Stochastic Process (ENPC)
 Monday, 21st of January 2019 (2h30)

Vocabulary (english/français) : house of cards =château de cartes; distribution =loi; positive $=$ strictement positif ; Brownian bridge $=$ pont brownien $;(0,1]=] 0,1]$.

We write $\mathbb{N}^{*}=\mathbb{Z} \cap\left[1,+\infty\left[\right.\right.$ and $\mathbb{N}=\mathbb{N}^{*} \bigcup\{0\}$.
Exercice 1 (House of cards). Consider a kid building an house of cards and denote by $X_{n} \in \mathbb{N}$ the size (or number of cards) of the house at time $n \in \mathbb{N}$. When adding a new card to the house which contains already k cards, then, with probability p_{k}, the house with $k+1$ cards is stable and with probability $1-p_{k}$ the house collapses and the kid has to restart from scratch, see figure 1 . The "house of cards" model ${ }^{1}$ is also an elementary example of growth-collapse models ${ }^{2}$. The aim of this exercise is to study some asymptotic properties of the "house of cards" dynamic.

Figure 1 - Graph of transitions for the "house of cards" game (with $k \in \mathbb{N}$).
Let $p=\left(p_{k}, k \in \mathbb{N}\right)$ be a sequence of elements of $(0,1]$ with $p_{0}=1$, and set $q_{k}=1-p_{k}$ for $k \in \mathbb{N}$. Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space. The "house of cards" is a Markov chain which is modelled by the following stochastic dynamical system $X=\left(X_{n}, n \in \mathbb{N}\right)$ on the state space \mathbb{N} :

$$
X_{n+1}=\left(X_{n}+1\right) \mathbf{1}_{\left\{U_{n+1} \leq p_{X_{n}}\right\}} \quad \text { for } n \in \mathbb{N},
$$

where $\left(U_{n}, n \in \mathbb{N}^{*}\right)$ is a sequence of independent random variables uniformly distributed over $[0,1]$ which is independent of the \mathbb{N}-valued random variable X_{0}. We consider $\mathcal{F}=\left(\mathcal{F}_{n}=\right.$ $\left.\sigma\left(X_{0}, \ldots, X_{n}\right), n \in \mathbb{N}\right)$ the natural filtration of X. We write \mathbb{P}_{k} and \mathbb{E}_{k} the probability measure and corresponding expectation when the Markov chain X starts with $X_{0}=k \in \mathbb{N}$.

1. Give the transition matrix P of the Markov chain X.
2. Give a necessary and sufficient condition on p for X to be irreducible.
(Hint. First check that $\mathbb{P}_{0}\left(X_{k}=k\right)>0$ for all $k \in \mathbb{N}^{*}$.)
From now on, we assume that X is irreducible. We set $\Delta_{0}=1, \Delta_{n}=\prod_{k=0}^{n-1} p_{k}$ for $n \in \mathbb{N}^{*}$ and :

$$
S_{2}=\sum_{k=0}^{\infty} q_{k} \quad \text { and } \quad S_{1}=\sum_{k=0}^{\infty} \Delta_{k} .
$$

Let τ_{k} be the return time to $k \in \mathbb{N}$ given by $\tau_{k}=\inf \left\{n \geq 1 ; X_{n}=k\right\}$.
3. We study the transience and recurrence of X.
(a) Prove that $\mathbb{P}_{0}\left(\tau_{0}>n\right)=\Delta_{n}$ for all $n \in \mathbb{N}$. Deduce that $\mathbb{E}_{0}\left[\tau_{0}\right]=S_{1}$.
(b) Prove that $\lim _{n \rightarrow \infty} \Delta_{n}=0$ if and only if $S_{2}=+\infty$.

