Approximation of OT problems with marginal moments contraints

Aurélien Alfonsi ${ }^{1} \quad$ Rafaël Coyaud ${ }^{1}$ Virginie Ehrlacher ${ }^{2}$

 Damiano Lombardi ${ }^{3}$${ }^{1}$ CERMICS, École des Ponts ParisTech \& MATHRISK project, INRIA
${ }^{2}$ CERMICS, École des Ponts ParisTech \& MATHERIALS project, INRIA
${ }^{3}$ SERENA project, INRIA

Banff - Optimal Transport Methods in Density Functional Theory Thursday January the 31st 2019

Sommaire

1 Introduction
[2. Characteriation of a minimizer of the MCOT Problem

[3 Convergence of the MCOT problem towards the OT problem

4 Numerical simulations

The Moment Constraint Optimal Transport Problem

In the following presentation \mathcal{X} and \mathcal{Y} are compact subsets of \mathbb{R}^{d}, $d \in \mathbb{N}^{*}$.

- The Optimal Transport Problem

$$
\begin{equation*}
I^{*}=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d} \pi(x, y) \tag{1}
\end{equation*}
$$

where $\Pi(\mu, \nu)=\left\{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})\right.$ s.t. $\left.\int_{\mathcal{X}} \mathrm{d} \pi=\mathrm{d} \nu, \int_{\mathcal{Y}} \mathrm{d} \pi=\mathrm{d} \mu\right\}$.

- The Moment Constraint Optimal Transport (MCOT) Problem

$$
I^{N}=\min _{\substack{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \\ \forall 1 \leq m \leq N, \int_{\mathcal{X}} \\ \forall 1 \leq n \leq N, \int_{\mathcal{Y}} \psi_{n}(x) \mathrm{d} \pi(x, y)=\int_{\mathcal{X}} \phi_{m}(x) \mathrm{d}(x, y)=\int_{\mathcal{Y}} \psi_{n}(y) \mathrm{d} \nu(x)}} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d} \pi(x, y),
$$

where for all $1 \leq m, n \leq N, \phi_{m}, \psi_{n}$ are given continuous integrable functions.

Main Results

- One can characterize a minimizer of the MCOT Problem (which is numerically computable).
- With well-chosen sets of test functions $\left(\phi_{m}\right)_{m \in \mathbb{N}}$ and $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ the MCOT problem converges towards the OT problem.
- The convergence speed depends on the choice of test functions.

Sommaire

1 Introduction

2 Characteriation of a minimizer of the MCOT Problem

3 Convergence of the MCOT problem towards the OT problem

4 Numerical simulations

The Tchakaloff Theorem

Proposition (Tchakaloff [Bayer \& Teichmann, 2006], [Berschneider \& Sasvári, 2012])

Let π be a positive measure on the space \mathbb{R}^{d}, with the Borel σ-algebra \mathcal{F}, concentrated in $A \in \mathcal{F}$, i.e. $\pi\left(\mathbb{R}^{d} \backslash A\right)=0$, and $\equiv: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{0}}$ a Borel measurable map.
Assume that the first moments of $\overline{\# \pi}$ exist, i.e.

$$
\int_{\mathbb{R}^{N}}\|u\| \mathrm{d} \equiv \# \pi(u)<\infty
$$

Then, there exist an integer $1 \leq K \leq N_{0}$, points $z_{1}, \ldots, z_{K} \in A$ and weights $w_{1}, \ldots, w_{K}>0$ such that

$$
\int_{\Omega} \equiv_{i}(z) \mathrm{d} \pi(z)=\sum_{k=1}^{K} w_{k} \equiv_{i}\left(z_{k}\right)
$$

for all $1 \leq i \leq N$, where $\bar{\Xi}_{i}$ denotes the i-th component of $\overline{\text { E. }}$

