the convergence of P, towards F;, and then, reproducing the proof of the energy
estimate (3.22) at the discrete level, we will show the convergence of (u},Qn n)
towards (up(tn), Qr(ts))-

Let us begin with the convergence of P, towards P;, (we recall that P, and P,
are defined independently of any space discretization). Since the diffusion coefficient
in the SDE satisfied by P; is constant, the Euler scheme is in fact a Milshtein scheme
on P,. The convergence is therefore in 6¢ (see Theorem 10.3.5 in Ref. '°) :

Lemma 5 (Convergence of the Euler-Maruyama scheme) There exists a con-
stant C which depends only on T such that

E (P, — P.,)?) < C(6t)°.
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Remark 5 We could have used a scheme exact in law for P,. We have chosen a
classical Fuler scheme because this is the scheme used in more complicated cases
(see Remarks 1 and 2), when P; also depends on x.

We can now show the following convergence theorem :

Theorem 2 (Convergence of the time-discretized problem) Let us assume
uo € H? and fopy € WH'(L2). Under the assumption 0t < L 5, one has :

iy = un(ta)|[12 + 1Qnn — Quta)l[12 (1) < C(81)%,

with C independent of h and n < L
fext and T

57, but depends on the data of the problem : uo,

Proof. Asin the former proof, we omit here the subscript b : u}) = Uy, Qnn = Qn,
u = up and Q = Q. We introduce the processes P defined by dP, = —%Pn dt+dV;
(with 7 = || 6t, where |z] is the integer part of 2, and Py = P,) and Q defined
by dQ; = (a Unty41Pr, — %Qn) dt + dW, (with n(t) = | £ ] and Qo = Qo). One
can check easily that P, = I5tn and Q, = Qt". Moreover, we set e, = up, — u(ty).
The stability lemma 4 shows that [, IE(Q3) is uniformly bounded (in h and n),

hence [, E (Q?) is also uniformly bounded in s. We have also a uniform bound in
n on ]E(Pﬁ) and a uniform bound in s on IE(P?).

Equation on u :

One obtains by subtraction of the continuous formulation in time at time ¢,
(3.26) (we recall that u € C([0,T], L2(0))) and the discretized formulation (4.34) :
for all v € Vp,,

/ Dnfl e _ @(tn) U+/(6xun+1_6xu(tn))axv = _/E(PnQn_Pthtn)axv

With similar computations as those used in the proof of Lemma 4, choosing v =
en+1, We obtain :

1
2_& (||en+1||i2 - ||€n||ig) +/ |amen+1|2 < _/ ]E(PnQn - Pthtn)amenJrl
O O

ntl 88 u 1 [in+ 0%u
/ Y ——0zen+1 — 5 / (tpe1 — 8) ; W(S)enﬂ drds.  (4.40)

For the last two terms, using Cauchy-Schwarz and the inequality ab < §ta? + ﬁbz,
we have

tnt1 aa tnt1
/ ua €n+1 S (5t/
tn o Ot tn

In the same way :

tn41 aZu tnt1
/ (tnt1 —s)/ ——(s)ent1drds < C((st)z/
t o Ot? tn

n

00, u
ot

2
1 ||5’z€n+1||Lg :
L3

0%u

ot
72 (8)
o2\ ||

+Z||5zen+1||%§-




Numerical analysis of micro-macro simulations of polymeric fluid flows : a simple case. 18

Therefore, we obtain finally :

1 5t
5 (Hen-‘rl”ig - ||en||i§) + 5 A |6acen+1|2 < _6t/OIE(PnQn - Pthtn)axen-H
tn+1 1199, 2 tni1 || 92 2
+(51)2 / EU )| ds+ O / Sa)| | ds (a4
tn L2 tn HT,

Equation on @ :

In order to estimate the first term on the right-hand side of (4.41), we reproduce
the proof of the energy inequality (3.22) at the discrete level. We write the SDE
satisfied by (Q¢ — Q¢)? :

%d((Qt —Q)?) = ((Qt — Q) (02uPs — Oyt 41 Pr,) — %(Qt — Q) (Q: — Q‘n)) dt.

We set in the following f,, = Q¢, — Q. Integrating the last equation over (t,,t,+1),
we have :

S = )

1 tn+1 B tnt1 -
-3 | (=G0~ Q)+ [ (Pduu(s) = Padin) (@ = Q0

tn

n

tot L tnt1 ~
-3, @-0r+; [ @ -Q@ -2

n n

tnt1 B
+ [T (R0 - Padenas)(Qe - Qo)
t

n

We introduce in the expectation of the last expression the term of (4.41) we want
to eliminate, namely 0t fo E(P,Q. — P, Qt,)0.en+1. We obtain :

1 1 [int ~
EE( 72z+1 - frzz) + 2 / E(Q;s - Qs)2 = 0tE(PyQn — P, Qt, )0ceni1 + A, (4.42)
tn
with

A= [TE (@ - 00@u - 00) + [ B ((P0u(o) - PO, - 0.)
—0tE(P,Qn — P, Qt,)0z€ny1.

