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Abstract

In this note, we prove that in asset price models with lognormal stochastic volatility,
when the correlation coefficient between the Brownian motion driving the volatility and the
one driving the actualized asset price is positive, this price is not a martingale.

Introduction

On a filtered probability space (Ω,F , (Ft)t≥0, P), we consider the following risk-neutral model
for the actualized asset price Xt :











dXt = σtXt (ρ dBt +
√

1 − ρ2 dWt), X0 = x0

σt = eYt

dYt = αdBt + µdt − γYtdt, Y0 = y0

(1)

where (Bt,Wt)t≥0 is a two-dimensional Ft-Brownian motion, y0, µ and γ belong to R, x0 and
α are positive constants and the correlation coefficient ρ between the Brownian motion ρ Bt +
√

1 − ρ2 Wt driving the asset price and the Brownian motion Bt driving the volatility belongs
to [−1, 1].
In this model, first introduced by Scott [7] p.426, the volatility σt is the exponential of the
Ornstein-Uhlenbeck process Yt. When the elasticity coefficient γ is zero, σt evolves according to
the Black-Scholes Stochastic Differential Equation

dσt = σt(α dBt + (µ + α2/2)dt),

and (1) is the model introduced by Hull&White [3] and a special case of the very popular SABR
model [1].

Since

Xt = x0 Et

(
∫ .

0
eYs(ρ dBs +

√

1 − ρ2 dWs

)

,

where Et stands for Dooleans-Dade exponential, this process is a non-negative Ft local martingale
and therefore a super-martingale. This leads to the following natural question : is (Xt)t≥0 a
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true martingale? The answer turns out to be affirmative if and only if the correlation coefficient
ρ is non-positive (see Theorem 1 below).
In addition, when ρ > 0, it is possible to check that t → E(Xt) is decreasing (see Proposition 4).
As a consequence, the Call-Put parity relation does not hold whatever the maturity and strike
of the options. The existence of such arbitrage opportunities invalidates the model.
For ρ ≤ 0, (Xt)t≥0 is a martingale and we investigate the integrability of X δ

t for t > 0 and δ > 1.
This question is important for numerical considerations : for instance, integrability of X 2

T is
necessary to ensure that the convergence of a Monte-Carlo estimator of E((XT − K)+) is ruled
by the central limit theorem. Basically, we obtain that X δ

t is integrable when δ < 1/(1 − ρ2)
and that E(Xδ

t ) is infinite when δ > 1/(1 − ρ2).

1 Study of martingale property

Our main result is the following one :

Theorem 1 Process (Xt)t≥0 is a martingale if and only if ρ ≤ 0.

Remark 2 • The fact that (Xt)t≥0 is not a martingale when ρ > 0 is not so bad since
in order to modelize the increase of volatility in krach situations, ρ is generally chosen
non-positive.

• For t > 0, by Jensen inequality and since
∫ t
0 Ysds is a Gaussian random variable with

positive variance,

E

(

exp

(

1

2

∫ t

0
e2Ysds

))

≥ E

(

exp

(

t

2
e

2
t

� t
0 Ysds

))

= +∞.

Therefore we cannot rely on Novikov criterion and corollaries (see [5] p.198) to prove that
(Xt)t≥0 is a martingale in case ρ ≤ 0.
In contrast, in the models proposed either in [7] p.421, [8] where the stochastic volatility
σt in the first line of (1) solves

dσt = (µ − γσt) dt + αdBt

or in [4], [2] where

σt =
√

Yt for Yt = y0 +

∫ t

0
(µ − γYs)ds + α

∫ t

0

√

YsdBs with µ, y0 ≥ 0

one easily checks that

∀T > 0, ∃cT > 0, sup
t≤T

E

(

ecT σ2
t

)

< +∞.

As a consequence if 0 ≤ t1 < t2 ≤ T and t2 − t1 ≤ 2cT , then by Jensen inequality,

E

(

e
1
2

� t2
t1

σ2
t dt

)

≤
1

t2 − t1

∫ t2

t1

E

(

e
t2−t1

2
σ2

t

)

dt < +∞.

