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.frWe present in this arti
le the numeri
al analysis of a simple mi
ro-ma
ro simulation of apolymeri
 
uid 
ow, namely the shear 
ow for the Hookean dumbbells model. Althoughrestri
ted to this a
ademi
 
ase (whi
h is however used in pra
ti
e as a test problem fornew numeri
al strategies to be applied to more sophisti
ated 
ases), our study 
an be
onsidered as a �rst step towards that of more 
ompli
ated models. Our main resultstates the 
onvergen
e of the fully dis
retized s
heme (�nite element in spa
e, �nitedi�eren
e in time, plus Monte Carlo realizations) towards the 
oupled solution of apartial di�erential equation / sto
hasti
 di�erential equation system.1. Introdu
tion.We are 
on
erned here with the numeri
al analysis of a simple mi
ro-ma
ro simu-lation of a polymeri
 
uid 
ow. More pre
isely, we deal with the situation wherethe polymeri
 liquid, whi
h is here supposed to be an in�nitely diluted solution ofpolymers, experien
es a pure shear 
ow and is modeled at the mi
ros
opi
 s
aleby the dynami
s of sto
hasti
 Hookean dumbbells. To the best of our knowledge,su
h a study is new. We shall explain below why, despite the simpli
ity of theunderlying model, our work 
an be seen as a �rst step towards the treatment of themore sophisti
ated models that are 
ommonly used in the 
ontext of the so-
alledmi
ro-ma
ro approa
h in 
omputational rheology.Numeri
al simulations of the 
ow of 
omplex 
uids su
h as polymeri
 liquids isa long lasting 
hallenge. The 
entral diÆ
ulty is the rheology of these 
uids, highlynon Newtonian in nature : there is no simple linear relation linking the stress tensor� and the deformation tensor 12 (ru+t ru) as in the 
ase of Newtonian 
uids. Thisalgebrai
 relation, the so-
alled 
onstitutive equation of the 
uid, is repla
ed in su
h
uid by a partial di�erential equation (abbreviated in PDE in the sequel) of the1
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ase. 2form D�Dt = f (� ;ru); (1.1)to be integrated along the Lagrangian traje
tories of the parti
les, or by an integro-di�erential equation (the integral is taken along the traje
tories)� = Z t�1m(t� s)St(s) ds; (1.2)where m is a memory fun
tion (typi
ally a de
reasing exponential) and St(s) is adeformation-dependent tensor (typi
ally a fun
tion of the Finger strain tensor).The standard (\ma
ros
opi
") approa
h to simulate an in
ompressible 
ow ofsu
h polymeri
 liquids therefore 
onsists in approximating the solution to a 
oupledsystem of the form �DuDt = �rp+ ��u+ div � ; (1.3)div u = 0; (1.4)8<: D�Dt = f (� ;ru);or� = R t�1m(t� s)St(s) ds; (1.5)together with 
onvenient initial and boundary 
onditions. The derivative DDt denotesthe 
onve
tive derivative ��t+u:r, the ve
tor u denotes the 
uid velo
ity, p denotesthe pressure. The two 
onstants � and � denote respe
tively the density and theNewtonian vis
osity of the solvent. We refer the reader to Refs. 13;14;15 for a generalintrodu
tion to this type of simulations, and to Refs. 10;11;24;26;27 for examples ofthe numerous mathemati
al studies that have been devoted to su
h models. In this�eld, the most re
ent 
ontribution is due to P.L. Lions and N. Masmoudi in Ref. 20.Although very eÆ
ient, this purely ma
ros
opi
 approa
h is now being ques-tioned. The main 
on
erns are indeed to �nd good 
onstitutive equations (1.1)or (1.2) that 
ould apply to the ever in
reasing number of non Newtonian 
uidsof interest in today's te
hnology, and also to evaluate the impa
t of some 
losurehypothesis made to build these 
onstitutive equations on the quality / validity ofthe �nal result. An alternative approa
h, whi
h 
ir
umvents the bottlene
k of ma-king those 
losure hypothesis, has therefore been developed on the basis of kineti
theory. In a nutshell, this approa
h 
onsists in �nding an expression of the ma
ro-s
opi
 stress tensor in terms of the mi
ros
opi
 dynami
s of the polymer 
hains andin treating expli
itly both s
ales in the simulation. On the 
ontrary, 
onstitutivelaws are derived in a more or less rigorous way from the kineti
 theory with the helpof 
losure approximations, the kineti
 foundation being next forgotten. Instead of(1.5), the system that has therefore to be treated is (1.3)-(1.4) together with theFokker Plan
k equation des
ribing the mi
ros
opi
 dynami
s� �t + u:rx = �div Q�(rxuQ� 2�F (Q)) �+ �2�2�Q ; (1.6)



Numeri
al analysis of mi
ro-ma
ro simulations of polymeri
 
uid 
ows : a simple 
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 F (Q)) (t;x;Q) dQ� nkBT Id: (1.7)The fun
tion  (t;x;Q) is the probability density fun
tion of the end-to-end ve
torQ of the polymer at time t and at position x. The fun
tion F (Q) denotes the for
ewithin the spring whi
h models the polymer, � denotes the fri
tion, n is the numberdensity of polymers and � is de�ned by �2 = 2kBT�, where T is the temperature.We refer to Refs. 2;3;7;21 for more details about the derivation of su
h equations.From the theoreti
al standpoint, this approa
h is 
learly more satisfa
tory thanthe previous one. It is however not perfe
t : 
urrent resear
h in the modeling of
omplex 
ows aims at going further the simple setting of \thermodynami
s at equi-librium" upon whi
h this approa
h is based (see Refs. 1;8;9). From the mathemati
alstandpoint, systems of the type (1.3), (1.4), (1.6) and (1.7) have been studied forinstan
e in Refs. 6;25, and are therefore rather well known. However, this approa
h,as su
h, su�ers from a severe drawba
k as far as numeri
al simulations are 
on-
erned : the Fokker Plan
k equation, typi
ally set on a spa
e of large dimension(say IRN with N = 100), is not tra
table numeri
ally. The idea has emerged in theearly 90's to simulate the underlying sto
hasti
 di�erential equation (abbreviatedin SDE in the sequel) rather than the Fokker Plan
k equation itself. This approa
hhas been 
alled CONFESSIT17 whi
h means Cal
ulation of Non-Newtonian Fluids :Finite Elements and Sto
hasti
 Simulation Te
hniques.The \modern" way of simulating an in
ompressible 
ow of an in�nitely dilutedsolution of polymer is therefore to approximate8>>><>>>: �(�u�t + u:ru) = �rp+ ��u+ div (� );div (u) = 0;� = nIE(Q
 F (Q))� nkBT Id;dQ+ u:rQdt = �ruQ� 2�F (Q)� dt+ p2�� dW t; (1.8)where IE denotes the expe
tation and W t is a standard (multidimensional)Brownian motion. This very lively �eld of numeri
al simulation 
an be approa
hedby the reading of works su
h as Refs. 4;5;17;21;30 (see other referen
es therein). Itshould be already 
lear in the reader's mind that su
h an approa
h raises hundredsof interesting questions, both theoreti
al and numeri
al, and all lying at the in-terse
tion of the world of PDEs and SDEs (or even SPDEs i.e. sto
hasti
 partialdi�erential equations). So far as we know, no existing study deals with the exis-ten
e of solution (u; � ;Qt) to the above system (1.8) or any system of the samefamily. Moreover, despite the numerous simulations done, no proof of 
onvergen
eof a numeri
al s
heme towards the \
ontinuous" solution has ever been established.Our present work aims at giving a 
omplete mathemati
al and numeri
al analysisof a system su
h as (1.8). For reasons that will be 
lear below, we are bound torestri
t ourselves to a very simple 
ase, that we hope however to be instru
tiveenough to motivate further studies.
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ase. 42. The model and our main result.The system we study here is the following�u�t (t; x) � �2x;xu(t; x) = �x�(t; x) + fext(t; x); (2.9)�(t; x) = IE(P (t)Q(t; x)); (2.10)dP (t) = �P (t)2 dt+ dVt; (2.11)dQ(t; x) = ��xu(t; x)P (t)� Q(t; x)2 � dt+ dWt; (2.12)
omplemented with ad ho
 boundary and initial 
onditions, whi
h will be both madepre
ise below. It is obtained from (1.8) by making the following assumptions :� (H1) We 
onsider a shear 
ow in 2D : u = uy(x)ey (see Figure 1). Thefun
tion uy is hen
eforth denoted by u. Consequently, the divergen
e free
ondition (1.4) is automati
ally ful�lled. Another striking 
onsequen
e of thisgeometri
al assumption is that the Navier term u:ru in (1.3) and the trans-port term u:r in the sto
hasti
 equations both vanish. In equation (2.10),� denotes the (x; y) 
omponents of the stress tensor � . In equations (2.11)and (2.12), (P (t); Q(t; x)) (resp. (Vt;Wt)) are the two 
omponents of the end-to-end ve
tor Q(t) (resp. the Brownian motion W t). In equation (2.9), fextdenotes an external for
e.� (H2) The for
e F (Q) in (1.8) is 
hosen to be a simple linear for
e F (Q) = HQwith H the 
oeÆ
ient of the Hookean spring whi
h models the polymer (let usin
identally mention that su
h a for
e has nothing to do with the modeling ofintra-mole
ular for
es inside the polymer 
hain : it is only entropi
 in nature,and models the simple property stating that when the polymer 
hain stret
hes,the volume of the region of the 
on�gurations spa
e visited by the polymergets smaller). A 
onsequen
e of this \Hookean dumbbell" assumption is thatthe model (1.8) is indeed equivalent (at least formally, but more 
an be saidthan that) to a purely ma
ros
opi
 model of the type (1.1), namely the famousOldroyd B model written here in its di�erential form :� + �Æ�Æt = nkBT�(ru+t ru); (2.13)with the upper 
onve
ted derivative ÆÆt de�ned byÆ�Æt = ���t + u:r� � � tru�ru� ;where � = �4H is a 
hara
teristi
 time. In our simple 
ase, (2.13) redu
es to :���t + � = �xu: (2.14)
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Fig. 1. Velo
ity pro�le in a shear 
ow of a dilute solution of polymers.Let also noti
e that we have 
hosen units of time and length su
h that � = 1 andd = qkBTH = 1. Moreover, we have taken the physi
al parameters in order tosimplify the equations. All the results we give are of 
ourse also valid with di�erent
onventions.The main two results of our work, whi
h are respe
tively stated in Theorem 1and Theorem 3 in a very pre
ise way show :(a) that there exists a solution (u;Qt) to the system in the natural energy spa
esasso
iated to the problem,(b) that the fully dis
retized solution (unh; 1M PMj=1 P jnQjh;n) (the velo
ity beingdis
retized over P1 �nite elements in spa
e, and by �nite di�eren
es in timewhile the SDE being dis
retized by an Euler s
heme in time and the stresstensor approximated by Monte Carlo realizations) 
onverges up to a slightte
hni
al modi�
ation, whi
h is linked to the stability of the SDE and thatwill be made pre
ise in subse
tion 4.3, to the 
ontinuous solution at the orderO �h+ Æt+ 1pM �, where h is the spa
e step, Æt is the time step and M is thenumber of realizations of the SDEs (i.e. the number of dumbbells per 
ell).The sequel of this paper is devoted to the proof of these two assertions. However,before we get to the heart of the matter, let us emphasize our goal, and also givesome 
omments that we believe su
h results deserve.The proof of the existen
e (and in fa
t uniqueness and regularity) of the 
ontinu-ous problem is reprodu
ed here mainly for the sake of 
onsisten
y. Although it doesnot appear as su
h in the literature, it 
ould be derived in a rather straightforwardway from the observation that our model is, as mentioned above, in fa
t equivalentto an Oldroyd B type model. The only (slight) novelty is that, with a view tota
kle next the Galerkin approximation, we deliberately work in the natural energy(Sobolev) spa
es. On the 
ontrary, studies su
h as Ref. 25 take a mu
h more regularsetting and the study Ref. 20 
onsiders another type of 
onve
tive derivative (for de-tails about 
onve
tive derivatives and frame indi�eren
e, see for example Ref. 28).