[^0](c) Characterise the transience, the null recurrence and the positive recurrence of X in terms of S_{2} and S_{1} being finite or not.
4. We study the invariant measures $\pi=\left(\pi_{k}, k \in \mathbb{N}\right)$ of X.
(a) Compute the invariant probability measure π when X is positive recurrent.
(Hint. Check that $\pi_{k}=\Delta_{k} \pi_{0}$ for $k \in \mathbb{N}$.)
A measure π is invariant for X if $\pi_{k} \in(0,+\infty)$ for all $k \in \mathbb{N}$ and $\pi=\pi P$.
(b) Compute an invariant measure π for X when X is null recurrent and check this measure is unique (up to a multiplicative factor) and that $\sum_{k=0}^{\infty} \pi_{k}=+\infty$.
(Hint. Check that $\sum_{k=0}^{n} q_{k} \Delta_{k}=1-\Delta_{n+1}$ for $n \in \mathbb{N}$.)
(c) Prove there exists no invariant measure for X when X is transient.
5. We shall compute $\mathbb{P}_{k}\left(\tau_{\ell}<\tau_{0}\right)$ for $0<k<\ell$. We define the function $\varphi=(\varphi(k), k \in \mathbb{N})$ by $\varphi(0)=0$ and $\varphi(k)=1 / \Delta_{k}$ for $k \in \mathbb{N}^{*}$. We consider the random process $M=\left(M_{n}, n \in \mathbb{N}\right)$ defined by $M_{n}=\varphi\left(X_{n \wedge \tau_{0}}\right)$.
(a) Prove that $\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{0}>n+1\right\}} \mid \mathcal{F}_{n}\right]=p_{X_{n}} \mathbf{1}_{\left\{\tau_{0}>n\right\}}$ for $n \in \mathbb{N}$.
(b) Prove that M is a martingale under \mathbb{P}_{k} for $k \in \mathbb{N}^{*}$.
(Hint. Check that $M_{n}=\Delta_{X_{n}}^{-1} \mathbf{1}_{\left\{\tau_{0}>n\right\}}$ for $n \in \mathbb{N}$.)
(c) For $0<k<\ell$, compute $\mathbb{E}_{k}\left[M_{\tau_{\ell} \wedge n}\right]$ for $n \in \mathbb{N}$ and deduce the value of $\mathbb{E}_{k}\left[M_{\tau_{\ell}}\right]$.
(d) Deduce the value of $\mathbb{P}_{k}\left(\tau_{\ell}<\tau_{0}\right)$ for $0<k<\ell$.
6. We shall compute $\mathbb{E}_{k}\left[\tau_{\ell}\right]$ for $k, \ell \in \mathbb{N}$. We define the random process $V=\left(V_{n}, n \in \mathbb{N}\right)$ by $V_{0}=X_{0}$ and for $n \in \mathbb{N}$:
$$
V_{n+1}=\frac{\mathbf{1}_{\left\{X_{n+1} \neq 0\right\}}}{p_{X_{n}}}\left(1+V_{n}\right) .
$$
(a) Prove that $Q=\left(Q_{n}=V_{n}-n, n \in \mathbb{N}\right)$ is a martingale as soon as $\mathbb{E}\left[X_{0}\right]$ is finite.
(b) Prove that $\mathbb{E}_{0}\left[\tau_{\ell} \wedge n\right]=\mathbb{E}_{0}\left[V_{\tau_{\ell} \wedge n}\right]$ for $\ell \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$.
(c) For $\ell \in \mathbb{N}^{*}$, compute $V_{\tau_{\ell}}$ under \mathbb{P}_{0} and deduce the value of $\mathbb{E}_{0}\left[\tau_{\ell}\right]$.
(d) Use the strong Markov property to prove that $\mathbb{E}_{k}\left[\tau_{\ell}\right]=\mathbb{E}_{0}\left[\tau_{\ell}\right]-\mathbb{E}_{0}\left[\tau_{k}\right]$ for $0<k<\ell$.
(e) Assume that X is recurrent positive. Give the value of $\mathbb{E}_{\ell}\left[\tau_{\ell}\right]$ and prove that $\mathbb{E}_{\ell}\left[\tau_{0}\right]=$ $\mathbb{E}_{\ell}\left[\tau_{\ell}\right]-\mathbb{E}_{0}\left[\tau_{\ell}\right]$ and $\mathbb{E}_{\ell}\left[\tau_{k}\right]=\mathbb{E}_{\ell}\left[\tau_{\ell}\right]-\mathbb{E}_{0}\left[\tau_{\ell}\right]+\mathbb{E}_{0}\left[\tau_{k}\right]$ for $0<k<\ell$.

