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Kantorovich problem with two marginal laws

For any (open or compact) subset X ⊂ Rd (d ∈ N∗), let us denote by P(X ) the set of probability
measures on X .

Let d1, d2 ∈ N∗, X1 ⊂ Rd1 and X2 ⊂ Rd2 be open or compact subsets.

For ν1 ∈ P(X1) and ν2 ∈ P(X2), let

Π(ν1, ν2) =

{
γ ∈ P(X1 ×X2),∫

X2
dγ(x1, x2) = dν1(x1),

∫
X1

dγ(x1, x2) = dν2(x2)

}
Let c : X1 ×X2 → R+ ∪ {+∞} be lower semi-continuous (l.s.c) cost function.

The Kantorovich optimal transport problem reads:

inf
γ∈Π(ν1,ν2)

∫
X1,X2

c(x1, x2)dγ(x1, x2).
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Multi-marginal Kantorovich problem

Let N ∈ N∗, and for all 1 ≤ i ≤ N, let di ∈ N∗, Xi ⊂ Rdi be an open or compact subset.

For all 1 ≤ i ≤ N, let νi ∈ P(Xi ), and let

ΠN((νi )1≤i≤N) :=
{
γ ∈ P(X1, ...,XN),dµi

γ(xi ) = dνi (xi ),∀1 ≤ i ≤ N
}
,

where µi
γ ∈ P(Xi ) denotes the i th marginal law of γ, defined by

dµi
γ(xi ) :=

∫
X1×...Xi−1×Xi+1×...×XN

dγ(x1, ..., xN).

Let c : X1 × ...×XN → R+ ∪ {+∞} be lower semi-continuous (l.s.c.) cost function.

The multi-marginal Kantorovich optimal transport problem reads:

I = inf
γ∈ΠN ((νi )1≤i≤N )

∫
X1×...×XN

cdγ.
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discretization

Let M ∈ N∗, we discretize the measure νi ∈ P(Xi ) on a fixed discretization grid of Xi ,
x1
i , ..., x

M
i ∈ Xi .

dνi (x) ≈
M∑
j=1

ν̄ ji δx j
i
,

for some ν̄ ji ∈ R+ such that
∑M

j=1 ν̄
j
i = 1.

In the two marginal laws case, introduce

Γ :=

{
(γ̄j1,j2 ) ∈ RM2

+

∀1 ≤ j ≤ M,
∑M

j1=1 γ̄
j1,j = ν̄ j2,

∑M
j2=1 γ̄

j,j2 = ν̄ j1

}
so that

γ ≈
∑
j1,j2

γ̄j1,j2δ
x
j1
1 ,x

j2
2

and we solve the linear problem under linear constraints in RM2

inf
(γ̄j1,j2 )∈Γ

M∑
j1,j2

c(x j11 , x
j2
2 )γ̄j1,j2 .
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Alternative discretization: Moments Constrained Optimal Transport
Problem

Let M ∈ N∗ and φi1, ..., φ
i
M ∈ Cb(Xi ) be some continuous bounded functions on Xi . They will be

called hereafter test functions.

For all 1 ≤ i ≤ N, the marginal constraint

dµi
γ(xi ) = dνi (xi )

is then approximated by the M moment constraints: for all 1 ≤ j ≤ M,∫
Xi

φij(xi )dµ
i
γ(xi ) =

∫
X1×...×XN

φij(xi )dγ(x1, ..., xN) =

∫
Xi

φij(xi )dνi (xi ) =: ν̄ ji

and we consider the following approximate problem (MCOT problem)

IM = inf
γ∈P(X1×...×XN )
∀1≤i≤N, ∀1≤j≤M,∫

X1×...×XN
φi
j (xi )dγ(x1,...,xN )=ν̄ j

i∫
X1×...×XN

∑N
i=1 θνi (|xi |)dγ(x1,...,xN )≤A0

∫
X1×...×XN

cdγ. (1)
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Alternative discretization: Moments Constrained Optimal Transport
Problem

Remark

IM ≤ I

Under appropriate conditions on the test functions,

Theorem ([Alfonsi, C., Ehrlacher, Lombardi, 2019])

For all M ∈ N∗, it holds that IM ≤ I and IM −−−−−→
M→+∞

I .