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ase. 6On the other hand, the \numeri
al analysis" part of our work seems 
ompletelynew. We are aware that the 
ase we deal with, pre
isely be
ause of its simpli
ityand its formal equivalen
e with a purely ma
ros
opi
 model (hypotheses (H1) and(H2)) 
annot be 
onsidered as a prototype (in terms of the mathemati
al diÆ
ulty)of all models of type (1.8). However,(a) the simple model (2.9)-(2.12) embodies many, if not all, diÆ
ulties of modelof type (1.8) : the 
oupling between the sto
hasti
 part and the ma
ros
opi

ow part, the fa
t that at any �xed number of dumbbells the (apparentlydetermininisti
) 
ow velo
ity is a
tually a sto
hasti
 variable. It is thereforeexpe
ted that the mathemati
al toolbox used for its study will be useful andinstru
tive for the analysis of the other 
ases. At least it is a preliminarymatter for them.(b) the simple model (2.9)-(2.12) is indeed used in the numeri
al pra
ti
e (and
oded as su
h) in order to serve as a test 
ase for advan
ed numeri
al te
h-niques that will be then extended to more sophisti
ated 
ases. This justi�es(to our opinion at least) the need for the numeri
al analysis of this modelper se.Remark 1 When the mi
ros
opi
 model is not that of Hookean dumbbells, the for
eF (Q) is no longer linear but 
an beF (Q) = HQ1� jQj2=b;or F (Q) = HQ1� IE(jQj2)=b;whi
h are respe
tively the 
ase for the so-
alled FENE and FENE-P dumbbells 
ase.The FENE-P model is derived from the FENE model via a 
losure approximation(the so-
alled Peterlin approximation), whi
h enables to obtain a purely ma
ros
opi
equivalent of the mi
ros
opi
 model. In these models, b is a positive parameterwhi
h is the square of the maximum elongation of the dumbbells. The mathemati
aldiÆ
ulty is then to ensure that Q does not leave the region jQj � pb and does noteven rea
h its boundary. Current resear
h12 is dire
ted towards trying to extend thepresent analysis to this 
ase.Remark 2 When the ma
ros
opi
 
ow is no longer a pure shear 
ow, (at least)four new diÆ
ulties arise :(i) the divergen
e free 
onstraint (1.4) has to be a

ounted for,(ii) the Navier term has to be treated,(iii) the term u:rQt in the left hand side of the SDE of (1.8) has to be dealtwith,
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t of two non autonomous sto
hasti
 pro
esses arises in the de�nitionof � . (Note that in (2.10), Pt is autonomous, i.e. does not depend on the
ow.)Of these four diÆ
ulties, diÆ
ulties (iii) and (iv) are so far as we understand themost embarrassing ones. DiÆ
ulty (i) is standard, and (ii) is a 
lassi
al well-knowndiÆ
ulty of the mathemati
al analysis of in
ompressible (Newtonian) Navier-Stokesequation (and we 
annot hope to go further in the analysis of the present models thanin that of the Navier Stokes equation). DiÆ
ulty (iii), namely the appearan
e of atransport term in the SDE (whi
h ipso fa
to be
omes a SPDE), 
reates at on
e aninteresting question : in what sense 
an we 
onsider the SDE of the system (1.8) ?A way to 
ir
umvent the diÆ
ulty is to set the SDE in the Lagrangian setting, i.e.follow the 
hara
teristi
s of the 
ow and write the SDE along them. But as we havein mind to deal with a weak solution u of the ma
ros
opi
 
ow equations (think ofthe 3d 
ase), it is not an easy task to de�ne these 
hara
teristi
s, and also to give arigorous foundation to the Lagrangian form (be
ause of the term ruQ in the right-hand-side whi
h la
ks of regularity with respe
t to Q if u is only H1). We referthe interested reader to Ref. 18 where it is shown that one 
an adapt and 
ompletethe Di Perna-Lions theory of almost everywhere 
ows to a

ommodate for this newsituation.Remark 3 When the solution is no longer in�nitely diluted, other models arise.For high densities, models like those issued from the theory of reptation (Doi-Edwards models) appear. Then again, ma
ros
opi
 models and mi
ro-ma
ro modelsare two alternatives. Questions like those of simulation of re
e
ted Brownian pro-
esses then 
ome into the pi
ture (see Ref. 21), giving also rise to questions ofinterest for the numeri
al analysist. Let us also mention that what is expe
ted to bethe most 
hallenging 
ase with respe
t to the diÆ
ulty of its modeling is neither thein�nitely dilute 
ase, nor the polymer melt 
ase, but the 
ase in between !Let us end this se
tion saying that we hope to 
omplement the results of thepresent work at least in two dire
tions :(a) evaluate on the same toy-model both by numeri
al analysis and 
omputationalexperiments the validity of well known and 
ommonly used te
hniques of this�eld of 
omputational rheology su
h as varian
e redu
tion methods,(b) do the same analysis as that of the present paper for some of the more diÆ
ult
ases mentioned in the above remarks.We refer the reader to Refs. 12;19 for both aspe
ts.3. Brief mathemati
al analysis of the 
ontinuous problem.3.1. Pre
ise setting of the equations and de�nition of solutions.
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ed above, we 
omplement system (2.9)-(2.12) with the followingboundary 
onditions : � u(t; 0) = f0(t);u(t; 1) = f1(t); (3.15)together with the initial data :8<: u(0; x) = u0(x);Q(0; x) = Q0;P (0) = P0: (3.16)Let us also make pre
ise the notations : P0 and Q0 denote two independent nor-mal random variables (be
ause we suppose that the polymers are initially at equi-librium), also independent of Vt and Wt whi
h denote two standard independentBrownian motions. Noti
e that, as fun
tion of the spa
e variable x, (Vt;Wt) is
onstant. In the following, we have (t; x) 2 (0; T )�O with O = (0; 1).The following regularity for the external for
es and the initial velo
ity are sup-posed : 8<: fext 2 L1t (H1x) \W 1;1t (L2x);fext(0; x) 2 L2x;u0 2 H2: (3.17)It is to be remarked that although the regularities (3.17) have been 
hosen forsimpli
ity and be
ause they are ne
essary for our result of 
onvergen
e (Theorem 3),some parts of the arguments below may be done under less regular requirements.Let us also noti
e that all the results we give are also valid with other assumptionsof regularity on fext.We restri
t ourselves to the 
ase of homogeneous boundary 
onditions (f0 = f1 =0), the modi�
ations to deal with the other 
ases being only a te
hni
al matter. Inthe following, t; x and ! denote respe
tively the variable in time, spa
e and probabil-ity. For example, Qt 2 L1t (L2x(L2!)) means that supesst2(0;T )fRO IE(Q2t ) dxg <1.We are now in position to de�ne the notion of solution we shall deal with.We say that (u;Q) is a weak solution of the homogeneous problem if u 2L1t (L2x) \ L2t (H10;x) and Qt 2 L1t (L2x(L2!)) satisfy that for all v 2 H10 (O),ddt ZO uv + ZO �xu�xv = � ZO IE(PtQt(x))�xv +ZO fext(t; x)v; (3.18)for a.e. (x; !), 8t 2 (0; T ), Qt(x) = e� t2Q0 + Z t0 e s�t2 dWs +Z t0 e s�t2 �xuPs ds;(3.19)with Pt = e� t2P0 + Z t0 e s�t2 dVs: (3.20)Equation (3.18) holds in the sense of distributions in time. As usual, one mayequivalently use time dependent test fun
tions v 2 L1t (L2x) \ L2t (H10;x).