We will show the following estimate on A :

Proposition 1

1 2

tn+1
A < Cot? <1+ |0ptni1]* + —/
ot J,.

00, u
ot

1 tnt1 ) 1 tnt1 )
— 0 — E
+ 5t \/;n | $u| + (5t . (Qs)

tnt1 - tnt1 . )
EQ)+5; [ E(Q?)) e [TE(@= Q%) + btlonennl,

with € arbitrarily small and C a constant which is independent of n and 6t, but
depends on € and on the data of the problem : ug, feer and T.
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Let us postpone the proof of Proposition 1 after the end of the proof of Theo-
rem 2. Summing up (4.41) and (4.42) (integrated in space), using the estimation of
Propsition 1, we have :

tnt1

lensallza~llenl |72 + OIE(fﬁﬂ—fi) + (1—2a) lE(Q —Q)* + (1-25) 5%3 ent1]”

. 1 [l bnt1

P dea Lo .
+§/tn /0 (QS)+E/tn L S+6t/ et s,

where a and (8 are arbitrarily small positive constants. Summing up over n and

az
ot

86 u
ot

(S) (s )

using the regularities proved in Lemmas 1 and 4, this concludes the proof. O
We now have to prove Proposition 1. We will need the next two lemmas.

Lemma 6 Set R(t,z) a process (possibly deterministic). We have the following
inequalities :

tnt1 tn41
‘]E( R(s,7)(Duens1) ds )‘ < l/ (E(R(s,2)))? ds + e6t|0penss |2,

‘. 4e

‘E (/ T R(s,2)(Qs — Qu) ds )

n

. i/t”il? (R(s,x)Q) ds+e /t:nii ((Qs — QS)Q) ds.

Let S(t,x) be an Itd process such that dSy = a(x,t) dt + b(x,t) dVy + c(x, t) AWy with
b and c square integrable in t. We also have the following inequality :

tnt1 tnt1
‘]E </ (S(s,2) — S(tn,:c))(axenﬂ)ds)‘ < %5::2/ (E(a(z, 5)))? ds-+edt|duensi]?,
t tn

€

n

with € arbitrarily small.

Proof. These results are easy to obtain by Cauchy-Schwarz inequality, noticing
that 0zeny1 is deterministic and using the inequality |ab| < —a + eb®. O

Lemma 7 We have the following two inequalities :
tnt1 B 5 5 tnt1

‘IE </ (Qs — Qs)(Qs — Q1) ds) ‘gc&ﬁ <6t + 6tE(Q}) + 0t|0punia |*+ E(Q§)>
tn

tn
v [ B (@ -0 as

n

with € arbitrarily small.

B(/ Qe — QB — B )|

n

IN

tn+1
Ccst? <6t+6ta2 +/ |8$u|2>
t

n

v [ "B (@, - @) as,

n
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with a a constant, € arbitrarily small and C' a constant independent of «. The
constant C is independent of n and 0t, but depends on € and on the data of the
problem : ug, feer and T.

Proof. The proof of the first inequality mimics that of the second one. Therefore,
we only prove the second inequality. For all ¢t € (t,,t,+1), one can write dP;, =
—$P,dt + dV;. We have therefore :

B(/ (Pl 1) — Pl )@ — @) is)

n

:A?E(4&4M%RM%—QJ)%+E(A%ﬁ;4@x@_QJ%>M4$

n

For the first term of the right-hand side of (4.43), we apply the second inequa-
lity of Lemma 6 (with R(s,z) = —(s — t,)§P,) in order to obtain a bound in

Cot3a? + efttn"“ E ((Qs - Qs)z) ds. The aim of the remainder of the proof is to
show the following estimation on the second term of the right-hand side of (4.43) :

tnt1 ~ tnt1
‘]E </ a(Vs = Vi, ) (Qs — Qs) ds> ‘ < Cot? <5t + 6ta? +/ |6wu|2> .
tn t

! (4.44)
In order to show (4.44), we use the SDE satisfied by Q, — Q, :

Qs_Qs = Qtn_Qn_%/tn(Qv_Qn)dv'i‘\/tn (awupv_awun+1pn) dv

= |:<1 - _2tn> (Qtn - Qn) - (5 - tn)axun-‘rlpn + awUfPtn dU:|
tn

1

—5 /tn (Qv — Q) dv + 5 0 u(P, — P;,) dv. (4.45)

Let us denote B the term in brackets. The random variable B is independent of
(Vs — V4,), which implies :

tn+1
E(/ M%—WJB@>=&
tn

We still have to estimate the contributions of the last two terms of (4.45). These
contributions will be denoted respectively by T} and T5.
Let us first turn to the term 77 which is :

tnt1 s
T, = E(/t %(Vs—‘/;:n)/t (Qv_Qtn)dvdS>

n n

s

a [t
B E/t" | B0V = V)@ = Qu)) dvds.
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It is clear that :
2