Exercice 2 (Yet another representation of the Brownian bridge). Let $B=\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a standard Brownian motion. The distribution of the Brownian bridge is the distribution of the Gaussian process $W=\left(W_{t}=B_{t}-t B_{1}, t \in[0,1]\right)$.

1. Check that $X=\left(X_{t}=W_{1-t}, t \in[0,1]\right)$ is a Brownian bridge.
2. Prove that $Y=\left(Y_{t}=(1-t) B_{t /(1-t)}, t \in[0,1]\right)$, with the convention that $Y_{1}=0$, is a Brownian bridge.
3. Deduce that $Z=\left(Z_{t}=t B_{(1-t) / t}, t \in[0,1]\right)$, with the convention that $Z_{0}=0$, is a Brownian bridge.

Correction

Exercice 1 1. We have $P(k, k+1)=p_{k}, P(k, 0)=q_{k}$ and $P(k, \ell)=0$ for $\ell \notin\{0, k+1\}$.
2. The Markov chain is irreducible if and only if the set $\left\{k \in \mathbb{N} ; p_{k}<1\right\}$ is infinite.
3. (a) The result is clear for $n=0$. Assume $n \in \mathbb{N}^{*}$. The event $\left\{\tau_{0}>n, X_{0}=0\right\}$ is equal to $\left\{X_{k}=k\right.$ for $\left.0 \leq k \leq n\right\}$. Under \mathbb{P}_{0}, this latter event has probability $\prod_{k=0}^{n-1} P(k, k+$ 1) $=\prod_{k=0}^{n-1} p_{k}=\Delta_{n}$. Use that $\mathbb{E}[Y]=\sum_{k=0}^{\infty} \mathbb{P}(Y>k)$ for any \mathbb{N}-valued random variable Y to get that $\mathbb{E}\left[\tau_{0}\right]=S_{1}$.
(b) The sums S_{2} and $S_{3}=-\sum_{k=0}^{\infty} \log \left(1-q_{k}\right)$ are of the same nature. Conclude using that $\lim _{n \rightarrow \infty} \Delta_{n}=\mathrm{e}^{-S_{3}}$.
(c) The chain X is transient if and only if $\mathbb{P}_{0}\left(\tau_{0}=\infty\right)>0$, which is equivalent to $\lim _{n \rightarrow \infty} \mathbb{P}_{0}\left(\tau_{0}>n\right)>0$ that is $S_{2}<+\infty$. The chain X is null recurrent if and only if $\mathbb{P}_{0}\left(\tau_{0}=\infty\right)=0$ and $\mathbb{E}_{0}\left[\tau_{0}\right]=+\infty$ that is $S_{2}=S_{1}=+\infty$. The chain X is positive recurrent if and only if $\mathbb{E}_{0}\left[\tau_{0}\right]<+\infty$ that is $S_{1}<+\infty$ (which implies that $S_{2}=+\infty$).
4. (a) We deduce from the equation $\pi P=\pi$ that

$$
\begin{align*}
\pi_{0} & =\sum_{k=0}^{\infty} q_{k} \pi_{k} \tag{1}\\
\pi_{k} & =p_{k-1} \pi_{k-1} \quad \text { for } k \in \mathbb{N}^{*} \tag{2}
\end{align*}
$$

Equality (2) implies that $\pi_{k}=\Delta_{k} \pi_{0}$ for $k \in \mathbb{N}^{*}$. This equality trivially holds also for $k=0$. Then use that π is a probability to get :

$$
1=\sum_{k=0}^{\infty} \pi_{k}=\pi_{0} \sum_{k=0}^{\infty} \Delta_{k}=\pi_{0} S_{1} .
$$