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ase. 93.2. Formal a priori estimates.We now establish formal a priori estimates on the solution (u;Q). These esti-mates will be made rigorous at the dis
rete level in the next subse
tion.Multiplying (2.9) by u, next integrating over the domain and in time, we obtain12 ZO u(t; x)2 � 12 ZO u0(x)2 + Z t0 ZO (�xu)2 = � Z t0 ZO IE(PsQs(x))�xu(s; x)+ Z t0 ZO fext(s; x)u(s; x):Next we 
ompute Q2t by Itô's formula using (2.12), take expe
tations and integrateagain on O and in time to obtain12 ZO IE(Q2t )� 12 = Z t0 ZO IE(PsQs(x))�xu(s; x)� 12 Z t0 ZO IE(Q2s) + 12 t:Summing up these two equalities, we obtain12 jjujj2L2x(t) + Z t0 jj�xujj2L2x + 12 ZO IE(Q2t ) + 12 Z t0 ZO IE(Q2s) ds = 12 jju0jj2L2x+12(1 + t) + Z t0 ZO fextu; (3.21)whi
h yields the �rst energy inequality :jjujj2L1t (L2x) + jjujj2L2t (H10;x) + jjQtjj2L1t (L2x(L2!)) + jjQtjj2L2t (L2x(L2!))� C �1 + jju0jj2L2x + T + jjfextjj2L1t (L2x)� ; (3.22)with C a 
onstant independent of the data of the problem.At this stage, it is to be remarked that using the same arguments as in thederivation of (3.21) or (3.22) with u = u1 � u2 and Q = Q1 � Q2, one 
an showthe uniqueness of solution. This point should be not surprising for the reader asthe system (2.9)-(2.12) (on
e written in terms of u only, using equation (2.10) on �and equation (2.12)) on Qt is indeed a linear system with respe
t to the variable u.This is obviously a 
onsequen
e of our simplifying assumptions (H1) and (H2).We must also noti
e that this energy estimate shows that the regularity of thesolution is at least : u 2 L2t (H1x) and �u�t 2 L2t (H�1x ). This shows in fa
t that u 2C([0; T ℄; L2(O)) whi
h allows us to de�ne u(0) (see Ref. 29 Chapter III, Lemma 1.2).Let us now turn to the se
ond energy inequality. This time, we multiply (2.9)by ��2x;xu and integrate over the domain to obtainddt ZO(�xu)2 + ZO(�2x;xu)2 = � ZO �xIE(PtQt)�2x;xu� ZO fext�2x;xu:We need to 
ontrol the �rst term in the right-hand side. Computing d(PtQt) from(2.11) and (2.12) and taking expe
tations, we get the following equation (equivalent
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ase. 10to (2.14)) : ��t IE(PtQt) = �IE(PtQt) + �xu IE(P 2t ): (3.23)By a standard appli
ation of Gronwall's lemma, this yields the following boundjj�xIE(PtQt)jj2L2x � Z t0 jj�2x;xujj2L2x ;whi
h we use to �nally obtain (using again Gronwall's lemma) the se
ond energyinequality : jjujjL1t (H1x)\L2t (H2x) � C �jju0jjH1x + jjfextjjL1t (H1x)� ; (3.24)where C only depends on T .Likewise, we multiply (2.9) by �u�t after derivating it in time (all this is doneformally we re
all), and we integrate over O to obtain���������u�t ��������2L1t (L2x)+����������xu�t ��������2L2t (L2x)� C  �������� ��t IE(PtQt)��������2L2t (L2x)+ ���������fext�t ��������2L1t (L2x)+ �������� �u�t ����t=0��������2L2x! :Using again equation (3.23), we obtain (by Gronwall inequality)�������� ��t IE(PtQt)��������2L2t (L2x) � C �1 + jju0jj2L2x + jjfextjj2L1t (L2x)�and we then derive another regularity in time :���������u�t ��������L1t (L2x)\L2t (H1x) � C �1 + jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ;(3.25)where C only depends on T .3.3. Existen
e.We 
an now show the existen
e of a solution of problem (3.18)-(3.19).3.3.1. Semi-dis
retized weak formulation.Let us de�ne a Riesz basis fvigi=1::1 of H10 (O). We set Vm = Ve
tfv1; :::; vmg.The semi-dis
retized problem is the following :Find Um 2 (L1t (IR))m and Qmt 2 L1t (L2x(L2!)) su
h that, for all 1 � i � m, the
ouple (um(t; x); Qmt (x)), where um(t; x) =Pi Umi (t)vi(x), satis�es :ddt ZO umvi = � ZO �xum�xvi � ZO IE(PtQmt (x))�xvi + ZO fextvi; (3.26)Qmt = e� t2Q0 + Z t0 e s�t2 dWs + Z t0 e s�t2 �xumPs ds; (3.27)
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ase. 11with Qm0 = Q0 and u(t = 0) = �m(u0) where �m is the H1-proje
tion on Vm.Again, (3.27) has to make sense for a.e. (x; !), for all t 2 (0; T ).3.3.2. Exiten
e of a semi-dis
retized solution.It is standard to �nd a solution to the dis
retized problem (3.26)-(3.27) usinge.g. a �xed-point argument on the fun
tionF : 8><>: X �! X� U(t)Qt(x) � 7�!  U0 �A�1 �R t0 �BU(s)� RO IE(PsQs)�xV + Fext��e� t2Q0 + R t0 e s�t2 dWs + R t0 e s�t2 Pi Ui�xviPs ! ;where X = f(U;Qt) 2 (L1t (IR))m � L1t (L2x(L2!))g is a Bana
h spa
e for the normjj(U;Qt)jjX = jjU jjL1t + jjQtjjL1t (L2x(L2!)), Ai;j = ZO vivj , Bi;j = ZO �xvi�xvj , V isa �eld of 
omponents vj and Fext is a ve
tor of 
omponents RO fextvj .The point is the following result stating the regularity of the dis
retized solution.Lemma 1 (Regularity of the spa
e-dis
retized solution) Assuming u0 2 L2xand fext 2 L1t (L2x), we have :jjumjj2L1t (L2x) + jjumjj2L2t (H10;x) + jjQmt jj2L1t (L2x(L2!)) + jjQmt jj2L2t (L2x(L2!))� C �1 + jju0jj2L2x + T + jjfextjj2L1t (L2x)� ; (3.28)with C independent of the data of the problem.Assuming u0 2 H2x and fext 2W 1;1t (L2x), we have :���������um�t ��������L1t (L2x)\L2t (H1x) � C �jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ; (3.29)���������2um�t2 ��������L2t (H�1�;x) � C �jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ; (3.30)where C only depends on T . By de�nition, jjgjjH�1�;x = supw2Vm ��RO gw��jj�xwjjL2x .Proof. To obtain the �rst two estimates (3.28) and (3.29) is a 
lassi
al exer
ise :one just needs to reprodu
e in a more rigorous way the a priori estimates (3.22)and (3.25) of the former subse
tion. The last result (3.30) is obtained by writingthe derivative in time of (3.26) and observing that ��t IE(PtQmt ) = �IE(PtQmt ) +�xumIE(P 2t ) whi
h ensures ��t IE(PtQmt ) 2 L2t (L2x).3.3.3. Convergen
e towards a 
ontinuous solution.
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ase. 12We assume u0 2 L2x and fext 2 L1t (L2x). A

ording to the former lemma, wehave jjumjjL1t (L2x)\L2t (H1x) + jjQmjjL1t (L2x(L2!)) � C with C independent of m. The
onvergen
e of the sequen
e (um; Qm)m2IN then 
lassi
ally derives from this estimate(noti
e that there are only linear terms in un and Qn in the equations (3.26) and(3.27), sin
e Pt is autonomous), following the next three steps :Step 1 Using the estimate on (um)m2IN, one 
an de�ne a fun
tion u 2 L1t (L2x)\L2t (H10;x) su
h that um 
onverges towards u weakly in L2t (H1x) and for the weak-*topology of L1t (L2x) (and therefore in D0((0; T )�O)). This fun
tion u satis�es the�rst energy inequality (3.22) (taking the inferior limit).Step 2 One 
an then de�ne ~Q by ~Q = e� t2Q0+R t0 e s�t2 dWs+R t0 e s�t2 �xu(s; x)Ps dsand 
he
k that ~Q 2 L1t (L2x(L2!)).Step 3 It remains to 
he
k the 
onvergen
e of the terms of the equation (3.26)satis�ed by um. The only non-trivial term is RO IE(PtQmt (x))�xvi. We use that forw 2 L2x(O),ZOIE(PtQmt (x))w = ZOIE�PtZ t0e s�t2 �xumPs ds�w = ZOZ t0�xume s�t2 IE(PsPt)w ds dx;and this last term goes to RO R t0 �xu e s�t2 IE(PsPt)w ds dx = RO IE(Pt ~Qt(x))w (be-
ause �xum 
onverges weakly towards �xu in L2t (L2x)).We have therefore obtained a solution of the problem (3.18)-(3.19). Let us shownow the 
onvergen
e of Qmt towards ~Qt as well as the strong 
onvergen
e of umtowards u.Lemma 2 Assume u0 2 H2x and fext 2 W 1;1t (L2x). Set (u;Qt) the solution of theproblem (3.18)-(3.19). Set Vm a subspa
e of H10 and (um; Qmt ) the solution of thesemi-dis
retized problem (3.26)-(3.27) with an initial velo
ity um0 . Then, we havefor all t 2 [0; T ℄,jju(t)� um(t)jj2L2x + Z t0jj�x(u� um)jj2L2x + jjQt �Qmt jj2L2x(L2!) +12 Z t0jjQs �Qms jj2L2x(L2!)� jju0 � um0 jj2L2x + infw2Vm �3jj�x(u� w)jj2L2t (L2x) + Cjju� wjjL2t (L2x)� ;with a 
onstant C whi
h depends on the data of the problem : u0, fext and T .Proof. Let w be a fun
tion in Vm. One 
an easily obtain, using the linearity ofthe variational formulations, and integrating in time :12 ZO(u� um)2(t) + Z t0 ZO j�x(u� um)j2 = 12 ZO(u0 � um0 )2� Z t0 ZO IE(Ps(Qs �Qms ))�x(u� um) + Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w)+ Z t0 ZO ��t (u� um)(u� w) + Z t0 ZO �x(u� um)�x(u� w): (3.31)
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ase. 13Using the equations on Qt and Qmt , one 
an show that :12 ZO IE(Qt �Qmt )2 = Z t0 ZO IE(Ps(Qs �Qms ))�x(u� um)� 12 Z t0 ZO IE(Qs �Qms )2:(3.32)Summing up (3.31) and (3.32), we have :12ZO(u� um)2(t)+Z t0 ZOj�x(u� um)j2+ 12ZOIE(Qt �Qmt )2+ 12Z t0 ZOIE(Qs �Qms )2= 12 ZO(u0 � um0 )2 + Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w)+ Z t0 ZO ��t (u� um)(u� w) + Z t0 ZO �x(u� um)�x(u� w):(3.33)Using Cau
hy-S
