Approximation of OT problems with marginal moments contraints

Aurélien Alfonsi ${ }^{1}$ Rafaël Coyaud ${ }^{1}$ Virginie Ehrlacher ${ }^{2}$ Damiano Lombardi ${ }^{3}$

${ }^{1}$ CERMICS, École des Ponts ParisTech \& MATHRISK project, INRIA
${ }^{2}$ CERMICS, École des Ponts ParisTech \& MATHERIALS project, INRIA
${ }^{3}$ SERENA project, INRIA

MOANSI meeting 2020
Friday September the 25th 2020

Summary

1 Introduction

2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest
3. Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions
6. Rates of convergence

Kantorovich problem with two marginal laws

For any (open or compact) subset $\mathcal{X} \subset \mathbb{R}^{d}\left(d \in \mathbb{N}^{*}\right)$, let us denote by $\mathcal{P}(\mathcal{X})$ the set of probability measures on \mathcal{X}.

- Let $d_{1}, d_{2} \in \mathbb{N}^{*}, \mathcal{X}_{1} \subset \mathbb{R}^{d_{1}}$ and $\mathcal{X}_{2} \subset \mathbb{R}^{d_{2}}$ be open or compact subsets.
- For $\nu_{1} \in \mathcal{P}\left(\mathcal{X}_{1}\right)$ and $\nu_{2} \in \mathcal{P}\left(\mathcal{X}_{2}\right)$, let

$$
\Pi\left(\nu_{1}, \nu_{2}\right)=\left\{\begin{array}{c}
\gamma \in \mathcal{P}\left(\mathcal{X}_{1} \times \mathcal{X}_{2}\right), \\
\int_{\mathcal{X}_{2}} \mathrm{~d} \gamma\left(x_{1}, x_{2}\right)=\mathrm{d} \nu_{1}\left(x_{1}\right), \int_{\mathcal{X}_{1}} \mathrm{~d} \gamma\left(x_{1}, x_{2}\right)=\mathrm{d} \nu_{2}\left(x_{2}\right)
\end{array}\right\}
$$

- Let $c: \mathcal{X}_{1} \times \mathcal{X}_{2} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ be lower semi-continuous (I.s.c) cost function.

The Kantorovich optimal transport problem reads:

$$
\inf _{\gamma \in \Pi\left(\nu_{1}, \nu_{2}\right)} \int_{\mathcal{X}_{1}, \mathcal{X}_{2}} c\left(x_{1}, x_{2}\right) \mathrm{d} \gamma\left(x_{1}, x_{2}\right) .
$$

Multi-marginal Kantorovich problem

■ Let $N \in \mathbb{N}^{*}$, and for all $1 \leq i \leq N$, let $d_{i} \in \mathbb{N}^{*}, \mathcal{X}_{i} \subset \mathbb{R}^{d_{i}}$ be an open or compact subset.

- For all $1 \leq i \leq N$, let $\nu_{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$, and let

$$
\Pi^{N}\left(\left(\nu_{i}\right)_{1 \leq i \leq N}\right):=\left\{\gamma \in \mathcal{P}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{N}\right), \mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right)=\mathrm{d} \nu_{i}\left(x_{i}\right), \forall 1 \leq i \leq N\right\}
$$

where $\mu_{\gamma}^{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$ denotes the $i^{\text {th }}$ marginal law of γ, defined by

$$
\mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right):=\int_{\mathcal{X}_{1} \times \ldots \mathcal{X}_{i-1} \times \mathcal{X}_{i+1} \times \ldots \times \mathcal{X}_{N}} \mathrm{~d} \gamma\left(x_{1}, \ldots, x_{N}\right) .
$$

■ Let $c: \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ be lower semi-continuous (I.s.c.) cost function. The multi-marginal Kantorovich optimal transport problem reads:

$$
I=\inf _{\gamma \in \Pi^{N}\left(\left(\nu_{i}\right)_{1 \leq i \leq N}\right)} \int_{\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}} c \mathrm{~d} \gamma .
$$

discretization

Let $M \in \mathbb{N}^{*}$, we discretize the measure $\nu_{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$ on a fixed discretization grid of \mathcal{X}_{i}, $x_{i}^{1}, \ldots, x_{i}^{M} \in \mathcal{X}_{i}$.

$$
\mathrm{d} \nu_{i}(x) \approx \sum_{j=1}^{M} \bar{\nu}_{i}^{j} \delta_{x_{i}^{j}}
$$

for some $\bar{\nu}_{i}^{j} \in \mathbb{R}_{+}$such that $\sum_{j=1}^{M} \bar{\nu}_{i}^{j}=1$.

