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Kantorovich problem with two marginal laws

For any (open or compact) subset X ⊂ Rd (d ∈ N∗), let us denote by P(X )
the set of probability measures on X .

Let d1, d2 ∈ N∗, X1 ⊂ Rd1 and X2 ⊂ Rd2 be open or compact subsets.

Fo ν1 ∈ P(X1) and ν2 ∈ P(X2), let

Π(ν1, ν2) =

{
γ ∈ P(X1 ×X2),∫

X2
dγ(x1, x2) = dν1(x1),

∫
X1

dγ(x1, x2) = dν2(x2)

}
Let c : X1 ×X2 → R+ ∪ {+∞} be lower semi-continuous (l.s.c) cost
function.

The Kantorovich optimal transport problem reads:

inf
γ∈Π(ν1,ν2)

∫
X1,X2

c(x1, x2)dγ(x1, x2).
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Multi-marginal Kantorovich problem

Let N ∈ N∗, and for all 1 ≤ i ≤ N, let di ∈ N∗, Xi ⊂ Rdi be an open or
compact subset.

For all 1 ≤ i ≤ N, let νi ∈ P(Xi ), and let

ΠN((νi )1≤i≤N) :=
{
γ ∈ P(X1, ...,XN),dµi

γ(xi ) = dνi (xi ),∀1 ≤ i ≤ N
}
,

where µi
γ ∈ P(Xi ) denotes the i th marginal law of γ, defined by

dµi
γ(xi ) :=

∫
X1×...Xi−1×Xi+1×...×XN

dγ(x1, ..., xN).

Let c : X1 × ...×XN → R+ ∪ {+∞} be lower semi-continuous (l.s.c.)
cost function.

The multi-marginal Kantorovich optimal transport problem reads:

I = inf
γ∈ΠN ((νi )1≤i≤N )

∫
X1×...×XN

cdγ.
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discretization

Let M ∈ N∗, we discretize the measure νi ∈ P(Xi ) on a fixed discretization
grid of Xi , x

1
i , ..., x

M
i ∈ Xi .

dνi (x) ≈
M∑
j=1

ν̄ ji δx j
i
,

for some ν̄ ji ∈ R+ such that
∑M

j=1 ν̄
j
i = 1.

In the two marginal laws case, introduce

Γ :=

{
(γ̄j1,j2 ) ∈ RM2

+

∀1 ≤ j ≤ M,
∑M

j1=1 γ̄
j1,j = ν̄ j2,

∑M
j2=1 γ̄

j,j2 = ν̄ j1

}
so that

γ ≈
∑
j1,j2

γ̄j1,j2δ
x
j1
1 ,x

j2
2

and we solve the linear problem under linear constraints in RM2

inf
(γ̄j1,j2 )∈Γ

M∑
j1,j2

c(x j11 , x
j2
2 )γ̄j1,j2 .
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Numerical methods for multi-marginal optimal transport
problems

Several numerical methods have been introduced in the literature for the
resolution of the multi-marginal optimal transport problems. We mention
here two of them in the context of the symmetric multimarginal Kantorovich
problem with Coulomb Cost:

[Benamou,Carlier,Cuturi,Nenna,Peyre,2015], [Nenna,2016] : use of an entropic
regularization (using the Kullback-Leibler entropy), together with an
iterative algorithm called Sinkhorn algorithm.

[Mendl,Lin,2013]: dual formulation of the Kantorovich problem, and clever
treatment of the (infinite-dimensional) inequality constraint.
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Alternative discretization: Moments Constrained Optimal
Transport Problem

Let M ∈ N∗ and φi1, ..., φ
i
M ∈ Cb(Xi ) be some continuous bounded functions

on Xi . They will be called hereafter test functions.

For all 1 ≤ i ≤ N, the marginal constraint

dµi
γ(xi ) = dνi (xi )

is then approximated by the M moment constraints: for all 1 ≤ j ≤ M,∫
Xi

φij(xi )dµ
i
γ(xi ) =

∫
X1×...×XN

φij(xi )dγ(x1, ..., xN) =

∫
Xi

φij(xi )dνi (xi ) =: ν̄ ji

and we consider the following approximate problem (MCOT problem)

IM = inf
γ∈P(X1×...×XN )
∀1≤i≤N, ∀1≤j≤M,∫

X1×...×XN
φi
j (xi )dγ(x1,...,xN )=ν̄ j

i

∫
X1×...×XN

cdγ. (1)

Remark

IM ≤ I
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Outline of the talk

Study the conditions on the test functions (φij)1≤i≤N
1≤j≤M

and on the marginal

laws νi , which can provide answers to the following questions:

Does IM −−−−−→
M→+∞

I

Does IM admits a minimizer? Can we say something about a minimizer
which could be interesting for numerics?