Since X is positive recurrent, we have that $S_{1}<+\infty$ and thus $\pi_{k}=\Delta_{k} / S_{1}$ for $k \in \mathbb{N}$. Now, we check that (1) holds. Indeed, as S_{1} is finite, we have :

$$
\sum_{k=0}^{\infty} q_{k} \pi_{k}=\frac{1}{S_{1}} \sum_{k=0}^{\infty}\left(1-p_{k}\right) \Delta_{k}=\frac{1}{S_{1}} \sum_{k=0}^{\infty} \Delta_{k}-\frac{1}{S_{1}} \sum_{k=1}^{\infty} \Delta_{k}=\frac{\Delta_{0}}{S_{1}}=\pi_{0}
$$

(b) We deduce from the equation $\pi P=\pi$ that (1) and (2) hold. Using (2), we get that $\pi_{k}=\Delta_{k} \pi_{0}$ for $k \in \mathbb{N}$. We shall check that (1) holds. We have :

$$
\sum_{k=0}^{n} q_{k} \Delta_{k}=\sum_{k=0}^{n}\left(1-p_{k}\right) \Delta_{k}=\sum_{k=0}^{n} \Delta_{k}-\sum_{k=1}^{n+1} \Delta_{k}=\Delta_{0}-\Delta_{n+1}=1-\Delta_{n+1}
$$

We deduce that :

$$
\sum_{k=0}^{\infty} q_{k} \pi_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} q_{k} \pi_{k}=\lim _{n \rightarrow \infty} \pi_{0} \sum_{k=0}^{n} q_{k} \Delta_{k}=\pi_{0}\left(1-\lim _{n \rightarrow \infty} \Delta_{n}\right)=\pi_{0}
$$

where we used for the last equality that $\lim _{n \rightarrow \infty} \Delta_{n}=0$ as X is null recurrent. We deduce that $\left(\pi_{0} \Delta_{k}, k \in \mathbb{N}\right)$ is the unique invariant measure up to the multiplicative factor $\pi_{0} \in(0,+\infty)$.
(c) If X is transient then $\lim _{n \rightarrow \infty} \Delta_{n}>0$ and, arguing as in the previous question, we get that $\pi_{k}=\Delta_{k} \pi_{0}$ for $k \in \mathbb{N}$ thanks to (2) and then $\sum_{k=0}^{\infty} q_{k} \pi_{k}=\pi_{0}\left(1-\lim _{n \rightarrow \infty} \Delta_{n}\right)<$ π_{0}. Thus (1) can not be satisfied. Hence there exists no invariant measure.
5. (a) Let $n \in \mathbb{N}$. We have :

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{0}>n+1\right\}} \mid \mathcal{F}_{n}\right] & =\mathbf{1}_{\left\{\tau_{0}>n\right\}} \mathbb{E}\left[\mathbf{1}_{\left\{X_{n+1}=X_{n}+1\right\}} \mid \mathcal{F}_{n}\right] \\
& =\mathbf{1}_{\left\{\tau_{0}>n\right\}} \mathbb{E}\left[\mathbf{1}_{\left\{X_{n+1}=X_{n}+1\right\}} \mid X_{n}\right] \\
& =p_{X_{n}} \mathbf{1}_{\left\{\tau_{0}>n\right\}},
\end{aligned}
$$

where we used that $\left\{\tau_{0}>n+1\right\}=\left\{\tau_{0}>n\right\} \bigcap\left\{X_{n+1}=X_{n}+1\right\}$ and $\left\{\tau_{0}>n\right\} \in \mathcal{F}_{n}$ as τ_{0} is a \mathcal{F}-stopping time for the first equality, the Markov property of X for the second and that the transition probability from k to $k+1$ is p_{k} for the last.
(b) Let $n \in \mathbb{N}$. On $\left\{\tau_{0} \leq n\right\}$, we have $\varphi\left(X_{n \wedge \tau_{0}}\right)=\varphi(0)=0$. We deduce that $M_{n}=$ $\Delta_{X_{n}}^{-1} \mathbf{1}_{\left\{\tau_{0}>n\right\}}$. Since τ_{0} is a \mathcal{F}-stopping time, we get that $\left\{\tau_{0}>n\right\} \in \mathcal{F}_{n}$ and thus M is \mathcal{F}-adapted. Since M is non-negative, we can compute $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]$. We have :

