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Abstract

In this paper, we are interested in a nonlinear parabolic evolution equation occuring in
rheology. We give a probabilistic interpretation to this equation by associating a nonlinear
martingale problem with it. We prove existence of a unique solution P to this martingale
problem. For any t, the time-marginal at time t of P admits a density ρ(t, x) with respect
to the Lebesgue measure and the function ρ is the unique weak solution of the evolution
equation in a well-chosen energy space. Next, we introduce a simulable system of n

interacting particles and prove that the empirical measure of this system converges to
P as n tends to ∞. This propagation of chaos result ensures that the solution of the
equation of interest can be approximated by a Monte-Carlo method. Last, we illustrate
the convergence by some numerical experiments.

AMS 2000 Mathematics Subject Classification: 60K35, 60F99, 65C35.

Key Words and Phrases: nonlinear martingale problem, propagation of chaos, stochas-
tic particle methods.

Introduction

In rheology, modeling the flow of complex fluids is a very intricate problem which is far from
being solved up to now. Hébraux and Lequeux (see[4]) present a model which aims at describing
the behavior of very concentrated suspensions of soft particles, known as soft glassy materials,
under a simple shear flow. This model is obtained by dividing the material into a large number
of mesoscopic elements (“bocks”) with a given shear stress. From a mathematical point of view,
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the probability density p(t, x) for a block to undergo stress x at time t is supposed to satisfy
the following evolution equation : ∀(t, x) ∈ [0, T ] × R,





∂p

∂t
(t, x) = −b(t) ∂p

∂x
(t, x) +D(p(t)) ∂2p

∂x2 (t, x) − 1[−1,1]c(x)p(t, x) + 2
σ2D(p(t))δ0(x)

p ≥ 0
p(0, x) = ρ0(x),

(1)

where for f ∈ L1(R), we define

D(f) :=
σ2

2

∫

|x|>1

f(x)dx, σ > 0.

Also, 1[−1,1]c denotes the characteristic function of the open set [−1, 1]c =] −∞,−1[∪]1,+∞[,
δ0 the Dirac delta distribution on R. Last, ρ0 is a probability density on the line. Let us
precise the physical interpretation of the above equation. When a block is sheared, the stress
of this block evolves with a variation rate b(t) proportional to the shear rate. In our study,
the function b are assumed to be in L2([0, T ]). When the modulus of the stress overcomes the
critical value of the stress chosen equal to one here, the block becomes unstable and may relax
into a state with zero stress after a characteristic relaxation time also chosen equal to one.
This phenomenon induces a rearrangement of the blocks modelled through the diffusion term
D(p(t)) ∂2p

∂x2 (t, x).
Motivated by the physical interest of this model, Cancès, Catto and Gati (see [2]) have

studied existence and uniqueness for equation (1). From an analytic point of view, the difficulty
of this study comes from the possibility for the coefficient D(p(t)) multiplying the second order
spatial derivative to vanish. In case the initial density ρ0 satisfies D(ρ0) > 0 (and under
regularity assumptions made precise in Theorem 1 below), Cancès, Catto and Gati were able
to control the time evolution of this multiplicative coefficient and prove that (1) admits a unique
weak solution ρ in L∞

t ([0, T ], L1
x ∩ L2

x) ∩ L2
t ([0, T ], H1

x), this solution being such that

inf
t∈[0,T ]

D(ρ(t)) > 0. (2)

By a weak solution, we mean an integrable function p : [0, T ]×R −→ R such that for any C1,2

function ψ with compact support on [0, T ] × R, ∀t ∈ [0, T ],

∫
�
ψ(t, x)p(t, x)dx =

∫
�
ψ(0, x)ρ0(x)dx+

∫

[0,t]×
�

(
p
∂ψ

∂s
+ bp

∂ψ

∂x
+D(p)p

∂2ψ

∂x2

)
(s, x)dsdx

+

∫

[0,t]×
�
1{|x|>1}p(s, x) (ψ(s, 0) − ψ(s, x)) dsdx.

(3)
In this paper, we are interested in constructing and proving the convergence of some Monte-
Carlo approximations of the solution p. For this purpose, we first associate a nonlinear mar-
tingale problem with (1). Let D ([0, T ],R) be the space of functions on [0, T ] that are right-
continuous and have left-hand limits. We denote by X the canonical process on D ([0, T ],R).
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Definition 1 We say that a probability measure P on D ([0, T ],R) with time-marginals (Pt)0≤t≤T

solves the nonlinear martingale problem (MP) if P0(dx) = ρ0(x)dx and ∀φ ∈ C2
b (R),

φ(Xt) − φ(X0) −
∫ t

0

(
b(s)φ′(Xs) +

σ2

2
Ps([−1, 1]c)φ′′(Xs)

)
ds−

∫ t

0

(φ(0) − φ(Xs))1{|Xs|>1}ds,

(4)
is a P−martingale on the time interval [0, T ].

This problem is nonlinear since the diffusion coefficient σ2

2
Ps([−1, 1]c) at time s involves the

time-marginal Ps of the solution.
If P solves problem (MP) then according to Lemma 2 (1) below, ∀ψ ∈ C1,2

b ([0, T ] × R),

ψ(t, Xt) − ψ(0, X0) −
∫ t

0

(
∂ψ

∂s
(s,Xs) + b(s)

∂ψ

∂x
(s,Xs) +

σ2

2
Ps([−1, 1]c))

∂2ψ

∂x2
(s,Xs)

)
ds

−
∫ t

0

(ψ(s, 0) − ψ(s,Xs)) 1{|Xs|>1}ds,

(5)
is a P−martingale on the time interval [0, T ]. Writing the constancy of the expectation of this
martingale, one deduces the following link between problem (MP) and equation (1) :

Lemma 1 If P is a solution of the nonlinear martingale problem (MP) then t→ Pt is a weak
solution of the partial differential equation (1).

In the first section of the paper we prove that problem (MP) admits a unique solution P and
that for any t ∈ [0, T ], Pt(dx) = ρ(t, x)dx where ρ is the solution of equation (1) obtained by
Cancès, Catto and Gati [2].
Then in the second section, we introduce the following system of n interacting particles ob-
tained by replacing the nonlinearity by interaction in the stochastic dynamics associated to the
nonlinear martingale problem :

Y i,n
t = Y i

0 + σ

∫ t

0

√√√√ 1

n

n∑

j=1

1{|Y j,n
s |>1} ∨

1

n
dW i

s +

∫ t

0

b(s)ds−
∫ t

0

Y i,n

s− 1{|Y i,n

s− |>1}dN
i
s, 1 ≤ i ≤ n.

