Books, book chapters, survey
articles:
- E. Cancès, SCF algorithms for Hartree-Fock
electronic calculations,
in Lecture Notes in Chemistry 74 (Springer 2000) 17-43.
- E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le
Bris and Y.
Maday, Computational quantum
chemistry: a primer, in: Handbook
of numerical analysis. Volume X: special volume: computational
chemistry, Ph. Ciarlet and C. Le Bris eds (North-Holland,
2003) 3-270.
- E. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en
chimie quantique, Springer 2006.
- E. Cancès, Integral
equation approaches for continuum models, in: Continuum solvation models in Chemical
Physics, From theory to applications, B. Mennucci and R. Cammi,
eds (Wiley 2007) 29-48.
- E. Cancès, C. Le Bris and P.-L. Lions, Molecular simulation and related topics:
some open mathematical problems, Nonlinearity 21 (2008)
T165-T176.
- E. Cancès, M. Lewin and G. Stoltz, The microscopic origin of the macroscopic dielectric permittivity of crystals, in: Lecture Notes in Computational Science and Engineering 82 (Springer 2011).
- E. Cancès and C. Le Bris, Mathematical modeling of point defects in materials science, M3AS 23 (2013) 1795–1859.
- E. Cancès, Mathematical perspective on Quantum Monte Carlo methods,
in: Many-Electron Approaches in Physics, Chemistry and Mathematics: A
Multidisciplinary View, V. Bach and L. Delle Site eds (Springer 2014)
393–409.
- E. Cancès, Mathematical models and numerical methods for electronic structure calculation, ICM Proceedings 2014.
- E. Cancès, Electronic structure calculations (solid state physics), in: Princeton Companion to Applied Mathematics, Nicholas Higham ed (Princeton University Press, 2015) 847-851.
- E. Cancès, Self-consistent field (SCF) algorithms, in: Encyclopedia of Applied and Computational Mathematics, B. Engquist ed (Springer, 2015), 1310-1316.
Mathematical
analysis of electronic structure models for quantum chemistry and materials science:
- E. Cancès and C. Le Bris, On the perturbation
methods for some nonlinear quantum
chemistry models, Math. Mod. and Meth. in App. Sci. 8 (1998)
55-94.
- E. Cancès and C. Le Bris, On the time-dependent
Hartree-Fock
equations
coupled
with a classical nuclear dynamics, Math. Mod. and Meth. in App.
Sci.
9 (1999) 963-990.
- A. Ben Haj Yedder, E. Cancès and C. Le Bris, Mathematical remarks on the optimized
effective potential problem, Int. Diff. Eq. 17 (2004) 331-368.
- X. Blanc and E. Cancès,
Nonlinear instability of density-independent orbital-free kinetic
energy
functionals, J. Chem. Phys. 122 (2005) 214106.
- E. Cancès, M. Lewin and G. Stoltz, The electronic
ground-state energy problem: A new reduced density matrix
approach, J. Chem. Phys. 125 (2006) 064101.
- E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulation of
fermions. A mathematical analysis of the fixed node approximation,
Math. Mod. and Meth. in App. Sci. 16 (2006) 1403-1440.
- E Cancès, A. Deleurence and M. Lewin, A new
approach to the modeling of local defects in crystals: The reduced
Hartree-Fock case, Comm. Math. Phys. 281 (2008) 129-177.
- E. Cancès, A. Deleurence and M. Lewin, Non-perturbative embedding of local
defects in crystalline materials, J. Phys.: Condens. Matter 20
(2008) 294213.
- E. Cancès, G. Stoltz, V.N. Staroverov, G.E.
Scuseria, and E.R. Davidson, Local
exchange potentials for electronic structure calculations,
MathematicS In Action 2 (2009) 1-42.
- A. Anantharaman and E. Cancès, Existence of minimizers for Kohn-Sham
models in quantum chemistry, Ann. Inst. Henri Poincaré
26 (2009) 2425-2455.
- E. Cancès and M. Lewin, The dielectric permittivity of crystals in
the reduced Hartree-Fock approximation, Arch. Ration. Mech. Anal. 197 (2010) 139-177.
- E. Cancès and V. Ehrlacher, Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals, Arch. Ration. Mech. Anal. 202 (2011) 933-973.
- E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals, Ann. Inst. Henri Poincaré 29 (2012) 887-925.
- E. Cancès, S. Lahbabi and M. Lewin, Mean-field models for disordered crystals, J. Math. Pures App. 100 (2013) 241–274.