Can we obtain rates of convergences?

Rafaël Coyaud Approximation of OT problems with marginal moments contraints 9/33



Summary

1 Introduction

2 MCOT problems and applications

3 Rates of convergence

4 Conclusion and perspectives
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Tchakaloff’s theorem

The following theorem is the backbone of our analysis.

Theorem (Tchakaloff [Bayer & Teichmann, 2006], [Berschneider & Sasvári, 2012])

Let d ∈ N∗ and let γ be a measure on Rd concentrated on a Borel set
A ∈ F , i.e. γ(Rd \ A) = 0. Let M0 ∈ N∗ and Λ : Rd → RM0 a Borel
measurable map. Assume that the first moments of Λ#γ exist, i.e.∫

RM0

‖u‖dΛ#γ(u) =

∫
Rd

‖Λ(z)‖dγ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RM0 . Then, there exist an integer
1 ≤ K ≤ M0, points z1, ..., zK ∈ A and weights w1, ...,wK > 0 such that

∀1 ≤ j ≤ M0,

∫
Rd

Λj(z)dγ(z) =
K∑

k=1

wkΛj(zk),

where Λj denotes the j-th component of Λ.
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Compact set case

We consider that for all 1 ≤ i ≤ N, Xi is compact.
Let for all 1 ≤ i ≤ N, (φij)j∈N∗ ⊂ C(Xi ) such that

∀j ∈ N∗,
∫
Xi

|φij(xi )|dνi < +∞, (2)

and satisfying the density condition

∀f ∈ C(Xi ), inf
fM∈Span(φi

1,...,φ
i
M )
‖f − fM‖L∞(Xi ) −−−−→

M→∞
0. (3)

Theorem

For all M ∈ N∗, it holds that IM ≤ I and IM −−−−−→
M→+∞

I .

Besides, there exists an integer 1 ≤ K ≤ MN + 2, and for all 1 ≤ k ≤ K ,
points zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γM =
K∑

k=1

wkδxk
1 ,...,x

k
N

is a minimizer of the MCOT Problem (1).
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Idea of proof

Fix M ∈ N∗, if for all 1 ≤ i ≤ N, Xi is compact, minimizing sequences
(γn)n∈N for the MCOT problem are tight. Thus, up to the extraction of a
subsequence γn −−−−⇀

n→+∞
γ∞ ∈ P(X1, ...,XN), where γ∞ is a minimizer of

the MCOT Problem (due to the continuity of test functions and using
Fatou’s Lemma and Skorohod representation theorem)

Applying Tchakaloff’s theorem to

Λ :



X1 × ...×XN → RMN+2

(x1, ..., xN) 7→


φ1

1(x1)
...

φNM(xN)
1

c(x1, ..., xN)


(4)

gives the finite discrete minimizer.

Tightness allows a subsequence of minimizers to converge towards a
minimizer of the OT Problem (using the density condition).
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Non compact case

We consider that for all 1 ≤ i ≤ N, Xi can be non compact.
Let for all 1 ≤ i ≤ N, (φij)j∈N∗ ⊂ C(Xi ) such that

∀j ∈ N∗,
∫
Xi

|φij(xi )|dνi < +∞, (5)

and let us assume that the probability measures νi are characterized by their
moments

∀η ∈ P(Xi ),

(
∀j ∈ N∗,

∫
Xi

φij(x)dη(x) = ν̄ ji

)
=⇒ η = νi . (6)

Let us assume that there exists non-decreasing functions θνi : R+ → R+ such
that

for all 1 ≤ i ≤ N, θνi (r) −−−−→
r→+∞

+∞

A0 :=
∑N

i=1

∫
Xi
θνi (|xi |)dνi (xi ) < +∞

for all 1 ≤ i ≤ N, for all j ∈ N∗, there exists Cνij > 0 and 0 < sνij < 1 such
that