Here (W i)1≤i≤n are n independent Brownian motions, (N i)1≤i≤n n independent Poisson pro-
cesses with intensity one and (X i

0)1≤i≤n n independent random variables with density ρ0(dx).
Also, we assume that (W i)1≤i≤n, (N i)1≤i≤n and (X i

0)1≤i≤n are independent. We now face the
probabilistic counterpart of the possibility for D(p(t)) to vanish : the empirical probability
1
n

∑n

j=1 1{|Y j,n
s |>1} of the set [−1, 1]c may be equal to 0. That is why we take the supremum

of this empirical probability with 1/n in the diffusion coefficient of each particle in order to
ensure existence of a unique weak solution to this n-dimensional stochastic differential equa-
tion. We prove a propagation of chaos result which ensures that the solution ρ(t, .) of (1) can
be approximated by 1

n

∑n

i=1 δY i,n
t

: indeed we prove that the P(D ([0, T ],R))-valued empirical

measure 1
n

∑n
i=1 δY i,n converges in probability to the unique solution P of problem (MP). In the

mathematical analysis of the convergence, the main difficulty is that the lower bound 1/n of
the diffusion coefficient in the system with n particles vanishes as n→ +∞. To overcome this
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difficulty, we first prove convergence on a small time interval. Then, to iterate the argument,
we take advantage of (2) which holds for the solution of (1) as soon as D(ρ0) > 0.
In the third section, we present some numerical results obtained by simulation of the system
with n particles.

Notation :

• For τ > 0 let L∞
t ([0, τ ], L1

x ∩ L2
x) denote the space of real-valued functions f defined on

[0, τ ] × R and satisfying

sup
t∈[0,τ ]

(∫
�
|f(t, x)|dx

)
<∞ and sup

t∈[0,τ ]

(∫
�
|f(t, x)|2dx

)
<∞.

• By L2
t ([0, τ ], H

1
x), we denote the space of functions f on [0, τ ]×R such that the distribution

derivative ∂f

∂x
is a function and

∫ τ

0

∫
�
|f(t, x)|2 + |∂f

∂x
(t, x)|2dx <∞.

• We say that a probability density ρ0 satisfies the condition (H) if

ρ0 ∈ L∞(R),

∫
�
|x|ρ0(x)dx < +∞, and D(ρ0) > 0.

1 Existence and Uniqueness of the Martingale Problem

1.1 On the equation (1)

We are going to recall existence and uniqueness results for equation (1) established in Theorem
1.1 of Cancès, Catto and Gati [2].

Theorem 1 Let the initial density ρ0 satisfy the condition (H). Then for every T > 0, there
exists a unique weak solution ρ to the system (1) in L∞

t ([0, T ], L1
x ∩L2

x)∩L2
t ([0, T ], H1

x). More-
over, for all t ∈ [0, T ],

∫
� ρ(t, x)dx = 1 and there exists a positive constant ν such that

2

σ2
D(ρ(t)) > ν, ∀t ∈ [0, T ]. (6)

In addition,

sup
t∈[0,T ]

∫
�
|x|ρ(t, x)dx <∞. (7)

As for all t ∈ [0, T ],

∫

|x|>1

ρ(t, x)dx ≥ ν and ρ ∈ L∞
t ([0, T ], L2

x), we obtain the following

result.

Corollary 1 There is an α > 1 satisfying
∫

|x|>α

ρ(t, x)dx ≥ ν

2
, ∀t ∈ [0, T ].
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Proof : In fact, for α > 1, we have

∫

[−α,−1]∪[1,α]

ρ(t, x)dx ≤ 2
√
α− 1||ρ(t, .)||L2

x
,

and we choose α so that the upper bound is less than ν
2
.

�

1.2 Main results

Theorem 2 Assume that ρ0 satisfies condition (H). The nonlinear martingale problem (MP)
admits a unique solution P . In addition, ∀t ∈ [0, T ], ρ(t, .) is a density of the time-marginal Pt

with respect to the Lebesgue measure on R.

For the reader convenience, the rather technical proof of the following proposition, which ensures
that the last statement holds, is postponed to section 1.3.

Proposition 1 Assume that ρ0 satisfies condition (H). If P solves the martingale problem
(MP), then, ∀t ∈ [0, T ], Pt admits ρ(t, .) as a density with respect to the Lebesgue measure.

In order to deduce Theorem 2 from Proposition 1, we need to introduce a linear martingale
problem :

Definition 2 Let a be a nonnegative function. We say that a probability measure P on
D ([0, T ],R) solves the linear martingale problem (LMP) starting at λ ∈ P(R) if P0 = λ and
∀φ ∈ C2

b (R),

φ(Xt) − φ(X0) −
∫ t

0

(b(s)φ′(Xs) + a(s)φ′′(Xs)) ds−
∫ t

0

(φ(0) − φ(Xs)) 1{|Xs|>1}ds, (8)

is a P−martingale on [0, T ].

On a probability space (Ω,A,P), let (Wt)t≥0 be a Brownian motion and (Nt)t≥0 an independent
Poisson process with intensity one. The stochastic differential equation associated the linear
martingale problem (LMP) starting at λ is

Yt = Y0 +

∫ t

0

γ(s)dWs +

∫ t

0

b(s)ds−
∫ t

0

Ys−1{|Y
s− |>1}dNs (9)

where γ(s) =
√

2a(s), Y0 is a λ distributed random variable and Y0, (Wt)t≥0, (Nt)t≥0 are inde-
pendent. It is clear that existence and trajectorial uniqueness hold for this stochastic differential
equation.

By Lepeltier and Marchal [7], theorems II9, II13 and corollary II13, we deduce the first
assertion in the following lemma.

Lemma 2 (1) For any λ ∈ P(R), the distribution of the unique solution of (9) is the unique
solution of the linear martingale problem (LMP) starting at λ, say P .
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(2) If in addition, λ(dx) = f(x)dx with f ∈ L2(R) and there exists an interval [0, τ ], τ > 0,
such that the function a is bounded from below on [0, τ ] by a positive constant. Then for
all t ∈ [0, τ ], Pt has a density p(t, x) with respect to the Lebesgue measure and the function
p belongs to L∞

t ([0, τ ], L1
x ∩ L2

x) ∩ L2
t ([0, τ ], H

1
x).

The proof of the remaining assertion is postponed to section 1.3.

Proof of theorem 2 : Let us suppose that Proposition 1 holds. If P and Q denote two
solutions of the nonlinear martingale problem (MP) then both P and Q solve the linear mar-
tingale problem (LMP) with diffusion coefficient a(s) = D(ρ(s)) starting at λ(dx) = ρ0(x)dx.
Since uniqueness holds for this linear martingale problem, P = Q, and uniqueness holds for the
nonlinear martingale problem (MP).