- E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014) 1999–2033.
- E. Cancès and N. Mourad, Existence of optimal norm–conserving pseudopotentials for Kohn–Sham models, Comm. Math. Sci. 14 (2016) 1315–1352.
- E. Cancès, D. Gontier and G. Stoltz, A mathematical analysis of the GW0 method for computing electronic excited energies of molecules, Rev. Math. Phys. 28 (2016) 1650008.
Algorithms
for electronic structure calculation:
- E. Cancès and C. Le Bris, On the
convergence of
SCF algorithms
for the
Hartree-Fock
equations, M2AN 34 (2000) 749-774.
- E. Cancès and C. Le Bris Can we outperform the
DIIS approach
for
electronic
structure calculations?, Int. J. Quantum Chem. 79 (2000)
82-90.
- E. Cancès, SCF algorithms for Kohn-Sham models
with fractional
occupation numbers,
J. Chem. Phys. 114 (2001) 10616-16622.
- K.N. Kudin, G.E. Scuseria and E. Cancès, A
black-box
self-consistent field
convergence algorithm: one step closer, J. Chem. Phys. 116 (2002)
8255-8261.
- E. Cancès, C. Le Bris, Y. Maday, and G. Turinici, Towards
reduced basis
approaches
in ab initio electronic structure computations, Journal of
Scientific
Computing 17 (2002) 461-469.
- E. Cancès, K.N. Kudin, G.E. Scuseria and G.
Turinici, Quadratically
convergent
algorithm for fractional occupation numbers, J. Chem. Phys. 118
(2003) 5364-5368.
- E. Cancès, Galicher and M. Lewin, Computing electronic structures: A new
multiconfiguration approach for excited states, J. Comput. Phys.
212 (2006) 73-98.
- E. Cancès, M. Caffarel, T. Lelièvre, A.
Scemama and G.
Stoltz, An efficient sampling
algorithm for
Variational Monte Carlo , J. Chem. Phys. 125 (2006) 114105 .
- A.F. Izmaylov, V.N. Staroverov, G.E. Scuseria, E.R.
Davidson, G. Stoltz and E. Cancès, The
effective local potential method: Implementation for molecules
and relation to approximate optimized effective potential techniques,
J. Chem. Phys. 126 (2007) 084107.
- M. Barrault, E. Cancès, W.W. Hager and C. Le Bris, Multilevel domain decomposition for
electronic structure calculations , J. Comput. Phys. 222 (2007)
86-109.
- E. Cancès and K. Pernal, Projected gradient algorithms for
Hartree-Fock and density-matrix functional theory, J. Chem.
Phys. 128 (2008) 134108.
- E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A
perturbation–method–based post–processing for the planewave
discretization of Kohn–Sham models, J. Comput. Phys. 307 (2016) 446–459.
- G. Tritsaris, S. Shirodkar, E. Kaxiras, P. Cazeaux, M. Luskin, P. Plechác, and E. Cancès, Perturbation theory for weakly coupled two–dimensional layers, J. Mater. Res. 31 (2016) 959–966.
Numerical analysis of linear and nonlinear eigenvalue problems:
- E. Cancès, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue
problems, J. Sci. Comput. 45 (2010) 90-117.
- W. Hager, G. Bencteux, E. Cancès and C. Le Bris, Analysis of a quadratic programming decomposition algorithm, SIAM J. Numer. Anal. 47 (2010) 4517-4539.
- E. Cancès, R. Chakir and Y. Maday, Numerical analysis of the planewave
discretization of orbital-free and Kohn-Sham models, M2AN (highlight article) 46 (2012) 341-388.
- E. Cancès, V. Ehrlacher and Y. Maday, Periodic Schrödinger operators with local defects and spectral pollution, SIAM J. Numer. Anal. 46 (2012) 3016-3035.
- E. Cancès, V. Ehrlacher and Y. Maday, Non-consistent approximations of self-adjoint eigenproblems: applications to the supercell method, Numer. Math. 28 (2014) 663–706.
- E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A perturbation–method–based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, Comptes Rendus Mathématique 352 (2014) 941–946
- E. Cancès, R. Chakir, L. He and Y. Maday, Two–grid methods for a class of nonlinear elliptic eigenvalue problems, IMA J. Numer. Anal., in press.