discretization

Let $M \in \mathbb{N}^{*}$, we discretize the measure $\nu_{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$ on a fixed discretization grid of \mathcal{X}_{i}, $x_{i}^{1}, \ldots, x_{i}^{M} \in \mathcal{X}_{i}$.

$$
\mathrm{d} \nu_{i}(x) \approx \sum_{j=1}^{M} \bar{\nu}_{i}^{j} \delta_{x_{i}^{j}}
$$

for some $\bar{\nu}_{i}^{j} \in \mathbb{R}_{+}$such that $\sum_{j=1}^{M} \bar{\nu}_{i}^{j}=1$.
In the two marginal laws case, introduce

$$
\Gamma:=\left\{\begin{array}{c}
\left(\bar{\gamma}^{j_{1}, j_{2}}\right) \in \mathbb{R}_{+}^{M^{2}} \\
\forall 1 \leq j \leq M, \sum_{j_{1}=1}^{M} \bar{\gamma}^{j_{1}, j}=\bar{\nu}_{2}^{j}, \sum_{j_{2}=1}^{M} \bar{\gamma}^{j, j_{2}}=\bar{\nu}_{1}^{j}
\end{array}\right\}
$$

so that

$$
\gamma \approx \sum_{j_{1}, j_{2}} \bar{\gamma}^{j_{1}, j_{2}} \delta_{x_{1}^{j_{1}}, x_{2}^{j_{2}}}
$$

and we solve the linear problem under linear constraints in $\mathbb{R}^{M^{2}}$

$$
\inf _{\left(\bar{\gamma}_{j_{1}, j_{2}}\right) \in \Gamma} \sum_{j_{1}, j_{2}}^{M} c\left(x_{1}^{j_{1}}, x_{2}^{j_{2}}\right) \bar{\gamma}^{j_{1}, j_{2}}
$$

discretization

Let $M \in \mathbb{N}^{*}$, we discretize the measure $\nu_{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$ on a fixed discretization grid of \mathcal{X}_{i}, $x_{i}^{1}, \ldots, x_{i}^{M} \in \mathcal{X}_{i}$.

$$
\mathrm{d} \nu_{i}(x) \approx \sum_{j=1}^{M} \bar{\nu}_{i}^{j} \delta_{x_{i}^{j}},
$$

for some $\bar{\nu}_{i}^{j} \in \mathbb{R}_{+}$such that $\sum_{j=1}^{M} \bar{\nu}_{i}^{j}=1$.
In the multi-marginal case with N marginal laws, introduce

$$
\Gamma:=\left\{\begin{array}{c}
\left(\bar{\gamma}^{j_{1}, \ldots, j_{N}}\right) \in \mathbb{R}_{+}^{M^{N}} \\
\sum_{1 \leq j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{N} \leq M} \bar{\gamma}_{1}^{j_{1}, \ldots, j_{i-1}, j, j_{i+1}, \ldots, j_{N}}=\bar{\nu}_{i}^{j}, \forall i, j
\end{array}\right\}
$$

so that

$$
\gamma \approx \sum_{1 \leq j_{1}, \ldots, j_{N} \leq M} \bar{\gamma}^{j_{1}, \ldots, j_{N}} \delta_{\chi_{1}^{j_{1}}, \ldots, \chi_{N}^{j_{N}}}
$$

and we solve the linear problem under linear constraints in $\mathbb{R}^{M^{N}}$

$$
\inf _{\left(\bar{\gamma}_{i_{1}}, \ldots, j_{N}\right) \in \Gamma_{1 \leq j_{1}, \ldots, j_{N} \leq M}} c\left(x_{1}^{j_{1}}, \ldots, x_{N}^{j_{N}}\right) \bar{\gamma}^{j_{1}, \ldots j_{N}} .
$$

discretization

Let $M \in \mathbb{N}^{*}$, we discretize the measure $\nu_{i} \in \mathcal{P}\left(\mathcal{X}_{i}\right)$ on a fixed discretization grid of \mathcal{X}_{i}, $x_{i}^{1}, \ldots, x_{i}^{M} \in \mathcal{X}_{i}$.