Ty | < 6t%a? + </ nﬂ/ E((Vs = Vi) (Quv — Q4,)) d’Hds)

Using the expression of Q, — Q¢, = —5 ft Q. dw + ft Oy uPy, dw + W, —W;_, one
obtains :

BV~ 1)@ - Q) = 3B ((0i-10) [ (Qudv)

+E ((Vs V) /t " BuPy dw>
FE((V — Vi) (W, ~ W), (4.46)

The third term of (4.46) is zero. For the second term of (4.46), we write (using
Cauchy-Schwarz) :

n+1
55 </ / / Oz uE (Vs — Vi, )P, )dwdvds>
tn41 . tnt1
/ / / |10,u)? (B((Vs — V3, )Py))? dw dvds < caﬁ‘/ |0, ul.
t

n

2

For the first term of (4.46), we write in the same manner :

o < /t /t (- V)@ dwdvds)
/HH/ / (Vs = Vi,)Qu))? dw dv ds
/ttm /t /t (s = tn) QQ)dwdvds<6t3/tn+1 E(Q2).

Let us now turn to the estimation of the term T5 :

2

tn+1 s
T, = E </ a(Vs —Vi,) | Opu(P, — P;,)dv ds)
tn

29
tn+1 s
= a/ / O ulE (Vs —Vi,)(Py — P,))) dvds.
tn

It is clear that :
2

tnt1
|T2| < (5t3a2 513 </ / aa,uE((V; — ‘/tn)(Pv — Ptn)) dv dS)
tn tn

Using the expression of P, — P;, = —% ftv P, dw+V, —V;, , we obtain :

v

B(V = V)P = ) = 5 [ B4 =10)P) du+ B (Ve = Vi)V = Vi)
! (4.47)
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For the second term of (4.47), we have therefore :
2

. (/tn+l/sa (v —tn) d d> 1/t"“/s|a 20— ) dod
— u(v —t,) dvds < — ul (v — 1ty v ds
ot3 tn tn at tn tn

tn+1 )
6t2/ |0, ul?.
t

n

AN

IN

For the first term of (4.47), we obtain in the same way :

1 tn41 s v 2
L / / 0,u [ E((V, = Vi,)Pu) dwdv ds
6t3 tn tn tn "

1 tnt1 S ) s v 5 5 tnt1 )
<= |awu'| (E (Vs = Vi, ) Pw))” ds < 6t |6xu| :
6t tn tn tn Jtn t

n

This ends the proof. O

One can now prove Proposition 1.
Proof. The first inequality of Lemma 7 shows that :
tnt1

tn g1 }
41 < 08¢ (3t + 00, ua P+ B(@2) + (@) ) +of B (1@ - Q) 11
t t

n n

with

= [T B ((Rols) - P @0 - Q) ds

n

_6tE(PnQn - Ptn Qtn)ax (Ufn+1 - U(tn—i-l))

tn41 ~
= / ]E((Psawu(s) — Pp0ptung1)(Qs — Qs)
t

_(PnQn - Ptn Qtn)(amun+1 - amu(tn+1))) ds.
Using Lemmas 6 and 7, we will prove the following estimate on A’ :

1 00 u

tn41
"< 3 2, 1
4| < oot <1+|6xun+1| +6t/tn 8t

2

1 tn+5 ) 1 tnt1 )
— 3 il E
g | o+ 5 [TE@)

tn n

b1 tnt1 - )
QD) + 5 [ @) +e [ B (@ - Q) + tldnenal,

with € arbitrarily small.

The third inequality of Lemma 6 applied successively to P;Qs and P;Q)s and the
second inequality of Lemma 7 (applied with o = 9, up1) show that |A’| is bounded
by :

tn+t1 - ~ ~ o~
/ IE ((Psawu(s) - Psaxun—i-l)(Qs - Qs) - (Pst - Pst)(axurH-l - awu(tn+1))) ‘
tn

tnt1 tn+1 tn41 >

1 1 -
#0680 (1 Drunni P+ 4 [ Toal + 5 [B@) @) + 5 [ B@
tn tn

fnt1 5 N2 2
+6/ E ((Qs - Qs) ) + 66t|amen+1| .
tn

n
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Then, using the second inequality of Lemma 6 (with R(s,z) = Ps(0,u(s)—0u(tn+1))),
we obtain the following bound on |A'| :
trt } R o
/ E ((P0,u(tns1) = Pedstini1)(Qs = Qs) = (PQy = PuQy) sttt — Doultusn)) ‘
t

00,u
ot

n

2 1 tn41

o), B@)+E@)

n

+C88 [ 1+ |0pttnsr]* + & tn+<19 >, Lo
o Un 1] + 5z |0, ul” +

v [TE@) v [T (@0 Q) + tocnl

n

Then, developing the expression under the integral, we obtain the following term :

tnt1

) /ttnﬁ ((%u(th)Qs(Ps _ 138)) +/t E (6xun+1Qs(Ps - 133))
= [B (Gutra (2~ (@~ @0) + [ (Qulr = 2 Qe Oruta).
. tn