Besides, there exists an integer 1 ≤ K ≤ MN + 2, and for all 1 ≤ k ≤ K, points
zk = (xk1 , ..., x

k
N) ∈ X1 × ...×XN and weights wk > 0 such that

γM =
K∑

k=1

wkδxk
1 ,...,x

k
N

is a minimizer of the MCOT Problem (1).
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MN + 2 bound on the number of charged points

Theorem (Tchakaloff [Bayer & Teichmann, 2006])

Let d ∈ N∗ and let γ be a measure on Rd concentrated on a Borel set A ∈ F , i.e. γ(Rd \ A) = 0.
Let M0 ∈ N∗ and Λ : Rd → RM0 a Borel measurable map. Assume that the first moments of Λ#γ
exist, i.e. ∫

RM0

‖u‖dΛ#γ(u) =

∫
Rd

‖Λ(z)‖dγ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RM0 . Then, there exist an integer 1 ≤ K ≤ M0, points
z1, ..., zK ∈ A and weights w1, ...,wK > 0 such that

∀1 ≤ j ≤ M0,

∫
Rd

Λj(z)dγ(z) =
K∑

k=1

wkΛj(zk),

where Λj denotes the j-th component of Λ.
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Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

inf
w1,...,wMN+2≥0∑MN+2

k=1 wk=1

(xk
1 ,...,x

k
MN+2)1≤k≤MN+2∈(X1×...×XN )MN+2

∀1≤i≤N, ∀1≤j≤M,
∑MN+2

k=1 wkφ
i
j (x

k
i )=ν̄ j

i

MN+2∑
k=1

wkc(xk1 , ..., x
k
N). (2)

Remark

The number of particles grows linearly with the number of marginal laws, as well as the number of
coordinates of those particles.
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Martingale Optimal Transport problem

For the sake of simplicity, we will only consider two marginal laws ν1 ∈ P(Rd) and ν2 ∈ P(Rd),
d ∈ N∗.
We assume that there exist a martingale coupling between ν1 and ν2:

∃γ ∈ Π(ν1, ν2), ∀x1 ∈ Rd ,

∫
Rd

x2dγ(x1, x2) = x1,

and a l.s.c. cost function c : Rd × Rd → R+ ∪ {+∞}.
The Martingale Optimal Transport Problem reads as

I = inf
γ∈Π(ν1,ν2)

∀x1∈Rd ,
∫
Rd x2dγ(x1,x2)=x1

∫
R2d

c(x1, x2)dγ(x1, x2).

In finance, ν1 and ν2 are known distribution of prices and
∫
R2d c(x1, x2)dγ(x1, x2) is the payoff of an

option.
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Martingale MCOT problems

Let us introduce the following MCOT Problems, for all M ∈ N∗, with the same constraints on the
test functions as in the non compact case,

IM,mg
A0

= inf
γ∈P(Rd×Rd )
∀i=1,2, ∀1≤j≤M,∫

Rd×Rd φ
i
j (xi )dγ(x1,x2)=ν̄ j

i

∀x1∈Rd ,
∫
Rd x2dγ(x1,x2)=x1,∫

Rd×Rd
∑2

i=1 θνi (|xi |)dγ(Rd×Rd )≤A0

∫
Rd×Rd

cdγ. (3)

and

IM,M
′

A0
= inf

γ∈P(Rd×Rd )
∀i=1,2, ∀1≤j≤M,∫

Rd×Rd φ
i
j (xi )dγ(x1,x2)=ν̄ j

i

∀1≤l≤M′,
∫
Rd x2χl (x1)dγ(x1,x2)=

∫
Rd x1χl (x1)dν1(x1),∫

Rd×Rd
∑2

i=1 θνi (|xi |)dγ(Rd×Rd )≤A0

∫
Rd×Rd

cdγ. (4)
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Martingale MCOT results

With appropriate constraints on the additional test functions χl , one can prove that

The problem (4) admits a finite discrete minimizer ( with 2M + M ′ charged points)

IM,M
′

A0
−−−−→
M′→∞

IM,mg
A0

< +∞

IM,mg
A0

−−−−→
M→∞

I

Remark

One can also define a multi-marginal martingale optimal transport problem and thus, for
example, match price at several time steps.