We still have to prove existence for the nonlinear martingale problem (MP). Let P be the
solution of the linear martingale problem introduced above. By (6) and lemma 2 (2 ) above,
for all t in [0, T ], the probability distribution Pt admits a density p(t, .) with respect to the
Lebesgue measure and the function p belongs to L∞

t ([0, T ], L1
x ∩L2

x)∩L2
t ([0, T ], H1

x). Moreover,
reasoning like in the proof of Lemma 1, we obtain that p is a weak solution of the linear partial
differential equation

{
∂p

∂t
(t, x) = −b(t) ∂p

∂x
(t, x) + a(t) ∂2p

∂x2 (t, x) − 1[−1,1]c(x)p(t, x) + 2
σ2D(p(t))δ0(x)

p(0, x) = ρ0(x),
(10)

As ρ satisfies equation (1) and a(t) = D(ρ(t)), ρ also satisfies the above linear partial
differential equation. Now, by adapting the ideas of Cancès, Catto and Gati in the proof of
uniqueness for (1), we shall prove that p = ρ. By subtracting the equations satisfied by p and
ρ respectively, we obtain that q = p− ρ satisfies





∂q

∂t
(t, x) = −b(t)∂q

∂x
(t, x) + a(t)

∂2q

∂x2
(t, x) − 1[−1,1]c(x)q(t, x) +

2

σ2
D(q(t))δ0(x)

q(0, x) = 0,

Multiplying equation (11) by q and integrating over R with respect to x, one obtains formally

1

2

d

dt

∫
�
q2(t, x)dx + a(t)

∫
�

(
∂q

∂x
(t, x)

)2

dx+

∫

|x|>1

q2(t, x)dx =
2

σ2
D(q(t))q(t, 0). (11)

Because of the regularity of functions p and ρ, this formal computation is rigorous. We next
remark that since

∫
� p(t, x)dx =

∫
� ρ(t, x)dx = 1, we get

| 2

σ2
D(q(t))| = |

∫

|x|≤1

q(t, x)dx| ≤
√

2||q(t, .)||L2
x
,

thanks to the Cauchy-Schwarz inequality. Using moreover the Sobolev embedding of H 1(R)
into the space of continuous and bounded functions on R endowed with the sup norm, we bound
from above the term on the right-hand side of (11) in the following way

| 2

σ2
D(q(t))q(t, 0)| ≤ C||q(t, .)||L2

x
||q(t, .)||H1

x

≤
C2||q(t, .)||2L2

x

2ε
+
ε

2
||q(t, .)||2L2

x
+
ε

2
|| ∂
∂x
q(t, .)||2L2

x
,
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for any positive constant ε. Since by theorem 1, inf0≤t≤T a(t) > 0, one may choose
ε

2
≤

inf
0≤t≤T

a(t) and deduce from equation (11) that

1

2

d

dt
||q(t, .)||2L2

x
≤ (

C2

2ε
+
ε

2
)||q(t, .)||2L2

x
.

Finally, by applying Gronwall’s lemma, we obtain that ∀t ∈ [0, T ] ||q(t, .)||2
L2

x
= 0, thus q = 0.

This ensures that a(t) = D(p(t)). Therefore, P solves the nonlinear martingale problem (MP).
�

1.3 Proofs of technical results

Proof of lemma 2 (2) : By lemma 2 (1), it is enough to deal with the stochastic differential
equation (9). For n ∈ N

∗, let Tn = inf{t > 0 : Nt = n}. The conditional distribution of
(T1, · · · , Tn) given {Nt = n} is uniform on the n−dimensional simplex ∆n = {0 < t1 < · · · <
tn < t}. Let Qs,t be the density of the random variable

∫ t

s
γ(r)dWr +

∫ t

s
b(r)dr. Since N is

independent from (Y0,W ), for n ∈ N, the conditional density pn(t, y) of Yt given {Nt = n} may
be computed by induction on n. For t > 0 and y ∈ R, we have

p0(t, y) = f ∗Q0,t(y).

p1(t, y) =
1

t

∫ t

0

∫
�
p0(t1, x1)

[
1{|x1|≤1}Qt1,t(y − x1) + 1{|x1|>1}Qt1,t(y)

]
dx1dt1.

In general, for n ≥ 1

pn(t, y) =
n!

tn

∫

∆n

∫
�
pn−1(tn, x)

[
1{|x|≤1}Qtn,t(y − x) + 1{|x|>1}Qtn,t(y)

]
dxdt1 · · ·dtn

=

∫
�

nsn−1

tn
pn−1(s, x)

[
1{|x|≤1}Qs,t(y − x) + 1{|x|>1}Qs,t(y)

]
dxds.

Now we give the Fourier transform p̂n(t, ζ) =
∫

� eiζypn(t, y)dy of pn(t, .) :

p̂0(t, ζ) = f̂(ζ)Q̂0,t(ζ).

and

p̂n(t, ζ) =

∫ t

0

∫
�

nsn−1

tn
pn−1(s, x)

[
1{|x|≤1}e

iζxQ̂s,t(ζ) + 1{|x|>1}Q̂s,t(ζ)
]
dxds.

Assume that the function γ2 is bounded from below by ε > 0. The modulus of the Fourier
transform |p̂n(t, .)| is bounded as follows.

|p̂0(t, ζ)| = |f̂(ζ)||Q0,t(ζ)| = |f̂(ζ)| exp{−ζ
2

2

∫ t

0

γ2(s)ds} ≤ |f̂(ζ)| exp{−ζ
2

2
εt}
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and for n ≥ 1

|p̂n(t, ζ)| ≤ n

tn

∫ t

0

∫
�
sn−1pn−1(s, x)|Q̂s,t(ζ)|dxds

≤ n

tn

∫ t

0

sn−1 exp{−ζ
2

2

∫ t

s

γ2(u)du}ds

≤ n

t

∫ t

0

exp{−ζ
2

2
ε(t− s)}ds =

2n(1 − exp{− ζ2

2
εt})

tζ2ε
.

The density of Yt is

p(t, y) =

∞∑

n=0

e−t t
n

n!
pn(t, y).

To check that p belongs to L∞
t ([0, τ ], L2

x), we combine Parseval-Plancherel theorem with the
bound on the modulus of the Fourier transform given before :

2π

∫
�
p2(t, y)dy =

∫
�
|p̂(t, ζ)|2dζ

≤
∞∑

n=0

e−t t
n

n!

∫
�
|p̂n(t, ζ)|2dζ

≤ e−t

∫
�
|f̂(ζ)|2dζ +

∞∑

n=1

e−t t
n

n!

∫
�

4n2
(
1 − exp{− ζ2

2
εt}
)2

t2ζ4ε2
dζ.

The change of variable x = ζ
√
εt allows us to write

2π

∫
�
p2(t, y)dy ≤ e−t||f ||2L2 +

∞∑

n=1

e−t t
n

n!

4n2

√
εt

∫
�

(
1 − exp{−x2

2
}
)2

x4
dx.

As the right hand side is bounded uniformly when t belongs to [0, τ ], p ∈ L∞
t ([0, τ ], L2

x). To

check that p belongs to L2
t ([0, τ ], H

1
x), we note that

∂̂p

∂y
(t, ζ) = iζp̂(t, ζ) and we write

2π

∫ τ

0

∫
�
|∂p
∂y

(t, y)|2dtdy =

∫ τ

0

∫
�
| ∂̂p
∂y

(t, ζ)|2dtdζ =

∫ τ

0

∫
�
ζ2|p̂(t, ζ)|2dtdζ

≤
∞∑

n=0

∫ τ

0

∫
�
e−t t

n

n!
ζ2|p̂n(t, ζ)|2dtdζ

≤
∫ τ

0

∫
�
ζ2e−t exp{−ζ2εt}|f̂(ζ)|2dtdζ

+

∞∑

n=1

∫ τ

0

∫
�
e−t t

n

n!