One can now conclude using the inequality IE ((Ps — 153)2) < C6t? and applying
the first two inequalities of Lemma 6 to both terms of the above expression. O

4.3. Convergence of the Monte Carlo discretized problem.

We now turn to the last level of discretization : the Monte Carlo method. In the
preceding subsections, we have shown that the space and time discretized problem
(up, Qn,n) converges towards the continuous solution at time ¢,, = ndt : (u(ty), @4, ).
We now want to estimate the error induced by the approximation of IE(P,Qr,») by
an empirical mean. All the results of this subsection hold under the assumption
up € L2 and fopy € L{°(L32).

We define the fully discretized problem : )
Being given at time t, = nét, the velocity wy and the random variables P, FZL and

@?W one finds @t € Vi, such that Vv € Vj,

l/(ﬂﬁ“—ﬂﬁ)v—l—/ 8$EZ+18$U = —/ §h,nazu+/ fewt(tn)v.(4.48)
ot Jo o o o

S M i - j —j .
with Sy = 37 > j=1 Pn@n - Then, one computes Py, Pnyy and Q.4 using :

i _ I 1 . .

Q?L,n%—l - Q?l,n = (axuz—HP?L,n - §Q?L,n> ot + (Wtjn_“ - Wt]n) ) (449)
Pr{+1_Prjz' = _%P£6t+(‘/ti+1_v;{»)’ (450)
Py = sup(—4,inf(4, P1,))). '

The processes (V,!,...,VN) and (W},...,W}) are standard independent M-
dimensional Brownian motions. Initial conditions are @y o = Il (ug) (with II, the



Numerical analysis of micro-macro simulations of polymeric fluid flows : a simple case. 24

finite elements interpolation operator), Pg and Q%, which are independent normal
variables, independent, of the Brownian motion V;/ and W} .

One can see that we have modified the standard Euler scheme on P, by intro-
ducing a cut-off constant A > 0. In fact, we will show two types of results : results
with cut-off (A < o0) and results without cut-off (A = 00). In the first case, we will

require 0 < 4 < \/% (and then use a constant v > 0 such that A > —vIn(dt)).
The choice of the upper bound will be justified in the proof of Lemma 10. In the
second case (A = 00), we have ?ZL = PJ and we will state the results on a sub-
set of the probability space. This subset will tend to the entire probability space
when §t — 0 or M — oo. These difficulties are linked with usual stability prob-
lems encountered in the discretization of SDEs (see Ref. 22). More precisely, let us
introduce the subset A,, defined for all n < 5—7; by :

The value of the upper bound 3L will be justified in the proof of the stability

20 3t
lemma 9. For the sake of concision, the results at time ndt will be stated on the
event A, in the absence (4 = 0o) as well as in the presence (A < |/z5) of the

cut-off, but it is important to notice that in the latter case, the probability of A,
is equal to 1.

Lemma 8 (Properties of A,) Let us assume A = oo (in which case P, = PJ).
The sequence of sets (Ay),c is decreasing. Moreover, we can estimate the proba-

bility of the event A, : assuming 6t < %,

1 M [ 13 13

with C1 and Cy two constants independent of n. In particular, for any t € [0,T],
P (AL%J) — 1 when 6t — 0, or when M — oo with 6t < 13.

Proof. The first property is clear. For the second one, notice first that a simple
calculation yields IE(P2) < 2. Hence, if (G;);>1 denotes a sequence of i.i.d. normal

random variables, IP (ﬁ Ej]\il(Pﬂ;)Q > C) <P (ﬁ Ej]\il(Gj)Q > %) . By Chernoff
inequality,

M
P % ;ij >0 | < exp(~M(AC — A(N)),

for any A > 0 where A denotes the Legendre transform : A(\) = In(E(exp(AG?))).
We conclude by minimizing the right-hand side over A using :

0 ifx <1,

sup(Az — A(N)) = { %(w —1-Inz) ifz>1

A>0
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O

In the following, we omit the subscript & in order to lighten the notations. It is
important to already notice that for all n, the couples (F;,@;) are exchangeable,
i.e. the law of the M-uplet ((ﬁi,@;), . (ﬁnM,Qf)) remains the same for any per-
mutation on the indices (1, ..., M). This allows one to write e.g. IE (ﬁ Zj\il @i) =

E (@2) or E (ﬁ Z]]Vil( )28 un+1) =E (( )20 un+1). Let us introduce an-
other notation, only used in the proofs. We define the function IE"™ by : for any
random variable X, IE"(X) = IE(X14,). Notice that in the case A < (with

cut-off), one has E" = E.
We start with the stability of the scheme.

