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Abstract

In this paper, in the particular case of a concave flux function, we are interested in
the long time behaviour of the nonlinear process associated in [8] to the one-dimensional
viscous scalar conservation law. We also consider the particle system obtained by replacing
the cumulative distribution function in the drift coefficient of this nonlinear process by the
empirical cumulative distribution function. We first obtain a trajectorial propagation of
chaos estimate which strengthens the weak convergence result obtained in [8] without any
convexity assumption on the flux function. Then Poincaré inequalities are used to get explicit
estimates concerning the long time behaviour of both the nonlinear process and the particle
system.
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Introduction

In this paper, we are interested in the viscous scalar conservation law with C' flux function —A

o2
OcFy(x) = 7396961:}(36) + 0, (A(Fi(x)), Fo(z) = H *m(x). (0.1)

where m is a probability measure on the real line and H(z) = 1y,>0; denotes the Heaviside
function. Since A appears in this equation through its derivative, we suppose without restriction
that A(0) = 0. According to [8], one may associate the following nonlinear process with the
conservation law:

(0.2)

X, = Xo+0B; — [§ A'(H % Py(X,))ds,
vVt > 0,the law of X; is P;.

where (B¢)¢>0 is a real Brownian motion independent from the initial random variable X, with
law m and o a positive constant. More precisely, according to [8], this nonlinear stochastic
differential equation admits a unique weak solution. Moreover, H % P,(z) is the unique bounded
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weak solution of (0.1). For ¢t > 0, by Girsanov theorem, P, admits a density p; with respect to
the Lebesgue measure on the real line.

We want to address the long time behaviour of the nonlinear process solving (0.2) by studying
convergence of the density p;. Since the cumulative distribution function z — H % Ps(x) which
appears in the drift coefficient is non-decreasing, convexity of A is a natural assumption in order
to ensure ergodicity. Then the flux function —A in the conservation law (0.1) is concave.

In the first section of the paper, after recalling results obtained in [8], we show that trajectorial
uniqueness holds for (0.2) under convexity of A. Then we introduce a simulable system of n
particles obtained by replacing in the drift coefficient the cumulative distribution function by
its empirical version and the derivative A’ by a suitable finite difference approximation. When
A is convex, existence and trajectorial uniqueness hold for this system. Moreover, we prove a
trajectorial estimation of propagation of chaos which strengthens the weak convergence result
obtained in [8]. Unfortunately, because the empirical cumulative distribution function is a step
function and therefore not an increasing one, this estimation is not uniform in time.

The second and main section deals with the long time behaviour of both the nonlinear process
and the particle system. In order to ensure that |E(X;)| does not go to infinity with ¢, one
has to assume A(1) = 0. We address the convergence of the density p; of X; by first studying
the convergence of the associated solution H * p; of (0.1) to the solution F, with the same
expectation of the stationary equation U—;BMFOO () + 0z(A(Foso(x)) = 0 obtained by removing
the time derivative in (0.1). For this result, no convexity hypothesis is made on A. Instead, one
assumes A(u) < 0 for u € (0,1), A’(0) < 0 and A’(1) > 0. In contrast, to prove exponential
convergence of the density of the particle system uniform in the number n of particles, we
suppose that the function A is uniformly convex. The key step in the proof consists in obtaining
a Poincaré inequality for the stationary density of the particle system uniform in n. This density
has exponential-like tails and does not satisfy a logarithmic Sobolev inequality. So the derivation
of the Poincaré inequality cannot rely on the curvature criterion, used for instance by Malrieu
[12] [13] when dealing with the granular media equation. Instead we make a direct estimation of
the Poincaré constant using the specific analytic form of the invariant density. To our knowledge,
our study provides the first example of a particle system, for which a Poincaré inequality but no
logarithmic Sobolev inequality holds uniformly in the number n of particles.

Assumption : In the whole paper, we assume that A is a C! function on [0, 1] s.t. A(0) = 0.

Acknowledgment : We warmly thank Tony Lelievre (CERMICS) for fruitful discussions con-
cerning the analysis of the long time behaviour of the nonlinear process.

1 Propagation of chaos

1.1 The nonlinear process

Let us first state existence and uniqueness for the nonlinear stochastic differential equation (0.2).

Theorem 1.1 The nonlinear stochastic differential equation (0.2) admits a unique weak solution
(X, Py))t>0. Fort >0, P, admits a density p; with respect to the Lebesque measure on R. The
function (t,z) — H* Py(x) is the unique bounded weak solution of the viscous scalar conservation
law (0.1). Moreover,

Vit >0, X; — Xy is integrable and E(X; — Xo) = —A(1)t. (1.1)



Last, if the function A is convez on [0, 1], (0.2) admits a unique strong solution.

Proof . The first and third statements are consequences of Proposition 1.2 and Theorem 2.1
[8] (uniqueness follows from uniqueness for (0.1) and existence is obtained by a propagation of
chaos result).
According to Yamada-Watanabe’s theorem, to deduce the last statement, it is enough to check
that when A is convex, then trajectorial uniqueness holds for the standard stochastic differential
equation

dX; = odB; — A'(H * Qu(Xy))dt

where (Q¢):>0 is the flow of time-marginals of a probability measure @ on C([0,+00),R). Since

for each ¢ > 0 the function x — A’(H x Qi(x)) is non-decreasing, if (X;);>o and (¥;);>0 both
solve this standard SDE, one has

t
X, — Vil = | Xo - Yol + / sign(X, — V) (A'(H * Qu(Y2)) — A'(H * Qu(X,)))ds < | Xo - Yol.

Existence of the density p; for t > 0, follows from the boundedness of the drift coefficient and
Girsanov theorem. To prove (1.1), one first remarks that by boundedness of the drift coefficient,
for each t > 0, the random variable X; — X is integrable and

B~ Xo) = - [ CE(A(H » Py(X,)))ds = / t | ( / Oo Ps<dy>)Ps<dx>ds.

For s > 0, since by Girsanov theorem P, does not weight points,

/ A’( I Ps<dy>>Ps<dx> — [A(H « Py(2))] ¥ = A1),

—00

Corollary 1.2 Assume that A is C? on [0,1]. Then the function HxP;(x) is C1% on (0, +00) xR
and solves (0.1) in the classical sense on this domain.

Proof . By Girsanov theorem, for ¢ > 0, the law P, of X;, admits a density with respect to
the Lebesgue measure on R. Hence (¢,x) — H % P;(x) is a continuous function on (0, +o00) x R
with values in [0,1]. According to [11] Theorem 8.1 p. 495, Remark 8.1 p.495 and Theorem 2.5
p. 18, there exists a function u with values in [0, 1], continuous on [0,4+00) x R and C!? on
(0,+00) x R such that

2
Vo € R, ug(z) = H * Py, (x) and Vt > 0, Juu(t,z) = %amu(t,x) + 0. (A(u(t, x)).

By the uniqueness result for bounded weak solutions of this viscous scalar conservation law
recalled in Theorem 1.1, Vt > to, H * Py(x) = u(t — to,x). The conclusion follows since t( is
arbitrary. [ |



1.2 Study of the particle system

For n € N*, let (ay(i))1<i<n be a sequence of real numbers. In this section, we are interested in
the n-dimensional stochastic differential equation

n
dX;" = 0dB; - %(Z 1{Xf’"§x§’"}>dt’ X" =Xp, 1<i<n (1.2)
j=1

where (B?);>1 are independent standard Brownian motions independent from the sequence
(X¢)i>1 of initial random variables.
In the next section devoted to the approximation of the nonlinear stochastic differential equation
(0.2), we will choose a, (i) equal to the finite difference approximation n(A(i/n) — A((i —1)/n)
of A’ (%) For this particular choice, the non-decreasing assumption made in the following propo-
sition is implied by convexity of A.