Implicit
solvent models:
- E. Cancès, B. Mennucci and J. Tomasi, A new
integral
equation formalism for
the polarizable continuum model: theoretical background and
applications
to isotropic and anisotropic dielectrics, J. Chem. Phys. 101 (1997)
10506-10517.
- B. Mennucci, E. Cancès and J. Tomasi, Evaluation
of solvent
effects in isotropic
and anisotropic dielectrics, and in ionic solutions with a unified
integral
equation method: theoretical bases, computational implementation and
numerical
applications, J. Phys. Chem. 107 (1997) 3032-3041.
- C. Amovilli, V. Barone, R. Cammi, E. Cancès, M.
Cossi, B.
Mennucci, C. S.
Pomelli
and J. Tomasi, Recent advances in the description of solvent
effects
with the polarizable continuum model, Adv. Quantum Chem. 32 (1998)
227.
- E. Cancès and B. Mennucci, New applications of
integral
equation methods
for
solvation continuum models: ionic solutions and liquid crystals, J.
Math. Chem. 23 (1998) 309-326.
- E. Cancès and B. Mennucci, Analytical
derivatives for geometry
optimization
in solvation continuum models I: Theory, J. Chem. Phys. 109 (1998)
249-259.
- E. Cancès, B. Mennucci and J. Tomasi, Analytical
derivatives
for geometry
optimization in solvation continuum models II: Numerical applications,
J. Chem. Phys. 109 (1998) 260-266.
- E. Cancès, C. Le Bris, B. Mennucci and J. Tomasi, Integral
Equation
Methods
for Molecular Scale Calculations in the liquid phase, Math. Mod.
and
Meth. in App. Sci 9 (1999) 35-44.
- J. Tomasi, B. Mennucci and E. Cancès, The IEF
version of the
PCM
solvation
method: an overview of a new method addressed to study molecular
solutes
at the QM ab initio level, J. Mol. Struct. THEOCHEM 464 (1999)
211.
- E. Cancès and B. Mennucci, The escaped charge
problem in
solvation
continuum
models, J. Chem. Phys. 115 (2001) 6130-6135.
- F. Lipparini, G. Scalmani, B. Mennucci, E. Cancès, M. Caricato, and M.J. Frisch, A variational formulation of the polarizable continuum model, J. Chem. Phys. 133 (2010) 014106.
- E. Cancès, Y. Maday and B. Stamm, Domain decomposition for implicit solvation models, J. Chem. Phys., 139 (2013) 054111.
- F. Lipparini, B. Stamm, E. Cancès, Y. Maday and B. Mennucci, Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives, J. Chem. Theory Comput. 9 (2013) 3637–3648.
- F.
Lipparini, L. Lagardère, G. Scalmani, B. Stamm, E.
Cancès, Y. Maday, J.–P. Piquemal, M. Frisch, and B. Mennucci, Quantum calculations in solution for large to very large molecules: a new linear scaling QM/continuum approach, J. Chem. Phys. Lett. 5 (2014) 953–958.
- F.
Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E.
Cancès, Y. Maday, J.–P. Piquemal, M. Frisch, and B. Mennucci, Quantum, classical and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy, J. Chem. Phys. 141 (2014) 184108.
- B. Stamm, E. Cancès, F. Lipparini and Y. Maday, A new discretization for the Polarizable Continuum Model within the domain decomposition paradigm, J. Chem. Phys. 144 (2016) 054101.
Molecular dynamics and exploration of potential energy
surfaces:
- E. Cancès, F. Castella, Ph. Chartier, E. Faou, C. Le Bris, F.
Legoll and G. Turinici, High order
integration formulae with error bounds for statistical average
calculations by molecular dynamics simulations, J. Chem. Phys.
121 (2004) 10346.
- E. Cancès, F. Castella, Ph. Chartier, E. Faou, C. Le Bris, F.
Legoll and G. Turinici, Long-time
averaging using symplectic
solvers with application to molecular dynamics, Numer.
Math. 100 (2005) 211-232.
- E. Cancès, F. Legoll and G. Stoltz, Theoretical and numerical
comparison of some sampling methods for molecular dynamics,
Preprint IMA 2040 (2005).
- E. Cancès, M.-C. Marinica, F. Legoll, K. Minoukadeh and F.