55t

Lemma 9 (Stability of the fully discretized problem) We assume 6t < 2.

Moreover, we assume either 0tA? < ég, or A = oco. We have then the following
inequality : ¥n < L 5

M

/Eu 1a,) —l——Z/ ((0uTk41) 1Ak)+/O]E %Z(@{z)zlfln

Jj=1
<1+ ||U0||2L§ +T (14 C|featllne(L2)) »
with C a constant independent of the data of the problem.

Proof. Choosing v = U,41 as a test function in (4.48), we obtain (in the same
way as in the preceding stability proofs) :

1 —2 _ 9 y / _ ,
N _ 7 < _ N
2(5t </(;) uTH—l /@ Un) + 10 /(;) azU/TH-l = o Snaxun+1 + C| |fezt (tn)”Lw

Multiplying the equation (4.49) with sz and 14, , we obtain :

o (B (@) - EM(@%) + 3B (@)
= B0 PyQ0) + 5B (@ — @),

Summing up these two relations and using exchangeability, one obtains :

23% (/ W) /]En ) 20t (/]En o) /]En @ )

o n (=10 n (=1 —1
w15 [E 0 + 5 [ B (@F) < 55" (@ns = Q%) + Cl (8-
We have now to estimate the term on the right-hand side. We use again :
1—1..
— 5@+t
2
< 262E™((8yTns1 Py)?) + = 6t2]E”((Q )?) + 6t.

1 —1

En((@nH_Qn)Z) = 5t2]E”((8zﬂn+1?:L
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This yields :
1 1

n(—2 n(—2 n 2
ﬁ(/O]E(UnH)—/O]E(Un))*‘/O]E - M;l AT

9
10
a5 (/ B (@) - [ B )+% 0(1——) E"(@n))

1

5 C||fezt( n)”i;

Using the following three properties : (( — 5t Z] 1(P]) )8Iﬂ%+1) 1a, >

19,u2 114, (this is the inequality which defines the upper bound in the definition
of Ayn), 14, > 14,,, and 0t < 2, we get :

26t (/ " (o) / B _Z> / E" (0:n 1)
n n 1
tam ([ E@a?) = [ E@) < 5+ Cll et

This yields the stability, by summing up over n. O

Let us now turn to the convergence of the solution of the fully discretized problem
towards the solution of the problem discretized in space and time.
We need to introduce the random variables @7, , (denoted @9, in the following) :

. ) 1 ) .
b = Qo = (00 PL =50 Yo+ WE —WE @)

The couples (P?, Q7)) are independent realizations of the couples (P,,Q,). They
also are exchangeable random variables.
The aim of this section is to prove the following lemma.

Lemma 10 (Convergence of the Monte Carlo method) We assume 0t < %
Moreover, we assume either 0 < A < % (convergence with cut-off), or A = 0o

(convergence without cut-off ). We have then the following inequality : ¥Yn < %,

/O]E((un—ﬂn)21,4n)+/ ]\1/[% Q)14 <C<M+6t2>

The constant C is independent of n, h and dt, but depends on the data of the

problem : ug, fewt and T'. In the case 0 < A < C also depends on v > 0

552
such that A > —yIn(6t). In the case A = 0o the estimation is in fact of order < T

In the following, we will need an estimate of the variance of P,,Qp -
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Lemma 11 (A variance estimate) We assume 6t < 1. Then, 3C, Vn < 6—7;,

/O E ((PaQnn — E(PaQnn))?) < C.

The constant C' is independent of h and 6t, but depends on the data of the problem :
U0, feat and T.

Proof. The proof is based on an explicit calculation of the variance. Recall that
we omit the subscript h.

In the following, we set W;,,, — Wy, = V0tG, and Vi, ,, — Vi, = V/6tGl,. The
random variables G, G}, are independent normal random variables, independent
of Py and Q.

We recall that P, and @,, are defined by :

ot ot
Py = (1 - 5) P+ \/EG;g and Qk+1 = <1 — —> Qr + 0to e Ukt1 Py + \/_Gk

By induction, it is easy to show that

St st\" "
Qn:<1—5> Q0+Z<1——> VotGy._ 1+Z<1——> Oy Py 16t

(4.52)
We set X, =d0t> p_; (1— %)% Oy Py_1P,. We have the following equalities :

—k

P.Qn.—E(P,Qn)= (1 - %) (P Qo + Z (1 - ﬁ) k\/EPnG,H +X, - E(Xn)> .

Using independence properties, we find :

E ((PaQn — E(P.Q0))?)
2n n —2k
_ <1 _ %) (E(pg) * (1 - %) StE(P?) + B (X, — E(Xn))2)> :

k
A simple calculation yields E(P?) < 2 and therefore IE(P, P,,) < 2. It remains now
to estimate (1 — %)Qn]E ((Xn — E(X,))?). One can show that

5\ 2" Hn—k) . .
<1 - 5) (X,—E(X,))? < ét’n Z (1 - —) |0, u*|>(Py_1 P, —~TE(Py_ 1 P))>.