$$
\mathrm{d} \nu_{i}(x) \approx \sum_{j=1}^{M} \bar{\nu}_{i}^{j} \delta_{x_{i}^{j}},
$$

for some $\bar{\nu}_{i}^{j} \in \mathbb{R}_{+}$such that $\sum_{j=1}^{M} \bar{\nu}_{i}^{j}=1$.
In the multi-marginal case with N marginal laws, introduce

$$
\Gamma:=\left\{\begin{array}{c}
\left(\bar{\gamma}^{j_{1}, \ldots, j_{N}}\right) \in \mathbb{R}_{+}^{M^{N}} \\
\sum_{1 \leq j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{N} \leq M} \bar{\gamma}_{1}^{j_{1}, \ldots, j_{i-1}, j, j_{i+1}, \ldots, j_{N}}=\bar{\nu}_{i}^{j}, \forall i, j
\end{array}\right\}
$$

so that

$$
\gamma \approx \sum_{1 \leq j_{1}, \ldots, j_{N} \leq M} \bar{\gamma}^{j_{1}, \ldots, j_{N}} \delta_{\chi_{1}^{j_{1}}, \ldots, \chi_{N}^{j_{N}}}
$$

and we solve the linear problem under linear constraints in $\mathbb{R}^{M^{N}}$

$$
\inf _{\left(\bar{\gamma}_{i_{1}}, \ldots, j_{N}\right) \in \Gamma_{1 \leq j_{1}, \ldots, j_{N} \leq M}} c\left(x_{1}^{j_{1}}, \ldots, x_{N}^{j_{N}}\right) \bar{\gamma}^{j_{1}, \ldots j_{N}} .
$$

Curse of dimensionality!

Numerical methods for multi-marginal optimal transport problems

Several numerical methods have been introduced in the literature for the resolution of the multi-marginal optimal transport problems. We mention here two of them in the context of the symmetric multimarginal Kantorovich problem with Coulomb Cost:
■ [Benamou,Carlier,Cuturi,Nenna,Peyre,2015], [Nenna,2016] : use of an entropic regularization (using the Kullback-Leibler entropy), together with an iterative algorithm called Sinkhorn algorithm.

- [Mend,LLin,2013]: dual formulation of the Kantorovich problem, and clever treatment of the (infinite-dimensional) inequality constraint.

Summary

1 Introduction

2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest
3. Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions

6 Rates of convergence

Alternative discretization: Moments Constrained Optimal Transport
 Problem

Let $M \in \mathbb{N}^{*}$ and $\phi_{1}^{i}, \ldots, \phi_{M}^{i} \in \mathcal{C}_{b}\left(\mathcal{X}_{i}\right)$ be some continuous bounded functions on \mathcal{X}_{i}. They will be called hereafter test functions.

Alternative discretization: Moments Constrained Optimal Transport
 Problem

Let $M \in \mathbb{N}^{*}$ and $\phi_{1}^{i}, \ldots, \phi_{M}^{i} \in \mathcal{C}_{b}\left(\mathcal{X}_{i}\right)$ be some continuous bounded functions on \mathcal{X}_{i}. They will be called hereafter test functions.
For all $1 \leq i \leq N$, the marginal constraint

$$
\mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right)=\mathrm{d} \nu_{i}\left(x_{i}\right)
$$

is then approximated by the M moment constraints: for all $1 \leq j \leq M$,

$$
\int_{\mathcal{X}_{i}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right)=\int_{\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{N}\right)=\int_{\mathcal{X}_{i}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \nu_{i}\left(x_{i}\right)=: \bar{\nu}_{i}^{j}
$$

Alternative discretization: Moments Constrained Optimal Transport
 Problem

Let $M \in \mathbb{N}^{*}$ and $\phi_{1}^{i}, \ldots, \phi_{M}^{i} \in \mathcal{C}_{b}\left(\mathcal{X}_{i}\right)$ be some continuous bounded functions on \mathcal{X}_{i}. They will be called hereafter test functions.
For all $1 \leq i \leq N$, the marginal constraint

$$
\mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right)=\mathrm{d} \nu_{i}\left(x_{i}\right)
$$

is then approximated by the M moment constraints: for all $1 \leq j \leq M$,

$$
\int_{\mathcal{X}_{i}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \mu_{\gamma}^{i}\left(x_{i}\right)=\int_{\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{N}\right)=\int_{\mathcal{X}_{i}} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \nu_{i}\left(x_{i}\right)=: \bar{\nu}_{i}^{j}
$$

and we consider the following approximate problem (MCOT problem)

$$
\begin{equation*}
I^{M}=\inf _{\substack{\gamma \in \mathcal{P}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}\right) \\ \forall 1 \leq i \leq N, \forall 1 \leq j \leq M,}}^{\int_{\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N} \phi_{j}^{i}\left(x_{i}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{N}\right)=\bar{\nu}_{i}^{j}}} \int_{\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}} c \mathrm{~d} \gamma . \mid \tag{1}
\end{equation*}
$$

Alternative discretization: Moments Constrained Optimal Transport Problem

Remark

$$
I^{M} \leq 1
$$

Alternative discretization: Moments Constrained Optimal Transport Problem

Remark

$$
I^{M} \leq 1
$$

Under appropriate conditions on the test functions,

Theorem ([Alfonsi, C., Ehrlacher, Lombardi, 2019])

For all $M \in \mathbb{N}^{*}$, it holds that $I^{M} \leq I$ and $I^{M} \xrightarrow[M \rightarrow+\infty]{ } I$.
Besides, there exists an integer $1 \leq K \leq M N+2$, and for all $1 \leq k \leq K$, points $z^{k}=\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \in \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}$ and weights $w_{k}>0$ such that

$$
\gamma^{M}=\sum_{k=1}^{K} w_{k} \delta_{x_{1}^{k}, \ldots, x_{N}^{k}}
$$

is a minimizer of the MCOT Problem (1).