Proposition 1.3 Assume that the sequence (ay(i))i<i<n is non-decreasing. Then the stochastic

differential equation (1.2) has a unique strong solution. Let (Ytl’", .., Y™™} denote another
solution starting from (Yg, ..., YJ") and driven by the same Brownian motion (B!,..., B"). Then
as, VE >0, > (XM=Y <) (X - YR (1.3)

i=1 i=1

In addition, if the initial conditions (X},..., X)) and (Yg,...,YJ") are such that a.s., Vi €
{1,...,n}, X} <Y{ (resp. X§ <Y{) then

s, VtE>0,Vie{l,...,n}, XZ’" < Y;i’n (resp. XZ’" < Y;m) (1.4)

Existence of a weak solution to (1.2) is a consequence of Girsanov theorem. Therefore, according
to Yamada-Watanabe’s theorem, it is enough to prove (1.3) which implies trajectorial uniqueness
to obtain existence of a unique strong solution. To do so, we will need the following Lemma.

Lemma 1.4 Let (a(i))i1<i<n and (b(i))1<i<n denote two non-decreasing sequences of real num-
bers. Then for any permutation T € Sy, > v a(i)b((2)) < > a(i)b(i).

Proof . For n = 2, the result is an easy consequence of the inequality

(a(2) = a(1))(b(2) = (1)) = 0

For n > 2, we define 7 as 7 if 7(1) = 1 and as 7 composed with the transposition between
1 and 771(1) otherwise. This way, 71(1) = 1. In addition, using the result for n = 2, we get
e a(i)b(7 (i) < 375 a(i)b(r (i)

For 2 < j <n—1, we define inductively 7; as 7;_; if 7;_1(j) = j and to 7j_1 composed with the
transposition between j and T;_ll (j) otherwise. This way, for 1 <i < 4, 7;(i) = 9. Again by the
result for n = 2, one has

n

> ali)b(r(i)) < Y alib(n Z < z b

i=1



We conclude by remarking that 7,,_; is the identity. |

We are now ready to complete the proof of Proposition 1.3.
Proof of Proposition 1.3. Let (X'",...,X™") and (Y'",...,Y™") denote two solutions.
The difference

n n

ST =Y = (X - V)

i=1 i=1

is equal to

j=1 j=1

By Girsanov theorem, for any s > 0 the distributions of (X+™,..., X2") and (Yo",...,Yd"™)
admit densities w.r.t. the Lebesgue measure on R™ and therefore dP ® ds a.e. the positions
Xo™, X" (resp. Ya,...,YJd"™) are distinct and there is a unique permutatlon X €S,

(resp. TSY € S,,) such that XSTSX(I)’" Xis X (@)m <L < XD X ()n (resp. Yi* S (1) <Yy® (@) <
Y
<Yy (n)’n). Therefore dP ® ds a.e.,

DX =Y <a" < > 1{Y£’"§Y§’"}> ~n < > 1{X£’"§X§’"})>
j=1 j=1

i=1

is equal to

ian(i) ((X;sy(i)m _ YSTSY(Z'),n) _ (XSTSX(Z‘),n _ Y;Tf(i),n)) _
i=1

X /-

The sequence (ay(i))1<i<n is non-decreasing. Applying Lemma 1.4 with b(i) = X;° @ and
Y .

7= (rX)"' o7} then with b(i) = Y. @n and 7 = (7Y)~' o X, one obtains that the integrand

in the right-hand-side of (1.5) is non-positive dP ® ds a.e.. Hence (1.3) holds.

Let us now suppose that a.s. Vi € {1,...,n}, X < Y{ and define v = inf{t > 0 : Ji €
{1,...,n},X/"™ > Y""} with the convention inf() = +oco. From now on, we restrict ourselves
to the event {1/ < +oo}. Let i € {1,...,n} be such that Y;"" = X_". There is an increasing

sequence (Sg)r>1 of positive times with limit v such that Vk > 1, a, (ijl {Xj,n<Xi,n}) <
- Sk — Sk

an, (Z?:1 1 i<y n}) Since (an(7))1<i<n is non-decreasing, by extracting a subsequence still

denoted by‘ (sk) for simplicity, one deduces the existence of j € {1 ,n} with j # ¢ such that
Vk>1, X" < X2 and YI" <YZ" Since sj, < v, X< X" Y]"<Y”L By continuity
of the paths one obtains X ihn = X Jn =Y)" =Y>". Now since

P<3¢1,¢2,z’3 distinct in {1,...,n}, 3t >0, X' + 0B]' = X2 + ¢B> = X? + 0323) =0,

Girsanov theorem implies that a.s. VI € {1,...,n}\ {i,j}, XJ™ £ XJ™ = X", In the same
way, Y™ # Y™ = YJ". By continuity of the paths and definition of v one deduces that for k
large enough,

VtE Sk, Zl{yln<yzn}<zl{xln<xzn} and Zl{yln<yjn <21{Xln<xjn}
lséz,j l#%] l#%] l#%]



Since a.s. dt a.e., Yf’" # Y;j’n and (an(7))1<i<n is non-decreasing, one obtains that a.s. dt a.e.
on [sg, V],

n n n n
an <Z 1{Ytl,n§Yt'L,n}> +a/n <Z 1{Ytl,n§Yt'L,n}> S a/n (Z 1{Xi,néxz,n}> +a/n <Z 1{Xi,néxz,n}> .
=1 =1 =1 =1

By integration with respect to ¢ on [sg,v], this implies that a.s. Yo - Xy — X3t >
Yo" — X" + Y™ — X1 > 0. Therefore P(v < +o00) = 0.

When a.s. fori € {1,...,n}, X} < Y{, one obtains that for & > 0 the solution (Y;"™¢, ..., ¥;""%)
to (1.2) starting from (Y +¢,...,YJ" + ¢) is such that

a.s. vt Z 07 Vi e {17 s 7n}7 th7n < thim’e.

Since by (1.3), Y;i’n’e < Y}m + /ne, one easily concludes by letting ¢ — 0. |

1.3 Trajectorial propagation of chaos

>From now on, we set

VneN* Vie{l,....,n}, an(i)=n (A (%) —A (Z;1>> (1.6)

and assume that the initial positions (X@);>; of the particles are independent and identically
distributed according to m.

In the present section, we also suppose that A is a convex function on [0,1]. By Theorem 0.2,
for each ¢ > 1, the nonlinear stochastic differential equation

X} =X} + 0B} — [} A'(H * Py(X1))ds,
YVt > 0, the law of Xt is Pt.

has a unique solution and for all ¢ > 0, the law P; of X} does not depend on i. Under a Lipschitz
regularity assumption on A’, we obtain the following trajectorial propagation of chaos estimation.