By [5] Corollary 5.14 p.199, one concludes that (Xt)t≥0 is always a martingale in such
models.
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• In order to deal with the general SABR model [1], let us consider (Xt)t≥0 solving

dXt = eYtXβ
t (ρdBt +

√

1 − ρ2 dWt), X0 = x0

with β ∈ (0, 1) and Yt like in (1). Introducing τn = inf{t ≥ 0, |Xt| > n}, one has

E(X2
t∧τn

) = x2
0 + E

(
∫ t∧τn

0
e2YsX2β

s ds

)

≤ x2
0 +

∫ t

0

(

E

(

e2Ys/(1−β)
))1−β

(E(X2
s∧τn

))βds

≤ x2
0 +

∫ t

0

(

E

(

e2Ys/(1−β)
))1−β

(1 + E(X2
s∧τn

))ds.

Remarking that s → E
(

e2Ys/(1−β)
)

is locally bounded, using Gronwall’s Lemma, and letting

n → +∞, one obtains that t → E

(

∫ t
0 e2YsX2β

s ds
)

is locally bounded which ensures that

(Xt)t≥0 is a martingale.
In conclusion, in the SABR model, the actualized asset price may fail to be a martingale
only in the limit case β = 1.

Proof : As (Xt)t≥0 is a super-martingale, it is enough to check that the non-increasing function
t → E(Xt)/x0 is not constant if and only if ρ > 0.
Using the independence of W and B and the fact that (Yt)t≥0 is adapted to the natural filtration
of (Bt)t≥0, one obtains

E(Xt) = x0E

(

Et

(

ρ

∫ .

0
eYsdBs

)

E

(

Et

(

√

1 − ρ2

∫ .

0
eYsdWs

)
∣

∣

∣

∣

Bs, s ≤ t

))

= x0E

(

Et

(

ρ

∫ .

0
eYsdBs

))

. (2)

In case ρ = 0, one concludes that E(Xt) = x0 for any positive time t. To deal with the case
ρ 6= 0, we are first going to use Girsanov theorem in order to be able to apply Exercice (2.10) p.
354 [6]. This way, E(Xt)/x0 turns out to be equal to the probability for the explosion time of a
well-chosen stochastic differential equation to be greater than t. We will finally analyse whether
this explosion time is finite with positive probability thanks to Feller’s test for explosions [5]
p.342-351.

Let us introduce the probability measure Q such that

dQ

dP

∣

∣

∣

∣

Ft

= Et

(

−

∫ .

0

(

γy0 − µ

α
+ γBs

)

dBs

)

.

According to Girsanov theorem, B̃t = Bt +
∫ t
0

(γy0−µ
α + γBs

)

ds is a Brownian motion under Q.
For any t ≥ 0,

y0 + αBt = y0 + αB̃t − γ

∫ t

0
(y0 + αBs)ds + µt.

As trajectorial uniqueness holds for the Ornstein-Uhlenbeck Stochastic Differential Equation,
by Yamada Watanabe theorem, the law of (B̃t, y0 +αBt)t≥0 under probability measure Q is the
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same as the law of (Bt, Yt)t≥0 under probability measure P. As a consequence,

E(Xt)

x0
= E �

[

Et

(

ρ

∫ .

0
exp(y0 + αBs)dB̃s

)]

= E

[

Et

(

ρ

∫ .

0
exp(y0 + αBs)dBs

)

exp

(

ρ

∫ t

0
exp(y0 + αBs)

(

γy0 − µ

α
+ γBs

)

ds

)

× Et

(

−

∫ .

0

(

γy0 − µ

α
+ γBs

)

dBs

)]

= E

[

Et

(
∫ .

0
b(Bs)dBs

)]

(3)

where

b(z) = ρ exp(y0 + αz) +
µ − γy0

α
− γz.

Let us briefly recall the link made in [6] Exercice (2.10) p.354 between the last expectation and
the probability for the explosion time of the Stochastic Differential Equation

Zt = Bt +

∫ t

0
b(Zs)ds (4)

to be greater than t. Since function b is locally Lipschitz continuous, for any n ∈ N∗, there exists
a bounded and globally Lipschitz continuous function bn which coincides with b on interval
[−n, n]. We denote by Zn

t the solution of the equation similar to (4) with b replaced by bn and
introduce

τn = inf{t ≥ 0 : |Zn
t | > n}.