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\left.\frac{1}{\Delta_{X_{n}} p_{X_{n}}} \mathbf{1}_{\left\{\tau_{0}>n+1\right\}} \right\rvert\, \mathcal{F}_{n}\right] \\
& =\frac{1}{\Delta_{X_{n}} p_{X_{n}}} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{0}>n+1\right\}} \mid \mathcal{F}_{n}\right] \\
& =\frac{1}{\Delta_{X_{n}}} \mathbf{1}_{\left\{\tau_{0}>n\right\}},
\end{aligned}
$$

where we used that $X_{n+1}=X_{n}+1$, and thus $\Delta_{X_{n+1}}=\Delta_{X_{n}} p_{X_{n}}$, on $\left\{\tau_{0}>n+1\right\}$ for the first equality and the previous question for the last. We deduce that $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=$ M_{n}. Taking the expectation, we deduce that $\mathbb{E}\left[M_{n+1}\right]=\mathbb{E}\left[M_{n}\right]$ and by induction $\mathbb{E}\left[M_{n+1}\right]=\mathbb{E}\left[M_{0}\right]$. Thus, if $\mathbb{E}\left[M_{0}\right]$ is finite, then M_{n} is integrable for all $n \in \mathbb{N}$ and since $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}$ for all $n \in \mathbb{N}$, we get that M is a martingale. Notice that $\mathbb{E}_{k}\left[M_{0}\right]=\varphi(k)<+\infty$ to conclude.
(c) Notice that $\mathbb{E}_{k}\left[M_{0}\right]=\varphi(k)$ is finite, so M is a martingale under \mathbb{P}_{k}. Since τ_{ℓ} is a stopping time, we get by the stopping time theorem that $\mathbb{E}_{k}\left[M_{\tau_{\ell} \wedge n}\right]=\varphi(k)$. In both the transient case and recurrent case, we obtain that τ_{ℓ} is a.s. finite. Since the sequence $\left(M_{\tau_{\ell} \wedge n}, n \in \mathbb{N}\right)$ is non-negative, bounded from above by $\varphi(\ell)$ and converges \mathbb{P}_{k}-a.s. to $M_{\tau_{\ell}}$, we deduce from the dominated convergence theorem that :

$$
\mathbb{E}_{k}\left[M_{\tau_{\ell}}\right]=\lim _{n \rightarrow \infty} \mathbb{E}_{k}\left[M_{\tau_{\ell} \wedge n}\right]=\varphi(k) .
$$

(d) Since $M_{\tau_{\ell}}$ is equal to 0 on $\left\{\tau_{0}<\tau_{\ell}\right\}$, to $\varphi(\ell)$ on $\left\{\tau_{\ell}<\tau_{0}\right\}$, and that a.s. $\tau_{0} \neq \tau_{\ell}$, we get that:

$$
\mathbb{E}_{k}\left[M_{\tau_{\ell}}\right]=\varphi(\ell) \mathbb{P}_{k}\left(\tau_{\ell}<\tau_{0}\right) .
$$

Use the previous question to get that $\mathbb{P}_{k}\left(\tau_{\ell}<\tau_{0}\right)=\Delta_{\ell} / \Delta_{k}$ for $0<k<\ell$. (Notice this result could have been seen directly as there is only one path starting from k to ℓ which avoids 0 ; it corresponds to the event $\left\{X_{j}=k+j, j \in\{0, k-\ell\}\right\}$ which has probability $\prod_{r=k}^{\ell-1} p_{r}$.)
6. (a) By an easy induction, we get that V and Q are \mathcal{F}-adapted. Since V is non-negative, we can compute $\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right]$. We have :