Theorem 1.5 If A:[0,1] — R is convex and A’ is Lipschitz continuous with constant K then

) ) K2t2
Vn>1,V1<i<n, ¥t>0, E|[ sup (Xi"-X)?|<——r.
s€[0,t] 6n

Proof . One has

St [ £ 0o (Etins) ()
j=1

=1

+2/ Z(X;%"—X;')C(S,X;,...,Xg)ds
0 =1

where C(s, X! ..., X7) is equal to

n

i 1 1 1
AH * PU(X3)) n<A<E Z; 1{X£§X§}> - A(ﬁ Z; Lixgexiy — ﬁ))
Jj= j=



Like in the proof of trajectorial uniqueness for (1.2), because of the convexity of A, the first term
of the r.h.s. is non-positive. Moreover, by Lipschitz continuity of A’,

Z 1 Y 1 2

(v poxdy = n(a( % Zl{mz)‘A<;;1{Xﬁsxz}‘ﬁ>>)
_ / i (1 . o-1 2
_</O A(H*PS(XS))—A(;jzll{xgg;fr " )Cw)

2l A A 9
< K—Q/O (Z(H*PS(X;) - 1{ngxg})+(H*Ps(X§) _0)> db.

" i
For s > 0, as the variables X' are i.i.d. with common law P, which does not weight points and
H * P,(X!) is uniformly distributed on [0, 1],

/01 E<<§(H # Py(X2) = 1y o) + (H # Py(XD) — 9)>2> 20

1
= S B(H « XD = 1y ey )+ [ B = PL(XD) = 0
J#i

=(n— 1)E<(H * Py(XD)(1 — H « PS(X;'))> +1/6
=n/6.
Using Cauchy-Schwarz inequality, one obtains

E<sup > (X - X > gz/ot ?:E<<§:(X§’”—X;‘)>2>ds

s€l0,t] 55 i=1

_ 2K ( S A
< E( sup (X" — X&)2> ds.
\/_ u€l(0,s] ZZ;

By comparison with the ordinary differential equation o/(t) = 2K/ %, one concludes that

‘ K22
vt >0, (SupZX”L— X ) 5

s€[0,t] 5=

Exchangeability of the couples (X*", X%), i € {1,...,n} completes the proof. ||

Remark 1.6 One could think that assuming that A is uniformly convez:
Ja>0,V0<z<y<l1l, A(y)—A(z)>aly—x) (1.7)

would lead to a better estimation. Indeed, then

(i+1)/n 1 o
Vie{l,...,n—1}, ap(i+1) —ay(i) = n/ [A’(x) - A (m - —>] dx > —.
; n
/n
But since even in this situation, the non-positive term

Z(X?n X3) < (Zl{xk){z > _a"<zl{xgvngxg”"}>>
j=1

i=1



vanishes as soon as the order between the coordinates of (Xsl’n, .., X§"") is the same as the order
between the coordinates of (X!,..., XT), we were not able so far to improve the estimation.

Corollary 1.7 Under the hypotheses of Theorem 1.5, let m be a probability measure on R such
that Vo € R, Hxm(x) < Hxm(x). If for some random variable Uy uniform on [0, 1] independent
from (BY);>1, X} = inf{z : H*m(z) > U1} and (Y,})i>0 denotes the solution of the nonlinear
stochastic differential equation

(1.8)

Y =Y) + 0Bl — [J A'(H * Py(Y,)'))ds,
Vt >0, the law of Y}* is P,.

with Yg = inf{x : H x m(x) > Uy}, then
PVt >0, X} <V}!) =1.

Moreover ¥t > 0, Vo € R, H % Py(x) < H* Py(x). Last, the function t — E|Y;' — X}| is constant.

Remark 1.8 At least when m and m do not weight points, one has a.s. A'(H x Py(X})) =
A'(H*Py(Yy)) since Hxm(X}) = Hxm(Yy) = Uy. Therefore a.s. d(Y'—X")g = 0 and one may
wonder whether a.s. Y,' — X} does not depend on t. If this property holds, necessarily, a.s. dt a.e.
A'(HxPy(X})) = A(H*P,(Y}")). If A’ is increasing, a.s. for allt > 0, Hxp(X}) = H xpy(Y;")
with py and py denoting the respective densities of P, and P,. If A is C?, the Brownian contribution
ind (H * P(X}) — H * ég(Yf)) given by Ité’s formula vanishes i.e. p(X}) = p¢(Y;') and Yu €
10, 1], pe((H * pe) 1 (u)) = pe((H * py)~L(w)) or equivalently ((H x py)~ 1) (u) = ((H * py) ™) (u).
Hence Y;! = X} + ¢ for a deterministic constant c which does not depend on t according to (1.1).
Letting t — 0, one obtains Y§ = X} + c. This necessary condition turns out to be sufficient
as (X} + ¢)i>0 obviously solves the nonlinear stochastic differential equation (0.2) starting from
X} +e.

Proof . For (U;);>2 a sequence of independent uniform random variables independent from
(U1, (B")i>1)), we set

Vi >2, X} =inf{z: H+m(z) > U;} and Y = inf{x : H xm(z) > U;}.
Since H xm < H xm, a.s. Vi > 1, Yoi > Xé. From Proposition 1.3, one deduces that the
solutions (X"",..., X/*™) and (V;"",...,Y;"") to (1.2) respectively starting from (X{,..., X2)
and (Yg,...,YJ) are such that
a.s., Yn>1, Vie{l,...,n}, Vt >0, Yti’n > th‘,n‘

Since, by Theorem 1.5, for fixed t > 0, one may extract from (th ’",Y}l’")nzl a subsequence
almost surely converging to (X},Y,!), one easily deduce that P(Vt > 0, X! <Y;!) = 1. Hence

Vi >0, Yz € R, Hx Pi(z) = P(Y,' <z) <P(X} <) = H * P,(x).

Since |Y,! — X}| - |Yg — X} =Y =Yy — (X} — X)), (1.1) ensures that E[Y;} — X}| € [0, +o<]
does not depend on t. |



2 Long time behaviour

In this section we are interested in the long time behaviour of both the nonlinear process and the
particle system. According to (1.1) and the equality > .. ; a,(i) = nA(1), we have to suppose
A(1) = 0 in order to obtain convergence of the densities as ¢ tends to infinity. We address the
convergence of the density p; of X; by first studying the convergence of the associated cumulative
distribution function F;. Then, in addition to the weak condition A(u) < 0 for u € (0,1), it is
enough to make assumptions on the behaviour of A near the boundaries 0 and 1 of the interval
[0,1] (namely A’(0) < 0 and A’(1) > 0) that determine the spatial behaviour at infinity of the
drift coefficient in (0.2).

To prove exponential convergence of the density of the particle system uniform in the number n of
particles, we make the stronger assumption of uniform convexity on A. The key step in the proof
is to obtain a Poincaré inequality uniform in n for the stationary density of the particle system.
This density has exponential-like tails and does not satisfy a logarithmic Sobolev inequality. So
the derivation of the Poincaré inequality cannot rely on the curvature criterion, used for instance
by Malrieu [12] [13] when dealing with the granular media equation. Instead, we take advantage
of the following nice feature : up to reordering of the coordinates, the stationary density is the
density of the image by a linear transformation of a vector of independent exponential variables.
And it turns out that the control of the constant in the n-dimensional Poincaré inequality relies on
the Hardy inequality stated in Lemma 2.16 which is a one-dimensional Poincaré-like inequality.
To our knowledge, our study provides the first example of a particle system, for which a Poincaré
inequality but no logarithmic Sobolev inequality holds uniformly in the number n of particles.