Then Zt =
∑

n∈ � ∗ 1{τn−1≤t<τn}Z
n
t (convention : τ0 = 0) solves (4) on time-interval [0, τ∞) where

τ∞ = limn→+∞ τn. Let us also define

σn = inf{t ≥ 0 : |Bt| > n}.

By Girsanov theorem and since bn coincides with b on interval [−n, n],

P(τn > t) = E

(

1{σn>t}Et

(
∫ .

0
bn(Bs)dBs

))

= E

(

1{σn>t}Et

(
∫ .

0
b(Bs)dBs

))

.

Letting n → +∞ then using (3), we conclude that

P(τ∞ > t) = E

(

Et

(
∫ .

0
b(Bs)dBs

))

=
E(Xt)

x0
.

In order to analyse the explosion time τ∞ of the stochastic differential equation (4) thanks to
Feller’s test for explosions, we introduce constants ρ̃ = 2ρey0/α and η = 2(µ − γy0)/α so that
the drift coefficient of this equation writes

b(z) = αρ̃ exp(αz)/2 + η/2 − γz.

Notice that the sign of ρ̃ is the same as the one of ρ. Function

p(z) = eρ̃

∫ z

0
exp

(

γx2 − ηx − ρ̃eαx
)

dx (5)
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is a scale function. According to [5] Theorem 5.29 p.348, P(τ∞ = +∞) = 1 is equivalent to
v(+∞) = v(−∞) = +∞ where function v is given by

v(z) =

∫ z

0
p′(x)

∫ x

0

2

p′(y)
dydx

= 2

∫ z

0
exp

(

γx2 − ηx − ρ̃eαx
)

∫ x

0
exp

(

−γy2 + ηy + ρ̃eαy
)

dydx. (6)

To conclude the proof, we are going to check that v(+∞) < +∞ if ρ > 0 and that v(+∞) =
v(−∞) = +∞ if ρ < 0.

Case ρ > 0 i.e. ρ̃ > 0 : let x1 > 0 be such that

∀y ≥ x1, −2γy + η + ρ̃αeαy > 0.

By integration by parts, one has for x ≥ x1,

∫ x

x1

exp
(

−γy2 + ηy + ρ̃eαy
)

dy =
exp

(

−γx2 + ηx + ρ̃eαx
)

−2γx + η + ρ̃αeαx
−

exp
(

−γx2
1 + ηx1 + ρ̃eαx1

)

−2γx1 + η + ρ̃αeαx1

+

∫ x

x1

(ρ̃α2eαy − 2γ) exp
(

−γy2 + ηy + ρ̃eαy
)

(−2γy + η + ρ̃αeαy)2
dy.

One may choose x1 large enough to ensure that

∀y ≥ x1, ρ̃α2eαy − 2γ ≤
1

2
(−2γy + η + ρ̃αeαy)2 .

Then for any x ≥ x1,

∫ x

x1

exp
(

−γy2 + ηy + ρ̃eαy
)

dy ≤
2 exp

(

−γx2 + ηx + ρ̃eαx
)

−2γx + η + ρ̃αeαx

and one easily concludes that v(+∞) < +∞.

Case ρ < 0 i.e. ρ̃ < 0 : then p(+∞) = +∞ which implies v(+∞) = +∞ according to [5]
Problem 5.27 p.348. If γ > 0, then p(−∞) = −∞ and therefore v(−∞) = +∞. It only
remains to check that v(−∞) = +∞ in case γ ≤ 0. Since for non positive y, exp(ρ̃eαy)
belongs to [exp(ρ̃), 1), v(−∞) = +∞ is equivalent to w(−∞) = ∞ where

w(z) =

∫ z

0
exp(γx2 − ηx)

∫ x

0
exp(−γy2 + ηy)dydx

• If γ = 0, then η = 2µ/α and

w(z) =

{

z2 if µ = 0
α
µ

(

z + α
2µ(e−2µz/α − 1)

)

if µ 6= 0

which ensures w(−∞) = +∞.