$$
\begin{aligned}
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] & =\frac{1}{p_{X_{n}}}\left(1+V_{n}\right) \mathbb{E}\left[\mathbf{1}_{\left\{X_{n+1} \neq 0\right\}} \mid \mathcal{F}_{n}\right] \\
& =\frac{1}{p_{X_{n}}}\left(1+V_{n}\right) \mathbb{E}\left[\mathbf{1}_{\left\{X_{n+1} \neq 0\right\}} \mid X_{n}\right] \\
& =\frac{1}{p_{X_{n}}}\left(1+V_{n}\right) \mathbb{E}\left[\mathbf{1}_{\left\{X_{n+1}=X_{n}+1\right\}} \mid X_{n}\right] \\
& =1+V_{n},
\end{aligned}
$$

where we used the Markov property of X for the second equality, that $\left\{X_{n+1} \neq 0\right\}=$ $\left\{X_{n+1}=X_{n}+1\right\}$ for the third and that the transition probability from k to $k+1$ is p_{k} for the last. We deduce that $\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right]=V_{n}+1$. Taking the expectation, we deduce that $\mathbb{E}\left[V_{n+1}\right]=\mathbb{E}\left[V_{n}\right]+1$ and by induction $\mathbb{E}\left[V_{n+1}\right]=\mathbb{E}\left[X_{0}\right]+n$ which is finite by assumption. Thus V_{n} and Q_{n} are integrable for all $n \in \mathbb{N}$ and since $\mathbb{E}\left[Q_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right]-n-1=Q_{n}$ for all $n \in \mathbb{N}$, we get that Q is a martingale.
(b) Notice that $\mathbb{E}_{0}\left[X_{0}\right]=0$ is finite, so Q is a martingale under \mathbb{P}_{0}. Since τ_{ℓ} is a stopping time, we get by the stopping time theorem that $\mathbb{E}_{0}\left[Q_{\tau_{\ell} \wedge n}\right]=0$. This implies that :

$$
\begin{equation*}
\mathbb{E}_{0}\left[\tau_{\ell} \wedge n\right]=\mathbb{E}_{0}\left[V_{\tau_{\ell} \wedge n}\right] \quad \text { for } \ell \in \mathbb{N}^{*} \text { and } n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

(c) By monotone convergence, we have that $\mathbb{E}_{0}\left[\tau_{\ell}\right]=\lim _{n \rightarrow \infty} \mathbb{E}_{0}\left[\tau_{\ell} \wedge n\right]$. As $\ell>0$, in both the transient case and recurrent case, we obtain that τ_{ℓ} is a.s. finite. The sequence $\left(V_{\tau_{\ell} \wedge n}, n \in \mathbb{N}\right)$ is non-negative, and using an elementary induction, it is bounded from above by $V_{\tau_{\ell}}$ which is \mathbb{P}_{0}-a.s. equal to $\Delta_{\ell}^{-1} \sum_{k=0}^{\ell-1} \Delta_{k}$. We deduce from the dominated convergence theorem that :

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{0}\left[V_{\tau_{\ell} \wedge_{n}}\right]=\mathbb{E}_{0}\left[V_{\tau_{\ell}}\right]=\frac{1}{\Delta_{\ell}} \sum_{k=0}^{\ell-1} \Delta_{k}
$$

Taking the limit in (3), we deduce that $\mathbb{E}_{0}\left[\tau_{\ell}\right]=\Delta_{\ell}^{-1} \sum_{k=0}^{\ell-1} \Delta_{k}$.
(d) Let $0<k<\ell$. Under \mathbb{P}_{0}, we have that $\tau_{\ell}=\tau_{k}+\tau_{\ell}^{\prime}$, where :

$$
\tau_{\ell}^{\prime}=\inf \left\{n \geq 1 ; Y_{n}=\ell\right\} \quad \text { with } \quad Y_{n}=X_{n+\tau_{k}} \quad \text { for } n \in \mathbb{N} .
$$

Recall that \mathbb{P}_{0}-a.s. τ_{k} is finite and thus \mathbb{P}_{0}-a.s. $X_{\tau_{k}}=k$. By the strong Markov property at time τ_{k}, we get that $Y=\left(Y_{n}, n \in \mathbb{N}\right)$ is distributed as X under \mathbb{P}_{k}. This implies that $\mathbb{E}_{0}\left[\tau_{\ell}^{\prime}\right]=\mathbb{E}_{k}\left[\tau_{\ell}\right]$, and thus :

$$
\mathbb{E}_{k}\left[\tau_{\ell}\right]=\mathbb{E}_{0}\left[\tau_{\ell}^{\prime}\right]=\mathbb{E}_{0}\left[\tau_{\ell}\right]-\mathbb{E}_{0}\left[\tau_{k}\right] .
$$

