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Kantorovich problem with two marginal laws

For any (open or compact) subset X ⊂ Rd (d ∈ N∗), let us denote by P(X ) the set of probability
measures on X .

Let d1, d2 ∈ N∗, X1 ⊂ Rd1 and X2 ⊂ Rd2 be open or compact subsets.

For ν1 ∈ P(X1) and ν2 ∈ P(X2), let

Π(ν1, ν2) =

{
γ ∈ P(X1 ×X2),∫

X2
dγ(x1, x2) = dν1(x1),

∫
X1

dγ(x1, x2) = dν2(x2)

}
Let c : X1 ×X2 → R+ ∪ {+∞} be lower semi-continuous (l.s.c) cost function.

The Kantorovich optimal transport problem reads:

inf
γ∈Π(ν1,ν2)

∫
X1,X2

c(x1, x2)dγ(x1, x2).
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Multi-marginal Kantorovich problem

Let N ∈ N∗, and for all 1 ≤ i ≤ N, let di ∈ N∗, Xi ⊂ Rdi be an open or compact subset.

For all 1 ≤ i ≤ N, let νi ∈ P(Xi ), and let

ΠN((νi )1≤i≤N) :=
{
γ ∈ P(X1, ...,XN),dµi

γ(xi ) = dνi (xi ),∀1 ≤ i ≤ N
}
,

where µi
γ ∈ P(Xi ) denotes the i th marginal law of γ, defined by

dµi
γ(xi ) :=

∫
X1×...Xi−1×Xi+1×...×XN

dγ(x1, ..., xN).

Let c : X1 × ...×XN → R+ ∪ {+∞} be lower semi-continuous (l.s.c.) cost function.

The multi-marginal Kantorovich optimal transport problem reads:

I = inf
γ∈ΠN ((νi )1≤i≤N )

∫
X1×...×XN

cdγ.
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discretization

Let M ∈ N∗, we discretize the measure νi ∈ P(Xi ) on a fixed discretization grid of Xi ,
x1
i , ..., x

M
i ∈ Xi .

dνi (x) ≈
M∑
j=1

ν̄ ji δx j
i
,

for some ν̄ ji ∈ R+ such that
∑M

j=1 ν̄
j
i = 1.

In the two marginal laws case, introduce

Γ :=

{
(γ̄j1,j2 ) ∈ RM2

+

∀1 ≤ j ≤ M,
∑M

j1=1 γ̄
j1,j = ν̄ j2,

∑M
j2=1 γ̄

j,j2 = ν̄ j1

}
so that

γ ≈
∑
j1,j2

γ̄j1,j2δ
x
j1
1 ,x

j2
2

and we solve the linear problem under linear constraints in RM2

inf
(γ̄j1,j2 )∈Γ

M∑
j1,j2

c(x j11 , x
j2
2 )γ̄j1,j2 .
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Numerical methods for multi-marginal optimal transport problems

Several numerical methods have been introduced in the literature for the resolution of the
multi-marginal optimal transport problems. We mention here two of them in the context of the
symmetric multimarginal Kantorovich problem with Coulomb Cost:

[Benamou,Carlier,Cuturi,Nenna,Peyre,2015], [Nenna,2016] : use of an entropic regularization (using the
Kullback-Leibler entropy), together with an iterative algorithm called Sinkhorn algorithm.

[Mendl,Lin,2013]: dual formulation of the Kantorovich problem, and clever treatment of the
(infinite-dimensional) inequality constraint.
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Alternative discretization: Moments Constrained Optimal Transport
Problem

Let M ∈ N∗ and φi1, ..., φ
i
M ∈ Cb(Xi ) be some continuous bounded functions on Xi . They will be

called hereafter test functions.

For all 1 ≤ i ≤ N, the marginal constraint

dµi
γ(xi ) = dνi (xi )

is then approximated by the M moment constraints: for all 1 ≤ j ≤ M,∫
Xi

φij(xi )dµ
i
γ(xi ) =

∫
X1×...×XN

φij(xi )dγ(x1, ..., xN) =

∫
Xi

φij(xi )dνi (xi ) =: ν̄ ji

and we consider the following approximate problem (MCOT problem)

IM = inf
γ∈P(X1×...×XN )
∀1≤i≤N, ∀1≤j≤M,∫

X1×...×XN
φi
j (xi )dγ(x1,...,xN )=ν̄ j

i∫
X1×...×XN

∑N
i=1 θνi (|xi |)dγ(x1,...,xN )≤A0

∫
X1×...×XN

cdγ. (1)
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Alternative discretization: Moments Constrained Optimal Transport
Problem

Remark

IM ≤ I

Under appropriate conditions on the test functions,

Theorem ([Alfonsi, C., Ehrlacher, Lombardi, 2019])

For all M ∈ N∗, it holds that IM ≤ I and IM −−−−−→
M→+∞

I .