One can check that E ((Py—1 P, — E(Py—1P,))?) < C with C independent of §t
(this is deduced from E(P}) < C'). We obtain then :

(1 - ﬁ) E (X, — E(X0))) < CT0 S 0,0

2
k=1
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The stability lemma 4 has shown that Y, _, 6¢||0,ux||7- < C, which leads to the
result. O

In order to prove Lemma 10 in the case A < oo (convergence with cut-off), we will
also use the following estimates :

Lemma 12 We assume 6t < % Moreover, we assume that the cut-off constant is
such that —yIn(dt) < A < oo, for some positive constant y. We have then :

E ((P; - ﬁif) < 6t

/O E ((QL(P; —Fi>)2> < cott,

with C a constant depending on v and on the data of the problem : ug, feyt and T'.

Proof. In the following, as in the former proof, we set Wt]n o Wt]n = /5tGY,

and Vt]n o Vt]n = V/0t(GJ)'. The first estimate is deduced from an estimation on
normal random variables. We know that for all n, the random variables P! are
normal variables of variance less than 2. One can therefore write : for all n,

— 1 e 22
E((P! - P,)> —/ — A)?e™ T du.
& n>)<ﬁA<x )e™ da
A simple calculation yields
1 [ 5 _22 ,A?
— (x —A)’e” T dz < Cexp | —C'—= ) < Cyexp(aln(dt)),
N 8

for any exponent a > 0. Taking o = 4, we obtain the first estimate. One can show
in the same way the following estimate which will be used at the end of this proof :

E ((P; - ﬁ;)‘*) < Cote. (4.53)

For the second estimate, we use the former computation (4.52) of QL. We can then
write :

k(e -70) )< s [ (((1-2) aber - 7))

o o 2
+3 /IE (i <1 - %)nk VotGL_, (P! —F;)>2
+3 /IE (zn: <1 - %)M Bpur PL_, (Pt — ?;)&)2
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-1
For the first and second terms, we notice that the random variables Q}, (P} — P,))

and G}, are independent, which yields :

/O E (((1 - %)53(3& ) ) / E (2“: (1 - ﬁ>ni/5Gi_1(Pé —F2>>2

k=1
<E (@) B((PL-PLR) + Y 6B (Gh 1) B ((P) - Po)?)
k=1
<(1+DE ((P; —F;)Z) < Ot

For the third term, we write :

- ot 1 ! ’
/O]E ((; (1 - 5) Dpup PL_, (P} — Pn)6t> )

gaﬁ/ ZaukIE <Z (P ) n-ﬁif).
< k=1

k=1

We have shown in the stability lemma 4 that 6t _;_; [, ,uj < C. One last term
remains :

E(iw;lﬂpz——i ) < 2\/ (PO B (22 - Phyt) < Sott

k=1

using the fact that IE ((Pkl)4) < C and (4.53). O

We can now prove Lemma 10. '
Proof. We set S, = 47 E;‘il PiQJ, gn =ty — Uy and BRI = QI — Q. Using
the same arguments as in the former proofs, we obtain

ﬁ (/ Gats _/ > / Dafns1 < = /( (Pa@Qn) — Sn)0egni1,
%( "(Rl40)%) —E™((R))%)) + 2]E”((RJ) )= ((3 Y ﬂn+1ﬁi)R2;)

il ni) J 7 \2
5B (Rl — B
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Summing up these two expressions, one finds :

1 n
ﬁ(/(;E (gn+1 /E gn) /E wgn+1
n 2 n 1 n 1
2&(/113 (RL,,)?) /]E (RL) > /]E (RY)
1

- 25t O
(4.54)
with
[111 = (6zun+1Pé - 6wﬂn+1F;)R}z - (PéQ}L - ﬁi@;)azgm-l
—1 =1 -1
For the second term on the right-hand side of (4.54), we use Lemma 11 :
/]En E(P,Qn))0zgn+1) < 10 /]En Oz Gn+1) +10/]E ((Sn — E(PaQn))?) -

The first term is controlled on the left-hand side of (4.54), while the second term is
estimated using the variance of P,Q,, (see Lemma 11) :

M

2y _ 1 i Qi j i

j=1

=|a

For the first term on the right-hand side of (4.54), we write :

(Rn+1 R;L)Z

1o\ ..
<(8$un+1Pé - amﬂn+1pi) - iR;L) 6tz
1 _pl ok Lo ? 2
= a$un+1(Pn - Pn) + (aﬂign+1pn) - iRn ot”.
In the case A = oo, using PJ = Fﬁl, one notices that forall j, I7 = 0 and that
j G \2 AN V2 o2
(B =B < 2(0ganiP)) 08 + 5 (R))" ot

Using the assumption %5t < 1, the second term is controlled on the left-hand side
of (4.54). It follows that :