Characterization of a minimizer of the MCOT Problem

Proposition

For any l.s.c. cost function $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$, we consider problems of the form

$$
\begin{equation*}
I^{N}=\min _{\substack{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \\ \forall 1 \leq m \leq N, \int_{\mathcal{X} \times \mathcal{Y}} \phi_{m} \mathrm{~d} \pi=\int_{\mathcal{X}} \phi_{m}(x) \mathrm{d} \mu(x) \\ \forall 1 \leq n \leq N, \int_{\mathcal{X} \times \mathcal{Y}} \psi_{n} \mathrm{~d} \pi=\int_{\mathcal{Y}} \psi_{n}(y) \mathrm{d} \nu(y)}}\left\{\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d} \pi(x, y)\right\}, \tag{3}
\end{equation*}
$$

With appropriate additional conditions on the test functions $\left(\phi_{m}\right)_{1 \leq m \leq N}$ and $\left(\psi_{n}\right)_{1 \leq n \leq N}, I^{N}$ is finite and is a minimum.
Moreover, there exists a finite discrete probability measure $\gamma=\sum_{k=1}^{K} w_{k} \delta_{x_{k}, y_{k}}$ (where for all $k, x_{k} \in \mathcal{X}, y_{k} \in \mathcal{Y}$ and $w_{k} \in \mathbb{R}_{+}^{*}$ and $\sum_{k=1}^{K} w_{k}=1$, and all points $\left(x_{k}, y_{k}\right)$ are different) with $\mathbf{0}<\mathbf{K} \leq \mathbf{2 N}+2$, which is a minimizer.

Characterization of a minimizer of the MCOT Problem, remarks

Remark

One can formulate such a Moment Constraint Optimal Transport Problem even in the case where \mathcal{X} and \mathcal{Y} are non compact sets, with some additional technicalities. Thus it can be applied to DFT.

Remark

The numerical interest of the characterization of such a minimizer is that, for N given test functions on each set, it is computable by a particle algorithm needing only $2 N+2$ points and weights, and in a multimarginal case, with D marginal laws, $D N+2$ points and weights.

Sommaire

1 Introduction

2. Characteriation of a minimizer of the MCOT Problem

3 Convergence of the MCOT problem towards the OT problem

4 Numerical simulations

Density Condition on test functions

The density condition needed to establish the convergence on the compact sets \mathcal{X} and \mathcal{Y} is for the continuous bounded functions and for the L^{∞} norm:
$\forall f \in C_{c}^{0}(\mathcal{X}), \forall \epsilon>0, \exists M \in \mathbb{N}, \lambda_{1}, \ldots, \lambda_{M} \in \mathbb{R}\left|\sup _{x \in \mathcal{X}}\right| f(x)-\sum_{i=1}^{M} \lambda_{i} \phi_{i}(x) \mid \leq \epsilon$
and
$\forall f \in C_{c}^{0}(\mathcal{Y}), \forall \epsilon>0, \exists M \in \mathbb{N}, \lambda_{1}, \ldots, \lambda_{M} \in \mathbb{R}\left|\sup _{y \in \mathcal{Y}}\right| f(y)-\sum_{i=1}^{M} \lambda_{i} \psi_{i}(y) \mid \leq \epsilon$

Notations

Recall

■ The Optimal Transport Problem

$$
\begin{equation*}
I^{*}=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d} \pi(x, y) \tag{6}
\end{equation*}
$$

- The Moment Constraint Optimal Transport (MCOT) Problem

$$
I^{N}=\min _{\substack{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \\ \forall 1 \leq m \leq N, \int_{\mathcal{X}} \phi_{m}(x) \mathrm{d} \pi(x, y)=\int_{\mathcal{X}} \phi_{m}(x) \mathrm{d} \mu(x) \\ \forall 1 \leq n \leq N, \int_{\mathcal{Y}} \psi_{n}(y) \mathrm{d} \pi(x, y)=\int_{\mathcal{Y}} \psi_{n}(y) \mathrm{d} \nu(y)}} .
$$