4n2

t2

(
1 − exp{− ζ2

2
εt}
)2

ζ2ε2
dtdζ.
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The change of variable x = ζ
√
εt yields

2π

∫ τ

0

∫
�
|∂p
∂y

(t, y)|2dtdy ≤
∫

�

(∫ τ

0

ζ2 exp{−ζ2εt}dt
)
|f̂(ζ)|2dζ +

∞∑

n=1

4Cn

ε
3
2 (n− 1)!

∫ τ

0

e−ttn−
3
2dt

with C =

∫
�

(
1 − exp{−x2

2
}
)2

x2
dx. Finally,

2π

∫ τ

0

∫
�
|∂p
∂y

(t, y)|2dtdy ≤ 1

ε
||f ||2L2 +

4C

ε
3
2

∞∑

n=1

nτn− 1
2

(n− 1
2
)(n− 1)!

.

As the right hand side is finite we have p ∈ L2
t ([0, τ ], H

1
x).

�

We are now ready to prove proposition 1.

Proof of proposition 1 : To obtain this result we proceed by inductive reasoning. The idea
is to build a positive increasing sequence 0 ≤ t1 ≤ . . . ≤ tK = T such that for k ∈ {1, · · · , K}
we are able to prove the following property : for all t ∈ [0, tk], the marginal distribution Pt has a
probability density p(t, .) and (p(t, .))0≤t≤tk belongs to L∞

t ([0, tk], L
1
x∩L2

x)∩L2
t ([0, tk], H

1
x). Since

by Lemma 1, p is a weak solution of (1), by the uniqueness result in theorem 1, (p(t, .))0≤t≤tk

can then be identified with the restriction of ρ to the time interval [0, tk].

Let α be such that the conclusion of corollary 1 holds and K ∈ N
∗ be such that

T

K
≤

(
α− 1

2||b||L2

)2

. We set tk = k
T

K
, k ∈ {1, · · · , K}.

• At the first step, we use that, by lemma 2 (1), P is the distribution of the solution of the
stochastic differential equation

Yt = Y0 +

∫ t

0

σ
√
Ps([−1, 1]c)dWs +

∫ t

0

b(s)ds−
∫ t

0

Ys−1{|Y
s− |>1}dNs.

with Y0 distributed according to the density ρ0.

Let t ∈ [0, t1]. Since t1 ≤
(
α− 1

2||b||L2

)2

,
∫ t

0
|b(s)|ds ≤ ‖b‖L2

√
t ≤ α−1

2
. Therefore

Pt([−1, 1]c) ≥ P(|Y0| > α,Nt = 0, |Yt| > 1)

= P(|Y0| > α,Nt = 0)

− P(|Y0| > α,Nt = 0, |Y0 + σ

∫ t

0

√
Ps([−1, 1]c)dWs +

∫ t

0

b(s)ds| ≤ 1)

≥ e−t

∫

|x|>α

ρ0(x)dx

(
1 − P

(
|σ
∫ t

0

√
Ps([−1, 1]c)dWs| ≥ α− 1 −

∫ t

0

|b(s)|ds
))

≥ ν

2
e−t

(
1 − 2√

2π

∫ ∞

α−1
2σ

√
t

exp {−x
2

2
}dx
)

(12)
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by corollary 1.
Therefore the diffusion coefficient a(t) = σ2

2
Pt([−1, 1]c) of the martingale problem satisfied

by P is bounded from below by a positive constant on the time interval [0, t1]. By lemma
2 (2), we deduce that for all t ∈ [0, t1], Pt has a density p(t, .) with respect to the Lebesgue
measure on R and that the function p belongs to L∞

t ([0, t1], L
1
x ∩L2

x)∩L2
t ([0, t1], H

1
x). On

the other hand, by lemma 1, p is a weak solution of equation (1). From theorem 1, we
deduce that for t ∈ [0, t1] , p(t, .) = ρ(t, .).

• Now, assume that the inductive assumption is true at order k, k ∈ {1, · · · , N − 1} and
let us show that this property remains true at oder k + 1. The image P̃ of P by the
mapping x ∈ D([0, T ],R) → (xt+tk)t∈[0,t1] solves the nonlinear martingale problem on the

time interval [0, t1] with the initial probability distribution P̃0 = Ptk .
Now P̃0([−1, 1]c) =

∫
|x|>α

p(tk, x)dx =
∫
|x|>α

ρ(tk, x)dx ≥ ν
2

by Corollary 1. By computa-

tions similar to the ones made at the first step, we obtain that for t ∈ [0, t1], P̃t([−1, 1]c)
is greater than the right-hand-side of (12). Again, we deduce from lemma 2 (2) that
for t ∈ [0, t1], P̃t has a density p̃(t, .) and the function p̃ belongs to L∞

t ([0, t1], L
1
x ∩

L2
x) ∩ L2

t ([0, t1], H
1
x). Since tk+1 = tk + t1, putting all this material together, we con-

clude that for all t ∈ [0, tk+1], Pt has a density p(t, .), and (p(t, .))0≤t≤tk+1
belongs to

L∞
t ([0, tk+1], L

1
x ∩ L2

x) ∩ L2
t ([0, tk+1], H

1
x). Moreover, (p(t, .))0≤t≤tk+1

can be identified to
the restriction of ρ to the interval [0, tk+1].

This concludes the proof. �

2 Propagation of Chaos

We define a system of n interacting particles by the following stochastic differential equation :

Y i,n
t = Y i

0 + σ

∫ t

0

√√√√ 1

n

n∑

j=1

1{|Y j,n
s |>1} ∨

1

n
dW i

s +

∫ t

0

b(s)ds−
∫ t

0

Y i,n

s− 1{|Y i,n

s− |>1}dN
i
s, 1 ≤ i ≤ n.

(13)
Here (W i)1≤i≤n are independent Brownian motions, (N i)1≤i≤n independent Poisson processes
with intensity one and (Y i

0 )1≤i≤n independent ρ0(x)dx distributed random variables. Also, we
assume that (W i)1≤i≤n, (N i)1≤i≤n and (Y i

0 )1≤i≤n are independent.
Between the jump times of the Poisson processes, (Y 1,n, . . . , Y n,n) evolves as a n-dimensional
diffusion process with a piecewise constant (in the n-dimensional spatial variable) and non-
degenerated diffusion matrix. Hence, by Bass and Pardoux [1], and exercise 7.3.2 p. 191 in
Stroock and Varadhan [6], existence and uniqueness in law hold for equation (13).
Let µn = 1

n

∑n
i=1 δY i,n denote the empirical measure of the particle system. We are going to

prove the following law of large numbers

Theorem 3 Assume that ρ0 satisfies condition (H). As n tends to infinity, the P (D ([0, T ],R))−
valued random variables µn converge in probability to the unique solution P of the nonlinear
martingale problem (MP).
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Since the particles Y i,n, 1 ≤ i ≤ n are exchangeable, according to Sznitman proposition 2.2 p.
177 in [9], this result is equivalent to propagation of chaos : for any fixed k ∈ N

∗, when n goes
to infinity, the joint distribution of the processes (Y 1,n

t , · · · , Y k,n
t )t∈[0,T ] converges to P⊗k.

