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Summary

Introduction
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Kantorovich problem with two marginal laws

For any (open or compact) subset X C R? (d € N*), let us denote by P(X') the set of probability
measures on X

m Let di,db € N*, Xy € R and &> C R® be open or compact subsets.
m For vy € P(X1) and v € P(X,), let

B v € P(X x X),
(v, 02) = { Jx, dv(x1,32) = dva(xa), [y, d’i’(Xl,X2) = dia(x) }

m Let c: A x A, — Ry U{+0c0} be lower semi-continuous (l.s.c) cost function.

The Kantorovich optimal transport problem reads:

inf / c(x1, x2)dy(x1, x2).
yeN(v12) J x;, x,
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Multi-marginal Kantorovich problem

mLet NeN* andforall 1 <i <N, let di € N*, X; C R% be an open or compact subset.
m Forall 1</ <N, let v, € P(X;), and let

nN((l/,‘)lg,'SN) = {’Y € P(Xl, ...,XN),d,u,;(X,') = dl/,'(X,')7V1 <i< N} s

where 1/ € P(X;) denotes the /™ marginal law of v, defined by

dM;(Xi) = dy(x1, ey X)-

~/.)€'1><...X,'1 X Xjp1X... XXy

mlet c: A7 X ... x Ay = Ry U{+o0} be lower semi-continuous (l.s.c.) cost function.
The multi-marginal Kantorovich optimal transport problem reads:

| = inf / cdy.
yeEMV((vii<ian) S x ... x ay
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Let M € N*, we discretize the measure v; € P(X;) on a fixed discretization grid of X},
Xt xMe X, Mo
dvi(x) = Y 74,
j=1

1
for some 7/ € R, such that Zj‘il 7 =1
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Let M € N*, we discretize the measure v; € P(X;) on a fixed discretization grid of X},

Xt xMe X, Mo
dvi(x) ~ ZD{&X{,
j=1

I

for some 17,’ € R, such that Zj‘il D,’ =1.
In the two marginal laws case, introduce

~J1:j2 RMZ
= ~ AS'V —jl)je HSM i _ g
Vi<j<M, Zjlzl’y Y =1y, Zj:l’)/’ ="
so that

Y= Z ,—le-Jz(S){l ,xéZ
Ji:2

. . . . 2
and we solve the linear problem under linear constraints in RV

M
inf Z c(xd!, X2 )z,
(5’]1 ,J'z)er i
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Let M € N*, we discretize the measure v; € P(X;) on a fixed discretization grid of X},

Xt xMe X, Mo
dvi(x) ~ ZD{&X{,
j=1

for some 17,’ € R, such that Zj‘il D,’ =1.
In the multi-marginal case with N marginal laws, introduce

i N
(Fi-dn) € R-Ai:,

re > it = 51V j
1<j1,eeesfim1oit1se N SEM
- SN § :
so that v~ E : g 5)41,..~7><’NN

1<, v <M
- - - - N
and we solve the linear problem under linear constraints in RV

inf SO (),

er . ’
1<j1,ejn <M
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Let M € N*, we discretize the measure v; € P(X;) on a fixed discretization grid of X},

Xt xMe X, Mo
dvi(x) ~ ZD{&X{,
j=1

for some 17,’ € R, such that Zj‘il D,’ =1.
In the multi-marginal case with N marginal laws, introduce

i N
(Fi-dn) € R-Ai:,

re > it = 51V j
1<j1,eeesfim1oit1se N SEM
- SN § :
so that v~ E : g 5)41,...,%,”

1<, v <M
- - - - N
and we solve the linear problem under linear constraints in RV
inf E (o, X0 )N,
i )Er
1< v<m

Curse of dimensionality!
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Summary

Alternative discretization: Moments Constrained Optimal Transport Problem — and numerical
interest
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Alternative discretization: Moments Constrained Optimal Transport

Problem

Let M € N* and ¢, ..., ¢}, € Cp(X;) be some continuous bounded functions on X;. They will be
called hereafter test functions.
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Alternative discretization: Moments Constrained Optimal Transport

Problem

Let M € N* and ¢, ..., ¢}, € Cp(X;) be some continuous bounded functions on X;. They will be
called hereafter test functions.
For all 1 < i < N, the marginal constraint

dpd (x) = dwi(x)
is then approximated by the M moment constraints: for all 1 < j < M,

‘/X,. QZSJI(X,)d/J,fY(X,) = ~/_X'1><,,,><XN ¢ (X/)d7 X1y eeey X] / ¢I Xj dl/l I = V{
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Alternative discretization: Moments Constrained Optimal Transport

Problem

Let M € N* and ¢, ..., ¢}, € Cp(X;) be some continuous bounded functions on X;. They will be
called hereafter test functions.
For all 1 < i < N, the marginal constraint

dug(x,-) = dvi(x;)
is then approximated by the M moment constraints: for all 1 < j < M,

/ gbj"-(x,-)du;(x,-) :/ b; (xi)dy(xa, oy X / qb’ x;)dvi(x;) =: V{
X,‘ X1><...><XN
and we consider the following approximate problem (MCOT problem)
M = inf / cdy. 1
YEP(X1X...x Xy) X X... XXy ! ( )

V1<i<N,V1I<i<M, )
fxl X Xy &; (X,)d’y(xl....,xN):Df
fX1><~~><XN Z:_l 9,, (I Ndy(x1,...xn) < Ao
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Alternative discretization: Moments Constrained Optimal Transport

Problem

M <
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Alternative discretization: Moments Constrained Optimal Transport

Problem

M <

Under appropriate conditions on the test functions,

Theorem ([Alfon5| C., Ehrlacher, Lombardi, 2019])

For all M € N*, it holds that IM < | and | Y- .

