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The Moment Constraint Optimal Transport Problem

In the following presentation X and Y are compact subsets of Rd ,
d ∈ N∗.

The Optimal Transport Problem

I ∗ = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y), (1)

where Π(µ, ν) = {π ∈ P(X × Y) s.t.
∫
X dπ = dν,

∫
Y dπ = dµ}.

The Moment Constraint Optimal Transport (MCOT) Problem

IN = min
π∈P(X×Y)

∀1≤m≤N,
∫
X φm(x)dπ(x,y)=

∫
X φm(x)dµ(x)

∀1≤n≤N,
∫
Y ψn(y)dπ(x,y)=

∫
Y ψn(y)dν(y)

∫
X×Y

c(x , y)dπ(x , y),

(2)
where for all 1 ≤ m, n ≤ N, φm, ψn are given continuous integrable
functions.

Rafaël Coyaud Approximation of OT problems with marginal moments contraints



Introduction
Characteriation of a minimizer of the MCOT Problem

Convergence of the MCOT problem towards the OT problem
Numerical simulations

Main Results

One can characterize a minimizer of the MCOT Problem (which is
numerically computable).

With well-chosen sets of test functions (φm)m∈N and (ψn)n∈N the
MCOT problem converges towards the OT problem.

The convergence speed depends on the choice of test functions.
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Rafaël Coyaud Approximation of OT problems with marginal moments contraints



Introduction
Characteriation of a minimizer of the MCOT Problem

Convergence of the MCOT problem towards the OT problem
Numerical simulations

The Tchakaloff Theorem

Proposition (Tchakaloff [Bayer & Teichmann, 2006], [Berschneider & Sasvári, 2012])

Let π be a positive measure on the space Rd , with the Borel σ-algebra
F , concentrated in A ∈ F , i.e. π(Rd \A) = 0, and Ξ : Rd → RN0 a Borel
measurable map.
Assume that the first moments of Ξ#π exist, i.e.∫

RN

‖u‖dΞ#π(u) <∞.

Then, there exist an integer 1 ≤ K ≤ N0, points z1, ..., zK ∈ A and
weights w1, ...,wK > 0 such that∫

Ω

Ξi (z)dπ(z) =
K∑

k=1

wkΞi (zk)

for all 1 ≤ i ≤ N, where Ξi denotes the i-th component of Ξ.
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Characterization of a minimizer of the MCOT Problem

Proposition

For any l.s.c. cost function c : X × Y → R+ ∪ {∞}, we consider
problems of the form

IN = min
π∈P(X×Y)

∀1≤m≤N,
∫
X×Y φmdπ=

∫
X φm(x)dµ(x)

∀1≤n≤N,
∫
X×Y ψndπ=

∫
Y ψn(y)dν(y)

{∫
X×Y

c(x , y)dπ(x , y).

}
, (3)

With appropriate additional conditions on the test functions (φm)1≤m≤N
and (ψn)1≤n≤N , IN is finite and is a minimum.
Moreover, there exists a finite discrete probability measure
γ =

∑K
k=1 wkδxk ,yk (where for all k , xk ∈ X , yk ∈ Y and wk ∈ R∗+ and∑K

k=1 wk = 1, and all points (xk , yk) are different) with
0 < K ≤ 2N + 2, which is a minimizer.
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Characterization of a minimizer of the MCOT Problem,
remarks

Remark

One can formulate such a Moment Constraint Optimal Transport
Problem even in the case where X and Y are non compact sets, with
some additional technicalities. Thus it can be applied to DFT.

Remark

The numerical interest of the characterization of such a minimizer is
that, for N given test functions on each set, it is computable by a particle
algorithm needing only 2N + 2 points and weights, and in a
multimarginal case, with D marginal laws, DN + 2 points and weights.
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Density Condition on test functions

The density condition needed to establish the convergence on the
compact sets X and Y is for the continuous bounded functions and for
the L∞ norm:

∀f ∈ C 0
c (X ),∀ε > 0,∃M ∈ N, λ1, ..., λM ∈ R | sup

x∈X

∣∣∣∣∣f (x)−
M∑
i=1

λiφi (x)

∣∣∣∣∣ ≤ ε
(4)

and

∀f ∈ C 0
c (Y),∀ε > 0,∃M ∈ N, λ1, ..., λM ∈ R | sup

y∈Y

∣∣∣∣∣f (y)−
M∑
i=1

λiψi (y)

∣∣∣∣∣ ≤ ε
(5)
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Notations

Recall

The Optimal Transport Problem

I ∗ = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y). (6)

The Moment Constraint Optimal Transport (MCOT) Problem

IN = min
π∈P(X×Y)

∀1≤m≤N,
∫
X φm(x)dπ(x,y)=

∫
X φm(x)dµ(x)

∀1≤n≤N,
∫
Y ψn(y)dπ(x,y)=

∫
Y ψn(y)dν(y)

∫
X×Y

c(x , y)dπ(x , y).