2.1 The nonlinear process

In this section, we are first going to obtain necessary and sufficient conditions on the function
A ensuring existence for the stationary Fokker-Planck equation obtained by removing the time-
derivative in the nonlinear Fokker-Planck equation

2

o
Opt = 73”1% + 0, (A'(H * p)pt) (2.1)

satisfied by the density of the solution of (0.2). Under a slightly stronger condition, the solutions
satisfy a Poincaré inequality.

Lemma 2.1 A necessary and sufficient condition for the existence of a probability measure
solving the stationary Fokker-Planck equation ‘7—22(9mp+81(A’(H*u(:c))u) = 0 in the distribution
sense is A(1) =0 and A(u) < 0 for all u € (0,1). Under that condition, all the solutions are the
spatial translations of a probability measure with a C' density f which satisfies

Vz eR, f(z)= —%A(H x f(z)) and f'(z) = —%A’(H x f(x))f(x). (2.2)
If A'(0) <0 and A’(1) > 0, then
when x — —o0 _ 240 [* f(y)dy T dy 7214,_02
0 oyl g [ W Jmopm
when x — +00 f(x) {2/(172(1) f;roo f(y)dy an ; f(y) m (2 3)

and all the solutions satisfy a Poincaré inequality and have a finite expectation. Last, if the
function A is C? on [0,1], then f is C? and satisfies

f?(x)
flx)

F(@) =~ A"(H 5 (@) () + (24



Proof . Let 1 be a probability measure on R solving the stationary Fokker-Planck equation.
The equality %-0popt = —0,(A'(H * p(x))p) ensures that p does not weight points. Hence the

stationary equation is equivalent to (9;,3:,3("2—2 w~+ A(H % p(x))) = 0. One deduces that p possesses
a C' density f such that

VreR, f(z)= —%A(H ¢ f(@) + az + B, (2.5)

for some constants o and 3. Since A(0) = 0, letting 2 — —oo then  — +o00 in the last equality,
one obtains « = f = A(1) = 0. For u € (0,1), since u = H x f(z) for some z € R and H * f
is not constant and equal to u, the Cauchy-Lipschitz theorem and (2.5) imply that A(u) # 0.
Since f is non-negative, A(u) < 0. Hence A(1) =0 and A(u) < 0 for all u € (0,1) is a necessary
condition.

Under that condition, a probability measure p solves the stationary Fokker-Planck equation iff
its cumulative distribution function H * p(x) is a C2 solution to the differential equation

o(x) = —%A((p(x)), z € R. (2.6)

g

By the Cauchy-Lipschitz theorem, for each v € [0, 1] this equation admits a unique solution ¢,
with values in [0, 1] such that ¢,(0) = v. Moreover, as A(0) = A(1) =0, g =0 and p; =1 and

Vo € (0,1), Ve € R, 0 < p,(z) < 1. (2.7)

For v € (0,1), since ¢, is non-decreasing and ¢,(z) = v — % [ A'(pu(y))dy, necessarily
limy .40 @u(y) = 1. In the same way, lim,_._o ¢y(y) = 0 and ¢, is an increasing function
from R to (0,1) with inverse denoted by ¢,!. The uniqueness result for (2.6) implies that
Vo € (0,1), Yz € R, p,(z) = 90%(90 + 1 (v)). Therefore the solutions to the stationary Fokker-
Planck equation are the probability meQasures obtained by spatial translation of the probability
measure with density f(z) = ¢/, (x) which satisfies (2.2) according to (2.6).

2

Let us now suppose that A’(0) < 0 and A’(1) > 0. When 2 — 400,

fo) -2 (1- [ - ) ~ 2240 | " fway

o o

By (2.2), @ — (log f(z)) = —%A'((p%(x)) converges to — 241 as 7 — +00. This implies that

f(@) )
W converges to —%2(1) and that xf(z)l,>0y is integrable. Moreover, since f0+°° % =

+00, [y % ~ #2(1) Iy —%dy ~ ij(x), as r — +oo. In the same way, one obtains the

equivalents given in (2.3) when z — —oo and checks the integrability of the function x f ()1 ;<0
From (2.3), one has

. T 4 0 dy B 0,4 41 +o00o J x dy B 0,4
A | W [ wy T aee A, SO L 5y T e

By Theorem 6.2.2 p.99 [1], one concludes that the measure with density f satisfies a Poincaré
inequality.

By (2.2), the function f is C? as soon as the function A is C? on [0,1]. Moreover, f"(z) =
—ZA"(H * f(z))f*(z) — ZA'(H * f(z))f'(x) which combined with (2.2) implies (2.4).
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Remark 2.2 When A is a C' convex function on [0, 1] such that A(0) = A(1) =0 and A'(u) <
0 for some u € (0,1), then the necessary and sufficient condition in Lemma 2.1 is obviously
satisfied. Moreover, since (2.5) with o = 3 = 0 implies

f'<x>)' (—EAH s f@)f (@)
f() /(@)

the probability measures solving the stationary Fokker-Planck equation admit log-concave densities
with respect to the Lebesgue measure.

(o £(0))" = ( ) = S A () (@) <0,

Example . The following three choices for A lead to exact computations and different tails for
the stationary densities:

Fy(z)
o if A(z) = 3z(x — 1), one gets log <1_%7 ($)> =x/0? ie.

1
2

z/o? 1
e
F - - d FI frd ;
%(1’) 14+ ex/02 al %(-%') 402 COSh2(-%'/20'2)
o if A(x) = 2% — 2 = x(z — 1)(z + 1),
1 267493/0'2

Fy() = ——— and F(x)=

2 V14 e—4z/0?

o if A(z) = (1—x)log(l —2) and o = 2, one gets log (M> =2 e

0-2(1 + e—4m/02)3/2;

log(1-F(0))

Fi(zr) =1—exp (— log(2)e2m/”2> and F'(z) = log(2) exp (2m/o’2 - log(2)e2x/‘72).
2

2

In the third example, the C'! assumption on A is relaxed and one remarks that when the derivative
A’ is infinite at 0 or 1, then the corresponding tail of the invariant densities can be really small.

When A(1) =0 and A(u) < 0 for all w € (0,1), a natural question is how to link the translation
parameter of the candidate long time limit of the marginal P, solving the stationary Fokker-
Planck equation to the initial marginal m. When [ |z|m(dz) < 400, by (1.1), for all ¢ > 0,
E(X}) = E(X}). Therefore the translation parameter is chosen in order to ensure that the
invariant measure has the same mean as the initial measure m.

Let us denote by p; the density of P, and by F; = H % P, its cumulative distribution function.

Theorem 2.3 Let A be C? on [0,1] and such that A(1) = 0, Yu € (0,1), A(u) < 0, A'(0) <
0 and A'(1) > 0. Assume that m admits a density po such that [ |x|po(x)dz < +oo and

fR (p();%»? 1s small enough where po, denotes the stationary distribution with same expectation

as po- Last, we suppose that A and py are such that p is a smooth solution of (2.1). Then
_ 2
fR @tp%f;o) converges to 0 exponentially fast as t — +o0.