hwarz inequalities, we haveZ t0 ZO �x(u� um)�x(u� w) � 12 Z t0 ZO j�x(u� um)j2 + 12 Z t0 ZO j�x(u� w)j2;and (using IE(P 2s ) = 1)Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w) � 14 Z t0 ZO IE(Qs �Qms )2 + Z t0 ZO j�x(u� w)j2:The estimation of �����um�t ����L2t (L2x) given by Lemma 1 also holds for the 
on-tinuous solution u (taking the inferior limit). This yields the �nal estimate :R t0 RO ��t (u� um)(u� w) � Cjju� wjjL2t (L2x).In the former proof, we noti
e that we 
an assume that w also depends on thetime variable. Choosing w = �m(u) (we re
all that �m is the operator of the H1-proje
tion on Vm), one 
an therefore show the strong 
onvergen
e of um towards uin L1t (L2x)\L2t (H1x) and the strong 
onvergen
e of Qmt towards Qt in L1t (L2x(L2!)).We have therefore proved the following result :Theorem 1 (Existen
e of a 
ontinuous solution) Let us assume u0 2 L2x andfext 2 L1t (L2x). The problem (3.18)-(3.19) admits a unique solutionu 2 C([0; T ℄; L2x(O)) \ L2t (H10;x) and Qt 2 L1t (L2x(L2!)).The solution (um; Qmt ) of the semi-dis
retized problem (3.26)-(3.27) is unique. As-suming u0 2 H2x and fext 2 W 1;1t (L2x), (um; Qmt ) 
onverges towards (u;Qt) in thefollowing sense : um �! u strongly in L1t (L2x) \ L2t (H1x) and Qmt �! Qt stronglyin L1t (L2x(L2!)).Remark 4 It is 
lear that, under the hypothesis u0 2 H2x and fext 2 W 1;1t (L2x),the 
ontinuous solution u is a fun
tion of L1t (L2x) \ L2t (H1x) whi
h satis�es theinequality (3.25). Moreover, under the assumptions u0 2 H1x and fext 2 L1t (H1x),we 
an also prove that the solution satis�es the se
ond energy estimate (3.24), what
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tion 4.1. To prove this result, one uses the uniqueness ofthe solution and the fa
t that one 
an 
onstru
t a sequen
e of approximations of thesolution whi
h satis�es (3.24) by a Galerkin method on a spe
ial base (stable forthe lapla
ian). One 
an then also obtain (3.24) for the solution, taking the inferiorlimit.4. Analysis of the numeri
al s
heme.In this se
tion, we want to show the 
onvergen
e of a standard dis
retizationof the problem (2.9)-(2.12). As above, we will suppose u0 2 H2x, fext 2 L1t (H1x)and �fext�t 2 L1t (L2x), whi
h yields, using the a priori estimates (3.24) and (3.25) :u 2 L1t (H1x) \ L2t (H2x) and �u�t 2 L1t (L2x) \ L2t (H1x).For the sake of simpli
ity, we also assume here homogeneous Diri
hlet boundary
onditions. Standard modi�
ations of our arguments yield the same 
on
lusionswith non homogeneous Diri
hlet boundary 
onditions (see e.g. Remark 6.2.2 inRef. 23.)The original problem is dis
retized in three steps : in spa
e (by a Galerkinmethod), in time (by an Euler semi-impli
it s
heme) and �nally using the MonteCarlo method. We 
hoose a P1 dis
retization in spa
e of the velo
ity : the velo
ityspa
e fun
tions Vh is the spa
e of the pie
ewise polynomials of degree 1 on a mesh Thwhere h is the spa
e dis
retization step. The time interval (0; T ) is dis
retized witha 
onstant step Æt. We 
onsider M realizations of the dumbbell pro
esses (Pt; Qt).The s
heme we use will be made pre
ise in the subse
tion 4.3 (see equations (4.48)-(4.50)).The aim of this se
tion is to show Theorem 3 whi
h states that the order of
onvergen
e of this s
heme is O �h+ Æt+ 1pM �.4.1. Convergen
e of the spa
e-dis
retized problem.We 
onsider here the spa
e-dis
retized problem whi
h is (3.26)-(3.27) with V m =Vh � H1x (we use a Galerkin method). Noti
e that sin
e the velo
ity uh is a pie
e-wise linear fun
tion (P1), the pro
ess Qh (and therefore the stress �h = IE(PQh))is a dis
ontinuous pie
ewise 
onstant fun
tion (dis
ontinuous P0). We have al-ready shown in subse
tion 3.3 that this problem admits a unique solution. More-over, Lemma 2, together with the standard �nite elements approximation inequalityjju��h(u)jj2L2x + h2jj�x(u��h(u))jj2L2x � Ch4jjujj2H2x yields :Lemma 3 (Convergen
e of the spa
e-dis
retized problem) Let us assumeu0 2 H2x, fext 2 L1t (H1x) and �fext�t 2 L1t (L2x). Set (u;Qt) the solution of the problem(3.18)-(3.19). Let us assume a P1 spa
e dis
retization for the velo
ity. Set Vh thevelo
ity spa
e fun
tions and (uh; Qh) the solution of the semi-dis
retized problem(3.26)-(3.27) with an initial velo
ity uh;0 = �h(u0) 2 Vh. Then we have :jju(t)� uh(t)jj2L1t (L2x) + jj�x(u� uh)jj2L2t (L2x) + jjQt �Qh;tjj2L1t (L2x(L2!)) � Ch2;
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onstant whi
h depends on the data of the problem : u0, fext and T .4.2. Convergen
e of the time-dis
retized problem.We turn now to the semi-dis
retized problem in time and in spa
e. We havealready 
ompared the 
ontinuous solution (u;Q) with the spa
e-dis
retized solution(uh; Qh) and we want to estimate the error introdu
ed by dis
retizing (uh; Qh) byan Euler s
heme in time.More pre
isely, we 
onsider the following problem :Being given (unh; Qh;n; Pn), we 
ompute (un+1h ; Qh;n+1; Pn+1) by the following algo-rithm : un+1h is su
h that 8v 2 Vh,1Æt ZO(un+1h �unh)v+ZO �xun+1h �xv = � ZO IE(PnQh;n(x))�xv+ZO fext(tn)v: (4.34)Qh;n+1 and Pn+1 are then 
omputed by :Qh;n+1 �Qh;n = ��xun+1h Pn � 12Qh;n� Æt+Wtn+1 �Wtn ; (4.35)Pn+1 � Pn = �12PnÆt+ Vtn+1 � Vtn : (4.36)This problem is 
omplemented with the initial data uh;0, P0 and Q0.We will �rst show the stability of the s
heme and then the 
onvergen
e.Lemma 4 (Stability of the spa
e-time-dis
retized problem) We assume thatfext 2 L1t (L2x) and u0 2 L2x. Under the assumption Æt < 12 , we have : for all n � TÆt ,jjunhjj2L2x+jjQh;njj2L2x(L2!)+Æt2 nXk=1 ZO j�xukhj2 � 1+jjuh;0jj2L2x+T �1 + Cjjfextjj2L1t (L2x)� ;where C is a 
onstant independent of the data of the problem.Proof. In order to lighten the notations, we set unh = un and Qh;n = Qn. Wealso set jjf jjH�1� = supv2Vh RO fvjj�xvjjL2x . If f 2 L2, one 
learly has jjf jjH�1� � Cjjf jjL2 .We 
hoose v = un+1 in (4.34), what yields1Æt ZO u2n+1 + ZO(�xun+1)2 = 1Æt ZO unun+1 + ZO fext(tn)un+1 � ZO IE(PnQn)�xun+1� 12Æt �ZO u2n + ZO u2n+1�+ 110 ZO(�xun+1)2 + Cjjfext(tn)jj2H�1� � ZO IE(PnQn)�xun+1:One multiplies next (4.35) with Qn and takes the expe
tation value :IE(Qn+1Qn)� IE(Q2n) = �IE(�xun+1PnQn)� 12IE(Q2n)� Æt;
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ase. 1612 �IE(Q2n+1)� IE(Q2n)�+ 12IE(Q2n)Æt = �xun+1IE(PnQn)Æt+ 12IE((Qn+1 �Qn)2):Summing this estimate multiplied by 1Æt and integrated in spa
e, and the one onun, we get :12Æt �ZOu2n+1 � ZOu2n�+ 12Æt �ZOIE(Q2n+1)� ZOIE(Q2n)�+ 910 ZO(�xun+1)2+12 ZOIE(Q2n) � Cjjfext(tn)jj2H�1� + 12Æt ZO IE((Qn+1 �Qn)2): (4.37)It remains to estimate the last term in the right-hand side. This is done by takingthe square of (4.35) and then the expe
tation value :IE((Qn+1 �Qn)2) = IE ��xun+1Pn � 12Qn�2! Æt2 + Æt� 2(�xun+1)2IE(P 2n)Æt2 + 12IE(Q2n)Æt2 + Æt:It is easy to show that IE(P 2n) is bounded by 44�Æt (by indu
tion, usingIE(P 2n+1) = �1� Æt2 �2 IE(P 2n) + Æt). We obtain then :IE((Qn+1 �Qn)2) � (�xun+1)2 8Æt24� Æt + 12IE(Q2n)Æt2 + Æt: (4.38)Using (4.37) and (4.38), one threfore obtains :12Æt �ZOu2n+1 � ZOu2n�+ 12Æt �ZOIE(Q2n+1)� ZOIE(Q2n)�+ 910 ZO(�xun+1)2+12 ZOIE(Q2n) � Cjjfext(tn)jj2H�1� + 4Æt4� Æt ZO(�xun+1)2 + Æt4 ZOIE(Q2n) + 12 : (4.39)Under the assumption Æt < 12 , one has RO u2n+1�RO u2n+RO IE(Q2n+1)�RO IE(Q2n)+AÆt RO(�xun+1)2 � Æt�2Cjjfext(tn)jj2H�1� + 1� (with A = 4670 � 12 ). We 
on
lude bysummation over n.We are now going to show the 
onvergen
e of this s
heme. We will �rst showthe 
onvergen
e of Pn towards Ptn and then, reprodu
ing the proof of the energyestimate (3.22) at the dis
rete level, we will show the 
onvergen
e of (unh; Qh;n)towards (uh(tn); Qh(tn)).Let us begin with the 
onvergen
e of Pn towards Ptn (we re
all that Pn and Ptnare de�ned independently of any spa
e dis
retization). Sin
e the di�usion 
oeÆ
ientin the SDE satis�ed by Pt is 
onstant, the Euler s
heme is in fa
t a Milshtein s
hemeon Pt. The 
onvergen
e is therefore in Æt (see Theorem 10.3.5 in Ref. 16) :Lemma 5 (Convergen
e of the Euler-Maruyama s
heme) There exists a 
on-stant C whi
h depends only on T su
h thatIE �(Pn � Ptn)2� � C(Æt)2:
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ase. 17Remark 5 We 
ould have used a s
heme exa
t in law for Pt. We have 
hosen a
lassi
al Euler s
heme be
ause this is the s
heme used in more 
ompli
ated 
ases(see Remarks 1 and 2), when Pt also depends on x.We 
an now show the following 
onvergen
e theorem :Theorem 2 (Convergen
e of the time-dis
retized problem) Let us assumeu0 2 H2x and fext 2W 1;1t (L2x). Under the assumption Æt < 12 , one has :jjunh � uh(tn)jj2L2x + jjQh;n �Qh(tn)jj2L2x(L2!) � C(Æt)2;with C independent of h and n � TÆt , but depends on the data of the problem : u0,fext and T .Proof. As in the former proof, we omit here the subs