Convergence of the MCOT Pb towards the OT Pb

Proposition

Let us consider sequences of continuous test functions $\left(\phi_{m}\right)_{m \in \mathbb{N}}$ and $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ defined on \mathcal{X} (resp. \mathcal{Y}) and valued on \mathbb{R}, and verifying the density conditions (4) and (5).
Then, using the previous notations where c is a l.s.c. cost function valued on $\mathbb{R}_{+} \cup\{+\infty\}$, one has that

$$
I^{N} \xrightarrow[N \rightarrow \infty]{ } I^{*}
$$

and that from every sequence $\left(\pi^{N}\right)_{N \in \mathbb{N}}$ such that for all N, π^{N} is a minimizer of the MCOT Problem with N moments, one can extract a subsequence $\left(\pi^{\varphi(N)}\right)_{N \in \mathbb{N}}$ which converges towards

$$
\pi^{*} \in \underset{\pi \in \Pi(\mu, \nu)}{\arg \min }\left\{\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d} \pi(x, y)\right\}
$$

Convergence of the MCOT Pb towards the OT Pb, remark

Remark

This result can be extended to non-compact sets \mathcal{X} and \mathcal{Y} with some more technical conditions on the test functions, for a DFT application.

Convergence speed for piecewise constant test functions

Let us define the intervals

$$
\begin{equation*}
\forall 1 \leq i \leq N-1, T_{i}^{N}=\left[\frac{i-1}{N}, \frac{i}{N}\right) \text { and } T_{N}^{N}=\left[\frac{N-1}{N}, 1\right] \tag{8}
\end{equation*}
$$

On compact sets in dimension 1 , analogous MCOT problems ${ }^{1}$ with piecewise constant test functions $\phi_{i}^{N}=\mathbf{1}_{T_{i}^{N}}$ converge towards the OT Problem at a $1 / N$ speed.

Proposition

Let $\mu, \nu \in \mathcal{P}([0,1])$ and $c:[0,1]^{2} \rightarrow \mathbb{R}_{+}$a function with Lipschitz constant $K>0$. Then, for all $N \in \mathbb{N}^{*}$,

$$
\begin{equation*}
I^{N} \leq I^{*} \leq I^{N}+\frac{K}{N} \tag{9}
\end{equation*}
$$

[^0]
Convergence speed for piecewise affine test functions

On compact sets in dimension 1, MCOT problems with continuous piecewise affine test functions

$$
\phi_{i}(x)= \begin{cases}N\left(x-\frac{i-1}{N}\right) & \text { if } x \in T_{i-1}^{N} \\ 1-N\left(x-\frac{i}{N}\right) & \text { if } x \in T_{i}^{N} \\ 0 & \text { elsewhere. }\end{cases}
$$

converge towards the Wasserstein-1 distance at a $1 / N^{2}$ speed.

Proposition

Consider two marginal laws $\mu \in \mathcal{P}([0,1])$ and $\nu \in \mathcal{P}([0,1])$ with density ρ_{μ} and ρ_{ν} and cumulative distribution functions F_{μ} and F_{ν} respectively. Then

$$
\begin{equation*}
I^{N} \leq W_{1}(\mu, \nu) \leq I^{N}+2 \sup _{[0,1]}\left|\rho_{\mu}-\rho_{\nu}\right| \frac{M}{N^{2}} \tag{10}
\end{equation*}
$$

where M is the number of intervals $T_{i}^{N}(1 \leq i \leq N)$ on which $\left(F_{\mu}-F_{\nu}\right)$ changes of sign.