• If γ < 0, setting x1 < 0 ∨ η/2γ, one obtains by integration by parts that for x ≤ x1

∫ x

x1

exp(−γy2 + ηy)dy =
exp(−γx2 + ηx)

η − 2γx
−

exp(−γx2
1 + ηx1)

η − 2γx1
− 2γ

∫ x

x1

exp(−γy2 + ηy)

(η − 2γy)2
dy

≤
exp(−γx2 + ηx)

η − 2γx
−

exp(−γx2
1 + ηx1)

η − 2γx1
.
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Hence for any x ≤ x1, one has
∫ x

0
exp(−γy2 + ηy)dy ≤

exp(−γx2 + ηx)

η − 2γx
+ C,

where the constant C does not depend on x. One deduces that w(−∞) = +∞.

Remark 3 The argument given at the end of the previous proof to check that v(−∞) = +∞ in
case ρ < 0 also leads to the same conclusion in case ρ > 0.

When the correlation coefficient ρ is positive, the non-increasing and non-negative function
t → E(Xt) is not constant. It is natural to wonder whether this function is decreasing and
whether it tends to 0 as t → +∞. The next proposition answers both questions :

Proposition 4 Assume that ρ > 0. Then t → E(Xt) is decreasing. In addition, E(Xt) tends

to 0 as t tends to +∞ if and only if either γ > 0 or γ = 0 and µ ≥ 0 .

Remark 5 As a consequence, when ρ > 0,

∀T,K > 0, E((XT − K)+) − E((K − XT )+) < x0 − K

i.e. the Call-Put parity relation does not hold.

Proof : Let us first deal with the limit of E(Xt) = x0P(τ∞ > t) as t tends to +∞. One easily
checks that the scale function p(z) defined by (5) satisfies p(−∞) = −∞ if and only if either
γ > 0 or γ = 0 and η ≥ 0. Because η = 2(µ − γy0)/α, the latter condition is equivalent to
γ = 0 and µ ≥ 0. Since v(+∞) is finite according to the proof of Theorem 1 and v(−∞) = +∞
according to Remark 3, by [5] Proposition 5.32 p.350, one concludes that P(τ∞ < +∞) = 1 and
equivalently limt→+∞ E(Xt) = 0 if and only if γ > 0 or γ = 0 and µ ≥ 0.

Let us now check that t → E(Xt) is decreasing. As we need to emphasize the dependence on
the initial conditions, we denote (Xx0,y0

t , Y y0
t ) the solution of (1). One has

∀t ≥ 0, ∀x0 > 0, ∀y0 ∈ R, E(Xx0,y0
t ) = x0E(X1,y0

t ).

Let us first check that for any positive T , the set AT = {y ∈ R : E(X1,y
T ) < 1} has positive

Lebesgue measure. Indeed if T > 0 is such that the Lebesgue measure of AT is zero, remarking
that by the Markov property,

E(X1,y0

2T ) = E

(

E(X1,y0

2T |FT )
)

= E

(

E(Xx,y
T )|

(x,y)=(X
1,y0
T ,Y

y0
T )

)

= E

(

X1,y0

T E(X1,y
T )|y=Y

y0
T

)

,

and that since the law of Y y0

T is absolutely continuous with respect to the Lebesgue measure

P(Y y0

T ∈ AT ) = 0, we obtain E(X1,y0

2T ) = E(X1,y0

T ).

Therefore A2T = AT . By induction, for any n ∈ N∗, AnT = AT and for y0 ∈ R \ AT , (X1,y0
t )t is

a martingale, which contradicts Theorem 1.
Let now 0 ≤ s < t. Again by the Markov Property,

E(X1,y0
t ) = E

(

X1,y0

(t+s)/2E

(

X1,y
(t−s)/2

) ∣

∣

∣y=Y
y0
(t+s)/2

)

.
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Since the law of Y y0

(t+s)/2 is equivalent to the Lebesgue measure, P

(

Y y0

(t+s)/2 ∈ A(t−s)/2

)

> 0. One

deduces that E(X1,y0
t ) < E(X1,y0

(t+s)/2). As the right-hand-side is not greater than E(X 1,y0
s ), one

concludes that t → E(X1,y0
t ) is decreasing.

2 Integrability of Xδ
t for δ > 1

Proposition 6 Let t > 0 and δ > 1. If ρ = 0 then E(X δ
t ) = +∞. If ρ < 0, then E(Xδ

t ) < +∞
if and only if one of the following conditions is satisfied :

• δ < 1/(1 − ρ2)

• δ = 1/(1 − ρ2) and γ > 0

• δ = 1/(1 − ρ2), γ = 0 and µ + α2

2 ≤ 0.