ript h : unh = un, Qh;n = Qn,u = uh and Q = Qh. We introdu
e the pro
esses ~P de�ned by d ~Pt = � 12 ~P�t dt+dVt(with �t = � tÆt� Æt, where bx
 is the integer part of x, and ~P0 = P0) and ~Q de�nedby d ~Qt = ��xun(t)+1 ~P�t � 12 ~Q�t� dt + dWt (with n(t) = � tÆt� and ~Q0 = Q0). One
an 
he
k easily that Pn = ~Ptn and Qn = ~Qtn . Moreover, we set en = un � u(tn).The stability lemma 4 shows that RO IE(Q2n) is uniformly bounded (in h and n),hen
e RO IE( ~Q2s) is also uniformly bounded in s. We have also a uniform bound inn on IE(P 2n) and a uniform bound in s on IE( ~P 2s ).Equation on u :One obtains by subtra
tion of the 
ontinuous formulation in time at time tn(3.26) (we re
all that u 2 C([0; T ℄; L2x(O))) and the dis
retized formulation (4.34) :for all v 2 Vh,ZO�un+1 � unÆt � �u�t (tn)� v+ZO(�xun+1��xu(tn))�xv = �ZOIE(PnQn�PtnQtn)�xv:With similar 
omputations as those used in the proof of Lemma 4, 
hoosing v =en+1, we obtain :12Æt �jjen+1jj2L2x � jjenjj2L2x�+ ZO j�xen+1j2 � � ZO IE(PnQn � PtnQtn)�xen+1� Z tn+1tn ZO ��xu�t �xen+1 � 1Æt Z tn+1tn (tn+1 � s) ZO �2u�t2 (s)en+1 dx ds: (4.40)For the last two terms, using Cau
hy-S
hwarz and the inequality ab � Æta2+ 14Æt b2,we haveZ tn+1tn ZO ��xu�t �xen+1 � Æt Z tn+1tn ����������xu�t ��������2L2x + 14 jj�xen+1jj2L2x :In the same way :Z tn+1tn (tn+1�s) ZO �2u�t2 (s)en+1 dx ds � C(Æt)2 Z tn+1tn ���������2u�t2 (s)��������2H�1�;x+ Æt4 jj�xen+1jj2L2x :
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ase. 18Therefore, we obtain �nally :12 �jjen+1jj2L2x � jjenjj2L2x�+ Æt2 ZO j�xen+1j2 � �Æt ZO IE(PnQn � PtnQtn)�xen+1+(Æt)2 Z tn+1tn ����������xu�t (s)��������2L2x ds+ C(Æt)2 Z tn+1tn ���������2u�t2 (s)��������2H�1�;x ds: (4.41)Equation on Q :In order to estimate the �rst term on the right-hand side of (4.41), we reprodu
ethe proof of the energy inequality (3.22) at the dis
rete level. We write the SDEsatis�ed by (Qt � ~Qt)2 :12d((Qt� ~Qt)2) = �(Qt � ~Qt)(�xuPt � �xun(t)+1 ~P�t)� 12(Qt � ~Qt)(Qt � ~Q�t)� dt:We set in the following fn = Qtn�Qn. Integrating the last equation over (tn; tn+1),we have :12(f2n+1 � f2n) = �12 Z tn+1tn(Qs � ~Qs)(Qs �Qn) + Z tn+1tn(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)= �12 Z tn+1tn (Qs � ~Qs)2 + 12 Z tn+1tn (Qs � ~Qs)(Qn � ~Qs)+ Z tn+1tn (Ps�xu(s)� Pn�xun+1)(Qs � ~Qs):We introdu
e in the expe
tation of the last expression the term of (4.41) we wantto eliminate, namely Æt RO IE(PnQn � PtnQtn)�xen+1. We obtain :12IE(f2n+1�f2n)+ 12 Z tn+1tn IE(Qs� ~Qs)2 = ÆtIE(PnQn�PtnQtn)�xen+1+A; (4.42)withA = 12 Z tn+1tn IE�(Qs � ~Qs)(Qn � ~Qs)�+ Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)��ÆtIE(PnQn � PtnQtn)�xen+1:We will show the following estimate on A :Proposition 1jAj � CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s)+IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2;with � arbitrarily small and C a 
onstant whi
h is independent of n and Æt, butdepends on � and on the data of the problem : u0, fext and T .
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ase. 19Let us postpone the proof of Proposition 1 after the end of the proof of Theo-rem 2. Summing up (4.41) and (4.42) (integrated in spa
e), using the estimation ofPropsition 1, we have :jjen+1jj2L2x�jjenjj2L2x +ZOIE(f2n+1�f2n) + (1�2�)Z tn+1tn IE(Qs � ~Qs)2 + (1�2�) ÆtZOj�xen+1j2� CÆt3 �1 + jj�xun+1jj2L2x + 1Æt Z tn+1tn jj�xujj2L2x + 1Æt Z tn+1tn ZO IE(Q2s) + ZO IE(Q2n)+ 1Æt Z tn+1tn ZO IE( ~Q2s) + 1Æt Z tn+1tn ����������xu�t (s)��������2L2x ds+ 1Æt Z tn+1tn ���������2u�t2 (s)��������2H�1�;x ds! ;where � and � are arbitrarily small positive 
onstants. Summing up over n andusing the regularities proved in Lemmas 1 and 4, this 
on
ludes the proof.We now have to prove Proposition 1. We will need the next two lemmas.Lemma 6 Set R(t; x) a pro
ess (possibly deterministi
). We have the followinginequalities :����IE�Z tn+1tn R(s; x)(�xen+1) ds����� � 14� Z tn+1tn (IE(R(s; x)))2 ds+ �Ætj�xen+1j2;����IE�Z tn+1tn R(s; x)(Qs � ~Qs) ds����� � 14� Z tn+1tn IE �R(s; x)2� ds+� Z tn+1tn IE�(Qs � ~Qs)2� ds:Let S(t; x) be an Itô pro
ess su
h that dSt = a(x; t) dt+ b(x; t) dVt+ 
(x; t) dWt withb and 
 square integrable in t. We also have the following inequality :����IE�Z tn+1tn (S(s; x)� S(tn; x))(�xen+1) ds����� � 14�Æt2 Z tn+1tn (IE(a(x; s)))2 ds+�Ætj�xen+1j2;with � arbitrarily small.Proof. These results are easy to obtain by Cau
hy-S
hwarz inequality, noti
ingthat �xen+1 is deterministi
 and using the inequality jabj � 14�a2 + �b2.Lemma 7 We have the following two inequalities :����IE�Z tn+1tn(Qs � ~Qs)( ~Qs � ~Qtn) ds������CÆt2 �Æt+ ÆtIE(Q2n) + Ætj�xun+1j2+Z tn+1tn IE(Q2s)�+� Z tn+1tn IE�(Qs � ~Qs)2� ds;with � arbitrarily small.����IE�Z tn+1tn �(Qs � ~Qs)( ~Ps � ~Ptn) ds����� � CÆt2 �Æt+ Æt�2 + Z tn+1tn j�xuj2�+� Z tn+1tn IE�(Qs � ~Qs)2� ds;
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onstant, � arbitrarily small and C a 
onstant independent of �. The
onstant C is independent of n and Æt, but depends on � and on the data of theproblem : u0, fext and T .Proof. The proof of the �rst inequality mimi
s that of the se
ond one. Therefore,we only prove the se
ond inequality. For all t 2 (tn; tn+1), one 
an write d ~Pt =� 12Pndt+ dVt. We have therefore :IE�Z tn+1tn �( ~P (s; x)� ~P (tn; x))(Qs � ~Qs) ds�= Z tn+1tn IE��(s� tn)�2 Pn(Qs � ~Qs)� ds+ IE�Z tn+1tn�(Vs � Vtn)(Qs � ~Qs) ds� :(4.43)For the �rst term of the right-hand side of (4.43), we apply the se
ond inequa-lity of Lemma 6 (with R(s; x) = �(s � tn)�2Pn) in order to obtain a bound inCÆt3�2 + � R tn+1tn IE�(Qs � ~Qs)2� ds. The aim of the remainder of the proof is toshow the following estimation on the se
ond term of the right-hand side of (4.43) :����IE�Z tn+1tn �(Vs � Vtn)(Qs � ~Qs) ds����� � CÆt2�Æt+ Æt�2 + Z tn+1tn j�xuj2� :(4.44)In order to show (4.44), we use the SDE satis�ed by Qs � ~Qs :Qs � ~Qs = Qtn �Qn � 12 Z stn (Qv �Qn) dv + Z stn (�xuPv � �xun+1Pn) dv= ��1� s� tn2 � (Qtn �Qn)� (s� tn)�xun+1Pn + Z stn �xuPtn dv��12 Z stn (Qv �Qtn) dv + Z stn �xu(Pv � Ptn) dv: (4.45)Let us denote B the term in bra
kets. The random variable B is independent of(Vs � Vtn), whi
h implies :IE�Z tn+1tn �(Vs � Vtn)B ds� = 0:We still have to estimate the 
ontributions of the last two terms of (4.45). These
ontributions will be denoted respe
tively by T1 and T2.Let us �rst turn to the term T1 whi
h is :T1 = IE�Z tn+1tn �2 (Vs � Vtn) Z stn (Qv �Qtn) dv ds�= �2 Z tn+1tn Z stn IE ((Vs � Vtn)(Qv �Qtn)) dv ds:
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lear that :jT1j � Æt3�2 + 1Æt3 �Z tn+1tn Z stn IE ((Vs � Vtn)(Qv �Qtn)) dv ds�2 :Using the expression of Qv �Qtn = � 12 R vtn Qw dw+ R vtn �xuPw dw+Wv �Wtn , oneobtains : IE ((Vs � Vtn)(Qv �Qtn)) = 12IE�(Vs � Vtn) Z vtn (�Qw) dw�+IE�(Vs � Vtn) Z vtn �xuPw dw�+IE ((Vs � Vtn)(Wv �Wtn)) : (4.46)The third term of (4.46) is zero. For the se
ond term of (4.46), we write (usingCau
hy-S
hwarz) :1Æt3 �Z tn+1tn Z stn Z vtn �xuIE ((Vs � Vtn)Pw) dw dv ds�2� Z tn+1tn Z stn Z vtn j�xuj2 (IE((Vs � Vtn)Pw))2 dw dv ds � CÆt3 Z tn+1tn j�xuj2:For the �rst term of (4.46), we write in the same manner :1Æt3 �Z tn+1tn Z stn Z vtn IE ((Vs � Vtn)Qw) dw dv ds�2� Z tn+1tn Z stn Z vtn (IE ((Vs � Vtn)Qw))2 dw dv ds� Z tn+1tn Z stn Z vtn (s� tn)IE(Q2w) dw dv ds � Æt3 Z tn+1tn IE(Q2s):Let us now turn to the estimation of the term T2 :T2 = IE�Z tn+1tn �(Vs � Vtn) Z stn �xu(Pv � Ptn) dv ds�= � Z tn+1tn Z stn �xuIE ((Vs � Vtn)(Pv � Ptn)) dv ds:It is 
lear that :jT2j � Æt3�2 + 1Æt3 �Z tn+1tn Z stn �xuIE ((Vs � Vtn)(Pv � Ptn)) dv ds�2 :Using the expression of Pv � Ptn = � 12 R vtn Pw dw + Vv � Vtn , we obtain :IE ((Vs � Vtn)(Pv � Ptn)) = 12 Z vtn IE (�(Vs � Vtn)Pw) dw+IE ((Vs � Vtn)(Vv � Vtn)) :(4.47)
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ase. 22For the se
ond term of (4.47), we have therefore :1Æt3 �Z tn+1tn Z stn �xu(v � tn) dv ds�2 � 1Æt Z tn+1tn Z stn j�xuj2(v � tn)2 dv ds� Æt2 Z tn+1tn j�xuj2:For the �rst term of (4.47), we obtain in the same way :1Æt3 �Z tn+1tn Z stn �xu Z vtn IE ((Vs � Vtn)Pw) dw dv ds�2� 1Æt Z tn+1tn Z stn j�xuj2 Z stn Z vtn (IE ((Vs � Vtn)Pw))2 ds � Æt3 Z tn+1tn j�xuj2:This ends the proof.One 