∀x ∈ Xi , |φij(x)| ≤ Cνij (1 + θνi (|x |))s
νi
j .
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Non compact case

Then, consider for all M ∈ N∗,

IMA0
= inf

γ∈P(X1×...×XN )
∀1≤i≤N, ∀1≤j≤M,∫

X1×...×XN
φi
j (xi )dγ(x1,...,xN )=ν̄ j

i∫
X1×...×XN

∑N
i=1 θνi (|xi |)dγ(x1,...,xN )≤A0

∫
X1×...×XN

cdγ. (7)

Theorem

For all M ∈ N∗, it holds that IMA0
≤ I and IMA0

−−−−−→
M→+∞

I .

Besides, there exists an integer 1 ≤ K ≤ MN + 2, and for all 1 ≤ k ≤ K ,
points zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γM =
K∑

k=1

wkδxk
1 ,...,x

k
N

is a minimizer of the MCOT Problem (7).

The additional inequality constraint ensures the tightness of the minimizing
sequences.

Rafaël Coyaud Approximation of OT problems with marginal moments contraints 15/33



Non compact case

Then, consider for all M ∈ N∗,

IMA0
= inf

γ∈P(X1×...×XN )
∀1≤i≤N, ∀1≤j≤M,∫

X1×...×XN
φi
j (xi )dγ(x1,...,xN )=ν̄ j

i∫
X1×...×XN

∑N
i=1 θνi (|xi |)dγ(x1,...,xN )≤A0

∫
X1×...×XN

cdγ. (7)

Theorem

For all M ∈ N∗, it holds that IMA0
≤ I and IMA0

−−−−−→
M→+∞

I .

Besides, there exists an integer 1 ≤ K ≤ MN + 2, and for all 1 ≤ k ≤ K ,
points zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γM =
K∑

k=1

wkδxk
1 ,...,x

k
N

is a minimizer of the MCOT Problem (7).

The additional inequality constraint ensures the tightness of the minimizing
sequences.
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Numerical scheme

This suggests to consider the following problem (particle problem) as a
numerical scheme

inf
w1,...,wMN+2≥0∑MN+2

k=1 wk=1

(xk
1 ,...,x

k
MN+2)1≤k≤MN+2∈(X1×...×XN )MN+2

∀1≤i≤N, ∀1≤j≤M,
∑MN+2

k=1 wkφ
i
j (x

k
i )=ν̄ j

i

MN+2∑
k=1

wkc(xk1 , ..., x
k
N). (8)
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Symmetric multi-marginal OT problem with Coulomb Cost

This problem arises in quantum chemistry applications [Seidl, 1999], [Seidl,

Gori-Giorgi, Savin, 2007], [Cotar, Friesecke, Klüppelberg, 2011], [Lewin, 2017], [Cotar, Friesecke,

Klüppelberg, 2018], where N is a number of electrons. (see M. Seidl, C. Cotar, G.
Friesecke, M. Lewin, A. Gerolin and L. Nenna talks)

Let d = d1 = ... = dN and X1 = ... = XN = Rd .

Let ρ = ν1 = ... = νN , and ΠN(ρ) := Π(ρ, ..., ρ)

Let

c :

{
(Rd)N → R+ ∪ {+∞}

(x1, ..., xN) 7→
∑

1≤i<j≤N
1

|xi−xj |

be the Coulomb Cost.

The problem considered is

I = inf
γ∈ΠN (ρ)

∫
(Rd )N

cdγ.
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Symmetric multi-marginal OT problem with Coulomb Cost

Recall the associated MCOT Problem, where ρj =
∫
Rd φj(x)dρ(x)

IMA0
= inf

γ∈P((Rd )N )
∀1≤i≤N,∀1≤j≤M,∫

(Rd )N
φj (xi )dγ(x1,...,xN )=ρj∫

(Rd )N

∑N
i=1 θρ(|xi |)dγ(x1,...,xN )≤A0
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Symmetric multi-marginal OT problem with Coulomb Cost

Theorem

For all M ∈ N∗, it holds that IMA0
= ĨMA0

.
Besides, there exists an integer 1 ≤ K ≤ M + 2, and for all 1 ≤ k ≤ K ,
points zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γMsym :=
1

N!