$M N+2$ bound on the number of charged points

Theorem (Tchakaloff [Bayer \& Teichmann, 2006])

Let $d \in \mathbb{N}^{*}$ and let γ be a measure on \mathbb{R}^{d} concentrated on a Borel set $A \in \mathcal{F}$, i.e. $\gamma\left(\mathbb{R}^{d} \backslash A\right)=0$. Let $M_{0} \in \mathbb{N}^{*}$ and $\wedge: \mathbb{R}^{d} \rightarrow \mathbb{R}^{M_{0}}$ a Borel measurable map. Assume that the first moments of $\Lambda \# \gamma$ exist, i.e.

$$
\int_{\mathbb{R}^{M_{0}}}\|u\| \mathrm{d} \wedge \# \gamma(u)=\int_{\mathbb{R}^{d}}\|\Lambda(z)\| \mathrm{d} \gamma(z)<\infty,
$$

where $\|\cdot\|$ denotes the Euclidean norm of $\mathbb{R}^{M_{0}}$. Then, there exist an integer $1 \leq K \leq M_{0}$, points $z_{1}, \ldots, z_{K} \in A$ and weights $w_{1}, \ldots, w_{K}>0$ such that

$$
\forall 1 \leq j \leq M_{0}, \quad \int_{\mathbb{R}^{d}} \Lambda_{j}(z) \mathrm{d} \gamma(z)=\sum_{k=1}^{K} w_{k} \Lambda_{j}\left(z_{k}\right),
$$

where Λ_{j} denotes the j-th component of Λ.

Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

$$
\begin{equation*}
\sum_{k=1}^{M N+2} w_{k} c\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \tag{2}
\end{equation*}
$$

Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

$$
\begin{equation*}
\sum_{k=1}^{M N+2} w_{k} c\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \tag{2}
\end{equation*}
$$

Remark

The number of particles grows linearly with the number of marginal laws, as well as the number of coordinates of those particles.

Summary

1 Introduction
2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest

3 Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions

6 Rates of convergence

Symmetric multi-marginal OT problem with Coulomb Cost and DFT

Hohenberg-Kohn theorem : the ground state energy of a system can be obtained by minimizing

$$
\begin{equation*}
E[\rho]=F[\rho]+\int v_{\mathrm{ext}}(x) \rho(x) d x \tag{3}
\end{equation*}
$$

where $v_{\text {ext }}$ is an external potential and

$$
\begin{equation*}
F[\rho]=\min _{\psi \rightarrow \rho}\langle\Psi|-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}+\sum_{i \neq j=1}^{N} \frac{1}{\left|x_{i}-x_{j}\right|}|\Psi\rangle . \tag{4}
\end{equation*}
$$

In the "strictly correlated electrons" limit,

$$
\begin{equation*}
F[\rho] \approx \min _{\Psi \rightarrow \rho}\langle\Psi|-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}|\Psi\rangle+\underbrace{\min _{\Psi \rightarrow \rho}\langle\Psi| \sum_{i \neq j=1}^{N} \frac{1}{\left|x_{i}-x_{j}\right|}|\Psi\rangle}_{V_{\text {see }}[\rho]} . \tag{5}
\end{equation*}
$$

Symmetric multi-marginal OT problem with Coulomb Cost

This problem arises in quantum chemistry applications [Seidl, 1999], [Seidl, Gori-Giorgi, Savin, 2007], [Cotar, Friesecke, Klüppelberg, 2011], [Lewin, 2017], [Cotar, Friesecke, Klüppelberg, 2018], where N is a number of electrons. (see M. Seidl, C. Cotar, G. Friesecke, M. Lewin, A. Gerolin and L. Nenna talks) - Let $d=d_{1}=\ldots=d_{N}$ and $\mathcal{X}_{1}=\ldots=\mathcal{X}_{N}=\mathbb{R}^{d}$.