an now prove Proposition 1.Proof. The �rst inequality of Lemma 7 shows that :jAj � CÆt2�Æt+ Ætj�xun+1j2+Z tn+1tn IE(Q2s) + ÆtIE(Q2n)�+�Z tn+1tn IE�(Qs � ~Qs)2�+jA0j;with A0 = Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)� ds�ÆtIE(PnQn � PtnQtn)�x(un+1 � u(tn+1))= Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)�(PnQn � PtnQtn)(�xun+1 � �xu(tn+1))� ds:Using Lemmas 6 and 7, we will prove the following estimate on A0 :jA0j � CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s)+IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2;with � arbitrarily small.The third inequality of Lemma 6 applied su

essively to PsQs and ~Ps ~Qs and these
ond inequality of Lemma 7 (applied with � = �xun+1) show that jA0j is boundedby :����Z tn+1tn IE�(Ps�xu(s)� ~Ps�xun+1)(Qs � ~Qs)� ( ~Ps ~Qs � PsQs)(�xun+1 � �xu(tn+1))�����+CÆt3�1 + j�xun+1j2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s) + IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+� Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2:
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ond inequality of Lemma 6 (with R(s; x) = Ps(�xu(s)��xu(tn+1))),we obtain the following bound on jA0j :����Z tn+1tn IE�(Ps�xu(tn+1)� ~Ps�xun+1)(Qs � ~Qs)� ( ~Ps ~Qs � PsQs)(�xun+1 � �xu(tn+1))�����+CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn IE(Q2s) + IE(Q2n)+ 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2:Then, developing the expression under the integral, we obtain the following term :� Z tn+1tn IE��xu(tn+1) ~Qs(Ps � ~Ps)�+ Z tn+1tn IE��xun+1Qs(Ps � ~Ps)�= Z tn+1tn IE��xun+1(Ps � ~Ps)(Qs � ~Qs)�+ Z tn+1tn IE� ~Qs(Ps � ~Ps) (�xun+1 � �xu(tn+1))� :One 
an now 
on
lude using the inequality IE�(Ps � ~Ps)2� < CÆt2 and applyingthe �rst two inequalities of Lemma 6 to both terms of the above expression.4.3. Convergen
e of the Monte Carlo dis
retized problem.We now turn to the last level of dis
retization : the Monte Carlo method. In thepre
eding subse
tions, we have shown that the spa
e and time dis
retized problem(unh; Qh;n) 
onverges towards the 
ontinuous solution at time tn = nÆt : (u(tn); Qtn).We now want to estimate the error indu
ed by the approximation of IE(PnQh;n) byan empiri
al mean. All the results of this subse
tion hold under the assumptionu0 2 L2x and fext 2 L1t (L2x).We de�ne the fully dis
retized problem :Being given at time tn = nÆt, the velo
ity unh and the random variables P jn, P jn andQjh;n, one �nds un+1h 2 Vh su
h that 8v 2 Vh,1Æt ZO(un+1h � unh)v + ZO �xun+1h �xv = � ZO Sh;n�xv + ZO fext(tn)v:(4.48)with Sh;n = 1M PMj=1 P jnQjh;n. Then, one 
omputes P jn+1, P jn+1 and Qjh;n+1 using :Qjh;n+1 �Qjh;n = ��xun+1h P jh;n � 12Qjh;n� Æt+ �W jtn+1 �W jtn� ; (4.49)( P jn+1 � P jn = � 12 P jn Æt+ (V jtn+1 � V jtn);P jn+1 = sup(�A; inf(A;P jn+1)): (4.50)The pro
esses (V 1t ; : : : ; V Nt ) and (W 1t ; : : : ;WNt ) are standard independent M-dimensional Brownian motions. Initial 
onditions are uh;0 = �h(u0) (with �h the
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ase. 24�nite elements interpolation operator), P j0 and Qj0, whi
h are independent normalvariables, independent of the Brownian motion V jt and W jt .One 
an see that we have modi�ed the standard Euler s
heme on Pt by intro-du
ing a 
ut-o� 
onstant A > 0. In fa
t, we will show two types of results : resultswith 
ut-o� (A <1) and results without 
ut-o� (A =1). In the �rst 
ase, we willrequire 0 < A < q 35Æt (and then use a 
onstant 
 > 0 su
h that A > �
 ln(Æt)).The 
hoi
e of the upper bound will be justi�ed in the proof of Lemma 10. In these
ond 
ase (A = 1), we have P jn = P jn and we will state the results on a sub-set of the probability spa
e. This subset will tend to the entire probability spa
ewhen Æt ! 0 or M ! 1. These diÆ
ulties are linked with usual stability prob-lems en
ountered in the dis
retization of SDEs (see Ref. 22). More pre
isely, let usintrodu
e the subset An de�ned for all n � TÆt by :An = 8<:8k � n; 1M MXj=1(P jk)2 < 1320 1Æt9=; :The value of the upper bound 1320 1Æt will be justi�ed in the proof of the stabilitylemma 9. For the sake of 
on
ision, the results at time nÆt will be stated on theevent An in the absen
e (A = 1) as well as in the presen
e (A < q 35Æt ) of the
ut-o�, but it is important to noti
e that in the latter 
ase, the probability of Anis equal to 1.Lemma 8 (Properties of An) Let us assume A = 1 (in whi
h 
ase P jn = P jn).The sequen
e of sets (An)n2IN is de
reasing. Moreover, we 
an estimate the proba-bility of the event An : assuming Æt < 1340 ,IP(An) � 1� 1Æt exp��M2 � 1340Æt � 1� ln� 1340Æt��� ;with C1 and C2 two 
onstants independent of n. In parti
ular, for any t 2 [0; T ℄,IP�Ab tÆt
� �! 1 when Æt �! 0, or when M �!1 with Æt < 1340 .Proof. The �rst property is 
lear. For the se
ond one, noti
e �rst that a simple
al
ulation yields IE(P 2n) < 2. Hen
e, if (Gj)j�1 denotes a sequen
e of i.i.d. normalrandom variables, IP� 1M PMj=1(P jn)2 > C� � IP� 1M PMj=1(Gj)2 > C2 � : By Cherno�inequality, IP0� 1M MXj=1(Gj)2 > C1A � exp(�M(�C � �(�)));for any � > 0 where � denotes the Legendre transform : �(�) = ln(IE(exp(�G21))).We 
on
lude by minimizing the right-hand side over � using :sup�>0(�x � �(�)) = � 0 if x � 1;12 (x� 1� lnx) if x > 1:
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ript h in order to lighten the notations. It isimportant to already noti
e that for all n, the 
ouples (P jn; Qjn) are ex
hangeable,i.e. the law of the M-uplet ((P 1n; Q1n); :::; (PMn ; QMn )) remains the same for any per-mutation on the indi
es (1; :::;M). This allows one to write e.g. IE� 1M PMj=1Qjn� =IE�Q1n� or IE� 1M PMj=1(P jn)2�xu2n+1� = IE�(P 1n)2�xu2n+1�. Let us introdu
e an-other notation, only used in the proofs. We de�ne the fun
tion IEn by : for anyrandom variable X , IEn(X) = IE(X1An). Noti
e that in the 
ase A < q 35Æt (with
ut-o�), one has IEn = IE.We start with the stability of the s
heme.Lemma 9 (Stability of the fully dis
retized problem) We assume Æt < 2.Moreover, we assume either ÆtA2 � 1320 , or A = 1. We have then the followinginequality : 8n � TÆt ,ZO IE(u2n1An) + Æt2 n�1Xk=0 ZO IE �(�xuk+1)21Ak�+ ZO IE0� 1M MXj=1(Qjn)21An1A� 1 + jju0jj2L2x + T �1 + CjjfextjjL1t (L2x)� ;with C a 
onstant independent of the data of the problem.Proof. Choosing v = un+1 as a test fun
tion in (4.48), we obtain (in the sameway as in the pre
eding stability proofs) :12Æt �ZO u2n+1 � ZO u2n�+ 910 ZO �xu2n+1 � � ZO Sn�xun+1 + Cjjfext(tn)jj2L2x :Multiplying the equation (4.49) with Qjn and 1An , we obtain :12Æt �IEn((Qjn+1)2)� IEn((Qjn)2)�+ 12IEn((Qjn)2)= IEn(�xun+1P jnQjn) + 12Æt IEn((Qjn+1 �Qjn)2):Summing up these two relations and using ex
hangeability, one obtains :12Æt �ZOIEn(u2n+1)� ZOIEn(u2n)�+ 12Æt �ZOIEn �(Q1n+1)2�� ZOIEn �(Q1n)2��+ 910 ZOIEn(�xu2n+1) + 12 ZOIEn �(Q1n)2� � 12Æt IEn �(Q1n+1 �Q1n)2�+ Cjjfext(tn)jj2L2x :We have now to estimate the term on the right-hand side. We use again :IEn((Q1n+1 �Q1n)2) = Æt2IEn((�xun+1P 1n � 12Q1n)2) + Æt� 2Æt2IEn((�xun+1P 1n)2) + 12Æt2IEn((Q1n)2) + Æt:
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ase. 26This yields :12Æt �ZO IEn(u2n+1)� ZO IEn(u2n)�+ ZO IEn0�0� 910 � Æt 1M MXj=1(P jn)21A �xu2n+11A+ 12Æt �ZO IEn((Q1n+1)2)� ZO IEn((Q1n)2)�+ 12 ZO �1� Æt2 � IEn((Q1n)2)� 12 + Cjjfext(tn)jj2L2x :Using the following three properties : �� 910 � Æt 1M PMj=1(P jn)2��xu2n+1� 1An �14�xu2n+11An (this is the inequality whi
h de�nes the upper bound in the de�nitionof An), 1An � 1An+1 and Æt < 2, we get :12Æt �ZO IEn+1(u2n+1)� ZO IEn(u2n)�+ 14 ZO IEn ��xu2n+1�+ 12Æt �ZO IEn+1((Q1n+1)2)� ZO IEn((Q1n)2)� � 12 + Cjjfext(tn)jj2L2x :This yields the stability, by summing up over n.Let us now turn to the 
onvergen
e of the solution of the fully dis
retized problemtowards the solution of the problem dis
retized in spa
e and time.We need to introdu
e the random variables Qjh;n (denoted Qjn in the following) :Qjh;n+1 �Qjh;n = ��xun+1h P jn � 12Qjh;n� Æt+W jtn+1 �W jtn : (4.51)The 
ouples (P jn; Qjn) are independent realizations of the 
ouples (Pn; Qn). Theyalso are ex
hangeable random variables.The aim of this se
tion is to prove the following lemma.Lemma 10 (Convergen
e of the Monte Carlo method) We assume Æt < 12 .Moreover, we assume either 0 < A < q 35Æt (
onvergen
e with 
ut-o�), or A = 1(
onvergen
e without 
ut-o�). We have then the following inequality : 8n � TÆt ,ZO IE((un � un)21An) + ZO IE0� 1M MXj=1(Qjn �Qjn)21An1A � C � 1M + Æt2� :The 
onstant C is independent of n, h and Æt, but depends on the data of theproblem : u0, fext and T . In the 
ase 0 < A < q 35Æt , C also depends on 
 > 0su
h that A > �
 ln(Æt). In the 
ase A =1 the estimation is in fa
t of order CM .In the following, we will need an estimate of the varian
e of PnQh;n.