By a smooth solution of (2.1), we mean that p possesses enough regularity and integrability so
that the formal computations made in the proof below are justified.
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Example . When A(z) = 3(2® — z), one easily checks that ¢(t,z) = —F;(z + L) solves the

Burgers equation
2

006 = T0rat — 50u6%, 6(0,) = ~Fo(a).

According to the Cole-Hopf transformation, ¥ (¢, x) = exp (——2 F ot y)dy) solves the heat
equation

2 T
s = G0, 0.0) =eww (o [ Ry

— 00

Fifa) = =—— oL (23

If  denotes the expectation associated with the cumulative distribution function Fp, one has
[ Fo(z)dz = f;oo(l — Fy(z))dz. Since

/_ZO Fo(z)dz = /_g; Fy(z)dz — /:(1 — Fy(2))dz + (z — 7),

one deduces that the function ¥(0,z) = e‘”o;fw(o,a:) (resp. ¥(0,x)) is bounded on R (resp.
R_) and converges to 1 as x tends to 400 (resp. —o0).
Let us deduce the limit of Fy(z) as t — +o0o. Writing the integral for y € R as the sum of the

it
integrals for y € R_ and for y € R,, and making the change of variables z = % (resp.
ot
z= yaf/ﬁ) in the first (resp. second) integral, one obtains
[ R0, -2
e 202t ,
R oY 4 oV 27t
22 t dz
= [e 21 « Foloviz+z— S)Y(0,0vViz+x— 5
/Re sy} o(oVtz + 2)( oVitz+x 2)\/%
z—z 22 t, dz
o2 21 t — .
+e /]R El ooy Fo Folovitz+z+ = ) (0,0\/_z—|—:v+2)\/%

By Lebesgue theorem, the first term of the right-hand-side converges to 0 whereas the second
term converges to e« . Replacing Fj by 1 in the above computation, one obtains that the
denominator in (2.8), converges to 1 + e o2 . Therefore

acU—Qx
Vo €R, lim Fz) = — —
z—+00 1+eo2

Notice that in the same way, one may also obtain the limit of the density

(z—%-v)? (z—%—y)2

+i-z d -
fo e RyuOy) e [ JpeT 2 Fy(y)u(0,y) %=
pi(z) = _ (@—d-y)? dy 02 (a2
f]R € 2%t ¢(07y)m f]R — 202 (0, y) 0\/7



One easily checks

VreR, lim pyz) = = | —¢7 c 1
T , lim T)=— — — . = —=<-
R F R TR A

In order to prove Theorem 2.3, we are first going to check exponential convergence of Fy to the
cumulative distribution function F, of ps. Let Gy = F; — F. Since for a random variable X
with cumulative distribution function F, E(X) = O+°°(1 — F(x))dx — ffoo F(z)dz the equality
of the expectations associated to F; and F,, writes fR G¢ = 0. This very convenient expression
of the link between p; and p, is one main reason for first considering the convergence of Gy to
0. In order to prove this convergence, we need the following result.

2 2
R Poo R o0

where ¢ denotes the constant in the Poincaré inequality satisfied by p. Moreover

2
(Pt — Poc)? /(Gt>’ 2/ 5
_ Poo + — | G?A"(Fy 2.10
/R Po R \Poo o? R ! ( ) ( )

2 _ 2
and [ L gé/ (P = Poo)” (2.11)
R Poo R Poo

Lemma 2.4 One has

Remark 2.5 When A is convez, (2.11) is a consequence of (2.10) and (2.9).

Proof . As fR Gy = 0, (2.9) is nothing but the Poincaré inequality satisfied by po, written for
the function Gt /peo-

/

. el Gip!

Since (&r) = =t — &Px ne has
Poo Poo Pso

2 ! 2
/(ﬁ)'p _/(pt—poo)2_/G?péo+/G?péo
=
R \Poo R P R D R P
2
:/ (Pt = Psc)’ +/ GEPL _/ iPh
R Poo R D R P

Since poo solves (2.4), one easily deduces (2.10).
Writing G?(y) = 2 (1{y<0} JY oo Gie(pt — poo) (@)dz — 10 f Gi(pt — poo)( )dm) one obtains

T
RZE = —Q/Gt )/o p—oo(y)dydx. (2.12)

By (2.3), and since Ii is bounded from below and above on each compact subset of the real line,

/ox @dy' : pooc(w)'

JC > 0,Vx € R,

13



Using Cauchy-Schwarz inequality in (2.12), and inserting the latter bound, one obtains

1/2 1/2
few () ()"
R Po R Poo R Poo

One easily deduces (2.11). |

_ 2
According to (2.11), the exponential convergence of [ (pe - )" {6 zero is a stronger result than
the exponential convergence stated in the next Lemma.

2
Lemma 2.6 There is a positive constant C such that if fRf—og is small enough, then Vit >
G —Ct G2
0, fRIE <o Jr p_o(;'

Proof . According to (2.2), one has "—;Fég + (A(Fx))" = 0 which also writes ZO‘J = -2 A (Fy).
Combining these equations with (0.1), then using Young’s inequality, one easily obtains for € > 0,

%% RE:__/< ) /R(A(Ft)—A( ) — A'(F, )Gt)<f;>

Gy |A"1%, [ Gt
< (e —— 00 —_—. 2.1
(€ 2)/<poo> T R Poo (2.13)
Since
1Ge]1%, < </ 7‘“_%"‘\/1) >2</7(p’f_p°°)2 (2.14)
T \JR VP *) ~ )k Poo ’

|G¢| is bounded by 1 and poA”(Fx) = —0—2214 x A”(Fy) is bounded, one deduces from (2.10)

that )
4 G? G\
1GH1% < —4HAA”Hoo/ —L + <1A/ <—t> poo>.
o R P R \Poo

Inserting this bound in (2.13) and using Young’s inequality, one deduces that for n > 0,

1d G2 < (5_ O'_)/ Gt - HAA”HOOHA”HC%O /G_% 2
2dt - 2 Poo o) 460'4 e Do
2 2 9
e (in [ (2 ’p G /G_?
R \Poo o 10246277 R Poo
2
(5—}—77_0_)/ G P [ AA" ||l A" 112, N [l /G_?
2 P/ T 4et 1024227 ) \ Jo poe

One easily concludes with (2.9) and Lemma 2.8 below. ||

Remark 2.7 o After reading this proof, one may wonder whether one could replace the
upper-bound in (2.13) by

"2 2
(E_a_)/<at> A [ &
2 Po 16e R Poo
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using ||G¢llo < 1. If the constant c in the Poincaré inequality (2.9) was smaller than
Gt
Poo

ff—j In case A(zx) = %(xz — 1), one has ||A"||oo = 1 and

) 2 +o0 22 A +o0 - . o4
cz/xp —</xp>:/ —>4a/ yeeV=0"=——+
g R 0o 202 cosh%%) 0 14”13

and this approach does not work.

o4

ATz one could deduce ezponential convergence of [ to 0 even for large values of

o Convezity of A implies non-negativity of the term A(F;)— A(Fs)— A’ (Fs )Gt which appears
in the right-hand-side of the first displayed equality in the proof. One may wonder if one
could exploit this property to obtain exponential convergence of pr to poo even if pg is not
close to pso. We have not been able to do so.