In order to establish the theorem we need to control the possibility for the diffusion coefficient
to vanish. That is why, for ε > 0, we introduce the stopping time

τ ε
n := inf

{
t > 0 :

1

n

n∑

j=1

1{|Y i,n
t |>1} < ε

}
.

Let πn be the probability distribution of the empirical measure µn. We will denote by Q the
canonical variable on P (D ([0, T ],R)). The next Lemma implies that as soon as P(τ ε

n ≤ t)
converges to 0 as n tends to ∞, then any weak limit π∞ of the sequence (πn)n has the following
regularity property which is desirable to take the limit in the martingale problem formulation
: π∞(dQ) a.e., dr a.e. on [0, t], Qr does not weight the set of discontinuity points {−1, 1}
of the characteristic function x → 1{|x|>1} which appears in the nonlinear diffusion coefficient
σ2

2
Ps([−1, 1]c) = σ2

2
E

P (1{|Xs|>1}) in problem (MP).

Lemma 3 There is a constant C > 0 such that for all t ∈ [0, T ] and for all bounded functions
f in L2(R), ∣∣∣∣Eπn

(∫ t

0

〈Qs, f〉 ds
)∣∣∣∣ ≤ t||f ||∞P(τ ε

n ≤ t) + C||f ||L2. (14)

The second technical Lemma prepares an inductive reasoning to prove that P(τ ε
n ≤ T ) tends to

0 as n tends to ∞.

Lemma 4 For all α > 1 and for all κ > 0, there are ε > 0 and K ∈ N
∗ such that

lim sup
n→+∞

P(τ ε
n ≤ k

T

N
) ≤

k−1∑

`=0

lim sup
n→+∞

P

(
µn

` T
K

([−α, α]c) ≤ κ
)
. (15)

for all k ∈ 1, · · · , K.

For the reader convenience the proof of the above technical lemmas is postponed after the proof
of the theorem.

Proof of theorem 3 : By exchangeability of the particles, the tightness of the sequence
(πn)n≥1 is equivalent to the tightness of the laws of the random variables (Y 1,n)n≥1 (see again
proposition 2.2 page 177 in [9]). As the diffusion coefficient and the drift coefficient are uniformly
bounded in n and the intensity of jumps remains smaller than one, the tightness of the sequence
(Y 1,n)n≥1 holds (Aldous criterion for instance).

Let π∞ be the limit of a convergent subsequence that we still index by n for notational
simplicity. We are going to check that π∞ a.s., Q solves the martingale problem (MP). To do

11



so, for p ∈ N
∗, φ ∈ C2

b (R), g ∈ Cb(R
p) and T ≥ t ≥ s ≥ s1 ≥ · · · ≥ sp ≥ 0, we define a mapping

F on P (D ([0, T ],R)) by

F (Q) =

〈
Q,

(
φ(Xt) − φ(Xs) −

∫ t

s

b(r)φ′(Xr) +
σ2

2
Qr([−1, 1]c)φ′′(Xr)dr

−
∫ t

s

(φ(0) − φ(Xr))1{|Xr |>1}dr

)
g(Xs1, · · · , Xsp

)

〉
,

and we want to prove that E
π∞

(|F (Q)|) = 0. By Itô’s formula,

F (µn) =
σ

n

n∑

i=1

g(Y i,n
s1
, · · · , Y i,n

sp
)

∫ t

s

φ′(Y i,n
r )(µn

r ([−1, 1]c) ∨ 1

n
)dW i

r

+
1

n

n∑

i=1

g(Y i,n
s1
, · · · , Y i,n

sp
)

∫ t

s

(φ(0) − φ(Y i,n

r− ))1{|Y i,n

r− |>1}d(N
i
r − r)

+
σ2

2n

n∑

i=1

g(Y i,n
s1
, · · · , Y i,n

sp
)

∫ t

s

φ′′(Y i,n
r )(µn

r ([−1, 1]c) ∨ 1

n
− µn

r ([−1, 1]c))dr.

Next, using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) for (a, b, c) ∈ R
3, the independence

between the Brownian motions and between the Poisson processes and the boundedness of the
function g, we get

E(F (µn)2) ≤ 3σ2||g||2∞
n2

n∑

i=1

E

(∫ t

s

(φ′(Y i,n
r ))2(µn

r ([−1, 1]c) ∨ 1

n
)2dr

)

+
3||g||2∞
n2

n∑

i=1

E

(∫ t

s

(φ(0) − φ(Y i,n
r ))21{|Y i,n

r− |>1}dr

)

+
3σ4||g||2∞

4n2
E

(
n∑

i=1

∣∣∣∣
∫ t

s

φ′′(Y i,n
r )(µn

r ([−1, 1]c) ∨ 1

n
− µn

r ([−1, 1]c))dr

∣∣∣∣

)2

.

Now, the boundedness of functions φ, φ′, φ′′ and the inequalities

0 ≤ µn
r ([−1, 1])c ≤ 1 and 0 ≤ µn

r ([−1, 1]c) ∨ 1

n
− µn

r ([−1, 1]c) ≤ 1

n
,

yield

E
πn

(|F (Q)|) = E (|F (µn)|) ≤
√

E (Fk(µn)2) ≤ C√
n
, (16)

where C is a positive constant. Hence E
πn

(|F (Q)|) converges to 0 as n tends to infinity.
Unfortunately the mapping F is not continuous and we cannot deduce that E

π∞
(|F (Q)|) = 0.

Nevertheless F is continuous at any Q such that dr p.p., Qr({−1, 1}) = 0. So we should first
prove that π∞ gives full weight to such probability measures. To do so, we need to bound the
diffusion coefficient of the particle system from below. We are only able to obtain such a control
on a small time interval. That is why we will first pass to the limit on this time interval. Then,
to iterate the reasoning, we take advantage of the bound

∀t ∈ [0, T ], Pt([−α, α]c) ≥ ν

2
, (17)
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which holds for some α > 1 according to corollary 1 and theorem 2. Applying lemma 4 with

this α and with κ =
ν

4
, we deduce that we can choose ε > 0 and K ∈ N

∗ such that

lim sup
n→+∞

P(τ ε
n ≤ k

T

K
) ≤

k−1∑

`=0

lim sup
n→+∞

P

(
µn

` T
N

([−α, α]c) ≤ ν

4

)
. (18)

Let π∞,k be the law of the image of Q by the restriction mapping (Yt)t≤T ∈ D([0, T ],R) →
(Yt)t≤k T

N
∈ D([0, k T

K
],R) under π∞ and P k be the image of P by this mapping. We are going

to prove by induction on k ∈ {0, . . . , K} that π∞,k = δP k . Since the initial variables Y i
0 are

independent and identically distributed according to ρ0(x)dx, the inductive property holds for
k = 0. Then we assume that it holds at order k − 1 and show that it remains true at order k.