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e estimate) We assume Æt < 1. Then, 9C, 8n � TÆt ,ZO IE �(PnQh;n � IE(PnQh;n))2� < C:The 
onstant C is independent of h and Æt, but depends on the data of the problem :u0, fext and T .Proof. The proof is based on an expli
it 
al
ulation of the varian
e. Re
all thatwe omit the subs
ript h.In the following, we set Wtn+1 �Wtn = pÆtGn and Vtn+1 � Vtn = pÆtG0n. Therandom variables Gn; G0n are independent normal random variables, independentof P0 and Q0.We re
all that Pn and Qn are de�ned by :Pk+1 = �1� Æt2 �Pk +pÆtG0k and Qk+1 = �1� Æt2 �Qk + Æt�xuk+1Pk +pÆtGk:By indu
tion, it is easy to show thatQn = �1� Æt2 �nQ0 + nXk=1�1� Æt2 �n�kpÆtGk�1 + nXk=1�1� Æt2 �n�k �xukPk�1Æt:(4.52)We set Xn = ÆtPnk=1 �1� Æt2 ��k �xukPk�1Pn. We have the following equalities :PnQn = �1� Æt2 �n PnQ0 + nXk=1�1� Æt2 ��kpÆtPnGk�1 +Xn! ;PnQn�IE(PnQn)=�1� Æt2 �n PnQ0 + nXk=1�1� Æt2 ��kpÆtPnGk�1 +Xn � IE(Xn)! :Using independen
e properties, we �nd :IE �(PnQn � IE(PnQn))2�= �1� Æt2 �2n IE(P 2n) + nXk=1�1� Æt2 ��2k ÆtIE(P 2n) + IE �(Xn � IE(Xn))2�! :A simple 
al
ulation yields IE(P 2n) < 2 and therefore IE(PnPm) < 2. It remains nowto estimate �1� Æt2 �2n IE �(Xn � IE(Xn))2�. One 
an show that�1� Æt2 �2n (Xn�IE(Xn))2 � Æt2n nXk=1�1� Æt2 �2(n�k) j�xukj2(Pk�1Pn�IE(Pk�1Pn))2:One 
an 
he
k that IE �(Pk�1Pn � IE(Pk�1Pn))2� < C with C independent of Æt(this is dedu
ed from IE(P 4k ) < C). We obtain then :�1� Æt2 �2n IE �(Xn � IE(Xn))2� � CTÆt nXk=1 j�xukj2:
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h leads to theresult.In order to prove Lemma 10 in the 
ase A <1 (
onvergen
e with 
ut-o�), we willalso use the following estimates :Lemma 12 We assume Æt < 12 . Moreover, we assume that the 
ut-o� 
onstant issu
h that �
 ln(Æt) < A <1, for some positive 
onstant 
. We have then :IE�(P 1n � P 1n)2� < CÆt4;ZO IE��Q1n(P 1n � P 1n)�2� < CÆt4;with C a 
onstant depending on 
 and on the data of the problem : u0, fext and T .Proof. In the following, as in the former proof, we set W jtn+1 �W jtn = pÆtGjnand V jtn+1 � V jtn = pÆt(Gjn)0. The �rst estimate is dedu
ed from an estimation onnormal random variables. We know that for all n, the random variables P 1n arenormal variables of varian
e less than 2. One 
an therefore write : for all n,IE�(P 1n � P 1n)2� < 1p� Z 1A (x�A)2e�x24 dx:A simple 
al
ulation yields1p� Z 1A (x�A)2e� x24 dx < C exp��C 0A28 � < C� exp(� ln(Æt));for any exponent � > 0. Taking � = 4, we obtain the �rst estimate. One 
an showin the same way the following estimate whi
h will be used at the end of this proof :IE�(P 1n � P 1n)4� < CÆt8: (4.53)For the se
ond estimate, we use the former 
omputation (4.52) of Q1n. We 
an thenwrite :ZOIE��Q1n(P 1n � P 1n)�2�� 3 ZOIE ��1� Æt2 �nQ10(P 1n � P 1n)�2!+3 ZOIE0� nXk=1�1� Æt2 �n�kpÆtG1k�1(P 1n � P 1n)!21A+3 ZOIE0� nXk=1�1� Æt2 �n�k �xukP 1k�1(P 1n � P 1n)Æt!21A :
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ase. 29For the �rst and se
ond terms, we noti
e that the random variables Q10, (P 1n � P 1n)and G1n are independent, whi
h yields :ZOIE ��1� Æt2 �nQ10(P 1n � P 1n)�2!+ZOIE0� nXk=1�1� Æt2 �n�kpÆtG1k�1(P 1n � P 1n)!21A� IE �(Q10)2� IE�(P 1n � P 1n)2�+ nXk=1 Æt IE �(G1k�1)2� IE�(P 1n � P 1n)2�� (1 + T )IE�(P 1n � P 1n)2� � CÆt4:For the third term, we write :ZO IE0� nXk=1�1� Æt2 �n�k �xukP 1k�1(P 1n � P 1n)Æt!21A� ZO IE0B�0�vuut nXk=1 �xu2kvuut nXk=1(P 1k�1)2(P 1n � P 1n)Æt1A21CA� Æt2 ZO nXk=1 �xu2kIE nXk=1(P 1k�1)2(P 1n � P 1n)2! :We have shown in the stability lemma 4 that ÆtPnk=1 RO �xu2k < C. One last termremains :IE nXk=1(P 1k�1)2(P 1n � P 1n)2! � nXk=1qIE �(P 1k�1)4�rIE�(P 1n � P 1n)4� � CÆtÆt4:using the fa
t that IE��P 1k �4� � C and (4.53).We 
an now prove Lemma 10.Proof. We set Sn = 1M PMj=1 P jnQjn, gn = un � un and Rjn = Qjn �Qjn. Usingthe same arguments as in the former proofs, we obtain12Æt �ZO g2n+1 � ZO g2n�+ ZO �xg2n+1�� ZO(IE(PnQn)� Sn)�xgn+1;12Æt �IEn((Rjn+1)2)� IEn((Rjn)2)�+ 12IEn((Rjn)2)=IEn �(�xun+1P jn � �xun+1P jn)Rjn�+ 12Æt IEn((Rjn+1 �Rjn)2):
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ase. 30Summing up these two expressions, one �nds :12Æt �ZO IEn(g2n+1)� ZO IEn(g2n)�+ ZO IEn(�xg2n+1)+ 12Æt �ZO IEn �(R1n+1)2�� ZO IEn �(R1n)2��+ 12 ZO IEn �(R1n)2�� 12Æt ZOIEn �(R1n+1 �R1n)2�+ZOIEn ((Sn � IE(PnQn))�xgn+1) +ZOIEn �I1n� :(4.54)with I1n = (�xun+1P 1n � �xun+1P 1n)R1n � (P 1nQ1n � P 1nQ1n)�xgn+1= �xun+1Q1n(P 1n � P 1n) + �xun+1Q1n(P 1n � P 1n):For the se
ond term on the right-hand side of (4.54), we use Lemma 11 :ZOIEn ((Sn � IE(PnQn))�xgn+1) � 110 ZOIEn �(�xgn+1)2�+10 ZOIE �(Sn � IE(PnQn))2� :The �rst term is 
ontrolled on the left-hand side of (4.54), while the se
ond term isestimated using the varian
e of PnQn (see Lemma 11) :ZO IE �(Sn � IE(PnQn)2� = ZO IE0B�0� 1M MXj=1(P jnQjn � IE(P jnQjn))1A21CA � CM :For the �rst term on the right-hand side of (4.54), we write :(R1n+1 �R1n)2 = �(�xun+1P 1n � �xun+1P 1n)� 12R1n�2 Æt2= ��xun+1(P 1n � P 1n) + (�xgn+1P 1n)� 12R1n�2 Æt2:In the 
ase A =1, using P jn = P jn, one noti
es that forall j; Ijn = 0 and that(Rjn+1 �Rjn)2 � 2��xgn+1P jn�2 Æt2 + 12 �Rjn�2 Æt2:Using the assumption 12Æt < 1, the se
ond term is 
ontrolled on the left-hand sideof (4.54). It follows that :12Æt �ZO IEn(g2n+1)� ZO IEn(g2n)�+ ZO IEn0�0� 910 � Æt 1M MXj=1(P jn)21A�xg2n+11A+ 12Æt �ZO IEn �(R1n+1)2�� ZO IEn �(R1n)2�� � CM :
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ase. 31Using the properties of An, we easily derive12Æt �ZOIEn+1(g2n+1)�ZOIEn(g2n)�+ 12Æt �ZOIEn+1 �(R1n+1)2��ZOIEn �(R1n)2���CM :Summing up (4.55) on n, we obtain an estimation in CM , using the stability lemmas 4and 9.In the 
ase A <1, we have (noti
e that P 1n 6= P 1n) :(R1n+1 �R1n)2 � 3��xun+1(P 1n � P 1n)�2 Æt2 + 3��xgn+1P 1n�2 Æt2 + 34 �R1n�2 Æt2:Using the assumption 32A2Æt < 910 (this is the inequality whi
h de�nes the upperbound of A in the 
ase A < 1) and 34Æt < 1, the last two terms are 
ontrolled onthe left-hand side of (4.54). We obtain a bound of order CÆt2 on the �rst term usingÆtPn RO �xu2n+1 < C (see Lemma 4) and IE�(P 1n � P 1n)2� < CÆt (see Lemma 12).For the third term on the right-hand side of (4.54) (whi
h is IE(I1n)), we use twi
eLemma 12. Indeed, for the �rst term of I1n, we write :ZO IE��xun+1Q1n(P 1n � P 1n)��sZO(�xun+1)2IE sZO(Q1n)2(P 1n � P 1n)!�sZO(�xun+1)2sIE�ZO(Q1n)2�rIE�(P 1n � P 1n)2�;whi
h yields after summation over n an estimate of order CÆt2. For the se
ondterm of I1n, we write :ZO IE��xun+1Q1n(P 1n � P 1n)� �sZO IE�(�xun+1)2�sZO IE��Q1n(P 1n � P 1n)�2�;whi
h also yields after summation over n a bound in CÆt2. We 
an again 
on
ludesumming up over n and using the stability lemmas 4 and 9.Remark 6 One 
an estimate, in the 
ase A <1, the probability that the 
ut-o� isa
tive during a simulation. Indeed, the probability that one of the jP jnj (with n � TÆt )goes beyond A is roughly bounded by MÆt �1� 2�p2� R A0 e� x22�2 � = MÆt �1� erf� A�p2��with �2 an upper bound on the varian
e of the P jn (one 
an take �2 = 44�Æt) anderf(x) = 2p� R x0 e�t2 dt. Choosing M = 1Æt2 (whi
h is 
onsistent with the orderof 
onvergen
e O �h+ Æt+ 1pM �) and A = q 35Æt , this probability is bounded by1Æt3 �1� erf�q 3(4�Æt)40Æt ��. This upper bound is very 
lose to 0 when Æt is small (itis equal to 10�8 for Æt = 0:01).