Willaime, Some improvements of the
ART method for finding transition pathways on potential energy surfaces,
J. Chem. Phys. 130 (2009) 114711.
- F. Lipparini, L. Lagardère, B. Stamm, E. Cancès, M. Schnieders, P. Y. Ren, Y. Maday and J.–P. Piquemal, Scalable
evaluation of the polarization energy and associated forces in
polarizable molecular dynamics: I. towards massively parallel direct
space computations, J. Chem. Theory Comput. 10 (2014) 1638–1651.
- L. Lagardère, F. Lipparini, E. Polack, B. Stamm, E. Cancès, M. Schnieders, P. Ren, Y. Maday and J.–P. Piquemal, Scalable
evaluation of polarization energy and associated forces in polarizable
molecular dynamics: II. Towards massively parallel computations using
smooth particle mesh Ewald, J. Chem. Theory Comput. 11 (2015) 2589–2599.
- F. Lipparini, L. Lagardère, C. Raynaud, B. Stamm, E. Cancès, B.
Mennucci, M. Schnieders, P. Y. Ren, Y. Maday and J.–P. Piquemal, Polarizable molecular dynamics in a polarizable continuum solvent, J. Chem. Theory Comput. 11 (2015) 623–634.
- I.G. Tejada, L. Brochard, T. Lelièvre, G. Stoltz, F. Legoll and E. Cancès, Coupling a reactive potential with a harmonic approximation for atomistic simulations of material
failure, Comp. Meth. Appl. Mech. Eng. 305 (2016) 422–440.
Laser
control of molecular processes:
- A.
Ben-Haj-Yedder, E. Cancès and C. Le Bris, Optimal laser
control of
chemical
reactions using automatic differentiation, Proceedings of Automatic
Differentiation 2000: From Simulation to Optimization,
Springer-Verlag
(2001) 203-213.
- A. Auger, C. Dion, A. Ben Haj Yedder, A.
Keller, E. Cancès, C. Le
Bris
and O. Atabek, Optimal laser control of chemical reactions:
methodology
and results, Math. Mod. and Meth. in App. Sci. 12 (2002) 1281-1315.
- A. Ben Haj-Yedder, A. Auger, C. M. Dion, E. Cancès, A. Keller,
C. Le Bris,
and
O. Atabek, Numerical optimization of laser fields to control
molecular
orientation, Phys. Rev. A 66 (2002) 063401.
- C. Dion, A. Ben Haj Yedder, E. Cancès, C. Le Bris, A. Keller
and O.
Atabek, Optimal laser control of orientation: the kicked molecule,
Phys.
Rev. A 65 (2002) 063408.
Greedy algorithms:
- E. Cancès, V. Ehrlacher and T. Lelièvre, Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Math. Mod. and Meth. in App. Sci. 21 (2011) 2433-2467.
- E. Cancès, V. Ehrlacher and T. Lelièvre, Greedy algorithms for high-dimensional non-symmetric linear problems, ESAIM: Proc. 41 (2013) 95–131.
- E. Cancès, V. Ehrlacher and T. Lelièvre, Greedy algorithms for high–dimensional eigenvalue problems, Constr. Approx. 40 (2014) 387–423.
Shape optimization:
- E. Cancès, R. Keriven, F. Lodier and A. Savin, How electrons guard the space: shape
optimization with probability distribution criteria, Theoret.
Chem. Acc. 111 (2004) 373-380.
- A. Gallegos, R. Carbo-Dorca, F. Lodier, E. Cancès
and A. Savin, Maximal probability
domains in linear molecules, J. Comput. Chem. 26 (2005) 455-460.
- G. Allaire, E. Cancès and J.-L. Vié, Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations, Struct. Multidisc Opt., in press.
Multiscale models:
- E. Cancès, I. Catto and Y. Gati, Mathematical analysis of a nonlinear
parabolic equation arising in
the modelling of non-newtonian flows, SIAM J. Math. Anal.
37 (2005) 60-82.
- E. Cancès, I. Catto, Y. Gati and C. Le Bris, A micro-macro model describing Couette
flows of concentrated suspensions, SIAM J. Multiscale Modeling
and Simulation 4 (2005) 1041-1058.
- E. Cancès and C. Le Bris, Convergence
to equilibrium
of a multiscale model for suspensions, DCDS-B 6 (2006) 449-470.
- M. Belhadj, E. Cancès, J.-F. Gerbeau and A. Mikelic, Homogenization approach to filtration
through a fibrous medium, NHM 2 (2007) 529-550.
- E. Cancès, V. Ehrlacher, F. Legoll and B. Stamm, An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation, Comptes Rendus Mathématique, 353 (2015) 801–806.
|