Proof of Theorem 2.3. By (2.2), p,, = —5 A’ (Fs)poo and [|poc|lec < 2”2‘#. Using moreover

the Fokker-Planck equation (2.1) for p; then Young’s inequality and (2.14), one easily checks that
for e,n > 0,

b [ (2 e [t (2)

- [t - At ()

o2 . 12 - - 002
A CO Y CLI
+4i (A'(Fy) — A'(Fso))*poo
nJr

2 2 A2 _ 2\ 2
2 R \Poo de R Po

1A% 4lAl% / G}
+ X 1 .
477 o R Po

By (2.11) and Lemma 2.6, for [, @0;%92 small enough, the last term of the r.h.s. is smaller

_ _ 2 12 _ 2
than ceCCt Jz (popfo“) . Since [ <I%) Poo > T [0 (ptp%f:"), one easily concludes by Lemma 2.8

below. [

Lemma 2.8 Assume that u: Ry — R satisfies

du
dt

for some constants o, 3,6 > 0 and v > 0.

Vt >0, —(t) < Bu(t)(u(t) — @) + e

au(0)e= Pt
If~v = > < .
f~v =0 and u(0) < a then ¥Vt > 0, u(t) < a -+ u(0)(e—oBt — 1)

Ifu(0) < § and v < ﬁ%ﬁ then wu(t) converges to 0 exponentially fast as t — +oo.

Proof . When v = 0, as long as u(t) € (0,«), one has Ccll—?(t) (ﬁ + a?t(t)> < —af and after
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integration one obtains the desired estimation. Since the upper-bound is not greater than u(0)
and u(t) =0 = Vs >t, u(s) = 0 one easily concludes.

Bo?

Now when ~ € (0, 5;~), one has Ba(a — a) =~y for some a € (0, §) and

W) < —Bla—u(0) V a)u(t) +ve "

For v(t) = ef@—wOVa)ty, () one deduces

dv
bt < (B(a—u(0)Va)—d)t
5 (B < e

and one concludes by integration of this inequality that u(t) < Ce~[(Bla—u(0)va)ndlt, | |

2.2 The particle system

Let us suppose that A(1) = 0 and that the first order moment associated with the initial probabil-
ity measure m is defined and equal to Z. As in the case of the granular media equation considered
by Malrieu [12] [13], the direction (v, v,...,v) is quite singular for the particle system. Indeed,

n
dX N+ + XN =0 dB},
=1

which prevents the law of (th’N, - ,XtN’N) from converging as t — +o00. Following [12] [13], one

introduces the hyperplane M,, = {y = (y1,...,yn) € R": y1+...4+y, = nz} orthogonal to this
singular direction and denotes by P the orthogonal projection on M, and by P the orthogonal
projection on {y = (y1,...,yn) € R™: y1+...+y, = 0}. Since > | a, (i) = n(A(1)—A(0)) =0,
the orthogonal projection (Y;"" = z 4+ X"™ — 1 > X7™)1<i<n of the original particle system
on M,, is a diffusion on this hyperplane solving

. n—1_ _. o j -
dY?n —c - dBé _ E Z dBtj — ap ( Z 1{Ytj,néyti,n}>dt. (215)
J#i j=1

Propagation of chaos for the projected system is a consequence of the following estimate.

Proposition 2.9 Assume that A is convez, such that A’ is Lipschitz continuous with constant
K and A(1) = 0 and that the initial measure m has a finite second order moment. Then

Vie{l,...,n}, Vt >0,

, 2,42
E((XZ _Y;z,n)2) < 1 <K t
n

+E((Xo — 2)?) 4+ ot + 2 /Ot /]R A(Fs(x))d:cds> .

Proof . Denoting

XP(t) = (X}, XD, X)) = (X", X" and YRR = (YL Y,
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one has

XT(8) =Y (O = X7 () = PX]" (P = |XT(1) — PX] ()] + | PXT(t) - PX7" (1)

n 2 n
% (Z(X;‘ - x)) +) (X - X (2.16)
=1

i=1

IN

Since (X; — z)? < 3 ((Xo — &)? + 02B} + || A’||2.t?), the variable X; is square integrable. As

E(X?)

x

Vo >0, [(z — 2)A(F(2))] < |4 loo(1 = Fe(@)) (@ + |2]) < [|A oo ( + 2|1 - Ft(%))) :

one has lim,_ (2 — Z)A(F;(z)) = 0. Similarly (z — z)A(Fi(x)) also vanishes as x — —oo and
Jp(@—2)A'(Fy(2))pe(z)de = — [ A(Fy(x))dz. Computing (X; —Z)? by It6’s formula and taking
expectations, one deduces that

E((X; — Z)?) :E((Xo—:f)z)+02t+2/0t/RA(Fs(x))dxds.

Moreover, by (1.1), E(X; — ) = —A(1)t = 0. One concludes by taking expectations in (2.16)
then using Theorem 1.5 and exchangeability of the particles. | |

Let us now study the long time behaviour of the projected particle system.

Theorem 2.10 Assume that the function A is uniformly convex on [0, 1] with constant o (see
(1.7)) and such that A(1) = 0. Then, the probability measure with density

1 252 o i,
PR (y) = Z_ne =5 2im1 an(DY()
with respect to the Lebesque measure dy on M,, is invariant for the projected dynamics. Here
Y1) < Y@) < ... < Y denotes the increasing reordering of the coordinates of y = (y1,--.,Yn)
and Zy, = [y, e o2 21OV gy

Moreover, if (Yol’",...,%n’") admits a symmetric density pj(y) with respect to the Lebesgue
measure on M, then for all t > 0 (Y;l’n, LYY admits a symmetric density p}(y) which is

such that
Py 2 o 2
vt >0, /M (p—,ﬁ - > pldy < e ! /M (pTO - 1) phdy (2.17)
n [e.e] n [ele]

where the sequence (\,), is bounded from below by %

In order to deduce long time properties of the nonlinear process from long time properties of the
projected system, the symmetry hypothesis on p{ is not restrictive. But the lack of uniformity
in time of the estimation given in Proposition 2.9 is a real problem.

Remark 2.11 In case n = 2, the process Z; = Yf’z — Y;l’z solves the stochastic differential
equation
dY; = o(dB} — dB}) — sgn(Y:)(a2(2) — as(1))dt
ag(2)—ag(1)
%e_ 2 when the density of Yo

is close enough to this limit. As (th, }/;2’2) = %(—Zt, Zy), one easily deduces exponential conver-

- _as(2) ag(l) .
gence of the density of (YTl’Q,YI%’Q) on the straight line Mo to %e ) e (C2u)

and the density of Yy converges exponentially to
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The proof of Theorem 2.10 relies on the following Poincaré inequality.

Proposition 2.12 Under the assumptions of Theorem 2.10, the density

n!l{ylgmg...gyn} - Z, 1 an (9)y;
Zn

Poo(y) =

on M, is such that for f:R"™ — R reqular enough,

/n<f(y)— f(y)Pa ()dy>21500 dy<—/np’vf )2 (y)dy (2.18)

where the sequence (A,), is bounded from below by 123 .

