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A typical power scheduling example

• We operate a solar plant over one day

with discrete time steps t ∈ {0, 1, . . . ,T}
0 T

• For every operating day

• In the day-ahead stage, we must supply

a power production profile p ∈ RT

• In the intraday stage, we manage the power plant

and deliver a power profile p̃ ∈ RT
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Engaged power vs delivered power

The delivered power p̃ induces gains

and differences between p̃ and p induce penalties
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Contribution of the talk

• Question

How can we optimize day-ahead and intraday decisions

for operating a solar plant with uncertain generated power

at least expected cost ?

• Our contribution

We introduce

parametric multistage stochastic optimization problems

for day-ahead power scheduling

and study differentiability properties

of parametric value functions
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Our standard formulation

We consider a multistage stochastic optimization problem

parametrized by p ∈ Rnp×(T+1) written in standard form as

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

Lt(Xt ,Ut ,Wt+1, pt) + K (XT , pT )
]

X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t ∈ {0, . . . ,T − 1}
Ut ∈ Ut(Xt , pt) , ∀t ∈ {0, . . . ,T − 1}
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}

where Xt : Ω→ Rnx , Ut : Ω→ Rnu , Wt : Ω→ Rnw
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Optimal solution via stochastic dynamic programming

Assumption (discrete white noise)

The sequence {Wt}t∈{1,...,T} is stagewise independent,

and each noise variable Wt has a finite support

For t ∈ {0, . . . ,T} and x ∈ Rnx

we define the parametric value functions

VT (x , p) = K (x , p)

Vt(x , p) = inf
u∈Ut(x,pt)

E
[
Lt(x , u,Wt+1, pt) + Vt+1

(
ft(x , u,Wt+1), p

)]

Under the discrete white noise assumption Φ(p) = V0(x0, p)
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Assumption

Assumption (convex multistage problem)

1. the cost functions {Lt}t∈{0,...,T−1} are jointly convex

and lsc w.r.t. (xt , ut , pt), and are proper,

and the final cost K is convex, proper, lsc

2. the dynamics {ft}t∈{0,...,T−1} are affine w.r.t. (xt , ut)

3. the set-valued mappings {Ut}t∈{0,...,T−1} are closed, convex,

have nonempty domains and compact ranges

4. the problem satisfies a relatively complete recourse-like

assumption
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Convexity of parametric value functions

Proposition (Le Franc [2021])

Under the discrete white noise assumption

and the convex multistage problem assumption,

the parametric value functions {Vt}t∈{0,...,T} are convex, proper, lsc

w.r.t. (x , p)
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Assumption

Assumption (smoothness)

1. the cost functions {Lt}t∈{0,...,T−1} and K

are differentiable w.r.t. pt

2. for all t ∈ {0, . . . ,T − 1}, the set-valued mapping Ut
takes the same set value for all pt ∈ Rnp ;

in that case, we use the notation Ut(x) instead of Ut(x , pt)
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Differentiable parametric value functions

Theorem (Le Franc [2021])

Under the discrete white noise assumption,

the convex multistage problem assumption,

and the smoothness assumption,

the value functions {Vt}t∈{0,...,T} are differentiable w.r.t. p,

and their gradients may be computed by backward induction, with

∇pVT (x , p) = ∇pK (x , pT ) , ∀(x , p) ∈ dom(VT )

and at stage t ∈ {0, . . . ,T − 1}, for (x , p) ∈ dom(Vt),

the solution set U∗t (x , pt) is nonempty, and for any u∗ ∈ U∗t (x , pt),

∇pVt(x , p) = E
[
∇pLt(x , u

∗,Wt+1, pt) +∇pVt+1

(
ft(x , u

∗,Wt+1), p
)]
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Assumption

We consider a parameter set P ⊆ Rnp×(T+1)

and define Pt = projt(P) ⊆ Rnp , ∀t ∈ {0, . . . ,T}

Assumption (parameter set)