■ Let $\rho=\nu_{1}=\ldots=\nu_{N}$, and $\Pi^{N}(\rho):=\Pi(\rho, \ldots, \rho)$

- Let

$$
c:\left\{\begin{array}{ccc}
\left(\mathbb{R}^{d}\right)^{N} & \rightarrow & \mathbb{R}_{+} \cup\{+\infty\} \\
\left(x_{1}, \ldots, x_{N}\right) & \mapsto & \sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}
\end{array}\right.
$$

be the Coulomb Cost.
The problem considered is

$$
I=\inf _{\gamma \in \cap^{N}(\rho)} \int_{\left(\mathbb{R}^{d}\right)^{N}} c \mathrm{~d} \gamma .
$$

Symmetric multi-marginal OT problem with Coulomb Cost

Recall the associated MCOT Problem, where $\rho_{j}=\int_{\mathbb{R}^{d}} \phi_{j}(x) \mathrm{d} \rho(x)$

$$
\begin{align*}
& I_{A_{0}}^{M}=\inf _{\substack{\gamma \in \mathcal{P}\left(\left(\mathbb{R}^{d}\right)^{N}\right) \\
\forall 1<i<N}} \int_{\left(\mathbb{R}^{d}\right)^{N}} c \mathrm{~d} \gamma . \tag{6}\\
& \begin{array}{l}
\forall 1 \leq i \leq N, \forall 1 \leq j \leq M,
\end{array} \\
& \int_{\left(\mathbb{R}^{d}\right) N} \sum_{i=1}^{N} \theta_{\rho}\left(\left|x_{i}\right|\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{N}\right) \leq A_{0}
\end{align*}
$$

Symmetric multi-marginal OT problem with Coulomb Cost

Recall the associated MCOT Problem, where $\rho_{j}=\int_{\mathbb{R}^{d}} \phi_{j}(x) \mathrm{d} \rho(x)$

$$
I_{A_{0}}^{M}=\inf _{\substack{\gamma \in \mathcal{P}\left(\left(\mathbb{R}^{d}\right)^{N}\right) \\ \forall 1 \leq i \leq N, \int_{\left(\mathbb{R}^{d}\right)^{N}}^{N} \phi_{j}\left(x_{i}\right) \mathrm{d} \gamma\left(x_{1}, \ldots, \ldots, x_{N}\right)=\rho_{j} \\ \int_{\left(\mathbb{R}^{d}\right)^{N}} \sum_{i=1}^{N} \theta_{\rho}\left(\left|x_{i}\right|\right) \mathrm{d} \gamma\left(x_{1}, \ldots, x_{N}\right) \leq A_{0}}} \int_{\left(\mathbb{R}^{d}\right)^{N}} c \mathrm{~d} \gamma .
$$

And let us introduce

$$
\tilde{I}_{A_{0}}^{M}=\inf _{\substack{\left.\gamma \in \mathcal{P}^{d}\left(\mathbb{R}^{d}\right)^{N}\right) \\ \forall}} \int_{\left(\mathbb{R}^{d}\right)^{N}} c \mathrm{~d} \gamma .
$$

Symmetric multi-marginal OT problem with Coulomb Cost

Theorem

For all $M \in \mathbb{N}^{*}$, it holds that $I_{A_{0}}^{M}=\tilde{I}_{A_{0}}^{M}$.
Besides, there exists an integer $1 \leq K \leq M+2$, and for all $1 \leq k \leq K$, points $z^{k}=\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \in \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}$ and weights $w_{k}>0$ such that

$$
\gamma_{\mathrm{sym}}^{M}:=\frac{1}{N!} \sum_{\sigma \in \mathcal{S}_{N}} \sum_{k=1}^{K} w_{k} \delta_{x_{\sigma(1)}^{k}, \ldots, x_{\sigma}^{k}(N)}
$$

is a minimizer of MCOT Problems (6) and (7).

Symmetric multi-marginal OT problem with Coulomb Cost

Theorem

For all $M \in \mathbb{N}^{*}$, it holds that $I_{A_{0}}^{M}=\tilde{I}_{A_{0}}^{M}$.
Besides, there exists an integer $1 \leq K \leq M+2$, and for all $1 \leq k \leq K$, points $z^{k}=\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \in \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{N}$ and weights $w_{k}>0$ such that

$$
\gamma_{\mathrm{sym}}^{M}:=\frac{1}{N!} \sum_{\sigma \in \mathcal{S}_{N}} \sum_{k=1}^{K} w_{k} \delta_{x_{\sigma(1)}^{k}, \ldots, x_{\sigma(N)}^{k}}
$$

is a minimizer of MCOT Problems (6) and (7).