Besides, there exists an integer 1 ≤ K ≤ MN + 2, and for all 1 ≤ k ≤ K , points
zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γM =
K∑

k=1

wkδxk
1 ,...,x

k
N

is a minimizer of the MCOT Problem (1).
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MN + 2 bound on the number of charged points

Theorem (Tchakaloff [Bayer & Teichmann, 2006])

Let d ∈ N∗ and let γ be a measure on Rd concentrated on a Borel set A ∈ F , i.e. γ(Rd \ A) = 0.
Let M0 ∈ N∗ and Λ : Rd → RM0 a Borel measurable map. Assume that the first moments of Λ#γ
exist, i.e. ∫

RM0

‖u‖dΛ#γ(u) =

∫
Rd

‖Λ(z)‖dγ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RM0 . Then, there exist an integer 1 ≤ K ≤ M0, points
z1, ..., zK ∈ A and weights w1, ...,wK > 0 such that

∀1 ≤ j ≤ M0,

∫
Rd

Λj(z)dγ(z) =
K∑

k=1

wkΛj(zk),

where Λj denotes the j-th component of Λ.
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Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

inf
w1,...,wMN+2≥0∑MN+2

k=1 wk=1

(xk
1 ,...,x

k
MN+2)1≤k≤MN+2∈(X1×...×XN )MN+2

∀1≤i≤N, ∀1≤j≤M,
∑MN+2

k=1 wkφ
i
j (x

k
i )=ν̄ j

i

MN+2∑
k=1

wkc(xk1 , ..., x
k
N). (2)

Remark

The number of particles grows linearly with the number of marginal laws, as well as the number of
coordinates of those particles.
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Symmetric multi-marginal OT problem with Coulomb Cost and DFT

Hohenberg-Kohn theorem : the ground state energy of a system can be obtained by minimizing

E [ρ] = F [ρ] +

∫
vext(x)ρ(x)dx , (3)

where vext is an external potential and

F [ρ] = min
Ψ→ρ
〈Ψ| − 1

2

N∑
i=1

∆i +
N∑

i 6=j=1

1

|xi − xj |
|Ψ〉. (4)

In the ”strictly correlated electrons” limit,

F [ρ] ≈ min
Ψ→ρ
〈Ψ| − 1

2

N∑
i=1

∆i |Ψ〉+ min
Ψ→ρ
〈Ψ|

N∑
i 6=j=1

1

|xi − xj |
|Ψ〉.︸ ︷︷ ︸

V SCE
ee [ρ]

(5)
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Symmetric multi-marginal OT problem with Coulomb Cost

This problem arises in quantum chemistry applications [Seidl, 1999], [Seidl, Gori-Giorgi, Savin, 2007], [Cotar,

Friesecke, Klüppelberg, 2011], [Lewin, 2017], [Cotar, Friesecke, Klüppelberg, 2018], where N is a number of electrons.
(see M. Seidl, C. Cotar, G. Friesecke, M. Lewin, A. Gerolin and L. Nenna talks)

Let d = d1 = ... = dN and X1 = ... = XN = Rd .

Let ρ = ν1 = ... = νN , and ΠN(ρ) := Π(ρ, ..., ρ)

Let

c :

{
(Rd)N → R+ ∪ {+∞}

(x1, ..., xN) 7→
∑

1≤i<j≤N
1

|xi−xj |

be the Coulomb Cost.

The problem considered is

I = inf
γ∈ΠN (ρ)

∫
(Rd )N

cdγ.
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Symmetric multi-marginal OT problem with Coulomb Cost

Recall the associated MCOT Problem, where ρj =
∫
Rd φj(x)dρ(x)

IMA0
= inf

γ∈P((Rd )N )
∀1≤i≤N,∀1≤j≤M,∫

(Rd )N
φj (xi )dγ(x1,...,xN )=ρj∫

(Rd )N

∑N
i=1 θρ(|xi |)dγ(x1,...,xN )≤A0

∫
(Rd )N

cdγ. (6)

And let us introduce

ĨMA0
= inf

γ∈P((Rd )N )
∀1≤j≤M,∫

(Rd )N ( 1
N

∑N
i=1 φj (xi ))dγ(x1,...,xN )=ρj∫

(Rd )N

∑N
i=1 θρ(|xi |)dγ(x1,...,xN )≤A0

∫
(Rd )N

cdγ. (7)
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Symmetric multi-marginal OT problem with Coulomb Cost

Theorem

For all M ∈ N∗, it holds that IMA0
= ĨMA0

.
Besides, there exists an integer 1 ≤ K ≤ M + 2, and for all 1 ≤ k ≤ K , points
zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γMsym :=
1

N!

∑
σ∈SN

K∑
k=1

wkδxk
σ(1)

,...,xk
σ(N)

is a minimizer of MCOT Problems (6) and (7).

Remark

To compute a minimizer of the MCOT problem, one only needs to find at most M + 2 scalars wk

and points zk = (xk1 , ..., x
k
N) ∈ (Rd)N : O (3(M + 2)N) .

In [Friesecke, Vögler, 2018], a different result (but in the same spirit) was obtained by the authors in the
case when the OT problem is discretized in a finite state space.
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1D example
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Figure: Optimal coupling measure for the MCOT problem
( 1

20

∑60
k=1

∑5
n 6=n′=1 wkδxk,n,xk,n′ ).The optimal OT coupling

measure support is represented in red. On the left graph are
represented the particles coordinates (xk,n, xk,n′), the color of
which is indexed on their weight (wk). On the right graph is
represented 1

20

∑60
k=1

∑5
n 6=n′=1 wkg(xk,n, xk,n′), where

g(x , y) ∼ N (

(
x
y

)
, ηId2), with η = 1.5e−3.