M

i ng 2 _ ne 2 / n g_ i BI\2 2
(e - [Eu)+ [B||f-ag e ) o,

Jj=1

n n 1
2&(/]E Rn+1 /]E (R;) >

ilQ
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Using the properties of A,,, we easily derive

1 1 _c
- En—i—l 2 _/]En 2 /En+1 /En 1
i (BB + o ( RL)?)- [ (7)) <

kel

Summing up (4.55) on n, we obtain an estimation in 37,

and 9. )
In the case A < oo, we have (notice that PL # P,) :

using the stability lemmas 4

_ 2 . _ 2 .
(RL,, —RLY)? < 3 (awunﬂ(P,{ - P;)) 5t +3 (azgnﬂpil) 5t2 + z (RL)® 622,

Using the assumption 3A26t < 75 (thls is the inequality which defines the upper
bound of A in the case A < 00) and 36t < 1, the last two terms are controlled on
the left-hand side of (4.54). We obtain a bound of order C'§t* on the first term using

6t >, Jo Ozt < C (see Lemma 4) and E ((Pé - ?;)2) < Cdt (see Lemma 12).
For the third term on the right-hand side of (4.54) (which is E(I})), we use twice
Lemma 12. Indeed, for the first term of I}, we write :

L (20 @7, - 2 \/ )</ [ @iy <\/ @ Pl))
s\/ / (a,,.unmzwa (f @2)2) E (P, - Pb?),

which yields after summation over n an estimate of order C'§t2. For the second
term of I}, we write :

[ E (071017, - P) \// (s \// (1P —Pl)))

which also yields after summation over n a bound in Ct?. We can again conclude
summing up over n and using the stability lemmas 4 and 9. O

Remark 6 One can estimate, in the case A < oo, the probability that the cut-off is
active during a simulation. Indeed, the probability that one of the |P| (with n < 6—7;)

m2
goes beyond A is roughly bounded by % (1 — # foA 67272) = 37 (1 — erf( ))
with 02 an upper bound on the variance of the PJ (one can take 0% = - Jt) and

erf(z) = %foz et dt. Choosing M = stz (which is consistent with the order
of convergence O (h + 6t + \/Lﬁ)) and A = %, this probability is bounded by

5t3 (1 — erf( :05?)))' This upper bound is very close to 0 when 6t is small (it
is equal to 1078 for 6t = 0.01).
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4.4. Conclusion : convergence of the fully discretized problem.

We now state our main result.

Theorem 3 (Convergence of the fully discretized problem) We assume a

P1 discretization of the velocity in space. We also make the following regulari-
y a er .

ty hypothesis : wy € H2, feyt € Li(HY) and % € L}(L2). We assume either

A = oo (without cut-off), or 0 < A < \/ =% (with cut-off, in which case 14, = 1).

L

5, we have :

Assuming dt <

+
LZ(LE)

u(ty,)—upla,

M
1 L
‘E(Pthtn)_M E P.Qhnla,
j=1

1
<C (h + 6t + —) )
Li(LL) vM
where C' is independent of h and 0t, but depends on the data of the problem : ug,
fewt and T. In the case 0 < A < 1/%, C also depends on ~v > 0 such that
A > —vIn(dt).

Proof. For the estimation on w, we write : u(t,) —upla, = (u(ty) — un(tn)) +
(un(tn) —up) +up (1 —14,)+ (up —7p)1lya,. We use Lemma 3 for the first term,
Theorem 2 for the second term and Lemma 10 for the last term. In case A < %,
the third term is nul. In case A = 0o, we upper bound this term thanks to Lemmas 8
and 4. o
For the estimation on E(P,Q¢), we write : E(P;, Q1) — 77 Z]Nil P;QimlAn =
(E(F:,Qr,) — E(P, Qn.i,)) +(E(P, Qnt,) — E(PrQnn) +EPuQnn) (1 - 14,)+
M pjng M pjni =i
(B(PaQnn) — 3 LI PIQL) Tan + (S X PAQh, — Q) L
+ (ﬁ E;‘il @in(PTJL - ?2)) 14,. We use then Lemma 3 for the first term, Theo-
rem 2 for the second term, Lemma 11 for the fourth term and Lemma 10 for the
561

and 4 in the case A = co. The last term is zero in the case A = oo and is estimated
by Lemma 12 in the case A < co. 0

fifth term. The third term is nul when A < y/:>- and is estimated by Lemmas 8

Remark 7 We have actually shown the following convergence result on Q¢ : Vj <

M
1
<C(h+6t + —
ng)_c( * +x/M)’

where (Pg ,'Q{) are the processes defined by (3.20) and (3.19) with (V, W) replaced
by (V7. WY).