Proof of Theorem 2.10. Let us first check the following Green formula: for f : R” — R and
u : R® — R" regular enough,

fV - Pu(y)dy = — / PV f - Pu(y)dy. (2.19)
My, n

Let 1 € R™ denote the vector with all coordinates equal to 1. For ¢ : R — R and v : R — R",
one has

/Rgo(\/ﬁz) V- Pv (y + —> dydz = /n o(x1 + ...+ zp, —nT)V - Pu(z)dz

NG

My,

= —/ ¢ (x1+...+x, —nT)1- Po(z)dx = 0.

The function ¢ being arbitrary, one deduces that an V - Pu(y)dy = 0. Since V - P(fu) =
Vf-Pu+ fV-Pu=PVf- -Pu+ fV- Pu, (2.19) follows for the choice v = fu.

By weak uniqueness for (2.15), when (Yol’", ..., Yy""™) has a symmetric density pjy with respect
to the Lebesgue measure on M,,, the particles Y*" i € {1,...,n} are exchangeable and for each
t>0, (Y,"",...,Y/""™) has a symmetric density p?. By composition with the projection P, one
obtains an extension of p} on R™ that we still denote by p}’. Since Y ;" | an(i) = n(A(1)—A(0)) =
0, setting

n(r (1)

a1 (2))

b(y) = Z 1{yr(1)Syr(2)§---SyT(n)} . )
TESK '

an(t71(n))
one has Pb = b and the mﬁmtesunal generator associated with (2.15) is Ly = &V - (PVy) —
V4. Computing dip(Y;™", ..., Y™™ by Ito’s formula and taking expectations then using (2.19),

one obtains
[ voaran= [ pusay= [ wvp (Gt an

Hence the densities solve the Fokker-Planck equation 0;p} = V - P ("—;Vp? + bp?). Now using
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(2.19) and b = —"22;,{’&, one deduces

n 2 n 2
at/ (p—,j— > p@:ody=2/ p—,jV-P(“—Vp%bp?) dy
n \Poo M, P 2

2bp
V n+ t
Pyl dy

V]
=0 pvi
M,  DPx PSo
2
Phody. (2.20)

By symmetry of the function ;;T? and (2.18),

2 o
02/ pady = 02/ PV—;
n n o0

i ? Py ?
> An <—,’§ - ) Prody = A <—,’§ - > Phedy
Mn Mn

o0 o0

i ?
pV-L Doy

o0

and the conclusion follows. [ |

Notice that the computation in (2.20) is formal and can only be justified when p} is a smooth
solution of the Fokker-Planck equation.

Remark 2.13 Let us denote by Y;(l)’n <...< Y;(n)’n the increasing reordering of the random

variables (Ytl’", oYM According to [9], the reordered system is a diffusion process normally

reflected at the boundary of the closed conver set {y € My, : y1 < ya < ... <y,}. More precisely,

Y = 0dB} — an(i)dt + (7 — 7K,
(f(f(%é — N d|K|s,1 < i < n)i>o is a continuous process with finite variation equal to |K|,
=4 =0 and d|K|; a.e. ,¥2<i<n, vi>0 and %(K(Z)’n N Y;(Z_l)vn) =0

(2.21)
where (B1,...,3") is a Brownian motion such that % = lyi—jy — "—:
If the initial condition (Yo(l)’n <...< Yo(n)’n) admits a density p; with respect to the Lebesgue

measure on M, then the law of (Y;(l)’n, e ,Yt(n)’n) is the image of the symmetric law of the
solution (Y,"",....Y;"™) to (2.15) starting from (Yol’",...,YO"’") with density py obtained by
symmetrization of py. Therefore (Y;(l)’n, o ,Y;(n)’n) has the density py (y) = n!p} (Y) 11y, <...<yn}
and (2.17) holds with p™ replaced by p".

In order to prove Proposition 2.12, we take advantage of the specific form of the density pL.
Remarking that p2 is the density of the image of a vector of independent exponential random
variables by a linear transformation, one first obtains the following result.

Lemma 2.14 The Poincaré inequality (2.18) holds with the constant \,, greater than % multi-
plied by the the smallest eigenvalue N, of the (n—1)x(n—1) matriz Q™ defined by V1 < i,5 <n—1,
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Q7 = bn (i) Li;bn(j) where

2 -1 0 0
-1 2 -1 0 0
, 0 -1 2 -1 0 0
b (i) = in = 9) and L" = :
" 0 0o -1 2 -1 0
0 0o -1 2 -1
0 0o -1 2

The last statement in Proposition 2.12 then follows from the next lemma which is obtained by
interpreting Q" as a finite element rigidity matrix associated with the operator —z(1—x)0,,(z(1—
x).) acting on functions on (0,1). The Hardy inequality stated in Lemma 2.16, ensures that it
is enough to bound the smallest eigenvalue of the corresponding mass matrix from below. The
resort to this one-dimensional Poincaré-like inequality in order to estimate the constant in the
n-dimensional Poincaré inequality (2.18) is striking.

Lemma 2.15 The sequence (\,), is bounded from below by 1/(16 x 27).

Proof of Lemma 2.14. Let f be such that an f(y)p (y)dy = 0. Since the left-hand-side in
the Poincaré inequality (2.18) only depends on the restriction of f to M,,, one may assume that
Vz € R", f(x) = f(Pz), which ensures that for (z1,...,2,) € R" such that 1 +... + 2, = 0,
f@+z,...,24+x,) = f(x1,...,2,) and PV f(Z+21,...,2+x,) = Vf(x1,...,2,). Therefore
the Poincaré inequality (2.18) is equivalent to I(f) < %I (IVf|) where

I(g) = / ) 92;520(—@2 + .. 4 xy),xh)dey with 285 = (z2,...,2,).
R~

To integrate the coordinates over independent domains, we make the change of variables 25 =
Mzl where

2 1 1 ... ... 1

-1 1 0 ... ... 0

o -1 1 0 ... 0
M =

o ... 0 -1 1 0

o ... ... 0 —-11

One easily checks that for 2 < i < m, 29+ ... +2; = x93+ ... + x, + x; and deduce that
m—1)za+(n—2)z3+ ...+ 22,1 + 2, =n(x2 + ... + x,). Therefore

1 2—-n 3—n 4—n -1
1 2 3—n 4—n -1
1 1 2 3 4—n ... -1
M7t==| . . . .
n :
1 2 3 n—2 -1
1 2 3 n—1

and denoting
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one has
dzy

)= [ P E R
(R4 )"t ? | M]|

with 8,(i) = 2 ((i = 1)(an(i) + ...+ an(n)) — (n+1 =) (an(1l) + ... 4+ an(i — 1)) positive by
a-convexity of A. Here | M| denotes the determinant of the matrix M it is equal to n by an easy

computation. Tensorizing the Poincaré inequality satisfied by the one-dimensional exponential
density [1], one obtains

2
= ot g 2 Nz A28
f) < / S o [ D N0 f(N2B) | e = el 22
) w1 i BB\ (Na5) M|

k=1

=0 /R" ) Z Zﬂ 2(; )Nk] ING—1 | Ok fOLf Do (— (2 + ... + xy), 25 )day.
j= n

By uniform convexity of A, according to Remark 1.6,
Vie{l,...on—1}, Ve {l,....n—i}, an(i+j)—an(i) > aZ.
n

Therefore, for i € {2,...,n},

n i—1 n i—1
Buli) = S [ G=DD =t 1= 5| =5 [(-DYj-nd
J=i j=1 j=1 J=1
_ % <( _1)n(n2+ - (2—21)z> :a(z—l)(n2; (i—1)) _ %bn(z—l)
Therefore
4 n n—1
I(f) g Sy ; 2 Nk]Nlj OO (— (g + ... + T, 2 )da}
402
< 2 1(vs)

where A, denotes the inverse of the largest eigenvalue of the symmetric non-negative matrix N N*
defined by NZJ = % To prove Proposition 2.12 with a possibly modified lower bound, it is
enough to check that the largest eigenvalue is bounded from above uniformly in n. Unfortunately,
the trace of the matrix can be bounded from below by a positive constant multiplied by log(n).
Therefore one has to be more precise.