From the recurrence assumption at order k − 1, since under P the canonical process is

quasi-left-continuous, we can deduce that ∀t ∈ [0, (k − 1)
T

K
], µn

t converges weakly to Pt (see

lemma 4.8. p.71 in [8]). Let (mn)n≥1 and m be probability measures on R, it’s well-known
that the weak convergence of (mn)n≥1 to m entails lim inf

n→∞
mn(O) ≥ m(O) for all open sets O

of R. This proves that {m ∈ P(R), m([−α, α]c) > ν
4
} is an open set for the topology of weak

convergence. Thus, by (17),

lim inf
n→∞

P(µn
` T

N

([−α, α]c) >
ν

4
) ≥ P` T

N
([−α, α]c) >

ν

4
) = 1, ∀` ∈ {0, · · · , k − 1}.

Then, by (18), lim sup
n→+∞

P(τ ε
n ≤ k

T

K
) = 0. With lemma 3, we deduce that for any continuous

and bounded function f ∈ L2(R),

∣∣∣∣∣E
π∞,k

(∫ k T
K

0

〈Qt, f〉 dt
)∣∣∣∣∣ ≤ C||f ||L2.

Now, let fγ(x) := max
(
0, 1 − |1−|x||

γ

)
for 0 < γ < 1. As ||fγ||L2 =

√
4γ

3
, if we replace f by fγ in

the equation above and we let γ go to zero, we deduce that π∞,k a.s., dr p.p., Qr({−1, 1}) = 0.
Finally, since when the parameter t in the definition of F is smaller than k T

K
, then this

function is continuous at all points Q ∈ P
(
D

(
[0, k

T

K
],R

))
satisfying dr p.p. Qr({−1, 1}) =

0, we deduce from equation (16) that

E
π∞,k

(|F (Q)|) = lim
n→+∞

E
πn

(|F (Q)|) = 0.

Hence π∞,k = δP k , which concludes the proof.
�

Let us prove now lemma 3.
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Proof of lemma 3: Let f be a bounded function on the real line and t ∈ [0, T ],

∣∣∣∣Eπn

(∫ t

0

〈Qs, f〉 ds
)∣∣∣∣ =

∣∣∣∣E
(∫ t

0

〈µn
s , f〉 ds

)∣∣∣∣ =

∣∣∣∣∣
1

n

n∑

i=1

E

(∫ t

0

f(Y i,n
s )ds

)∣∣∣∣∣

≤ t||f ||∞P(τ ε
n ≤ t) +

∣∣∣∣∣
1

n

n∑

i=1

E

(
1{τε

n>t}

∫ t

0

f(Y i,n
s )ds

)∣∣∣∣∣ . (19)

In order to use estimations due to Krylov [5] and stated in Lemma 5 below, we introduce the
following stochastic differential equation

{
Y i,n,ε

0 = Y i
0

dY i,n,ε
t = 1{τε

n>t}dY
i,n
t + 1{τε

n≤t}

(
σ
√
εdW i

t + b(t)dt− Y i,n,ε

t− 1{|Y i,n,ε

t− |>1}dN
i
t

) , 1 ≤ i ≤ n.

Up to time τ ε
n the processes (Y i,n,ε

t , 1 ≤ i ≤ n) and (Y i,n
t , 1 ≤ i ≤ n) coincide. This result with

the exchangeability of (Y i,n,ε)1≤i≤n enable us to replace Y i,n
t by Y 1,n,ε

t in the inequality (19)
above. We obtain

∣∣∣∣Eπn

(∫ t

0

〈Qs, f〉 ds
)∣∣∣∣ ≤ t||f ||∞P(τ ε

n ≤ t) +

∣∣∣∣E
(∫ t

0

f(Y 1,n,ε
s )ds

)∣∣∣∣ . (20)

Moreover the process Y 1,n,ε
t satisfies the following differential equation.

Y 1,n,ε
t = Y 1

0 +

∫ t

0

σ1,n,ε
s dW 1

s +

∫ t

0

b(s)ds−
∫ t

0

Y 1,n,ε

s− 1{|Y 1,n,ε

s− |>1}dN
1
s .

where σ1,n,ε
s := 1{τε

n>s}σ

√√√√ 1

n

n∑

j=1

1{|Y j,n,ε
s |>1} ∨

1

n
+ 1{τε

n≤s}σ
√
ε.

Now, we are ready to apply the following estimation which is a consequence of [5] Theorem
2 p. 238.

Lemma 5 Let t ≤ T , (ξs)s≥0 be an (Fs)-standard real Brownian motion and

xs = x +

∫ s

0

σrdξr +

∫ s

0

β(r)dr, s ∈ [0, t]

with x ∈ R, β a deterministic function integrable on [0, t] and σr an Fr−adapted process . Let
us assume that there are constants 0 < σ ≤ σ such that σ ≤ σr ≤ σ for all r ∈ [0, t]. Then for
all f ∈ L2(R) ∣∣∣∣E

(∫ t

0

f(xs)ds

)∣∣∣∣ ≤ C||f ||L2,

where the constant C depends only on σ and σ and T .
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Coming back to our process (Y 1,n,ε
s )0≤s≤t, a simple decomposition of Y 1,n,ε

s on the subsets
{N1

s = k}, k ∈ N with the use of the conditional distribution of the jump times of N 1 given
{N1

s = k} yields

E

(∫ t

0

f(Y 1,n,ε
s )ds

)
=

∞∑

k=0

∫ t

0

E
(
f(Y 1,n,ε

s )|N1
s = k

)
P(N1

s = k)ds

= E

(∫ t

0

e−sf(x1,n,ε,0
s )ds

)

+

∞∑

k=1

∫

0<s1<···<sk<t

E

(∫ t

sk

e−sf(x1,n,ε,k
s )ds

)
ds1 · · ·dsk,

where {
x1,n,ε,0

s = Y 1
0 +

∫ s

0
σ1,n,ε

r dW 1
r +

∫ s

0
b(r)dr,

x1,n,ε,k
s = Y 1,n,ε

sk
+
∫ s

sk
σ1,n,ε

r dW 1
r +

∫ s

sk
b(r)dr, ∀k ≥ 1.

Noticing that σ
√
ε ≤ σ1,n,ε

r ≤ σ(1 + ε) and applying lemma 5, we deduce that there exists a
positive constant C such that, for all f ∈ L2 and for all k ∈ N,

∣∣∣∣E
(∫ t

sk

e−sf(x1,n,ε,k
s )ds

)∣∣∣∣ ≤ C||f ||L2.

Therefore, for all f ∈ L2(R),

∣∣∣∣E
(∫ t

0

f(Y 1,n,ε
t )dt

)∣∣∣∣ ≤ Cet||f ||L2. (21)

Equations (20) and (21) together conclude the proof.
�

Let us prove now lemma 4.