Sommaire

1 Introduction

[2. Characteriation of a minimizer of the MCOT Problem

3 Convergence of the MCOT problem towards the OT problem

4 Numerical simulations

Convergence speed for piecewise affine test functions in dimension 1

Figure: Convergence speed for piecewise affine test functions in dimension 1 in log-log scale.

dimension 1

(a) iteration 0

(d) iteration 360

(b) iteration 20

(e) iteration 3000

(c) iteration 140

(f) iteration 5000

Figure: Convergence for two 1D marginal laws with 20 test functions on each set

(b) ν
(a) μ

Figure: Marginal laws

Figure: Cost

dimension 2

(a) iteration 0

(c) iteration 1400

(b) iteration 400

(d) iteration 9000

Figure: Transport map

Figure: Convergence for two 2D marginal laws with 36 test functions on each set

Further work

- Explore other possibilities of particle algorithms.
- Study of a symmetric Tchakaloff theorem in order to treat the symmetrical multimarginal case more efficiently.
- Develop an efficient (perhaps multilevel) particle algorithm for dimension 3 in the multimarginal case for a Coulomb cost and in the martingale case.
- Proof of more general rates of convergences.

References

- C. Bayer and Josef Teichmann, The proof of tchakaloff's theorem, Proceedings of the American mathematical society, 134(10):3035-3040, 2006.
- J-D Benamou, G. Carlier, M. Cuturi, G. Peyré and L. Nenna Iterative Bregman Projections for regularizd transportatino problems, SIAM Journal on Scientific Computing, 37(2):A1111-A1138, 2015.
- G. Berschneider and Z. Sasári On a theorem of karhunen and related moment problems and quadrature formulae Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equation, pages 173-187, Springer, 2012.
- P. Billingslay Probability and measure, John Wiley \& Sons, 2008
- B. Jourdain and J. Reygner, Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation, Stochastic Partial Differential Equations: Analysis and Computations, 1(3):455-506, Sep 2013.
- J. Kitagawa, Q. Mérigot and B. Thibert Convergence of a newton algorithm for semi-discrete optimal transport, arXiv preprint arXiv:1603.05579, 2016.
- B. Lévy A numerical algorithm for 12 semi-discrete optimal transport in 3d, ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693-1715, 2015.
- Q. Mérigot A multiscale approach to optimal transport, In Computer Graphics Forum, volume 30, pages 1583-1592. Wiley Online Library, 2011.
- B. Pass Multi-marginal optimal transport: theory and applications, ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1771-1790, 2015.
- F. Santambrogio Optimal transport for applied mathematicians, Birkäuser, NY, 2015.
- B. Schmitzer A sparse multiscale algorithm for dense optimal transport, Journal of Mathematical Imaging and Vision, 56(2):238-259, Oct 2016.
- C. Villani Optimal transport: old and new, volume 38, Springer Science \& Business Media, 2008.

Thank you for your attention.

Idea of proof of the Tchakaloof Theorem

■ For a given measure $\pi \in \mathcal{P}\left(\mathbb{R}^{d}\right), \int_{\mathbb{R}^{d}} z \mathrm{~d} \pi(z)$ lies in cone (A), where A is such that $\pi\left(\mathbb{R}^{d} \backslash A\right)=0$.

- The Caratheodory Theorem states that for a set B in dimension N, a point in cone (B) a positive combination of at most N points of B. Thus, $\exists z_{1}, . ., z_{N} \in \mathbb{R}^{d}, w_{1}, \ldots w_{N}>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} z \mathrm{~d} \pi(z)=\sum_{i=1}^{N} w_{i} z_{i} . \tag{11}
\end{equation*}
$$

- One can apply the previous result to the measure $\overline{\#} \pi \pi$ wich yields to: $\exists z_{1}, . ., z_{N} \in \mathbb{R}^{d}, w_{1}, \ldots w_{N}>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} z \mathrm{~d} \equiv \# \pi(z)=\sum_{i=1}^{N} w_{i} \equiv\left(z_{i}\right) \tag{12}
\end{equation*}
$$

[^0]: ${ }^{1}$ Here the MCOT Problem is a infimum and not a minimum.