N = 5 marginal laws (electrons) in
1D

regularized Coulomb cost
c(y1, . . . , y5) =

∑5
i 6=j=1

1
ε+|yi−yj |

,

ε = 1e−3, ∀i = 1, . . . , 5, yi ∈ R.

The marginal law is uniform over
[−1, 1], ρ ∼ U[−1,1]

test functions : Legendre
polynomials (that are orthogonal for
ρ) up to degree M = 30.

K = 60 particles zk = (xk
1 , . . . , x

k
5 ),

k = 1, . . . , 60.

Solved using a projected gradient
algorithm.
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3D example

Figure: Projection of the optimal coupling measure for the MCOT
problem at initialization and during optimization.

left graph: 1
10K

∑K
k=1

∑10
n=1 δxk

n,0,x
k
n,1

.

middle graph: 1
90K

∑K
k=1

∑10
n 6=n′=1 δxk

n,0,x
k
n′,0

.

right graph: 1
90K

∑K
k=1

∑10
n 6=n′=1 δ|xk

n |,|xk
n′ |

, where

|xk
n | =

√∑3
i=1(xk

n,i )
2.

N = 10 marginal laws (electrons) in 3D

regularized Coulomb cost
c(y1, . . . , y10) =

∑10
i 6=j=1

1
ε+|yi−yj |

,

ε = 1e−3, ∀i = 1, . . . , 10, yi ∈ R3.

The marginal law is gaussian,
ρ ∼ N (03, Id3)

test functions M = 27 : polynomials
φa,b,c(x) = Pa(x0)Pb(x1)Pc(x2),where
Pn are normalized Hermite polynomials,
x ∈ R3, and (a + 1)(b + 1)(c + 1) ≤ 6
(hyperbolic cross).

K = 10000 particles
zk = (xk

1,1, x
k
1,2, x

k
1,3, x

k
2,1 . . . , x

k
10,3),

k = 1, . . . , 104.

Solved using a projected gradient
algorithm with fixed weights.
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Conclusion

Alternative way of discretizing multi-marginal optimal transport problems, in particular for
application in quantum chemistry, using test functions: MCOT problems;

Convergence of MCOT problem towards the OT problem;

Some minimizers of MCOT problems can be written as discrete measures charging a low number
of points

suggest the use of a particle numerical scheme for the resolution of the MCOT problem

Preliminary results on simple OT problems on the rate of convergence of the MCOT problem
towards the OT problem for piecewise constant and piecewise affine functions
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Sets of test functions

Let M ∈ N∗ and let us define the intervals

TM
1 :=

[
0,

1

M

]
,TM

j :=

(
j − 1

M
,

j

M

]
, ∀2 ≤ j ≤ M.

We consider three different sets of test functions:
Piecewise constant (P0) test functions:

∀1 ≤ j ≤ M, φMj := 1TM
j

Continuous piecewise affine (continuous P1) test functions: for 2 ≤ j ≤ M

φMj (x) :=

∣∣∣∣∣∣∣∣
M
(
x − j−2

M

)
if x ∈ TM

j−1,

M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,

φM1 (x) :=

∣∣∣∣ 1−Mx if x ∈ TM
1 ,

0 otherwise,

Discontinuous piecewise affine (discontinuous P1) test functions: for 1 ≤ j ≤ M

φMj,1(x) :=

∣∣∣∣∣ M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,
φMj,2(x) :=

∣∣∣∣∣ M
(
x − j−1

M

)
if x ∈ TM

j ,

0 otherwise,
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Rates of convergence

Theorem

P0 case: if c is Lipschitz with constant C , then for all M ∈ N∗,

|I − IM | ≤ C

M
.

continuous P1 case and c(x1, x2) = |x1 − x2|: Let us assume that dν1(x) = ρ1(x)dx and
dν2(x) = ρ2(x)dx . Let us denote by F1 and F2 the cumulative distribution functions of ν1 and
ν2 and let us assume that the function F1 − F2 changes sign at most Q ∈ N times on [0, 1] and
that ρ1 − ρ2 ∈ L∞([0, 1],dx ,R). Then, for all M ∈ N∗,

|I − IM | = |W1(ν1, ν2)− IM | ≤ 2Q‖ρ1 − ρ2‖∞
M2

.

continuous P1 case and c(x1, x2) = |x1 − x2|2: Let us assume that dν1(x) = ρ1(x)dx and
dν2(x) = ρ2(x)dx for some ρ1, ρ2 ∈ L∞([0, 1],dx ;R+). Let us denote by F1 and F2 the
cumulative distribution functions of ν1 and ν2. Then, for all M ∈ N∗,

|I − IM | = |W 2
2 (ν1, ν2)− IM | ≤ 7

3

‖ρ1‖L∞ + ‖ρ2‖L∞
M2

.
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