Remark

To compute a minimizer of the MCOT problem, one only needs to find at most $M+2$ scalars w_{k} and points $z^{k}=\left(x_{1}^{k}, \ldots, x_{N}^{k}\right) \in\left(\mathbb{R}^{d}\right)^{N}: \mathcal{O}(3(M+2) N)$.
In [Friesecke, Vögler, 2018], a different result (but in the same spirit) was obtained by the authors in the case when the OT problem is discretized in a finite state space.

Summary

1 Introduction

2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest

3 Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions

6 Rates of convergence

1D example

Figure: Optimal coupling measure for the MCOT problem $\left(\frac{1}{20} \sum_{k=1}^{60} \sum_{n \neq n^{\prime}=1}^{5} w_{k} \delta_{x_{k}, n}, x_{k, n^{\prime}}\right)$. The optimal OT coupling measure support is represented in red. On the left graph are represented the particles coordinates $\left(x_{k, n}, x_{k, n^{\prime}}\right)$, the color of which is indexed on their weight $\left(w_{k}\right)$. On the right graph is represented $\frac{1}{20} \sum_{k=1}^{60} \sum_{n \neq n^{\prime}=1}^{5} w_{k} g\left(x_{k, n}, x_{k, n^{\prime}}\right)$, where $g(x, y) \sim \mathcal{N}\left(\binom{x}{y}, \eta \operatorname{Id}_{2}\right)$, with $\eta=1.5 e^{-3}$.

- $N=5$ marginal laws (electrons) in 1D
- regularized Coulomb cost $c\left(y_{1}, \ldots, y_{5}\right)=\sum_{i \neq j=1}^{5} \frac{1}{\epsilon+\left|y_{i}-y_{j}\right|}$, $\epsilon=1 e^{-3}, \forall i=1, \ldots, 5, y_{i} \in \mathbb{R}$.
- The marginal law is uniform over $[-1,1], \rho \sim \mathcal{U}_{[-1,1]}$
- test functions: Legendre polynomials (that are orthogonal for ρ) up to degree $M=30$.
- $K=60$ particles $z^{k}=\left(x_{1}^{k}, \ldots, x_{5}^{k}\right)$, $k=1, \ldots, 60$.
- Solved using a projected gradient algorithm.

3D example

Figure: Projection of the optimal coupling measure for the MCOT problem at initialization and during optimization.

■ left graph: $\frac{1}{10 K} \sum_{k=1}^{K} \sum_{n=1}^{10} \delta_{x_{n, 0}^{k}, x_{n, 1}^{k}}$.

- middle graph: $\frac{1}{90 K} \sum_{k=1}^{K} \sum_{n \neq n^{\prime}=1}^{10} \delta_{x_{n, 0}^{k}, x_{n^{\prime}, 0}^{k}}$.

■ right graph: $\frac{1}{90 K} \sum_{k=1}^{K} \sum_{n \neq n^{\prime}=1}^{10} \delta_{\left|x_{n}^{k}\right|,\left|x_{n^{\prime}}^{k}\right|}$, where $\left|x_{n}^{k}\right|=\sqrt{\sum_{i=1}^{3}\left(x_{n, i}^{k}\right)^{2}}$.

- $N=10$ marginal laws (electrons) in 3D
- regularized Coulomb cost $c\left(y_{1}, \ldots, y_{10}\right)=\sum_{i \neq j=1}^{10} \frac{1}{\epsilon+\left|y_{i}-y_{j}\right|}$,
$\epsilon=1 e^{-3}, \forall i=1, \ldots, 10, y_{i} \in \mathbb{R}^{3}$.
- The marginal law is gaussian, $\rho \sim \mathcal{N}\left(0_{3}, \mathrm{Id}_{3}\right)$
- test functions $M=27$: polynomials $\phi_{a, b, c}(x)=P_{a}\left(x_{0}\right) P_{b}\left(x_{1}\right) P_{c}\left(x_{2}\right)$, where P_{n} are normalized Hermite polynomials, $x \in R^{3}$, and $(a+1)(b+1)(c+1) \leq 6$ (hyperbolic cross).
- $K=10000$ particles $z^{k}=\left(x_{1,1}^{k}, x_{1,2}^{k}, x_{1,3}^{k}, x_{2,1}^{k} \ldots, x_{10,3}^{k}\right)$, $k=1, \ldots, 10^{4}$.
- Solved using a projected gradient algorithm with fixed weights.