(7)

Rafaël Coyaud Approximation of OT problems with marginal moments contraints



Introduction
Characteriation of a minimizer of the MCOT Problem

Convergence of the MCOT problem towards the OT problem
Numerical simulations

Convergence of the MCOT Pb towards the OT Pb

Proposition

Let us consider sequences of continuous test functions (φm)m∈N and
(ψn)n∈N defined on X (resp. Y) and valued on R, and verifying the
density conditions (4) and (5).
Then, using the previous notations where c is a l.s.c. cost function
valued on R+ ∪ {+∞}, one has that

IN −−−−→
N→∞

I ∗

and that from every sequence (πN)N∈N such that for all N, πN is a
minimizer of the MCOT Problem with N moments, one can extract a
subsequence (πϕ(N))N∈N which converges towards

π∗ ∈ arg min
π∈Π(µ,ν)

{∫
X×Y

c(x , y)dπ(x , y)

}
.
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Convergence of the MCOT Pb towards the OT Pb, remark

Remark

This result can be extended to non-compact sets X and Y with some
more technical conditions on the test functions, for a DFT application.
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Convergence speed for piecewise constant test functions

Let us define the intervals

∀1 ≤ i ≤ N − 1, TN
i = [

i − 1

N
,
i

N
) andTN

N = [
N − 1

N
, 1]. (8)

On compact sets in dimension 1, analogous MCOT problems1with
piecewise constant test functions φNi = 1TN

i
converge towards the OT

Problem at a 1/N speed.

Proposition

Let µ, ν ∈ P([0, 1]) and c : [0, 1]2 → R+ a function with Lipschitz
constant K > 0. Then, for all N ∈ N∗,

IN ≤ I ∗ ≤ IN +
K

N
. (9)

1Here the MCOT Problem is a infimum and not a minimum.
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Convergence speed for piecewise affine test functions

On compact sets in dimension 1, MCOT problems with continuous
piecewise affine test functions

φi (x) =

 N
(
x − i−1

N

)
if x ∈ TN

i−1

1− N
(
x − i

N

)
if x ∈ TN

i

0 elsewhere.

converge towards the Wasserstein−1 distance at a 1/N2 speed.

Proposition

Consider two marginal laws µ ∈ P([0, 1]) and ν ∈ P([0, 1]) with density
ρµ and ρν and cumulative distribution functions Fµ and Fν respectively.
Then

IN ≤W1(µ, ν) ≤ IN + 2 sup
[0,1]

|ρµ − ρν |
M

N2
, (10)

where M is the number of intervals TN
i (1 ≤ i ≤ N) on which (Fµ − Fν)

changes of sign.
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Convergence speed for piecewise affine test functions in
dimension 1

Figure: Convergence speed for piecewise affine test functions in dimension 1 in
log-log scale.
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dimension 1

(a) iteration 0 (b) iteration 20 (c) iteration 140

(d) iteration 360 (e) iteration 3000 (f) iteration 5000

Figure: Convergence for two 1D marginal laws with
20 test functions on each set

(a) µ (b) ν

Figure: Marginal laws

Figure: Cost
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dimension 2

(a) iteration 0 (b) iteration 400

(c) iteration 1400 (d) iteration 9000

Figure: Convergence for two 2D marginal laws with
36 test functions on each set

Figure: Transport map

Figure: Cost
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Further work

Explore other possibilities of particle algorithms.

Study of a symmetric Tchakaloff theorem in order to treat the
symmetrical multimarginal case more efficiently.

Develop an efficient (perhaps multilevel) particle algorithm for
dimension 3 in the multimarginal case for a Coulomb cost and in the
martingale case.

Proof of more general rates of convergences.
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Thank you for your attention.
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Idea of proof of the Tchakaloof Theorem

For a given measure π ∈ P(Rd),
∫
Rd zdπ(z) lies in cone(A), where

A is such that π(Rd \ A) = 0.

The Caratheodory Theorem states that for a set B in dimension N,
a point in cone(B) a positive combination of at most N points of B.
Thus, ∃z1, .., zN ∈ Rd , w1, ...wN > 0,∫

Rd

zdπ(z) =
N∑
i=1

wizi . (11)

One can apply the previous result to the measure Ξ#π wich yields
to: ∃z1, .., zN ∈ Rd , w1, ...wN > 0,∫

Rd

zdΞ#π(z) =
N∑
i=1

wiΞ(zi ). (12)
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