Proof : Let us compute Xt to the power δ with δ > 1 :

Xδ
t = xδ

0 exp δ

(

ρ

∫ t

0
eYsdBs +

1

2
(δ(1 − ρ2) − 1)

∫ t

0
e2Ysds

)

Et

(

δ
√

1 − ρ2

∫ .

0
eYs dWs

)

.

Therefore, reasoning like in (2), one obtains

E(Xδ
t ) = xδ

0E

[

exp δ

(

ρ

∫ t

0
eYsdBs +

1

2
(δ(1 − ρ2) − 1)

∫ t

0
e2Ysds

)]

. (7)

In case ρ = 0, by Jensen inequality and since
∫ t
0 Ysds is a Gaussian variable with positive

variance,

E(Xδ
t ) = xδ

0E

[

exp

(

δ(δ − 1)

2

∫ t

0
e2Ysds

)]

≥ xδ
0E

[

exp

(

δ(δ − 1)t

2
e

2
t

� t
0 Ysds

)]

= +∞.

Let us now deal with the case ρ < 0. According to (1) and Itô’s formula,

eYt − ey0 = α

∫ t

0
eYsdBs +

∫ t

0
(µ + α2/2 − γYs)e

Ysds.

Inserting in (7) the expression of
∫ t
0 eYsdBs obtained from this formula, one obtains

E(Xδ
t ) = xδ

0E

[

exp δ

(

ρ

α
(eYt − ey0) +

∫ t

0

(

ρ

α
(γYs − µ − α2/2) +

1

2
(δ(1 − ρ2) − 1)eYs

)

eYsds

)]

.

Under any of the three conditions stated in the Proposition, function

y ∈ R →

(

ρ

α
(γy − µ − α2/2) +

1

2
(δ(1 − ρ2) − 1)ey

)

ey

is bounded from above by a finite constant C. As a consequence,

δ

(

ρ

α
(eYt − ey0) +

∫ t

0

(

ρ

α
(γYs − µ − α2/2) +

1

2
(δ(1 − ρ2) − 1)eYs

)

eYsds

)

≤ δ(Ct − ρey0/α)
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and for any T > 0,
sup

t∈[0,T ]
E(Xδ

t ) ≤ xδ
0 exp δ(CT − ρey0/α).

Let us now suppose that none of the three conditions stated in the Proposition is satisfied. Then
there is a positive constant ε such that function

y ∈ R →

(

ρ

α
(γy − µ − α2/2) +

1

2
(δ(1 − ρ2) − 1)ey

)

ey − εey

is bounded from below by a finite constant. As a consequence there is a positive constant C
such as

E(Xδ
t ) ≥ CE

[

exp δ

(

ρ

α
eYt + ε

∫ t

0
eYsds

)]

.

By Jensen inequality,

E(Xδ
t ) ≥ CE

[

exp δ
( ρ

α
eYt + εte

1
t

� t
0 Ysds

)]

= CE

[

exp
(

δρeYt/α
)

E

(

exp
(

δεte
1
t

� t
0 Ysds

)

|Yt

)]

.

Since the covariance matrix of the Gaussian vector (Yt,
∫ t
0 Ysds) is non-degenerate,

E

(

exp
(

δεte
1
t

� t
0 Ysds

)

|Yt

)

= +∞ almost surely

and one concludes that E(Xδ
t ) = +∞.

Remark 7 For ρ > 0, when one of the following condition is satisfied

• δ > 1/(1 − ρ2)

• δ = 1/(1 − ρ2) and γ > 0

• δ = 1/(1 − ρ2) and γ = 0 and µ + α2

2 ≤ 0,

then function y ∈ R →
( ρ

α (γy − µ − α2/2) + 1
2(δ(1 − ρ2) − 1)ey

)

ey is bounded from below.
Therefore E(Xδ

t ) ≥ CE(exp(δρeYt/α)) = +∞ when t > 0. But it does not seem easy to analyse
whether E(Xδ

t ) is finite when none of the previous conditions holds.
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