1. the parameter set P is nonempty, convex and compact

2. for all t ∈ {0, . . . ,T − 1},
the domain of the set-valued mapping Ut
is such that dom(Ut) ⊆ Rnx × Pt
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Moreau envelopes of cost functions

Given values (x , u,w) ∈ Rnx × Rnu × Rnw

and a regularization parameter µ ∈ R∗+, we introduce

Lµt (x , u,w , pt) = inf
p′t∈Rnp

(
Lt(x , u,w , p

′
t) + δgr(Ut)(x , u, p

′
t) + δPt (p

′
t)

+
1

2µ
||pt − p′t ||22

)
, ∀t ∈ {0, . . . ,T − 1} , ∀pt ∈ Rnp

Kµ(x , pT ) = inf
p′T∈R

np

(
K (x , p′T ) + δPT

(p′T ) +
1

2µ
||pT − p′T ||22

)
, ∀pT ∈ Rnp
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Lower smooth parametric value functions

∼V
µ
T (x , p) = Kµ(x , pT ) , ∀(x , p) ∈ Rnx × Rnp×(T+1)

∼V
µ
t (x , p) = inf

u∈range(Ut)
E
[
Lµt (x , u,Wt+1, pt) + ∼V

µ
t+1

(
ft(x , u,Wt+1), p

)]
∀(x , p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ {0, . . . ,T − 1}

Proposition (Le Franc [2021])

Under the discrete white noise assumption,

the convex multistage problem assumption,

and the parameter set assumption,

the lower smooth parametric value functions
{
∼V
µ
t

}
t∈{0,...,T}

are differentiable w.r.t. p, and their gradients may be computed

by backward induction
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Convergence result

Φ∗ = inf
p∈P

Φ(p)

Proposition (Le Franc [2021])

Under the same assumptions, if the sequence of regularization

parameters {µn}n∈N ∈ (R∗+)N is nonincreasing and such that

limn→+∞ µn = 0, then for any initial state x0 ∈ Rnx , we have that

inf
p∈P ∼

V µn

0 (x0, p) ≤ Φ∗ , ∀n ∈ N , and inf
p∈P ∼

V µn

0 (x0, p) −−−−→
n→+∞

Φ∗
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State extension

x]t =

(
xt
p

)
∈ Rnx × Rnp×(T+1) , ∀t ∈ {0, . . . ,T}

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

L]t(X]
t ,Ut ,Wt+1) + K ](X]

T )
]

X]
0 =

(
x0

p

)
X]

t+1 = f ]t (X]
t ,Ut ,Wt+1) , ∀t ∈ {0, . . .T − 1}

Ut ∈ U ]t (X]
t) , ∀t ∈ {0, . . . ,T − 1}

σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}
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Lower polyhedral value functions

• We introduce the state value functions

V ]
T (x]) = K ](x]) , ∀x] ∈

(
Rnx × Rnp×(T+1)

)
V ]
t (x]) = inf

u∈U]
t (x])

E
[
L]t(x

], u,Wt+1) + V ]
t+1

(
f ]t (x], u,Wt+1)

)]
∀x] ∈

(
Rnx × Rnp×(T+1)

)
, ∀t ∈ {0, . . . ,T − 1}

• We compute polyhedral lower approximations {V k
t }t∈{0,...,T}

of {V ]
t }t∈{0,...,T} by running k ∈ N forward-backward passes

of the SDDP algorithm

• Since V k
0 is polyhedral, linear programming

gives us a subgradient (y , q) ∈ ∂V k
0

(
(x0, p)

)
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Convergence result

Proposition (Le Franc [2021])

Let (x0, p) ∈ Rnx × Rnp×(T+1), if after k̄ ∈ N∗ forward-backward passes

of the SDDP algorithm the approximation error of the value function

V ]
0 by the lower polyhedral approximation V k̄

0 is bounded by

V ]
0

(
(x0, p)

)
− V k̄

0

(
(x0, p)

)
≤ ε

for some ε ∈ R+, then if we compute{
φ = V k̄

0

(
(x0, p)