Proof of lemma 4: Let α > 1 and κ > 0. Like in the proof of Proposition 1, we introduce

K ∈ N
∗ such that

T

K
≤
(
α− 1

2||b||L2

)2

and set t1 = T
K

. Let ε =
κβ(t1)

2
, with

β(t1) = P(sup
s≤t1

|W i
s | ≤

α− 1

2σ
,N i

t1
= 0).

Let I denote the set of indexes {i ≤ n : |Y i
0 | > α}. If we decompose the event {τ ε

n ≤ t1} on the
event {card(I) < κn} and its complementary we obtain

P (τ ε
n ≤ t1) ≤ P (µn

0([−α, α]c) < κ) + P (card(I) ≥ κn, τ ε
n ≤ t1) . (22)

We are going to prove that the limit as n → +∞ of the second term at the right hand
side of equation (22) is 0. Since

∫ t1

0
|b(r)|dr ≤ ‖b‖L2

√
t1 = α−1

2
, for j ∈ I, the existence of

s ∈ [0, t1] such that |Y j,n
s | ≤ 1 entails either N j

t1
6= 0 or sup

s≤t1

|
∫ s

0

σn
r dW

j
r | >

α− 1

2
, where
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σn
r := σ

√
1
n

∑n
j=1 1{|Y j,n

s |>1} ∨ 1
n
.Therefore the second term of the right hand side of equation

(22) is bounded from above by

P

(
card(I) ≥ κn,

∑

j∈I

1{Nj
t1
6=0 or sups≤t1

| � s
0 σn

r dW
j
r |>

α−1
2

} > card(I) − nε

)
.

On the other hand, considering the filtration Gt := σ (Y i
0 , (N

i
s)s≤T,1≤i≤n, (Ws = (W 1

s , . . . ,W
n
s ))s≤t),

t ∈ [0, T ], and the Gt martingale Mt :=

∫ t

0

σn
r dWr, letting At :=

∫ t

0

(σn
r )2dr and τt :=

inf{s, As ≥ t}, by the Dambis and Dubins-Schwarz theorem Bt := Mτt
=

∫ τt

0

σn
r dWr is

an R
n valued Gτt

Brownian motion and

∫ t

0

σn
r dWr = BAt

. This enables us to write that

P (card(I) ≥ κn, τ ε
n ≤ t1) is smaller than

P

(
card(I) ≥ κn,

∑

j∈I

1{Nj
t1
6=0 or sups≤t1

|Bj
As

|> α−1
2

} > card(I) − nε

)
.

Noticing that As ≤ σ2s and using the definition of ε, we can substitute the last upper bound
by

P

(
card(I) ≥ κn,

1

card(I)

∑

j∈I

1{Nj
t1

=0, sup
s≤σ2t1

|Bj
s |≤

α−1
2

} ≤
β(t1)

2

)
.

Now, as σ (Y i
0 , (N

i
s)s≤T , 1 ≤ i ≤ n) = G0 ⊂ Gτt

we deduce that (N i
s, s ≤ T, 1 ≤ i ≤ n), (Bi

s, s ≤
T, 1 ≤ i ≤ n) and (Y i

0 , 1 ≤ i ≤ n) are independent. Letting F0 := σ (Y i
0 , 1 ≤ i ≤ n), this

probability reads

E

(
1{card(I)≥κn}P

(
1

card(I)

∑

j∈I

1{Nj
t1

=0, sups≤t1
|Bj

s |≤
α−1
2σ

} ≤
β(t1)

2
|F0

))
.

Using Bienaymé Chebychev inequality, we obtain

P

(
1

card(I)

∑

j∈I

1{Nj
t1

=0, sups≤t1
|Bj

s |≤
α−1
2σ

} ≤
β(t1)

2
|F0

)
≤ 4

β(t1)card(I)
.

Finally the second term of the right hand side of equation (22) is smaller then 4
κβ(t1)n

and
converges to 0.

Next, we use an inductive reasoning on k ∈ {1, · · · , N} to establish equation (15). Noticing
that we have just shown the inductive property for k = 1, we assume that the recurrence
assumption is true at order k − 1 and we show that it remains true at order k. We have

P (τ ε
n ≤ kt1) ≤ P (τ ε

n ≤ (k − 1)t1) + P

(
µn

(k−1)t1
([−α, α]c) ≤ κ

)

+P

(
µn

(k−1)t1
([−α, α]c) > κ, (k − 1)t1 < τ ε

n ≤ kt1

)
.
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By the inductive assumption,

lim sup
n→+∞

P(τ ε
n ≤ kt1) ≤

k−1∑

`=0

lim sup
n→+∞

P
(
µn

`t1
([−α, α]c) ≤ κ

)

+ lim sup
n→+∞

P
(
µn

(k−1)t1
([−α, α]c) > κ, (k − 1)t1 < τ ε

n ≤ kt1
)
.

Setting Ĩ = {i ≤ n, |Y i
(k−1)t1

| > α} and by a reasoning similar to the one made on the time
interval [0, t1] one obtains

P
(
µn

(k−1)t1([−α, α]c) > κ, (k − 1)t1 < τ ε
n ≤ kt1

)
≤ E

(
1{card(Ĩ)≥κn}

4

β(t1)card(Ĩ)

)
≤ 4

κβ(t1)n
,

which vanishes when n goes to infinity. �

From a physical point of view, the average stress

∫
�
xρ(t, x)dx is of particular interest. One

can deduce from Theorem 3, the convergence of the particle approximation
1

n

n∑

i=1

Y i,n
t to this

quantity as n tends to infinity.

Corollary 2 Assume that ρ0 satisfies condition (H). We have

lim
n→+∞

E

∣∣∣∣∣
1

n

n∑

i=1

Y i,n
t −

∫
�
xρ(t, x)dx

∣∣∣∣∣ = 0.

Proof : By Theorem 3, since under P , the canonical process is quasi left continuous, for any
t ∈ [0, T ], µn

t converges in probability to Pt = ρ(t, x)dx as n tends to infinity. One has

∣∣Y 1,n
t

∣∣ ≤
∣∣Y 1

0

∣∣+
∫ T

0

|b(s)| ds+ 2σ sup
s≤T

∣∣∣∣∣∣

∫ s

0

√√√√ 1

n

n∑

j=1

1{|Y j,n
s |>1} ∨

1

n
dW 1

s

∣∣∣∣∣∣
.