Summary

1 Introduction

2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest
3. Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions

6 Rates of convergence

Conclusion

- Alternative way of discretizing multi-marginal optimal transport problems, in particular for application in quantum chemistry, using test functions: MCOT problems;
- Convergence of MCOT problem towards the OT problem;
- Some minimizers of MCOT problems can be written as discrete measures charging a low number of points
- suggest the use of a particle numerical scheme for the resolution of the MCOT problem
- Preliminary results on simple OT problems on the rate of convergence of the MCOT problem towards the OT problem for piecewise constant and piecewise affine functions

References

- M. Seidl. Strong-interaction limit of density-functional theory, Phys. Rev. A, 60, 4387-4395 (1999)
- M. Seidl, P. Gori-Giorgi, A. Savin. Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities, Phys. Rev. A 75, 042511 1-12 (2007)
- C. Cotar, G. Friesecke, C. Klüppelberg. Density functional theory and optimal transportation with Coulomb cost, Comm. Pure Appl. Math. 66, 548-599 (2013).
- C. Codina, G. Friesecke, C. Klüppelberg. Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional, Archive for Rational Mechanics and Analysis (2018): 1-32.
- P. Hohenberg, W. Kohn. Inhomogeneous electron gas, Phys. Rev. B 136, 864-871 (1964).
- M. Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proc. NatI. Acad. Sci. USA 76(12), 6062-6065 (1979)
- E.H. Lieb. Density functionals for Coulomb systems, International Journal of Quantum Chemistry 24, 243-277 (1983)
- M. Lewin. Semi-classical limit of the Levy-Lieb Functional in Density Functional Theory, arXiv 1706.02199 (2017)
- C. Bayer, J. Teichmann. The proof of Tchakaloff's theorem, Proceedings of the American mathematical society, 134(10):30353040, (2006)
- F. Santambrogio. Optimal transport for applied mathematicians, Birkäuser, NY, pages 99-102, (2015).
- M. Cuturi and G. Peyre. Computational Optimal Transport, https://arxiv.org/abs/1803.00567, (2019).
- C. Mendl and L. Lin, Kantorovich dual solution for strictly correlated electrons in atoms and molecules, Phys. Rev. B 87, 125106, (2013).
- Luca Nenna. Numerical methods for multi-marginal optimal transportation. PhD thesis, PSL Research University, 2016.
- J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyre. Iterative bregman projections for regularized transportation problems, SIAM Journal on Scientific Computing,37(2):A1111-A1138, (2015).
- M. Beiglböck and M. Nutz, Martingale inequalities and deterministic counterparts, Electron. J. Probab., 19(95), (2014).
- G. Friesecke, D. Vögler, Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces, SIAM Journal on Mathematical Analysis 50.4 (2018): 3996-4019.
- A. Alfonsi, R. Coyaud, V. Ehrlacher, D. Lombardi. Approximation of Optimal Transport problems with marginal moments constraints, https://arxiv.org/abs/1905.05663, (2019).

Thank you for your attention.

Summary

1 Introduction

2 Alternative discretization: Moments Constrained Optimal Transport Problem - and numerical interest

3 Symmetric multi-marginal OT problem with Coulomb Cost

4 Numerical Examples in the Symmetric multimarginal OT problem with Coulomb Cost

5 Conclusions

6 Rates of convergence

Sets of test functions

Let $M \in \mathbb{N}^{*}$ and let us define the intervals

$$
T_{1}^{M}:=\left[0, \frac{1}{M}\right], T_{j}^{M}:=\left(\frac{j-1}{M}, \quad \frac{j}{M}\right], \forall 2 \leq j \leq M .
$$

We consider three different sets of test functions:

- Piecewise constant $\left(\mathbb{P}_{0}\right)$ test functions:

$$
\forall 1 \leq j \leq M, \quad \phi_{j}^{M}:=1_{T_{j}^{M}}
$$

Sets of test functions

Let $M \in \mathbb{N}^{*}$ and let us define the intervals

$$
T_{1}^{M}:=\left[0, \frac{1}{M}\right], T_{j}^{M}:=\left(\frac{j-1}{M}, \quad \frac{j}{M}\right], \forall 2 \leq j \leq M .
$$

We consider three different sets of test functions:

- Piecewise constant $\left(\mathbb{P}_{0}\right)$ test functions:

$$
\forall 1 \leq j \leq M, \quad \phi_{j}^{M}:=1_{T_{j}^{M}}
$$

- Continuous piecewise affine (continuous \mathbb{P}_{1}) test functions: for $2 \leq j \leq M$

Sets of test functions

Let $M \in \mathbb{N}^{*}$ and let us define the intervals

$$
T_{1}^{M}:=\left[0, \frac{1}{M}\right], T_{j}^{M}:=\left(\frac{j-1}{M}, \quad \frac{j}{M}\right], \forall 2 \leq j \leq M .
$$

We consider three different sets of test functions:

- Piecewise constant $\left(\mathbb{P}_{0}\right)$ test functions:

$$
\forall 1 \leq j \leq M, \quad \phi_{j}^{M}:=1_{T_{j}^{M}}
$$

- Continuous piecewise affine (continuous \mathbb{P}_{1}) test functions: for $2 \leq j \leq M$

$$
\phi_{j}^{M}(x):=\left\lvert\, \begin{array}{ll}
M\left(x-\frac{j-2}{M}\right) & \text { if } x \in T_{j-1}^{M}, \\
M\left(\frac{j}{M}-x\right) & \text { if } x \in T_{j}^{M}, \quad \phi_{1}^{M}(x):=\left\lvert\, \begin{array}{ll}
1-M x & \text { if } x \in T_{1}^{M} \\
0 & \text { otherwise },
\end{array} \quad\right. \text { otherwise },
\end{array}\right.
$$

- Discontinuous piecewise affine (discontinuous \mathbb{P}_{1}) test functions: for $1 \leq j \leq M$

$$
\phi_{j, 1}^{M}(x):=\left|\begin{array}{ll}
M\left(\frac{j}{M}-x\right) & \text { if } x \in T_{j}^{M}, \\
0 & \text { otherwise, }
\end{array} \quad \phi_{j, 2}^{M}(x):=\right| \begin{array}{ll}
M\left(x-\frac{j-1}{M}\right) & \text { if } x \in T_{j}^{M} \\
0 & \text { otherwise },
\end{array}
$$

Rates of convergence

Theorem

- \mathbb{P}_{0} case: if c is Lipschitz with constant C, then for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right| \leq \frac{C}{M} .
$$

Rates of convergence

Theorem

$-\mathbb{P}_{0}$ case: if c is Lipschitz with constant C, then for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right| \leq \frac{C}{M}
$$

- continuous \mathbb{P}_{1} case and $c\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$: Let us assume that $\mathrm{d} \nu_{1}(x)=\rho_{1}(x) \mathrm{d} x$ and $\mathrm{d} \nu_{2}(x)=\rho_{2}(x) \mathrm{d} x$. Let us denote by F_{1} and F_{2} the cumulative distribution functions of ν_{1} and ν_{2} and let us assume that the function $F_{1}-F_{2}$ changes sign at most $Q \in \mathbb{N}$ times on $[0,1]$ and that $\rho_{1}-\rho_{2} \in L^{\infty}([0,1], \mathrm{d} x, \mathbb{R})$. Then, for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right|=\left|W_{1}\left(\nu_{1}, \nu_{2}\right)-I^{M}\right| \leq \frac{2 Q\left\|\rho_{1}-\rho_{2}\right\|_{\infty}}{M^{2}} .
$$

Rates of convergence

Theorem

$\square \mathbb{P}_{0}$ case: if c is Lipschitz with constant C, then for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right| \leq \frac{C}{M}
$$

- continuous \mathbb{P}_{1} case and $c\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$: Let us assume that $\mathrm{d} \nu_{1}(x)=\rho_{1}(x) \mathrm{d} x$ and $\mathrm{d} \nu_{2}(x)=\rho_{2}(x) \mathrm{d} x$. Let us denote by F_{1} and F_{2} the cumulative distribution functions of ν_{1} and ν_{2} and let us assume that the function $F_{1}-F_{2}$ changes sign at most $Q \in \mathbb{N}$ times on $[0,1]$ and that $\rho_{1}-\rho_{2} \in L^{\infty}([0,1], \mathrm{d} x, \mathbb{R})$. Then, for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right|=\left|W_{1}\left(\nu_{1}, \nu_{2}\right)-I^{M}\right| \leq \frac{2 Q\left\|\rho_{1}-\rho_{2}\right\|_{\infty}}{M^{2}} .
$$

- continuous \mathbb{P}_{1} case and $c\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|^{2}$: Let us assume that $\mathrm{d} \nu_{1}(x)=\rho_{1}(x) \mathrm{d} x$ and $\mathrm{d} \nu_{2}(x)=\rho_{2}(x) \mathrm{d} x$ for some $\rho_{1}, \rho_{2} \in L^{\infty}\left([0,1], \mathrm{d} x ; \mathbb{R}_{+}\right)$. Let us denote by F_{1} and F_{2} the cumulative distribution functions of ν_{1} and ν_{2}. Then, for all $M \in \mathbb{N}^{*}$,

$$
\left|I-I^{M}\right|=\left|W_{2}^{2}\left(\nu_{1}, \nu_{2}\right)-I^{M}\right| \leq \frac{7}{3} \frac{\left\|\rho_{1}\right\|_{L^{\infty}}+\left\|\rho_{2}\right\|_{L^{\infty}}}{M^{2}} .
$$