)
(y , q) ∈ ∂V k̄

0

(
(x0, p)

) we have that

{
|Φ(p)− φ| ≤ ε
q ∈ ∂εΦ(p)
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Schematic organization of the solar plant

s

−
+

g
v c

−+
p̃

vb

• g ∈ [0, p̄]T generated power (uncertainty)

• v c ∈ [0, g ]T curtailed power (control)

• s ∈ [0, s]T+1 state of charge (state)

• vb ∈ [v , v ]T battery power (control)

• p̃ = g − vb − vc delivered power
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Schematic organization of the solar plant

s

−
+

g
v c

−+
p̃

vb

• g ∈ [0, p̄]T generated power (uncertainty) → AR(1) process

• v c ∈ [0, g ]T curtailed power (control)

• s ∈ [0, s]T+1 state of charge (state)

• vb ∈ [v , v ]T battery power (control)

• p̃ = g − vb − vc delivered power
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Stochastic optimal control framework

• We introduce the the state, control and noise variables

x =

(
s

g

)
, u =

(
vb

v c

)
, w = ε

• The state process X is ruled by the dynamics

Xt+1 = ft(Xt ,Ut ,Wt+1) =

(
St + ρcVb

t
+ − 1

ρd
Vb

t
−

αtGt + βt + εt+1

)
=

(
St+1

Gt+1

)

• The stage costs formulate as

Lt(Xt ,Ut ,Wt+1, pt) = −ctP̃t+1︸ ︷︷ ︸
delivery gain

+λct |P̃t+1 − pt |︸ ︷︷ ︸
penalty
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Scenarios

We use one year of power data from Ausgrid

to calibrate the weights (αt , βt) and the law of εt+1

for the generated power Gt
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Methods to compute an optimal profile p∗ ∈ RT

We want to compute p∗ ∈ arg min
p∈P

Φ(p)

Generic method

input: p0 ∈ P
for k = 1 . . .K do

I call a a first order oracle to estimate

→ Φ(pk)

→ qk as a (sub)gradient of Φ at pk

I use an iterative update rule to compute

pk+1 from (pk , qk ,P) and a step size αk ∈ R+

end

output: p∗

We define a method as a first order oracle + an iterative algorithm
27



Instances of methods

We have three methods

• µSDP+IPM:

{
Lower smooth oracle

Interior Points Method
→

the discretization

of Rnx ,Rnu

is critical

• kSDDP+PSM:

{
Lower polyhedral oracle

Projected Subgradient Method
→

the value

of k ∈ N
is critical

• µSDP+PGD:

{
Lower smooth oracle

Projected Gradient Descent
→ same as

µSDP+IPM

for each method, we try several instances
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Evaluate a profile p∗ ∈ RT

Given a profile p∗ ∈ RT , we run the SDDP algorithm to compute

V T (x) = K (x) , ∀x ∈ R2

V t(x) = inf
u∈Ut(x)

E
[
Lt(x , u,Wt+1, p

∗
t ) + V t+1

(
ft(x , u,Wt+1)

)]
∀x ∈ R2 , ∀t ∈ {0, . . . ,T − 1}

Then, we obtain a policy {πt}t∈{0,...,T−1} from {V t}t∈{0,...,T−1}

and estimate the expected cost by sampling 25.000 scenarios

V 0(x0) = E
[T−1∑
t=0

Lt
(
Xt , πt(Xt),Wt+1, p

∗
t

)
+ K (XT )

]

We deduce

V 0(x0) ≤ Φ(p∗) ≤ V 0(x0)
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Results: cost vs overall computing time
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Results: cost vs time per oracle call
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Conclusion and perspectives

• We have introduced a class of parametric multistage

stochastic optimization problems

to model day-ahead power scheduling

• We have presented the differentiability properties

of parametric value functions

• We have presented efficient numerical methods

to solve such problems

• Our main perspective lies in the application of our methods

to several concrete use cases in energy markets
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