Since the diffusion coefficient

√√√√ 1

n

n∑

j=1

1{|Y j,n
s |>1} ∨

1

n
is bounded by 1 the random variables

sup
s≤T

∣∣∣∣∣∣

∫ s

0

√√√√ 1

n

n∑

j=1

1{|Y j,n
s |>1} ∨

1

n
dW 1

s

∣∣∣∣∣∣
are uniformely integrable. By hypothesis (H) and the

assumption made on the function b, the random variable
∣∣Y 1

0

∣∣+
∫ T

0

|b(s)| ds is integrable. One

deduces that the random variables (
∣∣Y 1,n

t

∣∣)n≥1 are uniformely integrable. Now, for C > 0

E

∣∣∣∣∣
1

n

n∑

i=1

Y i,n
t −

∫
�
xρ(t, x)dx

∣∣∣∣∣ ≤ E

(
1

n

n∑

i=1

∣∣Y i,n
t

∣∣1{|Y i,n
t |>C}

)
+

∫
�
|x| 1{|x|>C}ρ(t, x)dx

+E

∣∣∣∣∣
1

n

n∑

i=1

Y i,n
t 1{|Y i,n

t |≤C} −
∫

�
x1{|x|≤C}ρ(t, x)dx

∣∣∣∣∣ .
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According to equation (7) and the above uniform integrability result the sum of the two first
terms of the right hand side is arbitrarily small uniformly in n for C large enough.

Finally, since µn
t converges in probability to Pt = ρ(t, x)dx, for found C, the third term

tends to 0 as n tends to infinity. This concludes the proof. �

3 Numerical results

To check the validity of the results obtained in the previous section with computer simulations,
we consider the example of steady states given in [2]. According to proposition 5.1 of [2], when
the function b(t) = b constant, equation (1) admits a unique stationary solution in the following
two cases.

• If b = 0 and σ2 > 1, p(x) =
1 − |x| +

√
D

σ2
1{x∈[−1,1]} +

√
D

σ2
e

1−|x|√
D 1{x 6∈[−1,1]}, with D =

D(p) > 0 given by D +
√
D =

σ2 − 1

2
.

• If b 6= 0 and σ2 6= 0, p(x) = a1e
βsg(x)x1{x6∈[−1,1]} +

(
a2(1 + e

b
D

x) − 2D

bσ2
e

b
D

x+

)
1{x∈[−1,1]},

with β± =
b

2D
∓ 1

2

√
b2 + 4D

D2
where sg(x) denotes the sign of x, x+ = sup(0, x), a1 =

2e
1
2

�
b2+4D

D2

σ2(β−e
b

2D − β+e
− b

2D )
, a2 =

2Dβ−e
b

2D

σ2b(β−e
b

2D − β+e
− b

2D )
. This function always fulfills D =

D(p) > 0 and the normalization condition
∫

� p(x)dx = 1 reads

D

b

(1 + β−) + (β+ − 1)e−
b
D

β− − β+e
− b

D

+D =
σ2

2
.

For fixed n, we want to simulate n interacting particles given by the stochastic differential
equation (13). In order to discretize time, we assign n particles positions (Ŷ i,n

k T
K

)1≤i≤n to each

time k T
K

, 0 ≤ k ≤ K, where K is a given integer. Let {Gi
k, 1 ≤ i ≤ n, 1 ≤ k ≤ K}

and {U i
k, 1 ≤ i ≤ n, 1 ≤ k ≤ K} be two independent sequences of independent and identically

distributed random variables respectively distributed according the normal law and the uniform
law on [0, 1]. At k = 0 we simulate n independent particles with the initial density ρ0(x) = p(x)
where p is the above stationary solution. For k ∈ {1, · · · , K}, the discretized particles evolve
as follows : ∀i ∈ {1, · · · , n}

if |Ŷ i,n

(k−1) T
K

| > 1 and U i
k ≤ T

K
then Ŷ i,n

k T
K

= 0

else Ŷ i,n

k T
K

= Ŷ i,n

(k−1) T
K

+ σD(k−1) T
K

√
T
K
Gi

k + b T
K
,

with D(k−1) T
K

=
√

1
n

∑n
i=1 1{|Ŷ i,n

(k−1) T
K

|>1}. The average stress in the physical model is given by

τ(t) =

∫
�
xp(t, x)dx and it is approximated at the points k T

K
, k ∈ {0, · · · , K}, by the empirical
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mean τn
k T

K

=
1

n

n∑

i=1

Ŷ i,n

k T
K

. The simulation of τn
k T

K

for k ∈ {0, · · · , K} must therefore confirm the

convergence toward

∫
�
xp(x)dx when K and n tend to infinity.

Example : We consider the second example of steady states, we take T = 1 first with
K = 100 then with K = 1000. The table 1 represents the convergence of the sequence τ n

1 . The

K 100 1000
n 1000 5000 10000 20000 1000 5000 10000 20000
τn
1 1.1221 1.1126 1.1463 1.1363 1.0737 1.1541 1.1384 1.1256

n 40000 60000 80000 100000 40000 60000 80000 100000
τn
1 1.1324 1.1260 1.1286 1.1304 1.1312 1.1350 1.1310 1.1281

Table 1: Convergence of τn
1 with K = 100 and K = 1000.

graphical representation in figure 1 illustrates the convergence of the empirical measure of the
n interacting particles. We compare their histogram with the stationary solution.
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Figure 1: Convergence in distribution of (Y i,n
1 )1≤i≤n, with n = 100000 and different K, from

the left to the right, we have K = 100 and K = 1000.
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Figure 2: Convergence in distribution of the stress,
√
nτn

1 , with different n, from the left to the
right, we have n = 1000, n = 5000, n = 20000 and n = 100000.

3.1 Rate of convergence

In this section, we investigate the rate of convergence in the number n of particles. We consider

the first example of steady states where

∫
�
xp(x)dx = 0.

It seems natural to try to check experimentally if the central limit theorem is satisfied in the
number n of particles. In order to do that, we simulate M = 1000 independent trajectories of
the process τn

1 , with different values of n and for K = 100. We note them by (τ̂ j,n
1 )1≤j≤M and we

plot the histogram of
√
nτ̂ j,n

1 , 1 ≤ j ≤M on the interval [−2.5S, 2.5S], where S2 is an estimate

of n var(τn
1 ), S2 =

n

M − 1

M∑

j=1

(τ̂ j,n
1 − τ̄n

1 )2 and τ̄n
1 =

1

M

M∑

j=1

τ̂ j,n
1 . We compare this histogram

with the centered Gaussian density with variance S2. We have n var(τn
1 ) =

1

n
var(

n∑

i=1

Ŷ i,n
1 )

and table 2 shows numerical convergence of this quantity as n → +∞, despite the lack of
theoretical proof. The graphical representation in figure 2 illustrates the convergence in law of
the sequence

√
nτn

1 towards the Gaussian distribution.
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n 1000 5000 10000 20000
n var(τn

1 ) 0.5022943 0.4662847 0.4844257 0.4435595
n 40000 60000 80000 100000
n var(τn

1 ) 0.4628567 0.4513587 0.4543330 0.484027

Table 2: Convergence of n var(τn
1 ).

4 Conclusion

The propagation of chaos theorem proved in the present paper provides a theoretical basis to
the practical simulation of the average stress which is of interest in physics. Some first tests
processed on two examples of steady states are completely conclusive on the convergence and
seem promising on the rate of convergence. From a theoretical point of view, the next question
is now to investigate the latter subject.
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B, 12, no 1, 43-103, 1976.
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