’

j =7
Han - Qh,n

Remark 8 In the space-discretized problem of our model, the ji* dumbbell in each
cell is driven by the same Brownian motion (VI ,WJ). However, the first CON-
FESSIT simulations were made with driving Brownian motions independent from
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one cell to another. More generally, one could choose any correlation in space for
these Brownian motions. In fact, the convergence result stated in Theorem 3 holds
whatever the choice of the correlation in space (the constant C in front of the rate

of convergence C (h + 0t + ﬁ), does not depend on the correlation). In return,

the convergence on Q}, ,, stated in the previous remark no longer makes sense.

5. Numerical results.

In this section, we show some numerical results about the latter step of discretiza-
tion : the convergence of the Monte Carlo method. It is indeed the less classical one,
and the model we use is simple enough to compute exactly (uZ'H, E(Py+1Qhn+1))
being given (uf, E(P,Q#,n)). We use (4.34) to compute u} ™" and the following ex-
plicite calculation of IE(P,,+1Qnn+1) derived from (4.35) and (4.36) (which is just
a discretization of the equivalent macroscopic model for the stress tensor) :

E(Pos1Qnnt1) = (1— ) B(P,Qun)+ (1 — &) 0,ul M E(P2)st,
E(P7,) = (1—%)21E(P5)+5t-

This enables us to compare numerically the deterministic variables (u}, IE(P,Qr »))
(which, we recall, are an approximation in space and time of (u(t,), E(P;, Q:,.)))
with the Monte Carlo approximation (E}l‘, + Z]]\il Fi@in) All the tests have
been done with the following values for the physical parameters : A = 1, nkgT = 20
and T = 1. In the following, I denotes the number of space steps, N denotes the
number of time steps and M denotes the number of Monte Carlo realizations (i.e.
the number of dumbbells in each cell).

Tests on the stability.

First, by a deterministic calculus yielding (u},E(P,Qp,n)), we have checked
that when 0t is too large, the solution oscillates (see Figure 2). This result is to
be related to the stability lemma 4, which states that stability holds for §¢ small
enough.

Tests on the cut-off.

In order to illustrate the effect of the cut-off on the fully discretized problem, one
needs to take a dt near the upper bound of stability given in Lemma 4. In practice,
we have chosen ¢ such that the deterministic computation begins to oscillate. We
have chosen the following parameters : I = 10, N = 8 and M = 100. We have
performed for each simulation (with cut-off and without cut-off) one million runs.
We have then analyzed the errors (on velocity and stress) :

M
1 e
sup |[ufl —uf|[;; and  sup | |E(PaQun) = 57 > Pu@ual| - (55)
0<n< 0<n< =1 I
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15 15
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° °
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Fig. 2. Deterministic computation of velocity profile as time evolves.
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lerror (u)|[_L"infty_t(L"2_x) llerror (u)||_L"infty_t(L"2_x)

Fig. 3. Distribution of the errors on velocity (zoom) : on the left-hand side, simulation without
cut-off and on the right-hand side, simulation with cut-off (4 = 2.3).
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1=10 N=50 1=10 M=1000
0.1 T

T T
error u error u
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01t ]

error
error
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0.001
1
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10 100 1000 10000 100000 20 40 60 80 100

M N
Fig. 4. Errors L (L2(L2)) on u and L (LL(LL)) on 7 depending on the number of Monte Carlo

realizations (M) and on the number of time steps (N).

These errors are in fact relative errors since uy and IE(P,,Q4,,) are of order 1. For
the simulation with cut-off, the value of A has been chosen “optimally” in order to
obtain the best numerical distribution of errors. It is greater than the theoretical
upper bound \/% that we need in our convergence result (Theorem 3).

We have noticed that the errors are clearly reduced in the simulations with cut-
off : for the set of parameters given above, the mean error on the velocity goes from
1.68 x 10! without cut-off to 7.56 x 10~2 with cut-off and the mean error on the
stress goes from 0.19 to 0.13. Moreover, the empirical probability for the error on
the velocity to be smaller than 0.01 goes from 72% without cut-off to more than
88% with cut-off.

In Figure 3, we give a zoom of an histogram representing the empirical distri-
bution of the error on the velocity : supy<,<z [|lup _EZ”L;' On the left figure,
the bar on the far right contains all the simulations for which the error is greater
than 4.95. One can clearly see on Figure 3 that the use of the cut-off reduces the
empirical probability for the error to be large. This can be related to the fact that
without cut-off, P(A,,) < 1 in the conclusion of the stability Lemma 9.

Tests on the space step, the number of realizations and the time step.

We have also checked that the means (computed without cut-off using 100 000
tests for each simulation) of the errors (5.55) on the velocity and the stress do not
depend on the space step (at least when the solution does not oscillate, i.e. when
0t is small enough for Lemma 4 to hold), which is in agreement with the result of
Lemma 10. As usual in Monte Carlo methods, the error scales like LM, where M
is the number of realizations, which confirms Lemma 10 (see Figure 4). Finally, we
show the dependence of the error with repect to 0t (see Figure 4). One can observe
that there exists a bound on §t below which the error remains constant, which can
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e related to the result of Lemma 10.
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