Besides, there exists an integer 1 < K < MN —1— 2 and for all 1 < k < K, points
2K = (xf, ..., x}) € X1 x ... x Xy and weights wy > 0 such that

Z Wk EoeeoXfy

is a minimizer of the MCOT Problem (1).
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MN + 2 bound on the number of charged points

Theorem (Tchakaloff [Bayer & Teichmann, 2006])

Let d € N* and let v be a measure on RY concentrated on a Borel set A € F, i.e. (R \ A) = 0.
Let My € N* and A\ : RY — R 5 Borel measurable map. Assume that the first moments of N#y

exist, i.e.
/R lulldAgy(u / IA@)]ld(2) < oo,

where || - || denotes the Euclidean norm of RMo . Then, there exist an integer 1 < K < My, points
71, ..., 2k € A and weights wy, ..., wx > 0 such that

K
V1 < j < My, /d/\j(z)d’Y(Z) =) wij(z),
R k=1

where A\; denotes the j-th component of A.
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Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

MN+2

inf D wiec (X o XR).- (2)

M2y, k=1

(Xt 5o X 2)1 <k M2 €( X1 X ~~~XXN)MN_+2
VIKISN, VISGESM, SN2 w ¢l (xf ) =7
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Numerical Interest

This suggests to consider the following problem (particle problem) as a numerical scheme

MN+2

; k K

inf E Wi (X1 s ey Xpy)- (2)

w2, 7 k=1

(Xf7"~aXAk4N+z)1§k§MN+2€(X1X~~-XXN)MN_+2
VIKISN, VISGESM, SN2 w ¢l (xf ) =7

The number of particles grows linearly with the number of marginal laws, as well as the number of
coordinates of those particles.
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Summary

Martingale Optimal Transport

Rafaél Coyaud Approximation of OT problems with marginal moments contraints 1



Martingale Optimal Transport problem

For the sake of simplicity, we will only consider two marginal laws v; € P(R?) and v, € P(R9),
d € N*,
We assume that there exist a martingale coupling between vy and v5:

Iy € N(v1, 1), Vx1 € RY, /

xody(x1, x2) = xi,
]Rd

and a I.s.c. cost function ¢ : RY x RY — R, U {400}
The Martingale Optimal Transport Problem reads as

I = inf / c(x1, x2)dy(x1, x2).
~EN(v1,12) R2d

Vxi €ERY, Jra xedy(x1,%2)=x1

In finance, v1 and 15 are known distribution of prices and fde c(x1, x2)dy(x1, x2) is the payoff of an
option.
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Martingale MCOT problems

Let us introduce the following MCOT Problems, for all M € N*, with the same constraints on the
test functions as in the non compact case,

Lame = inf / cdy. (3)
yEP(RIxRY) RY xRY
Vi=1,2,V1<j<M,
Jrd rd @;(i)dy(x1,x2)=0
Vx1ERY, [og xedy(x1,x0)=x1,
fRd < Rd Z?:l 0'/,-(|Xr'|)d7(Rd XRd)SAO
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Martingale MCOT problems

Let us introduce the following MCOT Problems, for all M € N*, with the same constraints on the
test functions as in the non compact case,

Lame = inf / cdy. (3)
yEP(RIxRY) RY xRY
Vi=1,2,V1<j<M,
Jrd xpd &;(xi)dy(x1,x2)=0]
Vx1ERY, [og xedy(x1,x0)=x1,
fRd < Rd Z?:l 0V;(|Xr'|)d7(Rd XRd)SAO

and

!’
IAA:”M = inf / cdy. (4)
YEP(RYxRY) R xRI
Vi=12,v1<j<M,
Jrd rd @;(i)dy(x1,x2)=0;
VISISM', [a xoxi(xa)dy(xa,x2)=[oa xaxi(x1)dvs(x1),
f]kd xRd Z:?:1 9,,I.(|X,'|)d'7(]Rd><]Rd)SA0
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Martingale MCOT results

With appropriate constraints on the additional test functions x;, one can prove that
m The problem (4) admits a finite discrete minimizer ( with 2M + M’ charged points)

MM’
m " T < Foo
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Martingale MCOT results

With appropriate constraints on the additional test functions x;, one can prove that
m The problem (4) admits a finite discrete minimizer ( with 2M + M’ charged points)