Let w be an eigenvector associated with the largest eigenvalue : NN*w = iw. Of course N*w

is non-zero and multiplying the previous equality by N*, one obtains that N*w is an eigenvector

of N*N associated with the eigenvalue ;\i By symmetry, % is also the largest eigenvalue of

N*N. We are going to check that the latter matrix is invertible with inverse equal to Q™ in
order to conclude the proof. Because of the definition of N, it is enough to check that N*N is
invertible with inverse equal to L.

By construction of the matrix N, for the equation Nz§ = = where z € R" to have a solution 2%,
it is necessary and sufficient that 1 = —(z2 + ... + x,) and then 2§ = Ma5.

Now for fixed y € R"!, let us find 2% € R"~! such that N*z = y where & = —(z2+...+,, 25).
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Denoting by J € RM=Dx(n=1) the matrix with all entries equal to 1, the equation writes

N1
Ni2
(M1 — : J |z =y.
Nip—1

One easily checks that the (n — 1) x (n — 1) matrix in the left-hand-side is equal to

1 1 1 ... 1 1 -1 0 0 ... 0
0 1 1 1 0 1 -1 0 0
0 0 1 1 :

.. with inverse R = :

C 0 0 1 -1 0
0 0 1 1 0 ... 0 0 1 -1
0 0 0 1 0 ... 00 0 1

Combining x5 = Ry with the solution of the previous problem, one obtains that the unique
solution of the equation N*Nz3 = y is 25 = M Ry. One concludes by checking that the matrix
MR is equal to L,. [ |

Proof of Lemma 2.15. The functions

0if z € (0,1) \ [&2, EHL]

i(n— z)(x——l)

are such that

1
Vi,j €{1,...,n—1}, Qs = /0 (z(1 = z)u;(x)) (z(1 — z)uj(z)) dz.

By the Hardy inequality stated in Lemma 2.16 below, the smallest eigenvalue of the matrix
Q" is grea’cer than the smallest eigenvalue of the (n — 1) x (n — 1) tridiagonal matrix R}, =

fo u;(z)uj(z)dz divided by 16.
For i € {1, co,n =2} let rl = fi(;;l)/n wi(u; — ujr1)(z)dxr and
1 -1 2 1 1 -1
Th_q = / u? | (z)de = u/ —dr = =
(n—1)/n n (n—1)/n T n

Using the change of variables y = 1 — x, one easily checks that

where by convention RY, = R]'_,,, = 0. We are going to prove that

n

> ) 2,...
Vn > 3,Vi € {2, -3}, r 27

and that r} and 7", are non-negative. For y € R"~!, one deduces that

n—1 n—2
y'R"Y = Z Ry? +2 Z Rl 1Yiyit
i=1 i=1

n—1 n—2
ly|*
= Z(RZ — Ry — R )yl + ZRZ‘H(%‘ +yip1)” > o7
i=1 =1
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and the conclusion follows.
Let us first suppose that i < [%| — 1, which ensures that the function f(z) = 2%(1 — z)? is
increasing on [i/n, (i + 1)/n]. Let g(z) = w;(u; — uiy1)(x). One easily checks that

/(z‘+1)/n 2(n — i)? (l - (i +1)(n—i— 1)) > {0 ifi=1,

dr = . .
g(x)dx nd 3 6i(n — 1) o0 >0

n

Since there is some z; € [i/n, (i + 1)/n] such that the function g(x) is non-negative on [i/n, z;]
then non-positive on [z;, (i + 1)/n], and f is positive and increasing, one deduces that for all
x € [i/n,(i+1)/n], fin %dy > 0. This ensures that

7

var € [i/m, i + 1)/, ;%;(f@» ;:gggdy>==f%$) jyggﬁdy+wxx>zsﬂx»

(y) (y)
Therefore
(i+1)/n (i+1)/n ifi=1
n 9(y) 1 / 0 ifi=1,
rp = dy > —— 9(y)dy = i2(n—i)? .
/in f(y) f((@+1)/n) i/n ) mz% if i > 2.

Let us now suppose that ¢ > |2t} | so that the function f is decreasing on [i/n, (i + 1)/n]. We
deduce that

. 1 (i+1)/n 1 (i+1)/n 1 i(n —1i)
" TG /i/n fui (w)de ~ F(Gi+ 1)/n) /Z./n Juin(@)dr = 3 = G e = o)

and the left-hand-side is greater than 1/12 for i < n — 3 and non-negative for i = n — 2.
We still have to deal with the case n odd and ¢ = (n — 1)/2. Then, f is not monotonic on
[i/n,(i+1)/n] =[1/2—1/2n,1/2 4+ 1/2n]. But by symmetry,

. (n—1)2%(n+1)2 Y2120 (1/2 4+ 1/2n — 2)(1 — 2x)
T(nil)/2 = 1 3 1_ 3 d.%'
6n 1/2—1/2n z*( )

('I’L _ 1)2(n + 1)2 /1/2+1/2n (1 . 2%)2 J
B 32n 1/2—1/2n z?(1 —x)? !
_1)2 2 p1/2+41/2n 2 1)2
_ (1)) / (1= 20dr = @ =1
2n 1/2—1/2n 6n

Lemma 2.16 For all u € L?(0,1) such that the distribution derivative (z(1 — x)u(x))" belongs
to L2(0,1),

1 1
u2xx T —l'UﬂfIQ.fﬂ.
A (2)d sw[;«<1 yu(z)))? d

Proof . For v a C* function with compact support on (0,1), by the integration by parts
formula,

1/2 1)2(1') 1/2 M B 1/2 U’U/(l') oy
/0 7m2(1—x)2dx§4/0 2 dac—8</0 — dx —v (1/2))

1/2 32 V2 ) 1/2
<8 </0 56(2 )dm> </0 (v'(m))%lm) .
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Dealing with the integral on (1/2,1) in a symmetric way, one deduces

L 2(y 1
/0 ﬁdz < 16/0 (v/(ac))2dac. (2.22)

Now approximating v € Hol(O, 1) by a sequence of C'* functions with compact support converging
in the H' norm and almost everywhere, one deduces with Fatou lemma that the inequality still
holds for v € H}.

For u satisfying the hypotheses in the Lemma, v(z) = x(1—2)u(x) belongs to H'(0,1). According
to Theorem VIII.2 p.122 [4], v admits a representative continuous on [0, 1] still denoted by v.

Moreover, since u(z) = xa@r) belongs to L?(0,1), necessarily, v(0) = v(1) = 0. By Theorem
VIIL.11 p.133 [4], v belongs to H}(0,1) and the conclusion follows from (2.22). |
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