∑
σ∈SN

K∑
k=1

wkδxk
σ(1)

,...,xk
σ(N)

is a minimizer of MCOT Problems (9) and (10).

Remark

To compute a minimizer of the MCOT problem, one only needs to find at
most M + 2 scalars wk and points zk = (xk1 , ..., x

k
N) ∈ (Rd)N :

O (3(M + 2)N) .
In [Friesecke, Vögler, 2018], a different result (but in the same spirit) was obtained
by the authors in the case when the OT problem is discretized in a finite
state space.
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Martingale Optimal Transport problem

For the sake of simplicity, we will only consider two marginal laws
ν1 ∈ P(Rd) and ν2 ∈ P(Rd), d ∈ N∗.
We assume that there exist a martingale coupling between ν1 and ν2:

∃γ ∈ Π(ν1, ν2), ∀x1 ∈ Rd ,

∫
Rd

x2dγ(x1, x2) = x1,

and a l.s.c. cost function c : Rd × Rd → R+ ∪ {+∞}.
The Martingale Optimal Transport Problem reads as

I = inf
γ∈Π(ν1,ν2)

∀x1∈Rd ,
∫
Rd x2dγ(x1,x2)=x1

∫
R2d

c(x1, x2)dγ(x1, x2).

This problem arises in finance where ν1 and ν2 are known distribution of
prices and

∫
R2d c(x1, x2)dγ(x1, x2) is the payoff of an option for a given model.
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Martingale Optimal Transport problem

Let us introduce the following MCOT Problems, for all M ∈ N∗, with the
same constraints on the test functions as in the non compact case,

IM,mg
A0

= inf
γ∈P(Rd×Rd )
∀i=1,2, ∀1≤j≤M,∫

Rd×Rd φ
i
j (xi )dγ(x1,x2)=ν̄ j

i

∀x1∈Rd ,
∫
Rd x2dγ(x1,x2)=x1,∫

Rd×Rd
∑2

i=1 θνi (|xi |)dγ(Rd×Rd )≤A0

∫
Rd×Rd

cdγ. (11)

and

IM,M
′

A0
= inf

γ∈P(Rd×Rd )
∀i=1,2, ∀1≤j≤M,∫

Rd×Rd φ
i
j (xi )dγ(x1,x2)=ν̄ j

i

∀1≤l≤M′,
∫
Rd x2χl (x1)dγ(x1,x2)=

∫
Rd x1χl (x1)dν1(x1),∫

Rd×Rd
∑2

i=1 θνi (|xi |)dγ(Rd×Rd )≤A0

∫
Rd×Rd

cdγ. (12)
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Martingale Optimal Transport problem

With appropriate constraints on the additional test functions χl , one can
prove that

The problem (12) admits a finite discrete minimizer.

IM,M
′

A0
−−−−→
M′→∞

IM,mg
A0

< +∞

IM,mg
A0

−−−−→
M→∞

I

Remark

In the practical application in finance, the marginal laws ν1 and ν2 are in
general not observed, and market data only provide some moments, as in
Problem (11).
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Back to the 2-marginal Kantorovich problem

From now on, let ν1, ν2,∈ P([0, 1]). Let us consider the following
two-marginal optimal transport problem

I = inf
γ∈P([0,1]×[0,1])

dµ1
γ=dν1

dµ2
γ=dν2

∫
[0,1]×[0,1]

c(x1, x2)dγ(x1, x2),

with c(x1, x2) = |x1 − x2| or c(x1, x2) = |x1 − x2|2.
Let M ∈ N∗ and let us define the intervals

TM
1 :=

[
0,

1

M

]
,TM

j :=

(
j − 1

M
,

j

M

]
, ∀2 ≤ j ≤ M.
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Sets of test functions

We consider three different sets of test functions:

Piecewise constant (P0) test functions:

∀1 ≤ j ≤ M, φMj := 1TM
j

Continuous piecewise affine (continuous P1) test functions: for 2 ≤ j ≤ M

φMj (x) :=

∣∣∣∣∣∣∣∣
M
(
x − j−2

M

)
if x ∈ TM

j−1,

M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,

φM1 (x) :=

∣∣∣∣ 1−Mx if x ∈ TM
1 ,

0 otherwise,

Discontinuous piecewise affine (discontinuous P1) test functions: for
1 ≤ j ≤ M

φMj,1(x) :=

∣∣∣∣∣ M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,
φMj,2(x) :=

∣∣∣∣∣ M
(
x − j−1

M

)
if x ∈ TM

j ,

0 otherwise,
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MCOT problems

in the P0 or continuous P1 case:

IM := inf
γ∈P([0,1]×[0,1])
∀i=1,2, ∀1≤j≤M,∫

[0,1]×[0,1]
φM
j (xi )dγ(x1,x2)=

∫
[0,1]

φM
j (xi )dνi (xi )

∫
[0,1]×[0,1]

cdγ.

or in the discontinous P1 case:

IM := inf
γ∈P([0,1]×[0,1])

∀i=1,2, ∀1≤j≤M, ∀l=1,2∫
[0,1]×[0,1]

φM
j,l (xi )dγ(x1,x2)=

∫
[0,1]

φM
j,l (xi )dνi (xi )

∫
[0,1]×[0,1]

cdγ.
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Rates of convergence

Theorem

P0 case: if c is Lipschitz with constant C , then for all M ∈ N∗,

|I − IM | ≤ C

M
.

continuous P1 case and c(x1, x2) = |x1 − x2|: Let us assume that
dν1(x) = ρ1(x)dx and dν2(x) = ρ2(x)dx . Let us denote by F1 and F2 the
cumulative distribution functions of ν1 and ν2 and let us assume that the
function F1 − F2 changes sign at most Q ∈ N times on [0, 1] and that
ρ1 − ρ2 ∈ L∞([0, 1],dx ,R). Then, for all M ∈ N∗,

|I − IM | = |W1(ν1, ν2)− IM | ≤ 2Q‖ρ1 − ρ2‖∞
M2

.
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Idea of proof (continuous P1 case, c(x1, x2) = |x1 − x2|)
Remark that a measure γ ∈ P([0, 1]× [0, 1]) with marginal laws
cumulative distribution functions F̃1 and F̃2 and satisfying the P1 moment
constraints is such that

∀i = 1, 2, ∀1 ≤ j ≤ M,

∫
TM

j

Fi =

∫
TM

j

F̃i

For all 1 ≤ j ≤ M, if F1 − F2 does not change of sign on TM
j then∫

TM
j

|F1 − F2| ≤
∫
TM

j

|F̃1 − F̃2|

For all 1 ≤ j ≤ M, if F1 − F2 does change of sign on TM
j then∫

TM
j

|F1 − F2| ≤
∫
TM

j

|F̃1 − F̃2|+ 2

∫
TM

j

(F1 − F2)−

≤
∫
TM

j

|F̃1 − F̃2|+ 2‖ρ1 − ρ2‖∞
1

N2

by hypothesis, only Q intervals of the last type and if γ is a minimizer of
the MCOT problem, ∫ 1

0

|F1 − F2| ≥
∫ 1

0

|F̃1 − F̃2|.
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Rafaël Coyaud Approximation of OT problems with marginal moments contraints 28/33



Rates of convergence

Theorem

continuous P1 case and c(x1, x2) = |x1 − x2|2: Let us assume that
dν1(x) = ρ1(x)dx and dν2(x) = ρ2(x)dx for some
ρ1, ρ2 ∈ L∞([0, 1],dx ;R+). Let us denote by F1 and F2 the cumulative
distribution functions of ν1 and ν2. Then, for all M ∈ N∗,

|I − IM | = |W 2
2 (ν1, ν2)− IM | ≤ 7

3

‖ρ1‖L∞ + ‖ρ2‖L∞
M2

.
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Conclusion and perspectives

Conclusions

Alternative way of discretizing multi-marginal optimal transport problems,
in particular for application in quantum chemistry or finance using test
functions: MCOT problems;

Convergence of MCOT problem towards the OT problem;

Some minimizers of MCOT problems can be written as discrete measures
charging a low number of points (and even lower using symmetries in
quantum chemistry)

suggest the use of a particle numerical scheme for the resolution of the
MCOT problem

Preliminary results on simple OT problems on the rate of convergence of
the MCOT problem towards the OT problem for piecewise constant and
piecewise affine functions

Perspectives

find an algorithm which can efficiently solve the particle problem

prove more general convergence rates of the MCOT problem to the exact
OT problem.
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