If we use as test functions the functions (· − K )+ and (K − ·)+ for various values of K , the
Martingale MCOT problem consists in knowing only option prices at various strikes and maturity
with no hypothesis on the underlying asset price.

However, our numerical scheme can only approximate the martingale constraints on a set of test
functions ( with NM + M ′ charged points).

Other numerical methods for Martingale Optimal Transport use sampling techniques [Alfonsi,
Corbetta, Jourdain, ’19] or entropic regularization [De March, ’18] [Guo, Obloj, ’17].
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Conclusion and perspectives

Conclusions

Alternative way of discretizing multi-marginal optimal transport problems, in particular for
application in finance using test functions: MCOT problems;

Convergence of MCOT problem towards the OT problem;

Some minimizers of MCOT problems can be written as discrete measures charging a low number
of points

suggest the use of a particle numerical scheme for the resolution of the MCOT problem

Preliminary results on simple OT problems on the rate of convergence of the MCOT problem
towards the OT problem for piecewise constant and piecewise affine functions

Perspectives

find an algorithm which can efficiently solve the particle problem

prove more general convergence rates of the MCOT problem to the exact OT problem.
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Sets of test functions

Let M ∈ N∗ and let us define the intervals

TM
1 :=

[
0,

1

M

]
,TM

j :=

(
j − 1

M
,

j

M

]
, ∀2 ≤ j ≤ M.

We consider three different sets of test functions:
Piecewise constant (P0) test functions:

∀1 ≤ j ≤ M, φMj := 1TM
j

Continuous piecewise affine (continuous P1) test functions: for 2 ≤ j ≤ M

φMj (x) :=

∣∣∣∣∣∣∣∣
M
(
x − j−2

M

)
if x ∈ TM

j−1,

M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,

φM1 (x) :=

∣∣∣∣ 1−Mx if x ∈ TM
1 ,

0 otherwise,

Discontinuous piecewise affine (discontinuous P1) test functions: for 1 ≤ j ≤ M

φMj,1(x) :=

∣∣∣∣∣ M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,
φMj,2(x) :=

∣∣∣∣∣ M
(
x − j−1

M

)
if x ∈ TM

j ,

0 otherwise,
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1 ,

0 otherwise,

Discontinuous piecewise affine (discontinuous P1) test functions: for 1 ≤ j ≤ M

φMj,1(x) :=

∣∣∣∣∣ M
(

j
M − x

)
if x ∈ TM

j ,

0 otherwise,
φMj,2(x) :=

∣∣∣∣∣ M
(
x − j−1

M

)
if x ∈ TM

j ,

0 otherwise,
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Sets of test functions
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Rates of convergence

Theorem

P0 case: if c is Lipschitz with constant C, then for all M ∈ N∗,

|I − IM | ≤ C

M
.

continuous P1 case and c(x1, x2) = |x1 − x2|: Let us assume that dν1(x) = ρ1(x)dx and
dν2(x) = ρ2(x)dx. Let us denote by F1 and F2 the cumulative distribution functions of ν1 and
ν2 and let us assume that the function F1 − F2 changes sign at most Q ∈ N times on [0, 1] and
that ρ1 − ρ2 ∈ L∞([0, 1],dx ,R). Then, for all M ∈ N∗,

|I − IM | = |W1(ν1, ν2)− IM | ≤ 2Q‖ρ1 − ρ2‖∞
M2

.

continuous P1 case and c(x1, x2) = |x1 − x2|2: Let us assume that dν1(x) = ρ1(x)dx and
dν2(x) = ρ2(x)dx for some ρ1, ρ2 ∈ L∞([0, 1],dx ;R+). Let us denote by F1 and F2 the
cumulative distribution functions of ν1 and ν2. Then, for all M ∈ N∗,

|I − IM | = |W 2
2 (ν1, ν2)− IM | ≤ 7

3

‖ρ1‖L∞ + ‖ρ2‖L∞
M2

.
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