(e) Since X is recurrent positive, we get $\mathbb{E}_{\ell}\left[\tau_{\ell}\right]=1 / \pi_{\ell}=S_{1} / \Delta_{\ell}$. Let $0 \leq k<\ell$. Under \mathbb{P}_{ℓ}, to return to ℓ, one has first to pass to 0 and thus to k. Thus, under \mathbb{P}_{ℓ}, we have that $\tau_{\ell}=\tau_{k}+\tau_{\ell}^{\prime}$, where :

$$
\tau_{\ell}^{\prime}=\inf \left\{n \geq 1 ; Y_{n}=\ell\right\} \quad \text { with } \quad Y_{n}=X_{n+\tau_{k}} \quad \text { for } n \in \mathbb{N} .
$$

 at time τ_{k}, we get that $Y=\left(Y_{n}, n \in \mathbb{N}\right)$ is distributed as X under \mathbb{P}_{k}. This implies that $\mathbb{E}_{\ell}\left[\tau_{\ell}^{\prime}\right]=\mathbb{E}_{k}\left[\tau_{\ell}\right]$ and thus for $0 \leq k<\ell$:

$$
\mathbb{E}_{\ell}\left[\tau_{k}\right]=\mathbb{E}_{\ell}\left[\tau_{\ell}\right]-\mathbb{E}_{\ell}\left[\tau_{\ell}^{\prime}\right]=\mathbb{E}_{\ell}\left[\tau_{\ell}\right]-\mathbb{E}_{k}\left[\tau_{\ell}\right]
$$

Then, use Question $6(\mathrm{c})$ to conclude when $k>0$.
Exercice 2 The Gaussian process W is centerd with covariance kernel $K_{W}=\left(K_{W}(s, t) ; s, t \in\right.$ $[0,1])$, where $K_{W}(s, t)=s(1-t)$ for $0 \leq s \leq t \leq 1$.

1. By construction X is a centered Gaussian process. We remark its covariance kernel $K_{X}=$ $\left(K_{X}(s, t) ; s, t \in[0,1]\right)$ is given by, for $0 \leq s \leq t \leq 1$:

$$
K_{X}(s, t)=K_{W}(1-s, 1-t)=(1-t)(1-(1-s))=K_{W}(s, t)
$$

Thus, we get $K_{X}=K_{W}$ (as the covariance kernel is symmetric). We deduce that X and W have the same distribution.
2. By construction Y is a centered Gaussian process. We remark its covariance kernel $K_{Y}=$ $\left(K_{Y}(s, t) ; s, t \in[0,1]\right)$ is given by, for $0 \leq s \leq t<1$:

$$
K_{Y}(s, t)=(1-t)(1-s) K_{W}(s /(1-s), t /(1-t))=(1-t) s=K_{W}(s, t)
$$

as $s /(1-s) \leq t /(1-t)$. If $0 \leq s \leq t=1$, then as $Y_{1}=0$, we get $K_{Y}(s, 1)=0=K_{W}(s, 1)$. Thus, we get $K_{Y}=K_{W}$ (as the covariance kernel is symmetric). We deduce that Y and W have the same distribution.
3. Notice that $Z_{t}=Y_{1-t}$ for $t \in[0,1]$. Since Y is distributed as W according to Question 2, we deduce that Z is distributed as X and thus as W according to Question 1.

[^0]: 1. An introduction to probability theory and its applications. Vol. I. Third edition. John Wiley \& Sons, 1968. (See pages 381-382, 390, 398, 403 and 408.)
 2. T. Huillet. On a Markov chain model for population growth subject to rare catastrophic events. Physica A. Statistical Mechanics and its Applications, 390(23-24) :4073-4086, 2011.