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ase. 324.4. Con
lusion : 
onvergen
e of the fully dis
retized problem.We now state our main result.Theorem 3 (Convergen
e of the fully dis
retized problem) We assume aP1 dis
retization of the velo
ity in spa
e. We also make the following regulari-ty hypothesis : u0 2 H2x, fext 2 L1t (H1x) and �fext�t 2 L1t (L2x). We assume eitherA = 1 (without 
ut-o�), or 0 < A < q 35Æt (with 
ut-o�, in whi
h 
ase 1An = 1).Assuming Æt < 12 , we have :��������u(tn)�unh1An��������L2x(L2!)+��������IE(PtnQtn)� 1M MXj=1 P jnQjh;n1An��������L1x(L1!)� C �h+ Æt+ 1pM � ;where C is independent of h and Æt, but depends on the data of the problem : u0,fext and T . In the 
ase 0 < A < q 35Æt , C also depends on 
 > 0 su
h thatA > �
 ln(Æt).Proof. For the estimation on u, we write : u(tn) � unh1An = (u(tn)� uh(tn)) +(uh(tn)� unh) + unh (1� 1An) + (unh � unh) 1An . We use Lemma 3 for the �rst term,Theorem 2 for the se
ond term and Lemma 10 for the last term. In 
ase A <q 35Æt ,the third term is nul. In 
ase A =1, we upper bound this term thanks to Lemmas 8and 4.For the estimation on IE(PtQt), we write : IE(PtnQtn)� 1M PMj=1 P jnQjh;n1An =(IE(PtnQtn)� IE(PtnQh;tn))+(IE(PtnQh;tn)� IE(PnQh;n))+IE(PnQh;n) (1� 1An)+�IE(PnQh;n)� 1M PMj=1 P jnQjh;n� 1An + � 1M PMj=1 P jn(Qjh;n �Qjh;n)� 1An+� 1M PMj=1Qjh;n(P jn � P jn)� 1An . We use then Lemma 3 for the �rst term, Theo-rem 2 for the se
ond term, Lemma 11 for the fourth term and Lemma 10 for the�fth term. The third term is nul when A < q 35Æt and is estimated by Lemmas 8and 4 in the 
ase A =1. The last term is zero in the 
ase A =1 and is estimatedby Lemma 12 in the 
ase A <1.Remark 7 We have a
tually shown the following 
onvergen
e result on Qt : 8j �M , ������Qjtn �Qjh;n������L2x(L2!) � C �h+ Æt+ 1pM � ;where (P jt ; Qjt) are the pro
esses de�ned by (3.20) and (3.19) with (Vt;Wt) repla
edby (V jt ;W jt ).Remark 8 In the spa
e-dis
retized problem of our model, the jth dumbbell in ea
h
ell is driven by the same Brownian motion (V j ;W j). However, the �rst CON-FESSIT simulations were made with driving Brownian motions independent from
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ell to another. More generally, one 
ould 
hoose any 
orrelation in spa
e forthese Brownian motions. In fa
t, the 
onvergen
e result stated in Theorem 3 holdswhatever the 
hoi
e of the 
orrelation in spa
e (the 
onstant C in front of the rateof 
onvergen
e C �h+ Æt+ 1pM �, does not depend on the 
orrelation). In return,the 
onvergen
e on Qjh;n stated in the previous remark no longer makes sense.5. Numeri
al results.In this se
tion, we show some numeri
al results about the latter step of dis
retiza-tion : the 
onvergen
e of the Monte Carlo method. It is indeed the less 
lassi
al one,and the model we use is simple enough to 
ompute exa
tly (un+1h ; IE(Pn+1Qh;n+1))being given (unh; IE(PnQh;n)). We use (4.34) to 
ompute un+1h and the following ex-pli
ite 
al
ulation of IE(Pn+1Qh;n+1) derived from (4.35) and (4.36) (whi
h is justa dis
retization of the equivalent ma
ros
opi
 model for the stress tensor) :( IE(Pn+1Qh;n+1) = �1� Æt2 �2 IE(PnQh;n) + �1� Æt2 � �xun+1h IE(P 2n)Æt;IE(P 2n+1) = �1� Æt2 �2 IE(P 2n) + Æt:This enables us to 
ompare numeri
ally the deterministi
 variables (unh; IE(PnQh;n))(whi
h, we re
all, are an approximation in spa
e and time of (u(tn); IE(PtnQtn)))with the Monte Carlo approximation �unh; 1M PMj=1 P jnQjh;n�. All the tests havebeen done with the following values for the physi
al parameters : � = 1, nkBT = 20and T = 1. In the following, I denotes the number of spa
e steps, N denotes thenumber of time steps and M denotes the number of Monte Carlo realizations (i.e.the number of dumbbells in ea
h 
ell).Tests on the stability.First, by a deterministi
 
al
ulus yielding (unh; IE(PnQh;n)), we have 
he
kedthat when Æt is too large, the solution os
illates (see Figure 2). This result is tobe related to the stability lemma 4, whi
h states that stability holds for Æt smallenough.Tests on the 
ut-o�.In order to illustrate the e�e
t of the 
ut-o� on the fully dis
retized problem, oneneeds to take a Æt near the upper bound of stability given in Lemma 4. In pra
ti
e,we have 
hosen Æt su
h that the deterministi
 
omputation begins to os
illate. Wehave 
hosen the following parameters : I = 10, N = 8 and M = 100. We haveperformed for ea
h simulation (with 
ut-o� and without 
ut-o�) one million runs.We have then analyzed the errors (on velo
ity and stress) :sup0�n� TÆt jjunh � unh jjL2x and sup0�n� TÆt ������������IE(PnQh;n)� 1M MXj=1 P jnQjh;n������������L1x : (5.55)
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Fig. 4. Errors L1t (L2x(L2!)) on u and L1t (L1x(L1!)) on � depending on the number of Monte Carlorealizations (M) and on the number of time steps (N).These errors are in fa
t relative errors sin
e unh and IE(PnQh;n) are of order 1. Forthe simulation with 
ut-o�, the value of A has been 
hosen \optimally" in order toobtain the best numeri
al distribution of errors. It is greater than the theoreti
alupper bound q 35Æt that we need in our 
onvergen
e result (Theorem 3).We have noti
ed that the errors are 
learly redu
ed in the simulations with 
ut-o� : for the set of parameters given above, the mean error on the velo
ity goes from1:68� 10�1 without 
ut-o� to 7:56� 10�2 with 
ut-o� and the mean error on thestress goes from 0.19 to 0.13. Moreover, the empiri
al probability for the error onthe velo
ity to be smaller than 0.01 goes from 72% without 
ut-o� to more than88% with 
ut-o�.In Figure 3, we give a zoom of an histogram representing the empiri
al distri-bution of the error on the velo
ity : sup0�n� TÆt jjunh � unhjjL2x . On the left �gure,the bar on the far right 
ontains all the simulations for whi
h the error is greaterthan 4.95. One 
an 
learly see on Figure 3 that the use of the 
ut-o� redu
es theempiri
al probability for the error to be large. This 
an be related to the fa
t thatwithout 
ut-o�, IP(An) < 1 in the 
on
lusion of the stability Lemma 9.Tests on the spa
e step, the number of realizations and the time step.We have also 
he
ked that the means (
omputed without 
ut-o� using 100 000tests for ea
h simulation) of the errors (5.55) on the velo
ity and the stress do notdepend on the spa
e step (at least when the solution does not os
illate, i.e. whenÆt is small enough for Lemma 4 to hold), whi
h is in agreement with the result ofLemma 10. As usual in Monte Carlo methods, the error s
ales like 1pM , where Mis the number of realizations, whi
h 
on�rms Lemma 10 (see Figure 4). Finally, weshow the dependen
e of the error with repe
t to Æt (see Figure 4). One 
an observethat there exists a bound on Æt below whi
h the error remains 
onstant, whi
h 
an
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