!
O ——
0 M’ =00 0

B I
0

Remark

m One can also define a multi-marginal martingale optimal transport problem and thus, for
example, match price at several time steps.

m If we use as test functions the functions (- — K)™ and (K — )™ for various values of K, the
Martingale MCOT problem consists in knowing only option prices at various strikes and maturity
with no hypothesis on the underlying asset price.

m However, our numerical scheme can only approximate the martingale constraints on a set of test
functions ( with NM + M’ charged points).

m Other numerical methods for Martingale Optimal Transport use sampling techniques [Alfonsi,
Corbetta, Jourdain, '19] or entropic regularization [De March, '18] [Guo, Obloj, '17].
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Summary

Conclusions and perspectives
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Conclusion and perspectives

Conclusions

m Alternative way of discretizing multi-marginal optimal transport problems, in particular for
application in finance using test functions: MCOT problems;

m Convergence of MCOT problem towards the OT problem;

m Some minimizers of MCOT problems can be written as discrete measures charging a low number
of points

m suggest the use of a particle numerical scheme for the resolution of the MCOT problem

m Preliminary results on simple OT problems on the rate of convergence of the MCOT problem
towards the OT problem for piecewise constant and piecewise affine functions

Perspectives
m find an algorithm which can efficiently solve the particle problem

m prove more general convergence rates of the MCOT problem to the exact OT problem.
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Thank you for your attention.




Summary

Rates of convergence
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Sets of test functions

Let M € N* and let us define the intervals

1 j—1 J .
. — M= (— = <;j< M.
7-1 |:03M:|3TJ <M7 M:|7V2_J_M
We consider three different sets of test functions:
m Piecewise constant () test functions:

VI<j<M, ¢Mi=1m
J
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Sets of test functions

Let M € N* and let us define the intervals
1 j—1 J .
M = — M = — iy < < .
7-1 |:O’M:|’TJ <M7 M:|7V2_J_M
We consider three different sets of test functions:
m Piecewise constant () test functions:

VI<j<M, ¢ i=1rm
J

m Continuous piecewise affine (continuous ;) test functions: for 2 <j < M

M(x—12) ifxe TM,,
S0 , M) _ JMl M) = | 1~ Mx ifxe ™,
i\ X) =1 M a,\%—x> ifx € TJ ) 1X)= 1y otherwise,
otherwise,
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Sets of test functions

Let M € N* and let us define the intervals

1 j—1 J .
M =10, =|, TM = (~—=, 2|, V2<j<M.
1 |:03M:|3J <M» M:|7v S/ =
We consider three different sets of test functions:
m Piecewise constant () test functions:
VI<j<M, ¢ :=1mu
J
m Continuous piecewise affine (continuous ;) test functions: for 2 <j < M
M(x—152) ifxe T,

¢JM(X) =M JV — X

1—Mx ifxeTM
. M . 1
ifx € TJ-M7 o1 (x) = ‘ 0 otherwise,

otherwise,

m Discontinuous piecewise affine (discontinuous IP1) test functions: for 1 <j < M

Lo i M _ =1y M
M(M X) ifx e T;7, jA,/I2(X):: /\/l(x M) ifx e T;7,

M (x) =
it otherwise,

otherwise,
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Rates of convergence

m Py case: if ¢ is Lipschitz with constant C, then for all M € N*,

C
M

— £ —,
==
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Rates of convergence

m Py case: if ¢ is Lipschitz with constant C, then for all M € N*,

C
I—IM <=,
- <o

m continuous Py case and c(x1,x) = |x1 — xa|: Let us assume that dvy(x) = p1(x)dx and
dva(x) = pa(x)dx. Let us denote by Fy and F, the cumulative distribution functions of vy and
v, and let us assume that the function Fy — F, changes sign at most Q € N times on [0,1] and

that p1 — po € L°°([0,1],dx,R). Then, for all M € N*,

2Q||p1 — p2|lo

[ —IM) = \Wa(un,p) — 1M < e
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Rates of convergence

m Py case: if ¢ is Lipschitz with constant C, then for all M € N*,

C
I—IM <=,
- <o

m continuous Py case and c(x1,x) = |x1 — xa|: Let us assume that dvy(x) = p1(x)dx and
dva(x) = pa(x)dx. Let us denote by Fy and F, the cumulative distribution functions of vy and
v, and let us assume that the function Fy — F, changes sign at most Q € N times on [0,1] and

that p1 — po € L°°([0,1],dx,R). Then, for all M € N*,
2Q|Ip1 — pallo
M2 ’
m continuous Py case and c(x1,x) = |x1 — xa|?: Let us assume that dvy(x) = p1(x)dx and

dva(x) = pa(x)dx for some p1, p2 € L>°([0,1],dx; R,). Let us denote by 1 and F, the
cumulative distribution functions of v; and v». Then, for all M € N*,

7 ||p1]li= + [|p2]| L=
M) 2 M
[ =17 = [Wi(v,v2) = 17| < 3 e :

1= 1M = [Wa(v1, ) — IM] <
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